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Abstract
We consider the problem of the limited-bandwidth
communication for multi-agent reinforcement
learning, where agents cooperate with the assis-
tance of a communication protocol and a sched-
uler. The protocol and scheduler jointly determine
which agent is communicating what message and
to whom. Under the limited bandwidth constraint,
a communication protocol is required to generate
informative messages. Meanwhile, an unneces-
sary communication connection should not be
established because it occupies limited resources
in vain. In this paper, we develop an Informative
Multi-Agent Communication (IMAC) method to
learn efficient communication protocols as well
as scheduling. First, from the perspective of com-
munication theory, we prove that the limited band-
width constraint requires low-entropy messages
throughout the transmission. Then inspired by
the information bottleneck principle, we learn a
valuable and compact communication protocol
and a weight-based scheduler. To demonstrate the
efficiency of our method, we conduct extensive ex-
periments in various cooperative and competitive
multi-agent tasks with different numbers of agents
and different bandwidths. We show that IMAC
converges faster and leads to efficient communi-
cation among agents under the limited bandwidth
as compared to many baseline methods.

1. Introduction
Multi-agent reinforcement learning (MARL) has long
been a go-to tool in complex robotic and strategic do-
mains (RoboCup, 2019; OpenAI, 2019). In these scenar-
ios, communicated information enables action and belief
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correlation that benefits a group’s cooperation. Therefore,
many recent works in the field of multi-agent communica-
tion focus on learning what messages (Foerster et al., 2016;
Sukhbaatar et al., 2016; Peng et al., 2017) to send and whom
to address them (Jiang & Lu, 2018; Kilinc & Montana, 2018;
Das et al., 2019; Singh et al., 2018).

A key difficulty, faced by a group of learning agents in such
domains, is the need to efficiently exploit the available com-
munication resources, such as limited bandwidth. The lim-
ited bandwidth exists in two processes of transmission: from
agents to the scheduler and from the scheduler to agents
as shown in Fig. 1. This problem has recently attracted
attention and one strategy has been proposed for limited
bandwidth settings: downsizing the communication group
via a scheduler (Zhang & Lesser, 2013; Kim et al., 2019;
Mao et al., 2019). The scheduler allows a part of agents
to communicate so that the bandwidth is not overwhelmed
with all agents’ messages. However, these methods limit the
number of agents who can communicate instead of the com-
munication content. Agents may share redundant messages
which are unsustainable under bandwidth limitations. For
example, a single large message can occupy the whole band-
width. Also, these methods need specific configurations
such as a predefined scale of agents’ communication group
(Zhang & Lesser, 2013; Kim et al., 2019) or a predefined
threshold for muting agents (Mao et al., 2019). Such manual
configuration would be of a definite detriment in complex
multi-agent domains.

In this paper, we address the limited bandwidth problem
by compressing the communication messages. First, from
the perspective of communication theory, we view the mes-
sages as random vectors and prove that a limited bandwidth
can be translated into a constraint on the communicated
message entropy. Thus, agents should generate low-entropy
messages to satisfy the limited bandwidth constraint. In
more details, derived from source coding theorem (Shan-
non, 1948) and Nyquist criterion (Freeman, 2004), we state
that in a noiseless channel, when a K-ary, bandwidth B,
quantization interval ∆ communication system transmits
n messages of dimension d per second, the entropy of the
messages H(m) is limited by the bandwidth according to
H(m) ≤ 2B log2K

n + d log2 ∆.
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Moreover, to allow agents to send and receive low-entropy
messages with useful and necessary information, we con-
sider the problem of learning communication protocols and
learning scheduling. Inspired by the variational information
bottleneck method (Tishby et al., 2000; Alemi et al., 2016),
we propose a regularization method for learning informative
communication protocols, named Informative Multi-Agent
Communication (IMAC). Specifically, IMAC applies the
variational information bottleneck to the communication
protocol by viewing the messages as latent variables and
approximating its posterior distribution. By regularizing
the mutual information between the protocol’s inputs (the
input features extracted from agents) and the protocol’s out-
puts (the messages), we learn informative communication
protocols, which convey low-entropy and useful messages.
Also, by viewing the scheduler as a virtual agent, we learn
a weight-based scheduler with the same principle which
aggregates compact messages by reweighting all agents’
messages.

We conduct extensive experiments in different environments:
cooperative navigation, predator-prey and StarCraftII. Re-
sults show that IMAC can convey low-entropy messages,
enable effective communication among agents under the
limited bandwidth constraint, and lead to faster convergence
as compared with various baselines.

