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Abstract
Efficiently computing equilibria for multiplayer
games is still an open challenge in computational
game theory. This paper focuses on computing
Team-Maxmin Equilibria (TMEs), which is an im-
portant solution concept for zero-sum multiplayer
games where players in a team having the same
utility function play against an adversary indepen-
dently. Existing algorithms are inefficient to com-
pute TMEs in large games, especially when the
strategy space is too large to be represented due to
limited memory. In two-player games, the Incre-
mental Strategy Generation (ISG) algorithm is an
efficient approach to avoid enumerating all pure
strategies. However, the study of ISG for com-
puting TMEs is completely unexplored. To fill
this gap, we first study the properties of ISG for
multiplayer games, showing that ISG converges
to a Nash Equilibrium (NE) but may not converge
to a TME. Second, we design an ISG variant for
TMEs (ISGT) by exploiting that a TME is an NE
maximizing the team’s utility and show that IS-
GT converges to a TME and the impossibility of
relaxing conditions in ISGT. Third, to further im-
prove the scalability, we design an ISGT variant
(CISGT) by using the strategy space for comput-
ing an equilibrium that is close to a TME but is
easier to be computed as the initial strategy space
of ISGT. Finally, extensive experimental results
show that CISGT is orders of magnitude faster
than ISGT and the state-of-the-art algorithm to
compute TMEs in large games.

1. Introduction
Game theory is an important tool to model the interaction
between agents. Now researchers have achieved many re-
sults for two-player games, e.g., computing Nash Equilibria
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(NEs) for zero-sum games (Nash, 1951) via linear programs
(Von Neumann & Morgenstern, 1953; Von Stengel, 1996;
Shoham & Leyton-Brown, 2008) and many scalable algo-
rithms, e.g., the double oracle algorithm (McMahan et al.,
2003) and the counterfactual regret minimization algorithm
(Zinkevich et al., 2008), and computing Stackelberg equi-
libria (Conitzer & Sandholm, 2006). Based on these results,
researchers have successfully applied game theory to many
domains, e.g., improving the security for people and wildlife
in security games (Sinha et al., 2018) and defeating top hu-
man professionals in poker games (Brown & Sandholm,
2018). However, researchers have achieved fewer results
for multiplayer games except for games having very special
structures, e.g., polymatrix games (Cai & Daskalakis, 2011)
and congestion games (Shoham & Leyton-Brown, 2008)
or algorithms having no theoretical guarantee (Brown &
Sandholm, 2019). In fact, the hardness to compute NEs (it
is PPAD-complete even for zero-sum three-player games
(Chen & Deng, 2005)) and the equilibrium selection prob-
lem (Brown & Sandholm, 2019) (it is hard for players in-
dependently choosing strategies and then forming an NE
because NEs are not exchangeable) make them remain open
challenges for computing and applying NEs in multiplayer
games.

This paper focuses on computing Team-Maxmin Equilibria
(TMEs) (von Stengel & Koller, 1997; Basilico et al., 2017b;
Celli & Gatti, 2018; Zhang & An, 2020), which is an im-
portant solution concept for zero-sum multiplayer games
where players in a team having the same utility function
play against an adversary independently. A TME is an NE
maximizing the team’s utility and always exists. More im-
portantly, the TME is unique in general, and then it avoids
the equilibrium selection problem. Moreover, TMEs can
be used to model many real-world scenarios. For example,
to keep the safety of New York, the Patrol Services Bureau
in the New York City Police Department (NYPD) has 77
police precincts (NYPD, 2020b), and each precinct is divid-
ed into four or five fully-staffed sectors by Neighborhood
Policing recently (NYPD, 2020a). They maintain “sector
integrity”: officers in different sectors work independently
to keep the safety of their sectors, except in precinct-wide
emergencies (NYPD, 2020a).

However, it is still challenging to compute a TME, which is
FNP-hard (Hansen et al., 2008). Moreover, a TME is only
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solved via a non-convex program (von Stengel & Koller,
1997) with global optimization techniques (Zhang & An,
2020), which makes it hard to solve large games. In addi-
tion, it is impossible to apply this approach when we cannot
represent the problem via the game matrix due to the large
strategy space. For example, in a network security game on
a fully connected network with 190 edges and 20 nodes, the
number of possible adversary pure strategies (paths) without
any cycle is about 6.618 (Jain et al., 2011), which means that
the memory cost for enumerating all pure strategies would
be prohibitive. In two-player games, the Incremental Strate-
gy Generation (ISG) algorithm (including the double oracle
algorithm, column generation) (McMahan et al., 2003; Jain
et al., 2011; Sinha et al., 2018) is an efficient approach to
avoid enumerating all pure strategies: It computes an equi-
librium in a game with restricted strategy spaces for players,
and then iteratively expands players’ strategy spaces. ISG
can converge to an NE in zero-sum two-player games. How-
ever, the study of ISG for computing TMEs is completely
unexplored. We know that ISG terminates when oracles
in ISG cannot find better strategies than the equilibrium s-
trategies in the restricted game, which is consistent with the
definition of NEs. Unfortunately, NEs in multiplayer games,
unlike those in two-player games, are not exchangeable and
may give different utilities to the team. Therefore, if ISG is
used to compute TMEs, even it can converge to an NE, it
may cause a loss to the team.

To fill this gap, we first study the properties of ISG for multi-
player games, showing that ISG converges to an NE but may
not converge to a TME, and it can cause an arbitrarily large
loss to the team. Second, we design an ISG variant (ISGT)
by exploiting that a TME is an NE maximizing the team’s
utility and show that ISGT converges to a TME and the im-
possibility of relaxing conditions in ISGT. Third, to further
improve the scalability, we design an ISGT variant (CISGT)
by using the strategy space for computing an equilibrium
that is close to a TME but is easier to be computed as the ini-
tial strategy space of ISGT. Finally, extensive experimental
results show that CISGT is orders of magnitude faster than
ISGT and the state-of-the-art algorithm to compute TMEs
in large games.

2. Related Work
McMahan et al. (2003) propose the first ISG (also called the
double oracle algorithm) for zero-sum two-player games,
where the robot chooses a path to a goal location while
avoiding being detected by an adversary on the road. Given
the adversary strategy, the robot’s best response oracle (to
compute a best response against the adversary strategy)
is modelled as a Markov Decision Process (MDP). Then
solving the best response oracle is equivalent to solving the
corresponding MDP. After that, ISG is used to solve many

similar problems, including the classic network security
games (Jain et al., 2011; Iwashita et al., 2016; Zhang et al.,
2019) and extensive-form games (Bosansky et al., 2014).
The MDP feature of the best response oracle in ISG makes it
possible to deploy deep reinforcement learning (Wang et al.,
2019) and be extended to multiagent learning (Lanctot et al.,
2017; Muller et al., 2020). In this paper, we study the
problem of extending ISG for converging to TMEs, which
will be a base for developing learning algorithms for TMEs
in multiplayer games.

