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Abstract

To alleviate the data requirement for training ef-
fective binary classifiers in binary classification,
many weakly supervised learning settings have
been proposed. Among them, some consider us-
ing pairwise but not pointwise labels, when point-
wise labels are not accessible due to privacy, con-
fidentiality, or security reasons. However, as a
pairwise label denotes whether or not two data
points share a pointwise label, it cannot be easily
collected if either point is equally likely to be pos-
itive or negative. Thus, in this paper, we propose a
novel setting called pairwise comparison (Pcomp)
classification, where we have only pairs of unla-
beled data that we know one is more likely to be
positive than the other. Firstly, we give a Pcomp
data generation process, derive an unbiased risk
estimator (URE) with theoretical guarantee, and
further improve URE using correction functions.
Secondly, we link Pcomp classification to noisy-
label learning to develop a progressive URE and
improve it by imposing consistency regularization.
Finally, we demonstrate by experiments the effec-
tiveness of our methods, which suggests Pcomp is
a valuable and practically useful type of pairwise
supervision besides the pairwise label.

1. Introduction
Traditional supervised learning techniques have achieved
great advances, while they require precisely labeled data.
In many real-world scenarios, it may be too difficult to col-
lect such data. To alleviate this issue, a large number of
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weakly supervised learning problems (Zhou, 2018) have
been extensively studied, including semi-supervised learn-
ing (Zhu & Goldberg, 2009; Niu et al., 2013; Sakai et al.,
2018), multi-instance learning (Zhou et al., 2009; Sun et al.,
2016; Zhang & Zhou, 2017), noisy-label learning (Han
et al., 2018; Xia et al., 2019; Wei et al., 2020), partial-
label learning (Zhang et al., 2017; Feng et al., 2020b; Lv
et al., 2020), complementary-label learning (Ishida et al.,
2017; Yu et al., 2018; Ishida et al., 2019; Feng et al.,
2020a), positive-unlabeled classification (Elkan & Noto,
2008; Niu et al., 2016; Gong et al., 2019; Chen et al.,
2020), positive-confidence classification (Ishida et al., 2018),
similar-unlabeled classification (Bao et al., 2018), similar-
dissimilar classification (Shimada et al., 2020; Bao et al.,
2020), unlabeled-unlabeled classification (Lu et al., 2019;
2020), and triplet classification (Cui et al., 2020).

Among these weakly supervised learning problems, some
of them (Bao et al., 2018; Shimada et al., 2020; Bao et al.,
2020) consider learning a binary classifier with pairwise
labels that indicate whether two instances belong to (similar)
the same class or not (dissimilar), when pointwise labels
are not accessible due to privacy, confidentiality, or security
reasons. However, if either of the two instances is equally
likely to be positive or negative, it becomes difficult for us
to accurately collect the underlying pairwise label of them.
This motivates us to consider using another type of pairwise
supervision (instead of the pairwise label) for successfully
learning a binary classifier.

In this paper, we propose a novel setting called pairwise com-
parison (Pcomp) classification, where we aim to perform
pointwise binary classification with only pairwise compar-
ison data. A pairwise comparison (x,x′) represents that
the instance x has a larger confidence of belonging to the
positive class than the instance x′. Such weak supervision
(pairwise confidence comparison) could be much easier for
people to collect than full supervision (pointwise label) in
practice, especially for applications on sensitive or private
matters. For example, it may be difficult to collect sensitive
or private data with pointwise labels, as asking for the true
labels could be prohibited or illegal. In this case, it could be
easier for people to collect other weak supervision like the
comparison information between two examples.

It is also advantageous to consider pairwise confidence com-
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parisons in pointwise binary classification with class over-
lapping, where the labeling task is difficult, and even expe-
rienced labelers may provide wrong pointwise labels. Let
us denote the labeling standard of a labeler as p̃(y|x) and
assume that an instance x1 is more positive than another in-
stance x2. Facing the difficult labeling task, different label-
ers may hold different labeling standards, p̃(y = +1|x1) >
p̃(y = +1|x2) > 1/2, p̃(y = +1|x1) > 1/2 > p̃(y =
+1|x2), and 1/2 > p̃(y = +1|x1) > p̃(y = +1|x2),
thereby providing different pointwise labels: (+1,+1),
(+1,−1), (−1,−1). We can find that different labelers may
provide inconsistent pointwise labels, while pairwise confi-
dence comparisons are unanimous and accurate. One may
argue that we could aggregate multiple labels of the same
instance using crowdsourcing learning methods (Whitehill
et al., 2009; Raykar et al., 2010). However, as not every
instance will be labeled by multiple labelers, it is not always
applicable to crowdsourcing learning methods. Therefore,
our proposed Pcomp classification is useful in this case.

Our main contributions can be summarized as follows:

• We propose pairwise comparison (Pcomp) classification,
a novel weakly supervised learning setting, and present
a mathematical formulation for the generation process
of pairwise comparison data.

• We prove that an unbiased risk estimator (URE) can be
derived, propose an empirical risk minimization (ERM)
based method, and present an improvement using correc-
tion functions (Lu et al., 2020) for alleviating overftting
when complex models are used.

• We start from the noisy-label learning perspective to in-
troduce the RankPruning method (Northcutt et al., 2017)
that holds a progressive URE for solving our proposed
Pcomp classification problem and improve it by impos-
ing consistency regularization.

Extensive experimental results demonstrate the effectiveness
of our proposed solutions for Pcomp classification.

2. Preliminaries
Binary classification with pairwise comparisons and extra
pointwise labels has been studied (Xu et al., 2017; Kane
et al., 2017), while our work focuses on a more challeng-
ing problem where only pairwise comparison examples are
provided. To the best of our knowledge, we are the first to
investigate such a challenging problem. Unlike previous
studies (Xu et al., 2017; Kane et al., 2017) that leverage
some pointwise labels to differentiate the labels of pairwise
comparisons, our methods are purely based on ERM with
only pairwise comparisons. In the next, we briefly introduce
some notations and review related problem formulations.

Binary Classification. Since our paper focuses on how
to train a binary classifier from pairwise comparison data,

we first review the problem formulation of binary classi-
fication. Let the feature space be X and the label space
be Y = {+1,−1}. Suppose the collected dataset is de-
noted by D = {(xi, yi)}ni=1 where each example (xi, yi)
is independently sampled from the joint distribution with
density p(x, y), which includes an instance xi ∈ X and a
label yi ∈ Y . The goal of binary classification is to train an
optimal classifier f : X 7→ R by minimizing the following
(expected) classification risk:

R(f) = Ep(x,y)
[
`(f(x), y)

]
= π+Ep+(x)

[
`(f(x),+1)

]
+ π−Ep−(x)

[
`(f(x),−1)

]
, (1)

where ` : R × Y 7→ R+ denotes a binary loss func-
tion, π+ := p(y = +1) (or π− := p(y = −1)) de-
notes the positive (or negative) class prior probability, and
p+(x) := p(x|y = +1) (or p−(x) := p(x|y = −1))
denotes the class-conditional probability density of the posi-
tive (or negative) data. ERM approximates the expectations
over p+(x) and p−(x) by the empirical averages of positive
and negative data and the empirical risk is minimized with
respect to the classifier f .