2. Related Work
Our work is related to prior works in multi-agent reinforce-
ment learning with communication, which mainly focus on
two basic problems: who/whom and what to communicate.
They are also expressed as the problem of learning schedul-
ing and communication protocols. One line of scheduling
methods is to utilize specific networks to learn a weight-
based scheduler by reweighting agents’ messages, such as
bi-direction RNNs in BiCNet (Peng et al., 2017), a self-
attention layer in TarMAC (Das et al., 2019). Another line
is to introduce various gating mechanisms to determine the
groups of communication agents (Jiang & Lu, 2018; Singh
et al., 2018; Kim et al., 2019; Kilinc & Montana, 2018; Mao
et al., 2019). Communication protocols are often learned
in an end-to-end manner with a specific scheduler: from
perceptual input (e.g., pixels) to communication symbols
(discrete or continuous) to actions (e.g., navigating in an
environment) (Foerster et al., 2016; Kim et al., 2019). While
some works for learning the communication protocols focus
on discrete human-interpretable communication symbols
(Lazaridou et al., 2016; Mordatch & Abbeel, 2018), our
method learns a continuous communication protocol in an
implicit manner (Foerster et al., 2016; Sukhbaatar et al.,
2016; Jiang & Lu, 2018; Singh et al., 2018).

Methods for addressing the limited bandwidth problem are
explored, such as downsizing the communication group via

scheduler
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Figure 1. The Architecture of IMAC. Left: Overview of the com-
munication scheme. The red dashed box means the communication
process with a limited bandwidth constraint. The green line means
the gradient flows. Right: The upper one is the scheduler for agent
i. The below one is the policy πai and the communication protocol
network πproi for agent i

.

a scheduler. However, all scheduling methods suffer from
content redundancy, which is unsustainable under band-
width limitations. Even if only a single pair of agents is
allowed to communicate, a large message may fail to be con-
veyed due to the limited bandwidth. In addition, scheduling
methods with gating mechanisms are inflexible because
they introduce manual configuration, such as the predefined
size of a communication group (Zhang & Lesser, 2013;
Kim et al., 2019), or a handcrafted threshold for muting
agents (Jiang & Lu, 2018; Mao et al., 2019). Moreover,
most methods for learning communication protocols fail to
compress the protocols and extract valuable information for
cooperation (Jiang & Lu, 2018). In this paper, we study the
limited bandwidth in the aspect of communication protocols.
Also, our methods can be extended into the scheduling if
we utilize a weight-based scheduler.

The combination between the information bottleneck
method and reinforcement learning has brought a few appli-
cations in the last few years, especially in imitation learning
(Peng et al., 2018), inverse reinforcement learning (Peng
et al., 2018) and exploration (Goyal et al., 2019; Jaques
et al., 2019). Among them, Goyal et al. mention the multi-
agent communication in their appendix, showing a method
to minimize the communication by penalizing the effect of
one agent’s messages on another one’s policy. However, it
does not consider the limited bandwidth constraint.

3. Problem Setting
We consider a communicative multi-agent reinforcement
learning task, which is extended from Dec-POMDP and
described as a tuple 〈n,S,A, r, P,O,Ω,M , γ〉, where n
represents the number of agents. S represents the space
of global states. A = {Ai}i=1,··· ,n denotes the space of
actions of all agents. O = {Oi}i=1,··· ,n denotes the space
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of observations of all agents. M represents the space of
messages. P : S × A → S denotes the state transition
probability function. All agents share the same reward as
a function of the states and agents’ actions r : S ×A →
R. Each agent i receives a private observation oi ∈ Oi
according to the observation function Ω(s, i) : S → Oi.
γ ∈ [0, 1] denotes the discount factor. As shown in Fig. 1,
each agent receives observation oi and a scheduling message
ci, then outputs an action ai and a message mi. A scheduler
fschi is introduced to receive messages [m1, · · · ,mn] ∈M
from all agents and dispatch scheduling messages ci =
fschi (m1, · · · ,mn) ∈Mi for each agent i.

We adopt a centralized training and decentralized execution
paradigm (Lowe et al., 2017), and further relax it by allow-
ing agents to communicate. That is, during training, agents
are granted access to the states and actions of other agents
for the centralized critic, while decentralized execution only
requires individual states and scheduled messages from a
well-trained scheduler.

Our end-to-end method is to learn a communication pro-
tocol πproi (mi|oi, ci), an policy πai (ai|oi, ci), and a sched-
uler fschi (ci|m1, · · · ,mn), which jointly maximize the ex-
pected discounted return for each agent i:

Ji = Eπa
i ,π

pro
i ,fschi

[Σ∞t=0γ
trti(s, a)]

= Eπa
i ,π

pro
i ,fschi

[Qi(s, a1, · · · , an)]

≈ Eπa
i ,π

pro
i ,fschi

[Qi(o1, · · · , on, c1, · · · , cn, a1, · · · , an)]

= Eπa
i ,π

pro
i ,fschi

[Qi(h1, · · · , hn, a1, · · · , an)]

(1)
where rti is the reward received by the i−th agent at
time t, Qi is the centralized action-value function for
each agent i, and Eπa

i ,π
pro
i ,fsch

i
denotes an expecta-

tion over the trajectories 〈s, ai,mi, ci〉 generated by
pπ

a
i , πai (ai|oi, ci), πproi (mi|oi, ci), fschi (ci|m1, · · · ,mn).