However, the extension is not straightforward. It is well-
known that ISG converges to an NE in zero-sum two-player
games (McMahan et al., 2003), but, which is unclear (to
our best knowledge) in multiplayer games. Then we theo-
retically show that ISG (Vanilla-ISG) converges to an NE
in multiplayer games in Theorem 1. However, as we illus-
trate in Section 4.1, the existing ISG cannot guarantee to
converge to a TME. Then we try to extend it to ISGT for
converging to a TME. As we illustrate in Section 4.2, it is d-
ifficult to converge to a TME, e.g., we cannot simply add the
team’s best response to the restricted game to converge to a
TME. Then we add our new operations to ISG to guarantee
to converge to a TME by exploiting that a TME is an NE
maximizing the team’s utility. Section 4.2 also implies that
the conditions in our operations cannot be further relaxed.
Finally, we theoretically show that our new ISG (i.e., ISGT)
can guarantee to converge to a TME in Theorem 2–4.

The Correlated TME (CTME) (Basilico et al., 2017b) is
a solution concept close to the TME, where team players
with the same utility function can synchronize their actions
against the adversary. That is, team players can jointly plan
and execute their strategies, which means that the team is
equivalent to a single player with actions as the joint team
action profiles. Then, a CTME can be found through a
linear program similar to finding an NE in zero-sum two-
player games. However, team players in a TME cannot
correlate their actions (Celli & Gatti, 2018), and then can-
not directly use the strategies in a CTME. To compute a
TME, one approach is that the team can compute a CTME
first and then transform the team’s correlated strategy into
the team’s mixed strategy profile, where a transformation
algorithm was proposed (Basilico et al., 2017b). However,
this transformation cannot theoretically guarantee to obtain
a team-maxmin strategy profile (in a TME) for the team
and may cause a huge loss for the team, as shown in the
previous experiments (Basilico et al., 2017b). In Section
5.1, we study the limitations of computing TMEs based on
CTMEs. We first theoretically show that using the strategy
transformed from a CTEM may cause an arbitrarily large
loss to the team. Second, we show that a TME in a restricted
game with the strategies for computing a CTME may not
be an NE in the full game, and it may not be a TME in the
full game even it is an NE in the full game. These results



Converging to Team-Maxmin Equilibria in Zero-Sum Multiplayer Games

show that it is not straightforward to compute a TME via
computing a CTME. Therefore, we develop our novel op-
erations to improve the scalability of our algorithm ISGT
by computing a CTME to initialize the strategy space and
exploiting the team’s utility in a CTME to terminate earlier.
Finally, we theoretically show that our new CTME based
ISG (e.g., CISGT) can guarantee to converge to a TME in
Theorem 5–7.

3. Preliminaries
A normal-form game G (Shoham & Leyton-Brown, 2008)
is a tuple (N,A, u) where: N = {1, . . . , n} is a set of
players, A = ×i∈NAi is a set of joint actions with that
Ai is a finite set of player i’s actions (pure strategies) with
ai ∈ Ai, and u = (u1, . . . , un) is a set of players’ utility
functions with that ui : A→ R is player i’s utility function.
X = ×i∈NXi is the set of mixed strategy profiles with that
Xi = ∆(Ai) is the set of player i’s mixed strategy. For
each xi ∈ Xi and ai ∈ Ai, xi(ai) is the probability that
action ai is played, Ai,xi

= {ai | xi(ai) > 0, ai ∈ Ai} is
the support of xi. For each x ∈ X , player i’s expected u-
tility is ui(x) =

∑
a∈A ui(a)

∏
j xj(aj) and ui(ai, x−i) =∑

a−i∈A−i
ui(ai, a−i)

∏
j∈N\{i} xj(aj). Generally, −i de-

notes the set of all players except player i. The Nash Equi-
librium (NE) is an important solution concept for a game,
which is a strategy profile x∗ such that, for each player
i, x∗i is a best response to x∗−i (i.e., x∗i = BR(x∗−i) with
ui(x

∗
i , x
∗
−i) ≥ ui(xi, x∗−i),∀xi ∈ Xi).

The Team-Maxmin Equilibrium (TME, and TMEs for
the plural equilibria) (von Stengel & Koller, 1997; Basili-
co et al., 2017b) is a solution concept for zero-sum multi-
player games with that a team of players T = {1, . . . , n−1}
with ui(a) = uj(a)(∀i, j ∈ T, a ∈ A) and

∑
i∈T ui(a) =

uT (a) = −un(a)(∀a ∈ A) play against an adversary n,
and each team player takes actions independently. We call
G with such a scenario GT . A TME is an NE with the prop-
erties that it is unique except for degenerate cases1 and a
best NE for the team. The utility of the team under the TME
is called the TME value. In an ε-TME, the team and the
adversary both cannot gain more than ε by the unilateral de-
viation of players, and the gap between the TME value and
the ε-TME value is not greater than ε. The team-maxmin
strategy profile xT (i.e.,×i∈T xi) in a TME (xT , xn) can be
computed by the following nonlinear program:

maxx1,...,xn−1
U (1a)

U≤
∑

aT∈AT
uT (aT ,an)

∏
i∈Txi(aT (i)) ∀an∈An (1b)∑

ai∈Ai
xi(ai) = 1, xi(ai) ≥ 0 ∀i ∈ T (1c)

1The situation of multiple TMEs can only occur in degenerate
cases with special entries in the payoff matrix (von Stengel &
Koller, 1997) because a TME gives the team the highest utility
among all NEs.

where aT is a joint action of the team (i.e., ×i∈Tai), aT (i)
is the action of player i in aT , and AT = ×i∈TAi is
the set of these joint actions. The adversary strategy xn
in a TME (xT , xn) is computed by a linear program af-
ter xT is computed (see Appendix A). For simplicity, we
say that a TME is computed by solving Problem (1). The
Correlated TME (CTME) (Basilico et al., 2017b) cap-
tures the situation where team players can synchronize
actions in GT . That is, the team has the set of actions
AT , and the set of mixed strategies (xT ∈ ∆(AT ), and
Ai,xT

= {ai | ai ∈ Ai,∃aT = (ai, aT\{i}), xT (aT ) > 0}.
The CTME remains the property of the NE in zero-sum
two-player games. For example, CTMEs are exchangeable
and a CTME can be computed by a linear program, i.e., the
multilinear term

∏
i∈T xi(aT (i)) in Eq.(1b) is replaced by

a single variable xT (aT ).