Positive-Unlabeled (PU) Classification. In some real-
world scenarios, it may be difficult to collect negative data,
and only positive (P) and unlabeled (U) data are available.
PU classification aims to train an effective binary classi-
fier in this weakly supervised setting. Previous studies
(du Plessis et al., 2014; 2015; Kiryo et al., 2017) showed
that the classification risk R(f) in Eq. (1) can be rewritten
only in terms of positive and unlabeled data as

RPU(f) = π+Ep+(x)

[
`(f(x),+1)− `(f(x),−1)

]
+ Ep(x)

[
`(f(x),−1)

]
, (2)

where p(x) = π+p+(x) + π−p−(x) denotes the density of
unlabeled data. This risk expression immediately allows us
to employ ERM in terms of positive and unlabeled data.

Unlabeled-Unlabeled (UU) Classification. The recent
studies (Lu et al., 2019; 2020) showed that it is possible
to train a binary classifier only from two unlabeled datasets
with different class priors. Lu et al. (2019) showed that the
classification risk R(f) can be rewritten as

RUU(f) = Eptr(x)
[ (1− θ′)π+

θ − θ′
`(f(x),+1)

− θ′(1− π+)

θ − θ′
`(f(x),−1)

]
+ Eptr′ (x′)

[θ(1− π+)

θ − θ′
`(f(x′),−1)

− (1− θ)π+
θ − θ′

`(f(x′),+1)
]
, (3)
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where θ and θ′ are different class priors of two unlabeled
datasets, and ptr(x) and ptr′(x′) are the densities of two
datasets of unlabeled data, respectively. This risk expression
immediately allows us to employ ERM only from two sets
of unlabeled data. For RUU(f) in Eq. (3), if we set θ = 1,
θ′ = π+, and replace ptr(x) and ptr′(x′) by p+(x) and
p(x) respectively, then we can recover RPU(f) in Eq. (2).
Therefore, UU classification could be taken as a general-
ized framework of PU classification in terms of URE. Be-
sides, Eq. (3) also recovers a complicated URE of similar-
unlabeled classification (Bao et al., 2018) by setting θ = π+
and θ′ = π2

+/(2π
2
+ − 2π+ + 1).

To solve our proposed Pcomp classification problem, we
will present a mathematical formulation for the generation
process of pairwise comparison data, based on which we
will explore two UREs that are compatible with any model
and optimizer to train a binary classifier by ERM and estab-
lish the corresponding estimation error bounds.

3. Data Generation Process
In order to derive UREs for performing ERM, we first for-
mulate the underlying generation process of pairwise com-
parison data1, which consists of pairs of unlabeled data that
we know which one is more likely to be positive. Sup-
pose the provided dataset is denoted by D̃ = {(xi,x′i)}ni=1

where (xi,x
′
i) (with their unknown true labels (yi, y′i)) is

expected to satisfy p(yi = +1|xi) > p(y′i = +1|x′i).

It is clear that we could easily collect pairwise comparison
data if the positive confidence (i.e., p(y = +1|x)) of each
instance could be obtained. However, such information is
much harder to obtain than class labels in real-world sce-
narios. Therefore, unlike some studies (Ishida et al., 2018;
Shinoda et al., 2020) that assume the positive confidence of
each instance is provided by the labeler, we only assume that
the labeler has access to the labels of training data. Specifi-
cally, we adopt the assumption (Cui et al., 2020) that weakly
supervised examples are first sampled from the true data
distribution, but the labels are only accessible to the labeler.
Then, the labeler would provide us weakly supervised infor-
mation (i.e., pairwise comparison information) according to
the labels of sampled data pairs. That is, for any pair of unla-
beled data (x,x′), the labeler would tell us whether (x,x′)
could be collected as a pairwise comparison for Pcomp clas-
sification, based on the labels (y, y′) rather than the positive
confidences (p(y = +1|x), p(y = +1|x′)).

Now, the question becomes: how does the labeler consider
(x,x′) as a pairwise comparison for Pcomp classification, in
terms of the labels (y, y′)? As shown in our previous exam-

1In contrast to Xu et al. (2019) and Xu et al. (2020) that utilized
pairwise comparison data to solve the regression problem, we focus
on binary classification.

ple of binary classification with class overlapping, we could
infer that the labels (y, y′) of our required pairwise compari-
son data (x,x′) for Pcomp classification can only be one of
the three cases {(+1,−1), (+1,+1), (−1,−1)}, because
the condition p(y = +1|x) ≥ p(y′ = +1|x′) is definitely
violated if (y, y′) = (−1,+1). Therefore, we assume that
the labeler would take (x,x′) as a pairwise comparison ex-
ample in the dataset D̃, if the labels (y, y′) of (x,x′) belong
to the above three cases. It is also worth noting that for a pair
of data (x,x′) with labels (y, y′) = (−1,+1), the labeler
would take (x′,x) as a pairwise comparison example. Be-
cause by exchanging the positions of (x,x′), (x′,x) would
be associated with labels (+1,−1), which belong to the
three cases. In summary, we assume that pairwise compari-
son data are sampled from those pairs of data whose labels
belong to the three cases {(+1,−1), (+1,+1), (−1,−1)}.
Based on the above described generation process of pairwise
comparison data, we have the following theorem.

Theorem 1. According to the generation process of pair-
wise comparison data described above, let

p̃(x,x′) =
q(x,x′)

π2
+ + π2

− + π+π−
, (4)

where q(x,x′) = π2
+p+(x)p+(x′) + π2

−p−(x)p−(x′) +
π+π−p+(x)p−(x′). Then, we can conclude that the col-
lected pairwise comparison data are independently drawn
from p̃(x,x′), i.e., D̃ = {(xi,x′i)}ni=1

i.i.d.∼ p̃(x,x′).

The proof is provided in Appendix A. Theorem 1 provides
an explicit expression of the probability density of pairwise
comparison data.

Next, we would like to extract pointwise information from
pairwise information, since our goal is to perform pointwise
binary classification. Let us denote the pointwise data col-
lected from D̃ = {(xi,x′i)}ni=1 by breaking the pairwise
comparison relation as D̃+ = {xi}ni=1 and D̃− = {x′i}ni=1.
Then we can obtain the following theorem.

Theorem 2. Pointwise examples in D̃+ and D̃− are inde-
pendently drawn from p̃+(x) and p̃−(x′), where

p̃+(x) =
π+

π2
− + π+

p+(x) +
π2
−

π2
− + π+

p−(x),

p̃−(x′) =
π2
+

π2
+ + π−

p+(x′) +
π−

π2
+ + π−

p−(x′).

The proof is provided in Appendix B. Theorem 2 shows
the relationships between the pointwise densities and the
class-conditional densities. Besides, it indicates that from
pairwise comparison data, we can essentially obtain exam-
ples that are independently drawn from p̃+(x) and p̃−(x′).
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4. The Proposed Methods
In this section, we explore two UREs to train a binary clas-
sifier by ERM from only pairwise comparison data with the
above generation process.

4.1. Corrected Pcomp Classification

In Eq. (1), the classification risk R(f) could be separately
expressed as the expectations over p+(x) and p−(x). Al-
though we do not have access to the two class-conditional
densities p+(x) and p−(x), we can represent them by our
introduced pointwise densities p̃+(x) and p̃−(x).

Lemma 1. We can express p+(x) and p−(x) in terms of
p̃+(x) and p̃+(x) as

p+(x) =
1

π+

(
p̃+(x)− π−p̃−(x)

)
,

p−(x) =
1

π−

(
p̃−(x)− π+p̃+(x)

)
.