Here we follow the simplification in (Lowe et al., 2017) to
replace the global states with joint observations and use an
abbreviation hi to represent the joint value of [oi, ci] in the
rest of this paper.

The limited bandwidth B is a range of frequencies within a
given band. It exists in the two processes of transmission:
messages from agents to the scheduler and scheduling mes-
sages from the scheduler to agents as shown in Fig. 1. In
the next section, we will discuss how the limited bandwidth
B affects the communication.

4. Connection between Limited Bandwidth
and Multi-agent Communication

In this section, from the perspective of communication the-
ory, we show how the limited bandwidth B requires low-
entropy messages throughout the transmission. We then
discuss how to measure the message’s entropy.

4.1. Communication Process

We show the communication process (Figure 2) from agents
to the scheduler, which consists of five stages: analog-to-
digital, coding, transmission, decoding and digital-to-analog
(Freeman, 2004). When agent transmits a continuous mes-
sage mi of agent i, an analog-to-digital converter (ADC)
maps it into a countable set. An ADC can be modeled as
two processes: sampling and quantization. Sampling con-
verts a time-varying signal into a sequence of discrete-time
real-value signal. This operation is corresponding to the
discrete timestep in RL. Quantization replaces each real
number with an approximation from a finite set of discrete
values. In the coding phase, the quantized messages m∆

i is
mapped to a bitstream using source coding methods such
as Huffman coding. In the transmission phase, the trans-
mitter modulates the bitstream into wave, and transmit the
wave through a channel, then the receiver demodulates the
wave into another bitstream due to some distortion in the
channel. Then, decoding is the inverse operation of coding,
mapping the bitstream to the recovered messages m̂∆

i . Fi-
nally, the scheduler receives a reconstructed analog message
from a digital-to-analog converter (DAC). The same process
happens when sending the scheduled messages ci from the
scheduler to the agent i. The bandwidth actually restricts
the transmission phase.

Source ADC
Source

Encoder

Source
Decoder

Output

𝑚𝑖 𝑚𝑖
Δ

Channel

DAC
ෝ𝑚𝑖
Δෝ𝑚𝑖

of one dim

…0100110…

Transmitter

Receiver

t

value d

t

value d of one dim

Figure 2. Overview of the Communication Process. Axes of mes-
sages are time, dimension of the message vector, and value of each
element in the vector.

4.2. Limited Bandwidth Restricts Message’s Entropy

We model the messages mi as continuous random vectors
Mi, i.e., continuous vectors sampled from a certain distri-
bution. The reason is that a message is sent by one agent
in each timestep, while over a long duration, the messages
follow some distributions. We abuse m to represent the
random vector by omitting the subscript, and explain the
subscript in special cases.

For simplicity, we consider sending an element X of the
continuous random vector m, which is a continuous ran-
dom variable, and then extend our conclusion to m. First,
we quantize the continuous variable into discrete symbols.
The quantization brings a gap between the entropy of the
discrete variables and differential entropy of the continuous
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variables.

Remark 1 (Relationship between entropy and differential
entropy). Consider a continuous random variable X with
a probability density function fX(x). This function is then
quantized by dividing its range into K levels of interval
∆, where K = ceil(|X|/∆), and |X| is max amplitude of
variable. The quantized variable isX∆. Then the difference
between differential entropy H(X) and entropy H

(
X∆

)
is

H(X)−H
(
X∆

)
= log2(∆).

Note that for a fixed small identical interval ∆, there is
only a constant difference between differential entropy and
entropy. Then we encode these quantized symbols.

Remark 2 (Source Coding Theorem (Shannon, 1948)). In
the source coding phase, a set of n quantized symbols is to
be encoded into bitstreams. These symbols can be treated
as n independent samples of a discrete random variable
X∆ with entropy H(X∆). Let L be the average number
of bits to encode the n symbols. The minimum L satisfies
H(X∆) ≤ L < H(X∆) + 1

n .

Remark 2 regularizes the coding phase in the communica-
tion process. Then in the transmission, over a noiseless
channel, the maximum bandwidth is defined as the maxi-
mum data rate:

Remark 3 (The Maximum Data Rate (Freeman, 2004)).
The maximum data rate Rmax (bits per second) over a
noiseless channel satisfies: Rmax = 2B log2K, where B
is the bandwidth (Hz) and K is the number of signal levels.

Remark 3 is derived from the Nyquist criterion (Freeman,
2004) and specifies how the bandwidth of a communication
system affects the transmission data rate for reliable trans-
mission in the noiseless condition. Based on these three
remarks, we show how the limited bandwidth constraint
affects the multi-agent communication.

Proposition 1. In a noiseless channel, the bandwidth of
channel B limits the entropy of the messages’ elements.