The Incremental Strategy Generation (ISG) algorithm (M-
cMahan et al., 2003; Jain et al., 2011; Bosansky et al., 2014)
has shown the advantage for improving the scalability for
computing an NE in two-player zero-sum games. The algo-
rithm includes the following steps, repeating until conver-
gence: 1) creating a restricted game G′ by limiting the set
of actions for each player i, i.e., A′i ⊆ Ai; 2) computing the
equilibrium strategy profile x∗ in this restricted game G′;
and 3) computing a best response ai against x∗−i in the orig-
inal unrestricted game G for each player i, and add ai to A′i
if ui(ai, x∗−i) > ui(x

∗). The algorithm terminates when no
actions are added to the restricted game for all players (i.e.,
ui(ai, x

∗
−i) ≤ ui(x

∗),∀ai ∈ Ai, i ∈ N ). For convenience,
we call this algorithm Vanilla-ISG. For CTMEs having the
property of NEs in zero-sum two-player games, Vanilla-ISG
can converge to a CTME. Without loss of generality, we
assume that G′T with A′ = A′T × A′n is a restricted game
of GT with A′i ⊆ Ai(∀i ∈ N), and xi(ai) = 0(∀Ai \ A′i)
if xi is a strategy in G′T and is used in GT .

4. ISG in Multiplayer Games
In this section, we show that Vanilla-ISG converges to an NE
in multiplayer games. However, we show that Vanilla-ISG
cannot guarantee to converge to a TME. Then, we provide a
method (ISGT) to amend it by exploiting the property that a
TME is an NE maximizing the team’s utility.

4.1. Limitations of Vanilla-ISG

We first show that Vanilla-ISG can converge to an NE but
cannot guarantee to converge to a TME (even cannot guar-
antee to approximate a TME).

Theorem 1. Vanilla-ISG converges to an NE in G.

Proof. First, Vanilla-ISG will converge because the action
set for each player is finite in G. Second, when Vanilla-
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ISG converges to strategy profile x∗, ui(ai, x∗−i) ≤ ui(x∗)
(∀ai ∈ Ai, i ∈ N ), which means that ui(x∗i , x

∗
−i) ≥

ui(xi, x
∗
−i) (∀xi ∈ Xi, i ∈ N ). Therefore, x∗ is an

NE.

In multiplayer games, there are many different NEs, which
are not exchangeable and give different utilities to players.
However, a TME is an NE giving the best utility for the team,
which is not considered by Vanilla-ISG. Indeed, Vanilla-ISG
may not converge to a TME.

Proposition 1. Vanilla-ISG may not converge to a TME in
GT .

Proof. By Theorem 1, Vanilla-ISG converges to an NE in
GT . Now we only need to show that this NE may not be a
best NE for the team because a TME is a best NE for the
team.

Consider GT with three players (two teammates), two ac-
tions ({1,2}) per player, and the following utility function:

uT (a)=

{
10 if a = (1, 2, 2) or (2, 1, 1)

0 otherwise
(2)

Suppose that the restricted gameG′T in Vanilla-ISG is initial-
ized with action sets A′1 = {1}, A′2 = {2}, A′3 = {2}. In
G′T , the single equilibrium is a pure strategy profile (1, 2, 2).
Then, A′3 is expanded to {1, 2} because u3(1, 2, 1) = 0 >
−10 = u3(1, 2, 2), whileA′1 andA′2 are not expanded. Now
the pure strategy profile (1, 2, 1) is the new equilibrium in
the new G′T with uT (1, 2, 1) = 0. For each player, A′i will
not be expanded because players 1 and 2 will gain 0 from
the unilateral deviation, while player 3 will lose utility 10
from the unilateral deviation. That is, pure strategy profile
(1, 2, 1) is an NE in GT , i.e., Vanilla-ISG converges to an
NE.

Consider the mixed strategy profile x = (x1, x2, x3) with
xi = (0.5, 0.5), which is an NE with utility 2.5 for the
team because each player is indifferent between playing
their actions with their utility under x, e.g., uT (1, x−1) =
uT (2, x−1) = 2.5. Therefore, pure strategy profile (1, 2, 1)
is not a best NE for the team, which means that pure strategy
profile (1, 2, 1) is not a TME, concluding the proof.

Vanilla-ISG cannot guarantee to converge to a TME and
also may not approximate a TME by the following result.

Proposition 2. Vanilla-ISG can cause an arbitrarily large
loss to the team in GT .

Proof. Consider GT with utilities shown in Eq.(2). As
shown in the proof for Theorem 1, Vanilla-ISG can converge
to the NE (1, 2, 1) (pure strategy profile) with utility 0 for
the team while x = (x1, x2, x3) with xi = (0.5, 0.5) is

another NE with utility 2.5 for the team. Therefore, Vanilla-
ISG can cause an arbitrarily large loss to the team because
2.5
0 =∞.

4.2. The Difficulty of Converging to a TME

Vanilla-ISG cannot guarantee to converge to a TME, so we
need to extend the current ISG to converge to a TME. This
section shows the difficulty of converging to a TME.

Vanilla-ISG’s failure to converge to a TME shows that we
cannot simply add each player’s best response to obtain a
TME. One straightforward extension of this idea is that we
add the team’s best response to the restricted game. How-
ever, the following result shows that this extension cannot
guarantee to converge to a TME.

Proposition 3. x may not be a TME in GT if x is a TME
in G′T and an NE in GT , and @aT ∈ (AT \ A′T ) such that
uT (aT , xn) > uT (x).