The proof is provided in Appendix C. As a result of Lemma
1, we can express the classification risk R(f) using only
pairwise comparison data sampled from p̃+(x) and p̃−(x).

Theorem 3. The classification risk R(f) can be equiva-
lently expressed as

RPC(f) = Ep̃+(x)

[
`(f(x),+1)− π+`(f(x),−1)

]
(5)

+ Ep̃−(x′)
[
`(f(x′),−1)− π−`(f(x′),+1)

]
.

The proof is provided in Appendix D. In this way, we could
train a binary classifier by minimizing the following empiri-
cal approximation of RPC(f):

R̂PC(f) =
1

n

∑n

i=1

(
`(f(xi),+1) + `(f(x′i),−1) (6)

− π+`(f(xi),−1)− π−`(f(x′i),+1)
)
.

Estimation Error Bound. Here, we establish an estima-
tion error bound for the proposed URE. Let F = {f : X 7→
R} be the model class, f̂PC = arg minf∈F R̂PC(f) be the
empirical risk minimizer, and f? = arg minf∈F R(f) be
the true risk minimizer. Let R̃+

n (F) and R̃−n (F) be the
Rademacher complexities (Bartlett & Mendelson, 2002) of
F with sample size n over p̃+(x) and p̃−(x) respectively.

Theorem 4. Suppose the loss function ` is ρ-Lipschitz with
respect to the first argument (0 ≤ ρ ≤ ∞), and all functions
in the model classF are bounded, i.e., there exists a positive
constant Cb such that ‖f‖ ≤ Cb for any f ∈ F . Let
C` := supz≤Cb,t=±1 `(z, t). Then for any δ > 0, with
probability at least 1− δ, we have

R(f̂PC)−R(f?) ≤ (1 + π+)4ρR̃+
n (F)

+ (1 + π−)4ρR̃−n (F) + 6C`

√
log 8

δ

2n .

The proof is provided in Appendix E. Theorem 4 shows
that our proposed method is consistent, i.e., as n → ∞,
R(f̂PC) → R(f?), since R̃+

n (F), R̃−n (F) → 0 for all
parametric models with a bounded norm such as deep neu-
ral networks trained with weight decay (Golowich et al.,
2017; Lu et al., 2019). Besides, R̃+

n (F) and R̃−n (F) can
be normally bounded by CF/

√
n for a positive constant

CF . Hence, we can further see that the convergence rate
is Op(1/

√
n) where Op denotes the order in probability.

This order is the optimal parametric rate for ERM without
additional assumptions (Mendelson, 2008).

Relation to UU Classification. It is worth noting that the
URE of UU classification RUU(f) is quite general for bi-
nary classification with weak supervision. Hence we also
would like to show the relationships between our proposed
estimator RPC(f) and RUU(f). We demonstrate by the
following corollary that under some conditions, RUU(f) is
equivalent to RPC(f).

Corollary 1. By setting ptr = p̃+(x), p′tr = p̃−(x),
θ = π+/(1 − π+ + π2

+), and θ′ = π2
+/(1 − π+ + π2

+),
Eq. (3) is equivalent to Eq. (5), which means that RUU(f)
is equivalent to RPC(f).

We omit the proof of Corollary 1, since it is straightforward
to derive Eq. (5) from Eq. (3) with required notations.

Empirical Risk Correction. As shown by Lu et al.
(2020), directly minimizing R̂PC(f) would suffer from over-
fitting when complex models are used due to the negative
risk issue. More specifically, since negative terms are in-
cluded in Eq. (6), the empirical risk can be negative even
though the original true risk can never be negative. To ease
this problem, they wrapped the terms in R̂UU(f) that cause
a negative empirical risk by certain consistent correction
functions defined in Lu et al. (2020), such as the rectified
linear unit (ReLU) function g(z) = max(0, z) and absolute
value function g(z) = |z|. These consistent correction func-
tions could also be applied to R̂PC for alleviating overfitting
when complex models are used. In this way, we could obtain
the following corrected empirical risk estimator:

R̂cPC(f) = g
( 1

n

n∑
i=1

(
`(f(xi),+1)− π−`(f(x′i),+1)

))
+ g
( 1

n

n∑
i=1

(
`(f(x′i),−1)− π+`(f(xi),−1)

))
. (7)

4.2. Progressive Pcomp Classification

Here, we start from the noisy-label learning perspective
to solve the Pcomp classification problem. Intuitively, we
could simply perform binary classification by regarding the
data from p̃+(x) as (noisy) positive data and the data from
p̃−(x) as (noisy) negative data. However, this naive solution
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could be inevitably affected by noisy labels. In this scenario,
we denote the noise rates as ρ− = p(ỹ = +1|y = −1)
and ρ+ = p(ỹ = −1|y = +1) where ỹ is the observed
(noisy) label and y is the true label, and denote the inverse
noise rates as φ+ = p(y = −1|ỹ = +1) and φ− = p(y =
+1|ỹ = −1). According to the defined generation process of
pairwise comparison data, we have the following theorem.
Theorem 5. The following equalities hold:

φ+ =
π2
−

π2
+ + π2

− + π+π−
, ρ+ =

π+
1 + π+

,

φ− =
π2
+

π2
+ + π2

− + π+π−
, ρ− =

π−
1 + π−

.

The proof is provided in Appendix F.

Theorem 5 shows that the noise rates can be obtained if we
regard the Pcomp classification problem as the noisy-label
learning problem. With known noise rates for noisy-label
learning, it was shown (Natarajan et al., 2013; Northcutt
et al., 2017) that a URE could be derived. Here, we adopt
the RankPruning method (Northcutt et al., 2017) because
it holds a progressive URE by selecting confident exam-
ples using the learning model and achieves state-of-the-art
performance. Specifically, we denote by the dataset com-
posed of all the observed positive data P̃ , i.e., P̃ = {xi}ni=1,
where xi is independently sampled from p̃+(x). Similarly,
the dataset composed of all the observed negative data is de-
noted by Ñ , i.e., Ñ = {x′i}ni=1, where x′i is independently
sampled from p̃−(x′). Then, confident examples will be
selected from P̃ and Ñ by ranking the outputs of the model
f . We denote the selected positive data from P̃ as P̃sel, and
the selected negative data from Ñ as Ñsel:

P̃sel = arg max
P:|P|=(1−φ+)|P̃|

∑
x∈{P∩P̃}

f(x),

Ñsel = arg min
N :|N |=(1−φ−)|Ñ |

∑
x∈{N∩Ñ}

f(x).

Then we show that if the model f satisfies the separability
condition, i.e., for any true positive instance xp and for
any true negative instance xn, we have f(xp) > f(xn).
In other words, if the model output of every true positive
instance is always larger than that of every true negative
instance, we could obtain a URE. We name it progressive
URE, as the model f is progressively optimized.
Theorem 6 (Theorem 5 in (Northcutt et al., 2017)). Assume
that the model f satisfies the above separability condition,
then the classification risk R(f) can be equivalently ex-
pressed as

RpPC(f) = Ep̃+(x)

[`(f(x),+1)

1− ρ+
I[x ∈ P̃sel]

]
+ Ep̃−(x′)

[`(f(x′),−1)

1− ρ−
I[x′ ∈ Ñsel]

]
,

where I[·] denotes the indicator function.