Proof. Given a message’s element X as an i.i.d continu-
ous random variable with differential entropy H(X), its
quantized time series X∆

1 , · · · , X∆
t , · · · (here the sub-

script means different times) with entropy H(X∆) =
H(X) − log2 ∆, the communication system’s bandwidth
B, as well as the signal levels K, the communication sys-
tem transmits n symbols per second. We define Rcode
as an unbiased estimation of L in Remark 2. So the
transmission rate Rtrans( bit

second ) = n · Rcode( bit
symbol ) ≥

n · H(X∆) ≥ n · (H(X) − log ∆).1 According to Re-
mark 3, Rtrans ≤ Rmax = 2B log2K. Consequently, we
have H(X) ≤ 2B log2K

n + log2 ∆.

1 bit
second and bit

symbol are units of measure.

Note that although a frequent symbol among these sending
symbols uses less bits than H(X∆) and vice versa, when
we send a bunch of symbols, Rcode is lager than H(X∆)
on average.

Proposition 2. In a noiseless channel, the bandwidth of
channel B limits the entropy of the messages.

Proof. When sending the random vector, i.e., the message
Mi = [X1, X2, · · · , Xd], where the subscript means differ-
ent entries of the vector and d is the dimension, each variable
Xi occupies a bandwidth Bi, which satisfies

∑d
i=1Bi = B.

Assume all entries are quantilized with the same interval, ac-
cording to (Cover & Thomas, 2012), the upper bound of the
messages H(Mi) = H(X1, · · · , Xd) ≤

∑d
i=1H(Xi) ≤

2dB log2K
n + d log2 ∆.

Eventually, a limited bandwidth B enforces an upper bound
Hc to the message’s entropy H(Mi) ≤ Hc ∝ B.

4.3. Measurement of a Message’s Entropy

The messages Mi as an i.i.d random vector can follow any
distribution, so it is hard to determine the message’s entropy.
So, we keep a historical record of the message and find a
quantity to measure the message’s entropy.

Proposition 3. When we have a historical record of the mes-
sages to estimate the messages’ mean µ and co-variance
Σ, the entropy of the messages is upper bounded by
1
2 log((2πe)d|Σ|), where d is the dimension of Mi.

Proof. The message Mi follows a certain distribution, and
we are only certain about its mean and variance. Accord-
ing to the principle of maximum entropy (Jaynes, 1957),
the Gaussian distribution has maximum entropy relative
to all probability distributions covering the entire real line
(−∞,∞) but having a finite mean and finite variance (see
the proof in (Cover & Thomas, 2012)). So H(Mi) ≤
1
2 log((2πe)dΣ), where the right term is the entropy of mul-
tivariate Gaussian N(µ,Σ).

We conclude that 1
2 log((2πe)d|Σ|) offers an upper bound

to approximate H(Mi), and this upper bound should be less
than or equal to the limited bandwidth constraint to ensure
that the message with any possible distribution satisfies the
limited bandwidth constraint.

5. Informative Multi-agent Communication
As shown in the previous section, the limited bandwidth re-
quires agents to send low-entropy messages. In this section,
we first introduce our method for learning a valuable and
low-entropy communication protocol via the information
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bottleneck principle. Then, we discuss how to use the same
principle in scheduling.

5.1. Variational Information Bottleneck for Learning
Protocols

We propose an informative multi-agent communication via
information bottleneck principle to learn protocols. Con-
cretely, we propose an information-theoretic regularization
on the mutual information I(Hi;Mi) between the messages
and the input features

I(Hi;Mi) ≤ Ic (2)

whereMi is a random vector with a probability density func-
tion pMi(mi), which represents the possible assignments of
the messages mi, and Hi is a random vector with a proba-
bility density function pHi

(hi) which the possible values of
[oi, ci]. We omit the subscripts in the density functions in
the rest of the paper. Eventually, with the help of variational
information bottleneck (Alemi et al., 2016), this regulariza-
tion enforces agents to send low-entropy messages.

Consider a scenario with n agents’ policies {πai }i=1,··· ,n
and protocols {πproi }i=1,··· ,n which are parameterized by
{θi}i=1,··· ,n = {θai , θ

pro
i }i=1,··· ,n, and with schedulers

{fschi }i=1,··· ,n which are parameterized by {φi}i=1,··· ,n.
Consequently, for learning the communication protocol with
fixed schedulers, the agent i is supposed to maximize:

J(θi) = Eπa
i ,π

pro
i ,fschi

[Qi(h1, · · · , hn, a1, · · · , an)]

s.t. I(Hi;Mi) ≤ Ic

Practically, we propose to maximize the following objective
using the information bottleneck Lagrangian:

J ′(θi) = Eπa
i ,π

pro
i ,fschi

[Qi(h1, · · · , hn, a1, · · · , an)]

− βI(Hi;Mi) (3)

where the β is the Lagrange multiplier. The mutual informa-
tion is defined according to:

I(Hi;Mi) =

∫∫
p(hi,mi) log

p(hi,mi)

p(hi)p(mi)
dhidmi

=

∫∫
p(hi)π

pro(mi|hi) log
πpro(mi|hi)
p(mi)

dhidmi

where p(hi,mi) is the joint probability of hi and mi.