Proof. Consider GT with three players (two teammates),
A2 = {1, 2, 3}, A1 = A3 = {1, 2}, and the following
utility function:

uT (a)=


10 if a = (1, 1, 1) or (2, 2, 2)

5 if a = (2, 3, 1)

0 otherwise
(3)

In G′T , A′1 = A′2 = A′3 = {1, 2}. Let player i’s mixed
strategy be xi = (xi(1), xi(2)). Given x1, x2, and the
adversary’s action 1, the team’s utility is:

uT (x1, x2, 1) = 10x1(1)x2(1)

Given x1, x2, and the adversary’s action 2, the team’s utility
is:

uT (x1, x2, 2) = 10(1− x1(1))(1− x2(1))

= 10(1− x1(1)− x2(1) + x1(1)x2(1))

To achieve the TME value, we need to maximize the the min-
imum of uT (x1, x2, 1) and uT (x1, x2, 2) (see Eq.(1)). The
case that uT (x1, x2, 1) = uT (x1, x2, 2) gives the largest
minimum to the team. Let uT (x1, x2, 1) = uT (x1, x2, 2),
we have x1(1) = 1− x2(1). Then we have:

uT (x1, x2, 1) = 10x1(1)x2(1)

= 10(−(x2(1)− 0.5)2 + 0.25)

which has its maximum 2.5 at (x2(1) = 0.5. Then we have
(x1(1) = 0.5. Now we have the team-maxmin strategy
profile xT = (x1, x2) = ((0.5, 0.5), (0.5, 0.5)) with the
team utility 2.5 in G′T . Given this xT , we can achieve
x3 = (0.5, 0.5) by the following equation (see Appendix
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A):

uT (x1, 1, x3) = uT (x1, 2, x3)

⇒0.5× 10× x3(1) = 0.5× 10× (1− x3(1))

Then x = (x1, x2, x3) is a TME in G′T . Note that
uT (x1, 3, x3) = 0.5 × 0.5 × 5 = 1.25 < 0.5. There-
fore, strategy profile x = (x1, (0.5, 0.5, 0), x3) is an NE
in GT . In addition, we have uT (2, 3, x3) = 2.5, which
is not larger than uT (x) = 2.5. However, strategy profile
x′ = ((0, 1), (0, 13 ,

2
3 ), ( 2

3 ,
1
3 )) is an NE in GT with utility

10
3 (> 2.5) for the team. The reason is that uT (1, x′2, x

′
3) =

0 < 10
3 , and uT (x′1, 1, x

′
3) = 0 < 10

3 = uT (x′1, 2, x
′
3) =

uT (x′1, 3, x
′
3) = uT (x′1, x

′
2, 1) = uT (x′1, x

′
2, 2). Therefore,

x is not a TME in GT .

The reason for the above failure is that the adversary
tries to avoid the strategy that gives a high utility for the
team, which gives a low utility for himself in zero-sum
games. Then we need to add more actions to the restrict-
ed game, instead of only adding the team’s best response
(i.e., adding aT such that aT ∈ arg maxa′T∈AT

uT (aT , xn)
and uT (aT , xn) > uT (x), where x is a TME in G′T ) or
all of the team’s better responses (i.e., adding aT such that
uT (aT , xn) > uT (x)). To do that, we can add the team’s
joint actions with outcomes that are better than the utili-
ty of the equilibrium in the restricted game (i.e., adding
aT such that uT (aT , an) > uT (x)). However, there may
be too many joint actions satisfying this condition in the
full game, and adding too many actions to the restricted
games will make it hard to compute a TME. In ISG, we
compute the team’s best response against the adversary
strategy and add it (only one joint action) to the restrict-
ed game at each iteration. To speed up, two straightfor-
ward extensions of this idea are that: 1) we only add joint
actions related to the support set of the adversary strate-
gy, i.e., adding (aT , an) ∈ (AT \ A′T ) × An,xn

such that
uT (aT , an) > uT (x) to G′T ; and 2) we only add one joint
action that can affect the TME value at each iteration. The
following two results show that both extensions cannot guar-
antee to converge to a TME.
Proposition 4. x may not be a TME in GT if x is a TME in
G′T and an NE inGT , and @(aT , an) ∈ (AT \A′T )×An,xn

such that uT (aT , an) > uT (x).

Proof. Consider GT with three players (two teammates),
A1 = A2 = {1, 2, 3}, A3 = {1, 2}, and the following
utility function:

uT (a)=



3 if a = (1, 1, 1) or (1, 1, 2)

21 if a = (2, 2, 1)

3 if a = (2, 3, 1), (3, 2, 1), or (3, 3, 1)

10 if a = (2, 3, 2), (3, 2, 2), or (3, 3, 2)

0 otherwise

(4)

In G′T , A′1 = A′2 = A′3 = {1, 2}. Obviously, pure strategy
profile a = (1, 1, 1) is an NE in G′T and GT . Now we
check that x is a TME in G′T . Let player i’s mixed strategy
be xi = (xi(1), xi(2)). Given x1, x2, and the adversary’s
action 1, the team’s utility is:

uT (x1, x2, 1) = 3x1(1)x2(1) + 21(1− x1(1))(1− x2(1))

Given x1, x2, and the adversary’s action 2, the team’s utility
is:

uT (x1, x2, 2) = 3x1(1)x2(1)

We can see that, if x1(1) < 1 and x2(1) < 1, action 1 is
strictly dominated by action 2 for the adversary. However,
given the adversary action 2 in G′T , the team cannot achieve
the utility that is higher than uT (a) = 3. Now, given any
strategy of the adversary, if player 1’s strategy is x1(1) = 1,
player 2’s best response is x1(1) = 1, and vice versa. In
this case, a = (1, 1, 1) (i.e., x = ((1, 0), (1, 0), (1, 0))) is
a TME in G′T . Given x, @(aT , an) ∈ (AT \ A′T )× An,xn

such that uT (aT , an) > uT (x). However, strategy pro-
file x′ = ((0, 0.5, 0.5), (0, 0.5, 0.5), ( 5

14 ,
9
14 )) is an NE in

GT with utility 7.5(> 3) for the team. The reason is that
uT (1, x′2, x

′
3) = 0 < 7.5 = uT (2, x′2, x

′
3) = uT (3, x′2, x

′
3),

and uT (x′1, 1, x
′
3) = 0 < 7.5 = uT (x′1, 2, x

′
3) =

uT (x′1, 3, x
′
3) = uT (x′1, x

′
2, 1) = uT (x′1, x

′
2, 2). Therefore,

x is not a TME in GT .

Proposition 5. x may not be a TME in GT if x is a TME in
G′T and an NE in GT , and @(aT , an) ∈ (AT \ A′T ) × A′n
with uT (aT , an) > uT (x) such that the TME value in G′T
changes after adding aT to A′T .