In this way, we have the following empirical approximation
of RpPC:

R̂pPC(f) =
1

n

∑n

i=1

(`(f(xi),+1)

1− ρ+
I[xi ∈ P̃sel]

+
`(f(x′i),−1)

1− ρ−
I[x′i ∈ Ñsel]

)
. (8)

Estimation Error Bound. It worth noting that Northcutt
et al. (2017) did not prove the learning consistency for the
RankPruning method. Here, we establish an estimation er-
ror bound for this method, which guarantees the learning
consistency. Let f̂pPC = arg minf∈F R̂pPC(f) be the em-
pirical risk minimizer of the RankPruning method, then we
have the following theorem.

Theorem 7. Suppose the loss function ` is ρ-Lipschitz with
respect to the first argument (0 ≤ ρ ≤ ∞), and all functions
in the model classF are bounded, i.e., there exists a positive
constant Cb such that ‖f‖ ≤ Cb for any f ∈ F . Let
C` := supz≤Cb,t=±1 `(z, t). Then for any δ > 0, with
probability at least 1− δ, we have

R(f̂pPC)−R(f?) ≤ 2
1−ρ+

(
2ρR̃+

n (F) + C`

√
log 4

δ

2n

)
+ 2

1−ρ−

(
2ρR̃−n (F) + C`

√
log 4

δ

2n

)
.

The proof is provided in Appendix G. Theorem 7 shows
that the above method is consistent and this estimation error
bound also attains the optimal convergence rate without any
additional assumptions (Mendelson, 2008).

Regularization. For the above RankPruning method, its
URE is based on the assumption that the learning model
could satisfy the separability condition. Thus, its perfor-
mance heavily depends on the accuracy of the learning
model. However, as the learning model is progressively
updated, some of the selected confident examples may still
contain label noise during the training process. As a result,
the RankPruning method would be affected by incorrectly
selected data. A straightforward improvement could be to
improve the output quality of the learning model. Moti-
vated by Mean Teacher used in semi-supervised learning
(Tarvainen & Valpola, 2017), we also resort to a teacher
model that is an exponential moving average of model
snapshots, i.e., Θ′t = αΘ′t−1 + (1 − α)Θt, where Θ′

denotes the parameters of the teacher model, Θ denotes
the parameters of the learning model, the subscript t de-
notes the training step, and α is a smoothing coefficient
hyper-parameter. Such a teacher model could guide the
learning model to produce high-quality outputs. To learn
from the teacher model, we leverage consistency regular-
ization Ω(f) = Ex

[
‖fΘ(x) − fΘ′(x)‖2

]
(Laine & Aila,
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2016; Tarvainen & Valpola, 2017) to make the learning
model consistent with the teacher model for improving the
performance of the RankPruning method.

5. Experiments
In this section, we conduct extensive experiments to evalu-
ate the performance of our proposed Pcomp classification
methods on various datasets using different models.

Datasets. We use four popular benchmark datasets, in-
cluding MNIST (LeCun et al., 1998), Fashion-MNIST (Xiao
et al., 2017), Kuzushiji-MNIST (Clanuwat et al., 2018), and
CIFAR-10 (Krizhevsky et al., 2009). We train a multilayer
perceptron (MLP) model with three hidden layers of width
300 and ReLU activation functions (Nair & Hinton, 2010)
and batch normalization (Ioffe & Szegedy, 2015) on the first
three datasets. We train a ResNet-34 model (He et al., 2016)
on the CIFAR-10 dataset. We also use USPS and three
datasets from the UCI machine learning repository (Blake
& Merz, 1998) including Pendigits, Optdigits, and CNAE-9.
We train a linear model on these datasets, since they are
not large-scale datasets. The brief descriptions of all used
datasets with the corresponding models are reported in Ta-
ble 1. Since these datasets are specially used for multi-class
classification, we manually transformed them into binary
classification datasets (see Appendix H). As we have shown
in Theorem 2, the pairwise comparison examples can be
equivalently transformed into pointwise examples, which
are more convenient to generate. Therefore, we generate
pointwise examples in experiments. Specifically, as Theo-
rem 5 discloses the noise rates in our defined data generation
process, we simply generate pointwise corrupted examples
according to the derived noise rates.

Methods. For our proposed Pcomp classification problem,
we propose the following methods:

• Pcomp-Unbiased, which denotes the proposed method
that minimizes R̂PC(f) in Eq. (6).

• Pcomp-ReLU, which denotes the proposed method that
minimizes R̂cPC(f) in Eq. (7) using the ReLU function
as the risk correction function.

• Pcomp-ABS, which denotes the proposed method that
minimizes R̂cPC(f) in Eq. (7) using the absolute value
function as the risk correction function.

• Pcomp-Teacher, which improves the RankPruning
method by imposing consistency regularization to make
the learning model consistent with a teacher model.

Besides, we compare with the following baselines:
• Binary-Biased, which conducts binary classification by

regarding the data from p̃+(x) as positive data and the
data from p̃−(x) as negative data. This is a straightfor-
ward method to handle the Pcomp classification problem.
In our setting, Binary-Biased reduces to the BER mini-
mization method (Menon et al., 2015).

Table 1. Specification of the used benchmark datasets and mod-
els. These datasets are specially processed (see Appendix H) for
performing Pcomp classification.

Dataset # Train # Test # Features # Classes Model

MNIST 60,000 10,000 784 10 MLP
Fashion 60,000 10,000 784 10 MLP
Kuzushiji 60,000 10,000 784 10 MLP
CIFAR-10 50,000 10,000 3,072 10 ResNet-34

USPS 7,437 1,861 256 10 Linear
Pendigits 8,793 2,199 16 10 Linear
Optdigits 4,495 1,125 62 10 Linear
CNAE-9 864 216 856 9 Linear

• Noisy-Unbiased, which denotes the noisy-label learn-
ing method that minimizes the empirical approximation
of the URE proposed by (Natarajan et al., 2013).

• RankPruning, which denotes the noisy-label learning
method (Northcutt et al., 2017) that minimizes the em-
pirical risk R̂pPC(f) in Eq. (8).

For all learning methods, we take the logistic loss as the
binary loss function ` (i.e., `(z) = ln(1+exp(−z))), for fair
comparisons. The hyper-parameter settings of all learning
methods are aslo reported in Appendix H. We implement
our methods using PyTorch (Paszke et al., 2019) and use the
Adam (Kingma & Ba, 2015) optimizer with mini-batch size
set to 256 and the number of training epochs set to 200 for
the four large-scale datasets and 100 for other four datasets.
All the experiments are conducted on GeForce GTX 1080
Ti GPUs.

Experimental Setup. We evaluate the performance of all
learning methods under different class prior settings, i.e.,
π+ is selected from {0.2, 0.5, 0.8}. It is worth noting that
we could estimate π+ according to our described data gen-
eration process. Specifically, we can exactly estimate π̃ by
counting the fraction of collected pairwise comparison data
in all the sampled pairs of data. Since π̃ = π2

+ + π− =

π2
++1−π+, we have π+ = 1/2−

√
π̃ − 3/4 (if π+ < π−)

or π+ = 1/2 +
√
π̃ − 3/4 (if π+ ≥ π−). Therefore, if we

know whether π+ is larger than π−, we could exactly esti-
mate the true class prior π+. For simplicity, we assume that
the class prior π+ is known for all the methods. We repeat
the sampling-and-training process 5 times for all learning
methods on all datasets and record the mean accuracy with
standard deviation (mean±std).