However, computing the marginal distribution p(mi) =∫
πpro(mi|hi)p(hi)dhi can be challenging since we do not

know the prior distribution of p(hi). With the help of varia-
tional information bottleneck (Alemi et al., 2016), we use
a Gaussian approximation z(mi) of the marginal distribu-
tion p(mi) and view πpro as multivariate variational en-
coders. Since DKL[p(mi)||z(mi)] ≥ 0, where the DKL is
the Kullback-Leibler divergence, we expand the KL term
and get

∫
p(mi) log p(mi)dmi ≥

∫
p(mi) log z(mi)dmi,

an upper bound on the mutual information I(Hi;Mi) can

be obtained via the KL divergence:

I(Hi;Mi) ≤
∫
p(hi)π

pro
i (mi|hi) log

πproi (mi|hi)
z(mi)

dhidmi

= Ehi∼p(hi)[DKL[πpro(mi|hi)‖z(mi)]]
(4)

This provides a lower bound J̃(θ) on the regularized objec-
tive that we maximize:

J ′(θi) ≥ J̃(θi) = Eπa
i ,π

pro
i ,fschi

[Qi(h1, · · · , hn, a1, · · · , an)]

−βEhi∼p(hi)[DKL[πproi (mi|hi)‖z(mi)]]

Consequently, the objective’s derivative is:

∇θi J̃ (πi) = Eπa
i ,π

pro
i ,fschi

[
∇θi log (πi (at|st))

Qi(h1, · · · , hn, a1, · · · , an)−β∇θiDKL[πpro(mi|hi)‖z(mi)]
]
(5)

With the variational information bottleneck, we can con-
trol the messages’ distribution and thus control their en-
tropy with different prior z(mi) to satisfy different lim-
ited bandwidths in the training stage. That is, with the
regulation of DKL[p(mi|hi)‖z(mi)], the messages’ prob-
ability density function p(mi) =

∑
hi
p(mi|hi)p(hi) ≈∑

hi
z(mi)p(hi) = z(mi)

∑
hi
p(hi) = z(mi). Thus

H(Mi) = −
∫
p log pdmi ≈ −

∫
z log zdmi.

5.2. Unification of Learning Protocols and Scheduling

The scheduler for agent i is fschi (ci|m1, · · · ,mn). The
terms “scheduler are from SchedNet (Kim et al., 2019),
which introduces “communication scheduling” and “sched-
uler” to represent the filtering process instead of timing. Re-
call the communication protocols for agent i: πproi (mi|hi).
Due to the same form of the protocol and the scheduling, the
scheduler is supposed to follow the same principle for learn-
ing a weight-based mechanism. Variational information
bottleneck can be applied in scheduling for agent iwith regu-
larization on the mutual information between the scheduling
messages ci and all agents’ messages I(Ci;M1, · · · ,Mn),
where Ci is a random vector with a probability density func-
tion pCi

(ci), which represent different values of ci. We
follow the joint training scheme for training the communica-
tion protocol and scheduling (Foerster et al., 2016), which
allows the gradients flow across agents from the recipient
agent to the scheduler to the sender agent.

Formally, the schedulers {fschi }i=1,··· ,n are parameterized
by {φi}i=1,··· ,n as defined in section 5.1. We would opti-
mize the lower bound in terms of {φi}i=1,··· ,n:

J ′(φi) ≥ J̃(φi) = Eπa
i ,π

pro
i ,fschi

[Qi(h1, · · · , hn, a1, · · · , an)]

−βEp(m1,m2,··· ,mn)[DKL[fschi (ci|m1, · · · ,mn)‖z(ci)]]
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Consequently, the objective’s derivative is:

∇θi J̃ (φi) = Eπa
i ,π

pro
i ,fschi

[
∇θi log (πi (at|st))

Qi(h1, · · · , hn, a1, · · · , an)

− β∇φiDKL[fschi (ci|m1, · · · ,mn)‖z(ci)]
]

(6)

5.3. Implementation of the limited bandwidth
Constraint

During the execution stage, the messages may still obey the
low-entropy requirement. We implement the limited band-
width during the execution according to the low-entropy
principle. Also, due to the variety of the real-life com-
munication source coding methods, like Huffman coding,
and communication protocols, like TCP/UDP, bitstream can
carry different amounts of information in different situa-
tions. As a result, we utilize the entropy as a general mea-
surement and clip the messages’ variance to simulate the
limited-bandwidth constraint. Concretely, we use a batch-
normalization-like layer which records the messages’ mean
and variance during training as Prop. 2 requires. And it clips
the messages by reducing their variance during execution.
The purpose of our normalization layer is to measure the
messages’ mean and variance, as well as to simulate the
external limited bandwidth constraint during execution. It
is customized and different from standard batch normaliza-
tion (Ioffe & Szegedy, 2015). For example, the maximum
bandwidth of a 4-ary communication system is 100 bit/s, if
we want achieve reliable transmission with transmitting 103

messages per second. Then we can determine the equivalent
variance σ2 ≈ 3.2 according to 1

2 log(2πeσ2) = 2B log2K
n .