Proof. Consider GT with three players (two teammates),
A1 = A2 = {1, 2, 3}, A3 = {1, 2}, and the following
utility function:

uT (a)=


3 if a = (1, 1, 1) or (1, 1, 2)

100 if a = (2, 2, 1) or (3, 3, 2)

0 otherwise
(5)

In G′T , A′1 = A′2 = {1}, A′3 = {1, 2}. Obviously,
x = ((1), (1), (0.5, 0.5)) is an NE in G′T and GT with
utility 3 for the team, which is also a TME in G′T . If we add
aT = (2, 2) or (3, 3), according to the analysis on the case
in Eq.(4), x with x1(1) = 1 = x2(1) and x3(1) = x3(2) =
0.5 is still a TME in G′T with the TME value 3. That is,
the TME value in G′T does not change. However, strategy
profile x′ = ((0, 0.5, 0.5), (0, 0.5, 0.5), (0.5, 0.5) is an NE
in GT with utility 25(> 3) for the team. The reason is that
uT (1, x′2, x

′
3) = 0 < 25 = uT (2, x′2, x

′
3) = uT (3, x′2, x

′
3),

and uT (x′1, 1, x
′
3) = 0 < 25 = uT (x′1, 2, x

′
3) =

uT (x′1, 3, x
′
3) = uT (x′1, x

′
2, 1) = uT (x′1, x

′
2, 2). Therefore,

x is not a TME in GT .
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Algorithm 1 ISG for a TME (ISGT)
1: Initialize G′T with A′←A′T ×A′n, uT (x

∗)←−∞, x∗ ← ∅
2: repeat
3: Iteration← 1
4: repeat
5: x← CoreTME(G′T )
6: if uT (x) = uT (x

∗)& Iteration = 1 then
7: return x∗
8: end if
9: for i ∈ N do

10: A′i ← A′i ∪ {ai ← BR(x−i)}
11: end for
12: Iteration← Iteration +1
13: until convergence (A′ does not change)
14: x∗ ← x
15: A′′T ← {aT | uT (aT , an) > uT (x), (aT , an) ∈ (AT \

A′T )×A′n}
16: A′T ← A′T ∪A′′T
17: until convergence (A′T does not change)
18: return x.

4.3. Converging to a TME

Based on the discussion in the previous section, this section
proposes our ISG algorithm for converging to a TME (IS-
GT). In fact, it exploits that a TME is an NE maximizing
the team’s utility. Basically, ISGT makes sure that its output
x satisfies three conditions: 1) x is a TME in G′T ; 2) x is an
NE in GT ; and 3) @(aT , an) ∈ (AT \A′T )×A′n such that
uT (aT , an) > uT (x).

Our ISGT is shown in Algorithm 1.2 Line 5 computes a
TME for G′T by solving Problem (1), and Line 10 expands
A′i for each player i by solving the best response oracle. If
1) x is a TME in G′T ; and 2) x is an NE in GT (by Theorem
1), the inner loop will terminate. Line 15 looks for aT that
gives a better utility to the team outside of G′T and updates
A′T (Line 16). If no such aT , the outer loop will terminate.
Moreover, after obtaining an NE, ISGT records it as x∗ in
Line 14, and immediately returns it if there are not better
NEs in Line 7.

Now ISGT definitely reduces the strategy space to AT ×A′n
to find a TME. To show that the output x of ISGT is a TME,
we first show that if a TME in a restricted game is an NE
in the full game, then it is also a TME in a larger restricted
game including all adversary strategies.

Lemma 1. If x is a TME in G′T and an NE in GT , then x
is a TME in G′′T with A′′ = A′T ×An.

2Another algorithm framework we can develop is only using
one loop. That is, we directly use the operations in Lines 15 and
16 of Algorithm 1 to replace the best response oracle for the team
in Line 10 of Algorithm 1. However, experimental results show
that this framework can be significantly slower than the current
framework shown in Algorithm 1, which may be partially due to
that this framework will add too many actions to the restricted game
at early iterations. Therefore, we adopt the current framework.

Proof. Suppose that there is an NE x′(i.e., (x′T , x
′
n)) in

G′′T such that uT (x′) > uT (x) and An,x′n
6⊆ A′n.

Then, un(x′) ≥ un(x′T , x
′′
n) (∀x′′n with An,x′′n

⊆ A′n),
i.e., minx′′n,An,x′′n

⊆A′n uT (x′T , x
′′
n) ≥ uT (x′). There-

fore, in G′T , we have maxxT
minx′′n

uT (xT , x
′′
n) ≥

minx′′n
uT (x′T , x

′′
n) ≥ uT (x′) > uT (x), which means that,

uT (x) is not the TME value in G′T , i.e., x is not a TME in
the game G′T , concluding the proof.

Based on the above result, now we show that if a TME in
a restricted game is an NE in the full game and there is
no pure strategy profile outside the restricted game giving
larger utility than this TME value, then it is also a TME in
the full game.

Lemma 2. x is a TME in GT if a) x is a TME in G′T , b) x
is an NE in GT , and c) @(aT , an) such that uT (aT , an) >
uT (x) with aT ∈ AT \A′T .

Proof. By Lemma 1, x is a TME of G′′T with A′′ =
A′T × An. Suppose that there is a TME x′ = (x′T , x

′
n)

in GT such that uT (x′) > uT (x) and AT,x′T
6⊆ A′T . That

is, there is ai /∈ A′i(i ∈ T ) such that x′i(ai) > 0. By
the condition c), we have uT (aT , an) ≤ uT (x) for each
aT ∈ AT \A′T . Then, uT (ai, x

′
−i) ≤ uT (x) < uT (x′), and

then there exists some a′i such that uT (a′i, x
′
−i) > uT (x′)

(otherwise, uT (x′) will not be larger than uT (ai, x
′
−i)).

Then we construct a new strategy x′′ which is identical
to x′, but x′′i (ai) = 0 and x′′i (a′i) = x′i(ai) + x′i(a

′
i). Then

uT (x′′)− uT (x′) = x′i(ai)(uT (a′i, x
′
−i)− uT (ai, x

′
−i)) >

0, which causes a contradiction, concluding the proof.

Theorem 2. x is a TME in GT if: 1) x is a TME in G′T ; 2)
x is an NE in GT ; and 3) @(aT , an) ∈ (AT \ A′T ) × A′n
such that uT (aT , an) > uT (x).

Proof. By Lemma 2, x is a TME in G′′T with A′′T =
(AT , A

′
n). Then, with the condition 2), x is a TME in GT

with A = (AT , An) by Lemma 1.

In addition, ISGT (Line 7) indeed can terminate if the TME
value does not change after adding all joint actions that are
better than the equilibrium strategy by the following result.

Theorem 3. x is a TME in GT if x is a TME in G′T and an
NE in GT , uT (x) is the TME value in G′′T with @(aT , an) ∈
(AT \ A′T )× A′n such that uT (aT , an) > uT (x), and G′T
is a restricted game of G′′T that is a restricted game of GT .

Proof. x is an NE in G′T because x is a TME in G′T . Then,
x is an NE in G′′T because x is an NE in GT , and G′T is
a restricted game of G′′T that is a restricted game of GT .
Moreover, x is a TME in G′′T because uT (x) is the TME
value in G′′T . By Theorem 2, x is a TME in GT .
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More importantly, Propositions 3–5 have shown the impos-
sibility of relaxing these conditions in Theorems 2 and 3.
Now we can have our following conclusion.