Experimental Results with Complex Models. Table 2
records the classification accuracy of each method on the
four benchmark datasets with different class priors. From
Table 2, we have the following observations:

• Binary-Biased always achieves the worst performance,
which means that our Pcomp classification problem can-
not be simply solved by binary classification.
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Table 2. Classification accuracy (mean±std) of each method on the four benchmark datasets with different class priors. The best
performance is highlighted in bold.

Class Prior Methods MNIST Kuzushiji Fashion CIFAR-10

π+ = 0.2

Noisy-Unbiased 0.806±0.026 0.712±0.014 0.865±0.050 0.665±0.119
Binary-Biased 0.282±0.018 0.584±0.021 0.371±0.067 0.499±0.170
RankPruning 0.933±0.005 0.810±0.006 0.938±0.005 0.840±0.005

Pcomp-ABS 0.893±0.013 0.849±0.007 0.898±0.008 0.833±0.008
Pcomp-ReLU 0.927±0.010 0.838±0.014 0.927±0.022 0.812±0.007

Pcomp-Unbiased 0.782±0.025 0.693±0.041 0.835±0.038 0.584±0.011
Pcomp-Teacher 0.958±0.007 0.835±0.015 0.954±0.004 0.841±0.006

π+ = 0.5

Noisy-Unbiased 0.892±0.013 0.656±0.096 0.908±0.031 0.642±0.031
Binary-Biased 0.537±0.026 0.615±0.008 0.457±0.032 0.470±0.039
RankPruning 0.888±0.004 0.782±0.008 0.917±0.005 0.793±0.015

Pcomp-ABS 0.832±0.010 0.732±0.007 0.899±0.006 0.712±0.023
Pcomp-ReLU 0.875±0.009 0.729±0.019 0.918±0.016 0.746±0.030

Pcomp-Unbiased 0.877±0.012 0.690±0.084 0.906±0.037 0.631±0.031
Pcomp-Teacher 0.942±0.004 0.791±0.013 0.957±0.002 0.795±0.012

π+ = 0.8

Noisy-Unbiased 0.800±0.036 0.749±0.038 0.815±0.058 0.591±0.019
Binary-Biased 0.299±0.066 0.558±0.005 0.444±0.020 0.371±0.113
RankPruning 0.939±0.004 0.830±0.012 0.939±0.004 0.843±0.010

Pcomp-ABS 0.815±0.009 0.825±0.011 0.879±0.014 0.827±0.013
Pcomp-ReLU 0.916±0.013 0.827±0.011 0.925±0.015 0.811±0.007

Pcomp-Unbiased 0.793±0.016 0.721±0.037 0.823±0.032 0.569±0.007
Pcomp-Teacher 0.958±0.007 0.836±0.015 0.955±0.004 0.844±0.014

• Pcomp-Unbiased is inferior to Pcomp-ABS and Pcomp-
ReLU. This observation accords with what we have dis-
cussed, i.e., directly minimizing R̂PC(f) would suffer
from overfitting when complex models are used, be-
cause there are negative terms included in R̂PC(f) and
the empirical risk can be negative during the training
process. In contrast, Pcomp-ReLU and Pcomp-ABS
employ consistent correction functions on R̂PC(f) so
that the empirical risk will never be negative. Therefore,
when complex models such as deep neural networks are
used, Pcomp-ReLU and Pcomp-ABS are expected to
outperform Pcomp-Unbiased.

• Pcomp-Teacher achieves the best performance in most
cases. This observation verifies the effectiveness of the
imposed consistency regularization, which makes the
learning model consistent with a teacher model, to im-
prove the quality of selected confident examples by the
RankPruning method.

• It is worth noting that the standard deviations of Binary-
Biased, Pcomp-Unbiased, and Noisy-Unbiased are
sometimes higher than other methods. This is because
the three methods suffer from overfitting when complex
models are used, and the performance could be quite
unstable in different trials.

Experimental Results with Simple Models. Table 3 re-
ports the classification accuracy of each method on the four
UCI datasets with different class priors. From Table 3, we

have the following observations:

• Binary-Biased achieves the worst performance in nearly
all cases, which also implies that we need to develop
other novel methods for Pcomp classification.

• Pcomp-Unbiased has comparable performance to its
variants Pcomp-ABS and Pcomp-ReLU, because Pcomp-
Unbiased does not suffer from overfitting when the linear
model is used, and it is not necessary to use consistent
correction functions anymore.

• Pcomp-Teacher is still better than RankPruning, while
it is sometimes inferior to other Pcomp classification
methods. This is because the linear model is not as
powerful as neural networks, thus the selected confident
examples may not be so reliable.

Performance of Increasing Pairwise Comparisons. As
shown by Theorem 4 and Theorem 7, the performance of our
Pcomp classification methods is expected to be improved
if more pairwise comparisons are given. To empirically
validate such theoretical findings, we further conduct experi-
ments on Pendigits and Optdigits with class prior π+ = 0.5
and π+ = 0.8 by changing the fraction of pairwise compar-
isons (100% means that we use all the generated pairwise
comparisons in the training process). As shown in Figure
1, the classification accuracy of our methods generally in-
creases given more pairwise comparisons. This observation
is clearly in accordance with our derived estimation error
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Table 3. Classification accuracy (mean±std) of each method on the four UCI datasets with different class priors. The best performance is
highlighted in bold.

Class Prior Methods USPS Pendigits Optdigits CNAE-9

π+ = 0.2

Noisy-Unbiased 0.921±0.010 0.857±0.012 0.885±0.015 0.830±0.019
Binary-Biased 0.752±0.016 0.639±0.050 0.705±0.026 0.629±0.040
RankPruning 0.931±0.007 0.780±0.061 0.878±0.011 0.780±0.046

Pcomp-ABS 0.909±0.005 0.863±0.013 0.871±0.013 0.819±0.018
Pcomp-ReLU 0.917±0.006 0.868±0.012 0.875±0.011 0.835±0.011

Pcomp-Unbiased 0.922±0.007 0.867±0.015 0.881±0.018 0.806±0.023
Pcomp-Teacher 0.927±0.009 0.847±0.035 0.886±0.016 0.687±0.052

π+ = 0.5

Noisy-Unbiased 0.911±0.007 0.826±0.014 0.838±0.011 0.766±0.039
Binary-Biased 0.913±0.007 0.761±0.049 0.834±0.013 0.773±0.051
RankPruning 0.925±0.008 0.840±0.019 0.864±0.027 0.672±0.068

Pcomp-ABS 0.912±0.008 0.839±0.010 0.841±0.013 0.749±0.047
Pcomp-ReLU 0.912±0.007 0.844±0.008 0.846±0.013 0.766±0.038

Pcomp-Unbiased 0.911±0.006 0.846±0.009 0.847±0.014 0.763±0.040
Pcomp-Teacher 0.926±0.008 0.840±0.019 0.869±0.021 0.787±0.047

π+ = 0.8

Noisy-Unbiased 0.918±0.017 0.890±0.013 0.884±0.006 0.838±0.017
Binary-Biased 0.731±0.017 0.634±0.042 0.554±0.106 0.621±0.037
RankPruning 0.934±0.010 0.856±0.018 0.863±0.025 0.737±0.050

Pcomp-ABS 0.900±0.017 0.889±0.014 0.882±0.002 0.824±0.013
Pcomp-ReLU 0.921±0.018 0.894±0.012 0.888±0.004 0.839±0.015

Pcomp-Unbiased 0.899±0.014 0.883±0.006 0.874±0.008 0.840±0.013
Pcomp-Teacher 0.937±0.008 0.880±0.011 0.884±0.010 0.781±0.033