In training stage, we record the agent’s messages’ variance
which is 5. In inference stage, the bandwidth requires the
messages’ entropy not to excess 3.2. Then, we decrease the
variance from 5 to 3.2 by using the specific normalization
layer.

6. Experiment
Environment Setup. We evaluate IMAC on a variety of
tasks and environments: cooperative navigation and preda-
tor prey in Multi Particle Environment (Lowe et al., 2017),
as well as 3m and 8m in StarCraftII (Samvelyan et al., 2019).
The detailed experimental environments are elaborated in
the following subsections as well as in supplementary mate-
rial.

Baselines. We choose the following methods as baselines:
(1) TarMAC (Das et al., 2019): A state-of-the-art multi-
agent communication method for limited bandwidth, which
uses a self-attention weight-based scheduling mechanism
for scheduling and learns the communication protocol in an
end-to-end manner. (2) GACML (Mao et al., 2019): A multi-
agent communication method for limited bandwidth, which

Algorithm 1: Informative Multi-agent Communication

1 Initialize the network parameters θa, θpro, θQ, and φsch
2 Initialize the target network parameters θ′a, and θ′Q
3 for episode← 1 to num episodes do
4 Reset the environment for t← 1 to num step do
5 Get features hi = [oi, ci] for each agent i
6 Each agent i gets messages from channel

mi = πipro(hi)
7 Get scheduled message

ci = fsch(m1, · · · ,mn)
8 Each agent i selects action based on features and

messages ai = πia(hi, ci)
9 Execute actions a = (a1, · · · , an), and observe

reward r new observation oi for each agent i
10 Store (ot, a, r,ot+1,m, c) in replay buffer D
11 if episode%update threshold == 0 then
12 Sample a random mini-batch of S samples

(o, a, r,o′,m, c) from D
13 Obtain the features h′i = [o′i, ci] and the

messages mi for each agent i
14 Set yj = rji +

γQπ
′

i (o, a1
′, · · · , an′)|ak′=πi

a
′(h′

i,ci)

15 Update Critic by minimizing the loss
L(θ) = 1

S

∑
j(Q(o, a1, · · · , an)− ŷ)2

16 Update policy, protocol and scheduler using
the sampled policy gradients∇θi J̃ (πi) for
each agent i

17 Update all target networks’ parameters for
each agent i: θi′ = τθi + (1− τ)θi

′

uses a gating mechanism for downsizing communication
agents and learns the communication protocol in an end-
to-end manner. (3) SchedNet (Kim et al., 2019): A multi-
agent communication method for limited bandwidth, which
uses a selecting mechanism for downsizing communication
agents and learns the communication protocol where the
message is one real value (float16 type). Also, we modify
MADDPG (Lowe et al., 2017) and QMIX (Rashid et al.,
2018) with communication as baselines to show that IMAC
can facilitate different multi-agent methods and work well
with limited bandwidth constraints.

6.1. Cooperative Navigation

In this scenario, n agents cooperatively reach k landmarks
while avoiding collisions. Agents observe the relative posi-
tions of other agents and landmarks and are rewarded with a
shared credit based on the sum of distances between agents
to their nearest landmark, while they are penalized when
colliding with other agents. Agents learn to infer and occupy
the landmarks without colliding with other agents based on
their own observation and received information from other
agents.

Comparison with baselines. We compare IMAC with Tar-
MAC, GACML, and SchedNet because they represent the
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(a) Cooperative Navigation: 3 agents
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Figure 3. Learning curves comparing IMAC to other methods for cooperative navigation. As the number of agents increases (from left to
right), IMAC improves agents’ performance and converge faster.
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IMAC, train w/ bw=10, 
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Figure 4. Density plot of episode reward per agent during the execution stage. (a) Reward distribution of IMAC trained with different
prior distributions against MADDPG with communication. (b) Reward distribution of MADDPG with communication under different
limited bandwidth environment. (c), (d) Reward distribution of IMAC trained with different prior distributions against MADDPG with
communication under the same bandwidth constraint. “bw=δ” means in the implementation of the limited bandwidth constraint, the
variance Σ of Gaussian distribution is δ.

method of learning the communication protocols via end-
to-end training with the specific scheduler and clipping the
messages respectively. Also due to different bandwidth defi-
nitions, we also compare with the modified MADDPG with
communication, which is trained without the limited band-
width constraint, because it offers the baseline performance
of the centralized training and decentralized execution.