Theorem 4. ISGT converges to a TME in GT .

Proof. A is finite, so ISGT will terminate. ISGT terminates
with output x satisfying conditions in Theorem 2 or 3, so x
is a TME in GT .

5. The CTME Based ISGT (CISGT)
Even though ISGT can guarantee to converge to a TME, it is
not efficient enough as ISGT needs to solve the non-convex
Problem (1) in G′T at each iteration. To speed up, we try to
reduce the number of iterations by effectively initializing
the restricted game G′T through computing CTMEs. Now
we first discuss the limitations of computing TMEs based
on CTMEs.

5.1. Limitations of Computing TMEs by CTMEs

A CTME is close to a TME, and CTMEs are used to approx-
imate TMEs (Basilico et al., 2017b) by Transforming the
correlated strategy in a CTME into the team’s Mixed Strate-
gy Profile (TMSP). In this section, we show the limitations
of computing TMEs based on CTMEs. We first show that
using TMSPs may cause an arbitrarily large loss to the team.
Second, we show that a TME in G′T with the strategies for
computing a CTME may not be an NE in GT , and it may
not be a TME in GT even it is an NE in GT . Moreover, we
show that using the strategy profile in this TME of such G′T
may cause an arbitrarily large loss to the team as well.

To our best knowledge, the best algorithm (Basilico et al.,
2017b) to obtain a TMSP is: Given the team’s strategy
in a CTME: xT ∈ ∆(AT ), player 1’s mixed strategy
x1(a1) =

∑
a′∈AT\{1}

xT (a1, a
′)(∀a1 ∈ A1); player i’s

mixed strategy xi(ai) = 1
|Ai,xT

| if |Ai,xT
| > 0, otherwise

xi(ai) = 0 (∀i ∈ T \ {1}, ai ∈ Ai). This algorithm returns
the team’s best TMSP among TMSPs obtained by exchang-
ing player 1 with each team member. We call it TMSP-Alg.
To measure the inefficiency of transforming the correlated
strategies in a CTME into a TMSP, we adopt the concept of
Price of Correlated strategies (PoC) (Zhang & An, 2020).
Formally, PoC = vm

vc
, where vm is the TME value and vc is

the team utility obtained from a TMSP. Unfortunately, PoC
can be arbitrarily large in GT .3

Proposition 6. PoC can be arbitrarily large in GT .

Proof. Consider GT with three players (two teammates),
A1 = A2 = A3 = {1, 2, 3}, and the following utility
function:

3Omitted proofs in this section are in Appendix B.

uT (a1, a2, a3)=


1 if a1 = a2 = a3
1
4 if a1 = 1, a2 = 2

− 5
4 if a1 = 2, a2 = 1

0 otherwise

(6)

A CTME x is xT (1, 1) = xT (2, 2) = xT (3, 3) = 1
3

(note that, given any adversary strategy, one of these three
pure strategies dominates other strategies, and any of them
should be played with nonzero probability otherwise the
adversary best response gives utility 0 to the team) and
xn(1) = xn(2) = xn(3) = 1

3 . Now, by TMSP-Alg,
x’s unique TMSP prescribes that x1 = (1

3 ,
1
3 ,

1
3 ) and

x2 = ( 1
3 ,

1
3 ,

1
3 ), while the adversary (player 3) is indiffer-

ent between playing any strategies given this TMSP. Then,
vc = 0.

An NE is a pure strategy profile (1, 2, 3), where player 1
plays action 1, player 2 plays action 2, while player 3 plays
action 3. The team’s utility is uT (1, 2, 3) = 0.25. The rea-
son is that the team will obtain utility 0 if any team member
unilaterally deviates to other actions, and the adversary is
indifferent among all strategies.

Therefore, PoC = vm
vc

> 0.25
0 =∞.

Another idea is to compute a TME in G′T with strategies for
computing a CTME. There are two cases: 1) G′T including
all support sets of all players in a CTME; and 2) G′T includ-
ing all strategies for computing a CTME. However, in each
case, this TME may not be an NE in GT , and it may not be
a TME in GT even it is an NE in GT by following results.

Proposition 7. x may not be an NE in GT if x is a CTME
in GT , and x is a TME in G′T with A′ = (×i∈TAi,xT

) ×
An,xn

.

Proof. Consider GT with three players (two teammates),
A1 = A2 = {1, 2}, A3 = {1, 2, 3}, and the following
utility function:

uT (a)=


10 if a = (1, 1, 1) or (2, 2, 2)

10 if a = (1, 1, 3) or (2, 2, 3)

−10 if a = (2, 1, 3) or (1, 2, 3)

0 otherwise

(7)

A CTME x is xT (1, 1) = xT (2, 2) = 0.5 and x3(1) =
x3(2) = 0.5 with utility 5 for the team (it is easy to verify
that no players would like to deviate to other strategies, e.g.,
action 3 for the adversary with uT (xT , 3) = 10 > 5 is
not better than x3). Then we have G′T with with A′1 =
A′2 = A′3 = {1, 2}. According to the analysis on the case
in Eq.(3), x with xi(1) = xi(2) = 0.5 is a TME in G′T with
utility 2.5 for the team. However, for the adversary action
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Algorithm 2 The CTME Based ISGT (CISGT)
1: Initialize G′T with A′ = A′T ×A′n, uT (x

∗) = −∞, x∗ ← ∅
2: repeat
3: x← CoreCTME(G′T )
4: A′T ← A′T ∪ {aT ← BR(xn)}
5: A′n ← A′n ∪ {an ← BR(xT )}
6: until convergence (A′ does not change)
7: xT ←TMSP-Alg(xT )
8: if uT (xT , BR(xT )) ≥ uT (x) then
9: return (xT , xn)

10: end if
11: repeat
12: Lines 4–13 in ISGT
13: if uT (x) ≥ uT (x) then
14: return x
15: end if
16: Lines 14–16 in ISGT
17: until convergence (A′T does not change)
18: return x.

3, uT (xT , 3) = 0.5× 0.5(10 + 10− 10− 10) = 0 < 2.5.
Therefore, x is not an NE in the original game GT .

Corollary 1. x may not be an NE in GT if x is a CTME in
GT and is computed in G′T , and x is a TME in G′T .

Proposition 8. xmay not be a TME inGT if x is a CTME in
GT , and x is a TME inG′T withA′ = (×i∈TAi,xT

)×An,xn

and an NE in GT .