20% 40% 60% 80% 100%
#pairwise comparisons

0.60

0.65

0.70

0.75

0.80

0.85

cla
ss

ifi
ca

tio
n 

ac
cu

ra
cy

Pendigits with π+ = 0.5

Pcomp-Unbiased
Pcomp-ReLU
Pcomp-ABS
Pcomp-Teacher

20% 40% 60% 80% 100%
#pairwise comparisons

0.70

0.75

0.80

0.85

0.90

cla
ss

ifi
ca

tio
n 

ac
cu

ra
cy

Pendigits with π+ = 0.8

Pcomp-Unbiased
Pcomp-ReLU
Pcomp-ABS
Pcomp-Teacher

20% 40% 60% 80% 100%
#pairwise comparisons

0.65

0.70

0.75

0.80

0.85

0.90

cla
ss

ifi
ca

tio
n 

ac
cu

ra
cy

Optdigits with π+ = 0.5

Pcomp-Unbiased
Pcomp-ReLU
Pcomp-ABS
Pcomp-Teacher

20% 40% 60% 80% 100%
#pairwise comparisons

0.75

0.80

0.85

0.90

cla
ss

ifi
ca

tio
n 

ac
cu

ra
cy

Optdigits with π+ = 0.8

Pcomp-Unbiased
Pcomp-ReLU
Pcomp-ABS
Pcomp-Teacher

Figure 1. The classification accuracy of our proposed Pcomp classification methods when the number of pairwise comparisons increases.

bounds, because the estimation error would decrease as the
number of pairwise comparisons increases.

6. Conclusion and Future Work
In this paper, we proposed a novel weakly supervised learn-
ing setting called pairwise comparison (Pcomp) classifica-
tion, where we aim to train a binary classifier from only
pairwise comparison data, i.e., two examples that we know
one is more likely to be positive than the other, instead
of pointwise labeled data. Pcomp classification is useful
for private classification tasks where we are not allowed
to directly access labels and subjective classification tasks
where labelers have different labeling standards. To solve
the Pcomp classification problem, we presented a mathe-
matical formulation for the generation process of pairwise
comparison data, based on which we explored two unbiased
risk estimators (UREs) to train a binary classifier by em-

pirical risk minimization and established the corresponding
estimation error bounds. We first proved that a URE can be
derived and improved it using correction functions. Then,
we started from the noisy-label learning perspective to in-
troduce a progressive URE and improved it by imposing
consistency regularization. Finally, experiments demon-
strated the effectiveness of our proposed methods.

In future work, we will apply Pcomp classification to solve
some challenging real-world problems like binary classifi-
cation with class overlapping. In addition, we could also
extend Pcomp classification to the multi-class classifica-
tion setting by using the one-versus-all strategy. Suppose
there are multiple classes, we are given pairs of unlabeled
data that we know which one is more likely to belong to a
specific class. Then, we can use the proposed methods in
this paper to train a binary classifier for each class. Finally,
by comparing the outputs of these binary classifiers, the
predicted class can be determined.
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Pointwise Binary Classification with Pairwise Confidence Comparisons:
Appendix

A. Proof of Theorem 1
It is clear that each pair of examples (x,x′) is independently drawn from the following data distribution:

p̃(x,x′) = p((x,x′) | (y, y′) ∈ Ỹ) = p((x,x′), (y, y′) ∈ Ỹ)
p((y, y′) ∈ Ỹ)

,

where p((y, y′) ∈ Ỹ) = π2
+ + π2

− + π+π− and

p(x,x′, (y, y′) ∈ Ỹ) =
∑

(y,y′)∈Ỹ
p(x,x′ | (y, y′)) · p(y, y′)

= π2
+p+(x)p+(x

′) + π2
−p−(x)p−(x

′) + π+π−p+(x)p−(x
′).

Finally, let p̃(x,x′) = p((x,x′) | (y, y′) ∈ Ỹ), the proof is completed.

B. Proof of Theorem 2
In order to decompose the pairwise comparison data distribution into pointwise distribution, we marginalize p̃(x,x′) with
respect to x or x′. Then we can obtain∫

p̃(x,x′)dx′ =
1

π̃

(
π2
+p+(x) + π2

−p−(x) + π+π−p+(x)
)

=
π+

π2
− + π+

p+(x) +
π2
−

π2
− + π+

p−(x)

=p̃+(x),

and ∫
p̃(x,x′)dx =

1

π̃

(
π2
+p+(x

′) + π2
−p−(x

′) + π+π−p−(x
′)
)

=
π2
+

π2
+ + π−

p+(x
′) +

π−
π2
+ + π−

p−(x
′)

=p̃−(x
′),

which concludes the proof of Theorem 2.

C. Proof of Lemma 1
Based on Theorem 2, we can obtain the following linear equation:[

p̃+(x)
p̃−(x)

]
=

1

π̃

[
π+ π2

−
π2
+ π−

] [
p+(x)
p−(x)

]
.

By solving the above equation, we obtain

p+(x) =
1

π+ − π−π2
+

(
π̃ · p̃+(x)− π−π̃ · p̃−(x)

)
=

1

π+

(
p̃+(x)− π−p̃−(x)

)
,

p−(x) =
1

π− − π+π2
−

(
π̃ · p̃−(x)− π+π̃ · p̃+(x)

)
=

1

π−

(
p̃−(x)− π+p̃+(x)

)
,

which concludes the proof of Lemma 1.
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D. Proof of Theorem 3
It is quite intuitive to derive

R(f) = Ep(x,y)
[
`(f(x), y)

]
= π+Ep+(x)

[
`(f(x),+1)

]
+ π−Ep−(x)

[
`(f(x),−1)

]
=

π+π̃

π+ − π−π2
+

Ep̃+(x)

[
`(f(x),+1)

]
− π+π−π̃

π+ − π−π2
+

Ep̃−(x′)
[
`(f(x),+1)

]
(Lemma 1)

+
π−π̃

π− − π+π2
−
Ep̃−(x′)

[
`(f(x),−1)

]
− π+π−π̃

π− − π+π2
−
Ep̃+(x)

[
`(f(x),−1)

]
= Ep̃+(x)

[
`(f(x),+1)− π+`(f(x),−1)

]
+ Ep̃−(x′)

[
`(f(x),−1)− π−`(f(x),+1)

]
= RPC(f),

which concludes the proof of Theorem 3.

E. Proof of Theorem 4
First of all, we introduce the following notations:

R+
PC(f) = Ep̃+(x)

[
`(f(x),+1)− π+`(f(x),−1)

]
,

R̂+
PC(f) =

1

n

n∑
i=1

(
`(f(xi),+1)− π+`(f(xi),−1)

)
,

R−PC(f) = Ep̃−(x′)
[
`(f(x′),−1)− π−`(f(x′),+1)

]
,

R̂−PC(f) =
1

n

n∑
i=1

(
`(f(x′i),−1)− π−`(f(x′i),+1)

)
.

In this way, we could simply represent RPC(f) and R̂PC(f) as

RPC(f) = R+
PC(f) +R−PC(f), R̂PC(f) = R̂+

PC(f) + R̂−PC(f).

Then we have the following lemma.