Figure 3 (a) shows the learning curve of 100,000 episodes
in terms of the mean episode reward over a sliding window
of 1000 episodes. We can see that at the end of the train-
ing, agents trained with communication have higher mean
episode reward. According to (Lowe et al., 2019), “increase
in reward when adding a communication channel” is suf-
ficient to effective communication. Additionally, IMAC
outperforms other baselines along the process of training,
i.e., IMAC can reach upper bound of performance early. By
using the information bottleneck method, messages are less
redundant, thus agents converge fast (More analysis can be
seen in the supplementary materials).

We also investigate the performance when the number of
agents increases. We make a slight modification on envi-

ronment about agents’ observation. According to (Jiang
& Lu, 2018), we constrain that each agent can observe the
nearest three agents and landmarks with relative positions
and velocity. Figure 3 (b) and (c) show that the leading
performance of IMAC in the 5 and 10-agent scenarios.

Performance under stronger limited bandwidth. We
first train IMAC with different priors to satisfy different
bandwidths. Then we evaluate IMAC and the modified
MADDPG with communication by checking agents’ per-
formance under different limited bandwidth constraints dur-
ing the execution stage. Figure 4 shows the density plot of
episode reward per agent during the execution stage. We first
respectively train IMAC with different prior distributions
z(Mi) of N(0, 1), N(0, 5), and N(0, 10), to satisfy differ-
ent default limited bandwidth constraints. Consequently,
the entropy of agents’ messages satisfies the bandwidth
constraints. In the execution stage, we constrain these algo-
rithms into different bandwidths. As depicted in Figure 4
(a), IMAC with different prior distributions can reach the
same outcome as MADDPG with communication. Figure 4
(b) shows that MADDPG with communication fails in the
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XXXXXXXX
Predator Prey IMAC TarMAC GACML SchedNet MADDPG w/ com

IMAC 32.32\-4.26 28.91\ -22.27 28.25 \ -26.11 22.67 \ -36.53 34.33 \ -22.62
TarMAC 25.13 \ -2.94 23.45 \ -20.42 22.12 \ -16.51 32.52 \ -42.39 27.54 \ -29.36
GACML 21.52 \-12.74 11.49 \ -24.93 13.93 \ -12.95 25.49 \ -27.42 28.47 \ -27.75
SchedNet 24.74 \-9.63 7.84 \ -23.56 12.48 \ -23.67 5.98 \ -26.82 21.53 \ -26.43

MADDPG w/ com 28.63 \ -15.60 19.32 \ -21.52 26.91 \ -19.76 22.17 \ -35.37 16.87 \ -13.09

Table 1. Cross-comparison between IMAC and baselines on predator-prey.
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Figure 5. Ablation: learning curves with respect to Σ and β

limited bandwidth environment. From Figure 4 (c) and (d),
we can see that the same bandwidth constraint is less effec-
tive in IMAC than MADDPG with communication. Results
here demonstrate that IMAC discards useless information
without impairment on performance.

Ablation. We investigate the effect of limited bandwidth
and β on multi-agent communication on the performance of
agents. Figure 5 (a) shows the learning curve of IMAC with
different prior distributions. IMAC with z(Mi) = N(0, 1)
achieves the best performance. When the variance is smaller
or larger, the performance suffers some degradation. It is
reasonable because a smaller variance means a more lossy
compression, leading to less information sharing. A larger
variance must bring about more redundant information than
the variance without regulation, thus leading to slow con-
vergence. β controls the degree of compression between hi
and mi for each agent i: the larger β, the more lossy com-
pression. Figure 5 (b) shows a similar result to the ablation
on limited bandwidth constraint. The reason is the same: a
larger β means a more strict compression while a smaller β
means a less strict one.

The ablation shows that as a compression algorithm, the
information bottleneck method extracts the most informa-
tive elements from the source. A proper compression rate
is good for multi-agent communication, because it cannot
only avoid losing much information caused by higher com-
pression, but also resist much noise caused by lower com-
pression.

6.2. Predator Prey

In this scenario, m slower predators chase n faster preys
around an environment with l landmarks impeding the way.
As same as cooperative navigation, each agent observes
the relative position of other agents and landmarks. Preda-
tors share common rewards, which are assigned based on
the collision between predators and preys, as well as the
minimal distance between two groups. Preys are penalized
for running out of the boundary of the screen. In this way,
predators would learn to approach and surround preys, while
preys would learn to feint to save their teammates.

We set the number of predators as 4, the number of preys as
2, and the number of landmarks as 2. We use the same archi-
tecture in cooperative navigation. Agents only communicate
with their teammates. We train our agents by self-play for
100,000 episodes and then evaluate performance by cross-
comparing between IMAC and the baselines. We average
the episode rewards across 1000 rounds (episodes) as scores.