Corollary 2. x may not be a TME in GT if x is a CTME in
GT and is computed in G′T , and x is a TME in G′T and an
NE in GT .

Computing a TME in G′T with strategies for computing a
CTME not only cannot guarantee to obtain a TME in GT ,
but also can cause an arbitrarily large loss to the team.

Proposition 9. If x is a CTME in GT , and x is a TME in
G′T with A′ = (×i∈TAi,xT

)×An,xn
, then playing xT may

cause an arbitrarily large loss to the team.

Corollary 3. If x is a CTME in GT , and x is a TME in
G′T where x is computed, then playing xT may cause an
arbitrarily large loss to the team.

5.2. CISGT: Efficiently Converging to a TME

Based on our discussion in the previous section, this section
proposes our CISGT. In addition to the operations in ISGT,
CISGT has two new operations: 1) it initializes the restricted
game through computing a CTME to reduce the number of
iterations for solving Prolbem (1); and 2) it exploits that the
team’s utility in a CTME is an upper bound of the TME
value (Basilico et al., 2017b) to terminate earlier.

Our CISGT is shown in Algorithm 2.4 CISGT uses Vanilla-

4When we compute an ε-TME, we only need to set
uT (xT , BR(xT )) ≥ uT (x)−ε at Line 8 and uT (x) ≥ uT (x)−ε
at Line 13, and all properties still hold.

ISG to compute a CTME at Lines 2–6. Then, CISGT com-
putes a TMSP at Line 7 and then checks whether we have
obtained a TME to return it at Lines 8–9. After that, CISGT
repeats the operations in ISGT to compute a TME inG′T and
makes sure that it is also an NE in GT at Line 12. CISGT
then checks whether we have obtained a TME to return it at
Lines 13–14. At Line 16, CISGT adds actions by repeating
the operations in ISGT.

To show the convergence of CISGT, we first show that, a
TMSP is part of a TME if the utility obtained by it is not
less than to the team’s utility in a CTME.

Theorem 5. In GT , given a CTME x = (xT , xn)
and a mixed strategy profile for the team xT such that
uT (xT , BR(xT )) ≥ uT (x), then (xT , xn) is a TME.

Proof. Let v∗ be the TME value of GT . Then v∗ ≤ uT (x)
(Basilico et al., 2017b). Now we have v∗ ≤ uT (x) =
maxx′T

minx′n
uT (x′T , x

′
n) = maxx′T

uT (x′T , xn). Then,
we have uT (xT , BR(xT )) = minx′n

uT (xT , x
′
n) ≤

uT (xT , xn) ≤ maxx′i
uT (xT\{i}, x

′
i, xn) ≤

maxx′T
uT (x′T , xn) = uT (x). Consequently, giv-

en xT , for any adversary strategy x′n, we have
un(xT , x

′
n) − un(xT , xn) = −uT (xT , x

′
n) −

(−uT (xT , xn)) = uT (xT , xn) − uT (xT , x
′
n) ≤

uT (x) − uT (xT , BR(xT )) ≤ 0. Similarly, giv-
en xn and xT\{i}, for any player i’s strategy
x′i, we have uT (xT\{i}, x

′
i, xn) − uT (xT , xn) ≤

uT (x) − uT (xT , BR(xT )) ≤ 0. Then, (xT , xn)
is an NE. In addition, due to uT (xT , BR(xT )) =
minx′n

uT (xT , x
′
n) ≤ maxx′T

minx′n
uT (x′T , x

′
n) = v∗, we

have uT (xT , xn) − v∗ ≤ uT (x) − uT (xT , BR(xT )) ≤ 0
and v∗ − uT (xT , xn) ≤ uT (x) − uT (xT , BR(xT )) ≤ 0.
Therefore, (xT , xn) is a TME.

Similarly, a TME in G′T is a TME in GT if the utility ob-
tained by it is not less than to the team’s utility in a CTME.

Theorem 6. x is a TME in GT if x is a TME in G′T and an
NE in GT , x is a CTME in GT with uT (x) ≥ uT (x).

Proof. Let v∗ be the TME value of GT . Then v∗ ≤ uT (x)
(Basilico et al., 2017b). Now we have uT (x) ≤ v∗ ≤
uT (x). Obviously, x is a TME in GT .

Finally, based on the above results, we have the following
conclusion.

Theorem 7. CISGT converges to a TME.

Proof. First, CISGT will converge because the action set
for each player is finite in GT . Second, the output x is a
TME by Theorems 4–6.
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L×W 5×5 5×5 5×5 5×5 5×5 4×4 6×6 8×8 10×10
(p,q) (0.8,0.6) (0.7,0.5) (0.6,0.4) (0.5,0.3) (0.4,0.2) (0.4,0.2) (0.4,0.2) (0.4,0.2) (0.4,0.2)

FullTME ∞ 448s 50.4s 17.8s 0.3s ∞
ISGT >1000s 4s >1000s

CISGT 9.8s 5.9s 4.7s 3.7s 2.3s 2.2s 8.3s 24s 57s

Table 1. Computing TMEs: ∞ represents out of memory.

L×W 4×4 4×4 4×4 4×4 4×4 5×5 6×6 7×7 8×8
(p,q) (0.4,0.2) (0.3,0.2) (0.3,0.1) (0.2,0.1) (0.1,0,1) (0.1,0.1) (0.1,0.1) (0.1,0.1) (0.1,0.1)

Vanilla-ISG 35% 38% 38% 30% 26% 53% 47% 56% 55%
TMSP-Alg 61% 50% 51% 44% 38% 75% 54% 79% 87%

Table 2. Gaps relative to CISGT.

6. Experiment Evaluation
We experimentally evaluate CISGT, comparing the perfor-
mance of CISGT with that of ISGT and the state-of-the-art
algorithm (Zhang & An, 2020) (FullTME) for computing
TMEs (i.e., ε-TME with ε = 0.05). FullTME enumerates
all pure strategies and uses global optimization techniques
to approximate multilinear terms in Problem (1) by a mixed-
integer linear program. We use CPLEX solver (version 12.9)
for solving all linear programs. All experiments are run on
a machine with 6-core 3.6GHz CPU and 32GB memory.