Lemma 2. The following inequality holds:

R(f̂PC)−R(f?) ≤ 2 sup
f∈F

∣∣∣R+
PC(f)− R̂

+
PC(f)

∣∣∣+ 2 sup
f∈F

∣∣∣R−PC(f)− R̂
−
PC(f)

∣∣∣ . (9)

Proof. We could intuitively express R(f̂PC)−R(f?) as

R(f̂PC)−R(f?) = R(f̂PC)− R̂PC(f̂PC) + R̂PC(f̂PC)− R̂PC(f
?) + R̂PC(f

?)−R(f?)

= RPC(f̂PC)− R̂PC(f̂PC) + R̂PC(f̂PC)− R̂PC(f
?) + R̂PC(f

?)−RPC(f
?)

≤ sup
f∈F

∣∣∣RPC(f)− R̂PC(f)
∣∣∣+ 0 + sup

f∈F

∣∣∣RPC(f)− R̂PC(f)
∣∣∣

= 2 sup
f∈F

∣∣∣RPC(f)− R̂PC(f)
∣∣∣

≤ 2 sup
f∈F

∣∣∣R+
PC(f)− R̂

+
PC(f)

∣∣∣+ 2 sup
f∈F

∣∣∣R−PC(f)− R̂
−
PC(f)

∣∣∣ ,
where the second equality holds due to Theorem 3.

As suggested by Lemma 2, we need to further upper bound the right hand size of Eq. (9). Before doing that, we introduce
the uniform deviation bound, which is useful to derive estimation error bounds. The proof can be found in some textbooks
such as (Mohri et al., 2012) (Theorem 3.1).
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Lemma 3. Let Z be a random variable drawn from a probability distribution with density µ, H = {h : Z 7→ [0,M ]}
(M > 0) be a class of measurable functions, {zi}ni=1 be i.i.d. examples drawn from the distribution with density µ. Then,
for any delta > 0, with probability at least 1− δ,

sup
h∈H

∣∣∣∣∣EZ∼µ[h(Z)]− 1

n

n∑
i=1

h(zi)

∣∣∣∣∣ ≤ 2Rn(H) +M

√
log 2

δ

2n
,

where Rn(H) denotes the (expected) Rademacher complexity (Bartlett & Mendelson, 2002) ofH with sample size n over µ.

Lemma 4. Suppose the loss function ` is ρ-Lipschitz with respect to the first argument (0 < ρ < ∞), and all the
functions in the model class F are bounded, i.e., there exists a constant Cb such that ‖f‖∞ ≤ Cb for any f ∈ F . Let
C` := supt=±1 `(Cb, t). For any δ > 0, with probability 1− δ,

sup
f∈F

∣∣∣R+
PC(f)− R̂

+
PC(f)

∣∣∣ ≤ (1 + π+)2ρR̃
+
n (F) + (1 + π+)C`

√
log 4

δ

2n
.

Proof. By the definition of R+
PC(f) and R̂+

PC(f), we can obtain

sup
f∈F

∣∣∣R+
PC(f)− R̂

+
PC(f)

∣∣∣ ≤ sup
f∈F

∣∣∣∣∣Ep̃+(x)

[
`(f(x),+1)

]
− 1

n

n∑
i=1

`(f(x),+1)

∣∣∣∣∣
+ π+ sup

f∈F

∣∣∣∣∣Ep̃+(x)

[
`(f(x),−1)

]
− 1

n

n∑
i=1

`(f(x),−1)

∣∣∣∣∣ . (10)

By applying Lemma 3, we have for any δ > 0, with probability 1− δ,

sup
f∈F

∣∣∣∣∣Ep̃+(x)

[
`(f(x),+1)

]
− 1

n

n∑
i=1

`(f(x),+1)

∣∣∣∣∣ ≤ 2R̃+
n (` ◦ F) + C`

√
log 2

δ

2n
, (11)

and for any for any δ > 0, with probability 1− δ,

sup
f∈F

∣∣∣∣∣Ep̃+(x)

[
`(f(x),−1)

]
− 1

n

n∑
i=1

`(f(x),−1)

∣∣∣∣∣ ≤ 2R̃+
n (` ◦ F) + C`

√
log 2

δ

2n
, (12)

where ` ◦ F means {` ◦ f | f ∈ F}. By Talagrand’s lemma (Lemma 4.2 in (Mohri et al., 2012)),

R̃+
n (` ◦ F) ≤ ρR̃+

n (F). (13)

Finally, by combing Eqs. (10), (11), (12), and (13), we have for any δ > 0, with probability at least 1− δ,

sup
f∈F

∣∣∣R+
PC(f)− R̂

+
PC(f)

∣∣∣ ≤ (1 + π+)2ρR̃
+
n (F) + (1 + π+)C`

√
log 4

δ

2n
, (14)

which concludes the proof of Lemma 4.

Lemma 5. Suppose the loss function ` is ρ-Lipschitz with respect to the first argument (0 < ρ < ∞), and all the
functions in the model class F are bounded, i.e., there exists a constant Cb such that ‖f‖∞ ≤ Cb for any f ∈ F . Let
C` := supt=±1 `(Cb, t). For any δ > 0, with probability 1− δ,

sup
f∈F

∣∣∣R−PC(f)− R̂
−
PC(f)

∣∣∣ ≤ (1 + π−)2ρR̃
−
n (F) + (1 + π−)C`

√
log 4

δ

2n
.

Proof. Lemma 5 can be proved similarly to Lemma 4.

By combining Lemma 2, Lemma 4, and Lemma 5, Theorem 4 is proved.
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F. Proof of Theorem 5
Suppose there are n pairs of paired data points, which means there are in total 2n data points. For our Pcomp classification
problem, we could simply regard x sampled from p̃+(x) as (noisy) positive data and x′ sampled from p̃−(x

′) as (noisy)
negative data. Given n pairs of examples {(xi,x′i)}ni=1, for the n observed positive examples, there are actually n · p(y =
+1|ỹ = +1) true positive examples; for the n observed negative examples, there are actually n · p(y = −1|ỹ = −1) true
negative examples. From our defined data generation process in Theorem 1, it is intuitive to obtain

p(y = +1 | ỹ = +1) =
π2
+ + π+π−

π2
+ + π2

− + π+π−
=

π+
π2
+ + π2

− + π+π−
,

p(y = −1 | ỹ = −1) =
π2
− + π+π−

π2
+ + π2

− + π+π−
=

π−
π2
+ + π2

− + π+π−
.

Since φ+ = p(y = −1 | ỹ = +1) = 1−p(y = +1 | ỹ = +1) and φ− = p(y = +1 | ỹ = −1) = 1−p(y = −1 | ỹ = −1),
we can obtain

φ+ = p(y = −1 | ỹ = +1) = 1− π+
π2
+ + π2

− + π+π−
=

π2
−

π2
+ + π2

− + π+π−
,

φ− = p(y = +1 | ỹ = −1) = 1− π−
π2
+ + π2

− + π+π−
=

π2
+

π2
+ + π2

− + π+π−
.

In this way, we can further obtain the following noise transition ratios:

ρ+ = p(ỹ = −1 | y = +1) =
p(y = +1 | ỹ = −1)p(ỹ = −1)

p(y = +1 | ỹ = −1)p(ỹ = −1) + p(y = +1 | ỹ = +1)p(ỹ = +1)
=

π+
1 + π+

,

ρ− = p(ỹ = +1 | y = −1) = p(y = −1 | ỹ = +1)p(ỹ = +1)

p(y = −1 | ỹ = +1)p(ỹ = +1) + p(y = −1 | ỹ = −1)p(ỹ = −1)
=

π−
1 + π−

,

where p(ỹ = 1) = p(ỹ = −1) = 1
2 , because we have the same number of observed positive examples and negative

examples.