Comparison with baselines. We use the same baselines
as in the cooperative navigation. Table 1 represents the
cross-comparing between IMAC and the baselines. Each
cell consists of two numbers which denote the mean episode
rewards of the predators and preys respectively. The larger
the score is, the better the algorithm is. We first focus on the
mean episode rewards of predator row by row. Facing the
same prey, IMAC has higher scores than the predators of all
the baselines and hence are stronger than other predators.
Then, the mean episode rewards of the prey column by
column show the ability of the prey to escape. We can
see that IMAC has higher scores than the preys of most
baselines and hence are stronger than other preys. We argue
that IMAC leads to better cooperation than the baselines
even in competitive environments and the learned policy of
IMAC predators and preys can generalize to the opponents
with different policies.

Performance under stronger limited bandwidth. Simi-
lar to the cooperative navigation, we evaluate algorithms by
showing the performance under different limited bandwidth
constraints during execution. Table 2 shows the perfor-
mance under different limited bandwidth constraints during
inference in the environment of predator and prey. We can
see with limited bandwidth constraint, MADDPG with com-
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Predator \Prey MADDPG e1 MADDPG e5 IMAC IMAC t5 e1 IMAC t10 e1 IMAC t10 e5
MADDPG e1 18.01 \-14.22 24.15 \-29.88 22.38 \-16.91 47.59 \-45.64 34.25 \-27.68 50.81 \-43.62
MADDPG e5 26.32 \-20.48 15.67 \-11.59 29.06 \-22.16 27.07 \-22.89 23.44 \-20.41 32.24 \-26.46
IMAC 51.24 \-42.56 37.37 \-45.521 44.64 \-36.49 49.12 \-42.65 36.63 \-30.03 35.42 \-28.82
IMAC t5 e1 38.86 \-32.06 34.54 \-35.03 9.97 \-3.11 26.25 \-21.06 11.80 \-7.558 38.32 \-32.28
IMAC t10 e1 26.67 \-21.418 34.99 \-35.02 9.71 \-4.11 9.82 \-6.92 9.82 \-6.92 37.50 \-31.30
IMAC t10 e5 45.88 \-38.27 26.39 \-35.42 11.51 \-9.12 30.02 \-27.41 29.08 \-25.661 22.25 \-16.51

Table 2. Cross-comparison in different bandwidths on predator-prey. “t5” means that IMAC is trained with the variance |Σ| = 5. “e1”
means that during the execution, we use the batch-norm like layer to clip the message to enforce its variance |Σ| = 5.

munication and IMAC suffer a degradation of performance.
However, IMAC outperforms MADDPG with communi-
cation with respect to resistance to the effect of limited
bandwidth.

6.3. StarCraftII

We apply our method and baselines to decentralized Star-
Craft II micromanagement benchmark to show that IMAC
can facilitate different multi-agent methods. We use the
setup introduced by SMAC (Samvelyan et al., 2019) and
consider combat scenarios.

3m and 8m. Both tasks are symmetric battle scenarios,
where marines controlled by the learned agents try to beat
enemy units controlled by the built-in game AI. Agents will
receive some positive (negative) rewards after having enemy
(allied) units killed and/or a positive (negative) bonus for
winning (losing) the battle.

Comparison with Baselines. We adapt QMIX with com-
munication and with IMAC, because QMIX uses the cen-
tralized training decentralized execution scheme for discrete
actions. We also evaluate MADDPG with communication.
However, SMAC is a discrete-action scenario, while MAD-
DPG is for continuous control. Even if we modify the
MADDPG into discrete action setup, it still fails to get any
positive reward. Fig. 6 shows the learning curve of 200
episodes in terms of the mean episode rewards. We can
see that at the beginning, QMIX with IMAC has a simi-
lar or even poor performance than QMIX with unlimited
communication. As the training process going, QMIX with
IMAC has a better performance than QMIX with unlimited
communication. The result shows that IMAC can facilitate
different multi-agent methods which have different central-
ized training schemes.

Performance under stronger limited bandwidth. We
evaluate agents’ performance under different limited band-
width constraints. Results show a similar conclusion as in
previous tasks (Details can be seen in the supplementary
materials).
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Figure 6. Learning curves comparing IMAC to other methods for
3m and 8m in Starcraft II.

7. Conclusion
In this paper, we have proposed an informative multi-agent
communication method in the limited bandwidth environ-
ment, where agents utilize the information bottleneck prin-
ciple to learn an informative protocol as well as scheduling.
We prove that limited bandwidth constrains the entropy
of the messages. We introduce a customized batch-norm
layer, which controls the messages’entropy to simulate the
limited bandwidth constraint. Inspired by the information
bottleneck method, our proposed IMAC algorithm learns
informative protocols and a weight-based scheduler, which
convey low-entropy and useful messages. Empirical results
and an accompanying ablation study show that IMAC sig-
nificantly improves the agents’ performance under limited
bandwidth constraint and leads to faster convergence.
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