We conduct experiments on the classic network security
games 5 (Washburn & Wood, 1995; Jain et al., 2011; I-
washita et al., 2016) to evaluate our approach. In a network
security game, the adversary starts at a source node (he may
have many possible source nodes) and travels along the path
he chooses to one of his targets. That is, an action (a pure
strategy) of the adversary is a path from a source to a target,
and then the action space includes all possible paths. The
police officers form a team, and each police occupies one
of the possible edges on the network to try to catch the ad-
versary before the target is reached. That is, an action (a
pure strategy) of each team member is an edge. Similar to
police officers in the NYPD, who maintain “sector integrity”
(NYPD, 2020a), the action space of each police officer is
disjoint with others in our setting. The adversary may have
different values for different targets, and the adversary will
succeed if his choosing path does not overlap with the edges
chosen by the team; otherwise, the adversary will obtain
nothing. All networks are generated by the grid model with
random edges (Peng et al., 2014), which models the real
urban network with some parameters. That is, it samples a
square network with L×W nodes, and it generates horizon-
tal/vertical edges between neighbors with probability p, and

5Network security games can be easily extended to other games,
including the robot planning problem in the adversary environment
(McMahan et al., 2003), hider-seeker games (Halvorson et al.,
2009), patrolling games with alarm systems (Basilico et al., 2017a),
and green security games (Wang et al., 2019). Then our results
will also hold in these games.

diagonal ones with probability q. By default, n = 3, and
results are all averaged over 30 instances that are randomly
generated.

Vanilla-ISG to compute CTMEs is the double oracle algo-
rithm proposed by Jain et al. (2011), including the linear
program for computing a maximin strategy for the team,
and mixed-integer linear programs of best response oracles
for the team and the adversary, respectively. These best re-
sponse oracles can be easily extended to CISGT. TMEs for
restricted games are computed by the algorithm proposed
by Zhang & An (2020), i.e., FullTME computes TMEs in
restricted games.

Results in Table 1 show that CISGT is orders of magnitude
faster than ISGT and FullTME.6 Specially, when FullTME,
enumerating all pure strategies to compute a TME in a full
game, runs out of the memory, CISGT still runs efficiently.

In addition, we compare the solution quality of CISGT with
that of Vanilla-ISG and TMSP-Alg. Table 2 shows the
possible gaps, which are the relative distance between the
team utility (vm) obtained by CISGT and the team utility v
obtained by Vanilla-ISG or TMSP-Alg, i.e., |v−vm||vm| ×100%.
The team will lose more utility if the gap is larger. We can
see that the team may lose a large utility if Vanilla-ISG or
TMSP-Alg is deployed.

7. Conclusion and Future Work
This paper proposes an efficient ISG algorithm (CISGT) to
compute TMEs for zero-sum multiplayer games. Our algo-
rithm is the first incremental strategy generation algorithm
guaranteeing to converge to a TME, which significantly
overcomes the limitation of state-of-the-art algorithms. Es-
pecially, our algorithm can efficiently solve the cases that
the baselines cannot solve. In the future, we can extend our
CISGT to extensive-form games (Bosansky et al., 2014) and
use it to develop learning algorithms (Lanctot et al., 2017).

6In addition, ISGT’s another framework we mentioned in Sec-
tion 4.3 needs 898s on the smallest network with 4×4 and (0.4,0.2).
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Appendix

A. Computing the Adversary Strategy in a
TME

After computing the team-maxmin strategy profile xT , we
can compte the adversary strategy xn by minimizing the
team’s utility and making sure that no team members would
like to deviate from their strategies in xT (von Stengel &
Koller, 1997). Then xn can be computed by solving the
following linear program (von Stengel & Koller, 1997):

min
xn

∑
i∈T

zi (8a)

zi −
∑

an∈An

xn(an)uT (ai, xT\{i}, an) ≥ 0

∀i ∈ T, ai ∈ Ai (8b)∑
an∈An

xn(an) = 1 (8c)

xn(an) ≥ 0 ∀an ∈ An (8d)

B. Omitted Proofs
Corollary 1. x may not be an NE in GT if x is a CTME in
GT and is computed in G′T , and x is a TME in G′T .

Proof. Suppose a CTME x is computed in G′T and A′ =
(×i∈TAi,xT

)×An,xn
. By Proposition 7, x may not be an

NE in GT , even if x is a TME in G′T .

Proposition 8. xmay not be a TME inGT if x is a CTME in
GT , and x is a TME inG′T withA′ = (×i∈TAi,xT

)×An,xn

and an NE in GT .

Proof. Consider the case in Eq.(3). A CTME x is
xT (1, 1) = xT (2, 2) = 0.5 and x3(1) = x3(2) = 0.5
with utility 5 for the team (it is easy to verify that no players
would like to deviate to other strategies). Then we have
G′T with with A′1 = A′2 = A′3 = {1, 2}. According to the
analysis on the case in Eq.(3), x with xi(1) = xi(2) = 0.5
is a TME in G′T with utility 2.5 for the team. x is an NE
in GT . However, according to the analysis on the case in
Eq.(3), x is not a TME in GT .

Corollary 2. x may not be a TME in GT if x is a CTME in
GT and is computed in G′T , and x is a TME in G′T and an
NE in GT .

Proof. Suppose a CTME x is computed in G′T and A′ =
(×i∈TAi,xT

) × An,xn
. By Proposition 8, x may not be

a TME in GT , even if x is a TME in G′T and an NE in
GT .

Proposition 9. If x is a CTME in GT , and x is a TME in
G′T with A′ = (×i∈TAi,xT

)×An,xn
, then playing xT may

cause an arbitrarily large loss to the team.

Proof. Consider GT with utilities shown in Eq.(7). As
shown in the proof for Proposition 7, A CTME x is
xT (1, 1) = xT (2, 2) = 0.5 and x3(1) = x3(2) = 0.5
with utility 5 for the team. Then we have G′T with with
A′1 = A′2 = A′3 = {1, 2}, and x with xi(1) = xi(2) = 0.5
is a TME in G′T with utility 2.5 for the team. Given
xT , the adversary best response is action 3 with utility
uT (xT , 3) = 0.5×0.5(10+10−10−10) = 0 for the team.
Now an NE x′ = (( 1

3 ,
2
3 ), ( 1

3 ,
2
3 ), ( 2

3 , 0,
1
3 )) (it is easy to ver-

ify that no players would like to deviate to other strategies,
e.g., action 3 for the adversary with uT (xT , 2) = 40

9 > 10
9

is not better than x′3) will given utility 10
9 to the team. Then,

playing xT may cause an arbitrarily large loss to the team
because 10/9

0 =∞.

Corollary 3. If x is a CTME in GT , and x is a TME in
G′T where x is computed, then playing xT may cause an
arbitrarily large loss to the team.

Proof. Suppose a CTME x is computed in G′T and A′ =
(×i∈TAi,xT

)× An,xn
. By Proposition 9, playing xT may

cause an arbitrarily large loss to the team.
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