G. Proof of Theorem 7
First of all, we introduce the following notations:

R+
pPC(f) = Ep̃+(x)

[
`(f(x),+1)I[x ∈ PP̃]

]
,

R̂+
pPC(f) =

1

n

n∑
i=1

(
`(f(xi),+1)I[xi ∈ PP̃]

)
,

R−pPC(f) = Ep̃−(x′)
[
`(f(x′),−1)I[x′ ∈ NÑ]

]
,

R̂−pPC(f) =
1

n

n∑
i=1

(
`(f(x′i),−1)I[x′i ∈ NÑ]

)
.

In this way, we could simply represent Rppc(f) and R̂pPC(f) as

RpPC(f) =
1

1− ρ+
R+

pPC(f) +
1

1− ρ−
R−pPC(f), R̂pPC(f) =

1

1− ρ+
R̂+

pPC(f) +
1

1− ρ−
R̂−pPC(f).

Then we have the following lemma.

Lemma 6. The following inequality holds:

R(f̂pPC)−R(f?) ≤
2

1− ρ+
sup
f∈F

∣∣∣R+
pPC(f)− R̂

+
pPC(f)

∣∣∣+ 2

1− ρ−
sup
f∈F

∣∣∣R−pPC(f)− R̂
−
pPC(f)

∣∣∣ . (15)

Proof. We omit the proof of Lemma 6 since it is quite similar to that of Lemma 2.
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As suggested by Lemma 6, we need to further upper bound the right hand size of Eq. (15). According to Lemma 3, we have
the following two lemmas.
Lemma 7. Suppose the loss function ` is ρ-Lipschitz with respect to the first argument (0 < ρ < ∞), and all the
functions in the model class F are bounded, i.e., there exists a constant Cb such that ‖f‖∞ ≤ Cb for any f ∈ F . Let
C` := supz≤Cb,t=±1 `(z, t). For any δ > 0, with probability 1− δ,

sup
f∈F

∣∣∣R+
pPC(f)− R̂

+
pPC(f)

∣∣∣ ≤ 2ρR̃+
n (F) + C`

√
log 2

δ

2n
.

Lemma 8. Suppose the loss function ` is ρ-Lipschitz with respect to the first argument (0 < ρ < ∞), and all the
functions in the model class F are bounded, i.e., there exists a constant Cb such that ‖f‖∞ ≤ Cb for any f ∈ F . Let
C` := supz≤Cb,t=±1 `(z, t). For any δ > 0, with probability 1− δ,

sup
f∈F

∣∣∣R−pPC(f)− R̂
−
pPC(f)

∣∣∣ ≤ 2ρR̃−n (F) + C`

√
log 2

δ

2n
.

We omit the proofs of Lemma 7 and Lemma 8 since they are similar to that of Lemma 4.

By combing Lemma 6, Lemma 7, and Lemma 8, Theorem 7 is proved.

H. Supplementary Information of Experiments
We report the detailed information of the used datasets as follows.

MNIST1 (LeCun et al., 1998). This is a grayscale image dataset composed of handwritten digits from 0 to 9 where the
size of the each image is 28× 28. It contains 60,000 training images and 10,000 test images. Because the original dataset
has 10 classes, we regard the even digits as the positive class and the odd digits as the negative class. We generate 30,000
pointwise corrupted examples from MNIST for model training.

Fashion-MNIST2 (Xiao et al., 2017). Similarly to MNIST, this is also a grayscale image dataset composed of fashion
items (‘T-shirt’, ‘trouser’, ‘pullover’, ‘dress’, ‘sandal’, ‘coat’, ‘shirt’, ‘sneaker’, ‘bag’, and ‘ankle boot’). It contains 60,000
training examples and 10,000 test examples. It is converted into a binary classification dataset as follows:

• The positive class is formed by ‘T-shirt’, ‘pullover’, ‘coat’, ‘shirt’, and ‘bag’.

• The negative class is formed by ‘trouser’, ‘dress’, ‘sandal’, ‘sneaker’, and ‘ankle boot’.

We generate 30,000 pointwise corrupted examples from Fashion-MNIST for model training.

Kuzushiji-MNIST3 (Netzer et al., 2011). This is another grayscale image dataset that is similar to MNIST. It is a 10-class
dataset of cursive Japanese (“Kuzushiji”) characters. It consists of 60,000 training images and 10,000 test images. It is
converted into a binary classification dataset as follows:

• The positive class is formed by ‘o’, ‘su’,‘na’, ‘ma’, ‘re’.

• The negative class is formed by ‘ki’,‘tsu’,‘ha’, ‘ya’,‘wo’.

We generate 30,000 pointwise corrupted examples from Kuzushiji-MNIST for model training.

CIFAR-104 (Krizhevsky et al., 2009). This is also a color image dataset of 10 different objects (‘airplane’, ‘bird’,
‘automobile’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, and ‘truck’), where the size of each image is 32× 32× 3. There
are 5,000 training images and 1,000 test images per class. This dataset is converted into a binary classification dataset as
follows:

1http://yann.lecun.com/exdb/mnist/
2https://github.com/zalandoresearch/fashion-mnist
3https://github.com/rois-codh/kmnist
4https://www.cs.toronto.edu/˜kriz/cifar.html

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://github.com/rois-codh/kmnist
https://www.cs.toronto.edu/~kriz/cifar.html
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• The positive class is formed by ‘bird’, ‘deer’, ‘dog’, ‘frog’, ‘cat’, and ‘horse’.

• The negative class is formed by ‘airplane’, ‘automobile’, ‘ship’, and ‘truck’.

We generate 30,000 pointwise corrupted examples from CIFAR-10 for model training.

USPS, Pendigits, Optdigits. These datasets are composed of handwritten digits from 0 to 9. Because each of the original
datasets has 10 classes, we regard the even digits as the positive class and the odd digits as the negative class. We generate
4,000 pointwise corrupted examples from USPS (5,000 from Pendigits and 2,000 from Optdigits) for model training.

CNAE-9. This dataset contains 1,080 documents of free text business descriptions of Brazilian companies categorized
into a subset of 9 categories cataloged in a table called National Classification of Economic Activities.

• The positive class is formed by ‘2’, ‘4’, ‘6’ and ‘8’.

• The negative class is formed by ‘1’, ‘3’, ‘5’, ‘7’ and ‘9’.

We generate 400 pointwise corrupted examples from CNAE-9 for model training.

For the four datasets, USPS can be downloaded from the website of the late Sam Roweis5, and the other three datasets can
be downloaded from the UCI machine learning repository6.

For MNIST, Kuzushiji-MNIST, and Fashion-MNIST, we set learning rate to 1e − 3 and weight decay to 1e − 5. For
CIFAR-10, we set learning rate to 1e − 3 and weight decay to 1e − 3. For the four datasets including USPS, Pendigits,
Optdigits, and CNAE-9, we search learning rate and weight decay from {1e−5, 1e−4, . . . , 1e−1} for all learning methods.
For Pcomp-teacher, the regularization parameter is searched from {1e− 3, 1e− 2, . . . , 1e+ 3} and the exponential moving
average decay is fixed at 0.97. Hyper-parameters for all learning methods are selected so as to maximize the accuracy of
five-fold cross validation on the training set.
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