
Learning Pseudometric-based Action Representations
for Offline Reinforcement Learning

Pengjie Gu 1 Mengchen Zhao * 2 Chen Chen 2 Dong Li 2 Jianye Hao 3 2 Bo An 1

Abstract

Offline reinforcement learning is a promising ap-
proach for practical applications since it does not
require interactions with real-world environments.
However, existing offline RL methods only work
well in environments with continuous or small
discrete action spaces. In environments with large
and discrete action spaces, such as recommender
systems and dialogue systems, the performance
of existing methods decreases drastically because
they suffer from inaccurate value estimation for
a large proportion of out-of-distribution (o.o.d.)
actions. While recent works have demonstrated
that online RL benefits from incorporating seman-
tic information in action representations, unfortu-
nately, they fail to learn reasonable relative dis-
tances between action representations, which is
key to offline RL to reduce the influence of o.o.d.
actions. This paper proposes an action representa-
tion learning framework for offline RL based on
a pseudometric, which measures both the behav-
ioral relation and the data-distributional relation
between actions. We provide theoretical analysis
on the continuity of the expected Q-values and
the offline policy improvement using the learned
action representations. Experimental results show
that our methods significantly improve the perfor-
mance of two typical offline RL methods in envi-
ronments with large and discrete action spaces.

1. Introduction
Reinforcement learning (RL) approaches have been applied
successfully in many decision-making tasks. In a conven-
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tional setting, RL agents learn policies through an online
fashion, where they collect trial-and-error experiences di-
rectly from the environment to improve the current policy.
This can be done when the environment can be easily es-
tablished, and the cost of deploying new policies online
is low (e.g., computer games). However, many real-world
scenarios allow only offline access to the environment due
to cost or safety concerns (Thomas, 2015), meaning that the
algorithm cannot access the environment during the train-
ing phase. This setting is known as offline RL, or batch
RL (Levine et al., 2020). Despite the success that offline
RL has achieved in robotic control tasks (Fujimoto et al.,
2019b) and some Atari games (Gulcehre et al., 2021), the
applicability of offline RL is still limited in many practical
scenarios where the action space is extremely large, includ-
ing recommender systems and dialogue systems.

Existing offline RL methods focus on the setting that the
action space is continuous or discrete but with a few actions.
To address the issue of overestimating the values of o.o.d.
actions, they constrain the learned policy to stay close to
the data-generating policies (Fujimoto et al., 2019b; Kumar
et al., 2019; Wu et al., 2019; Kumar et al., 2020; Kostrikov
et al., 2021; Zhou et al., 2020). However, the performance of
these algorithms decreases drastically with the size of action
space increasing. There are two main reasons. First, the
value function hardly generalizes over the entire action space
without proper action representations, especially when the
semantics of actions are missing. Note that the success of
offline RL in continuous control tasks benefits from the fact
that actions can be naturally represented by their physical
semantics (e.g., directions, forces), which also demonstrates
the importance of action representations. Second, with the
size of the action space increasing, the state-action pairs are
more sparse to the entire state-action space, resulting in a
large proportion of o.o.d. actions. Consequently, the learned
policies would be overly restrictive – they are constrained
to only select actions within the support of in-distribution
actions, without considering a large number of other o.o.d.
actions that might contain the optimal action (Zhou et al.,
2020; Kumar et al., 2019).

It has been demonstrated that online RL benefits from us-
ing action representations to exploit underlying structures



Submission and Formatting Instructions for ICML 2022

of large action spaces. However, existing methods per-
form poorly in offline setting. The reason is that they fail
to learn reasonable relative distances between actions, so
they exacerbate the wrong value estimation of o.o.d. ac-
tions. In this paper, we propose a novel framework to learn
pseudoMEtRic-based action representations for offLIne re-
infOrcemeNt learning (MERLION) with large action spaces.
In MERLION, the policy of an agent is trained with a latent,
state-conditional action space, where the action represen-
tations are learned under a pseudometric that consists of
both behavioral and data-distributional measurements. The
behavioral metric aims to explicitly quantify the similar-
ity of two actions in terms of the resulting transitions and
rewards. The data-distributional metric aims to quantify
the probabilities of different actions being executed by the
behavior policies. Given the pseudometric, we propose an
architecture of action encoder to learn action representa-
tions in a self-supervised way, where ℓ1 distances between
representations correspond to the defined metric.

The metric in MERLION is closely connected to the bisim-
ulation metric, which has been demonstrated effective
in learning state representations in an off-policy manner
(Zhang et al., 2021). However, whether such a bisimulation-
like metric is suitable for learning action representations in
the offline setting remains unclear, because state and action
are intrinsically different in the context of MDP. In this work,
we show how to extend the bisimulation metric to learn
action representations in offline setting. We also provide
theoretical guarantees of value generalization and policy
improvement for offline RL tasks using MERLION. Further-
more, in order to improve the learning efficiency, we propose
a relation network architecture to balance in-distribution and
o.o.d. actions. Experimental results on two simulated tasks
and two real-world applications show that policies trained
under the MERLION framework significantly outperform
those trained using existing baselines in both offline and
online settings. To our knowledge, we are the first to study
offline RL with large and discrete action spaces and demon-
strate the effectiveness of the bisimulation-like metric in
action space, both empirically and theoretically.

2. Related Works
Offline RL Offline RL aims to learn policies from logged
transition data without any active data collection (Levine
et al., 2020). Recently, many works have been proposed in
this area (Kumar et al., 2019; Wu et al., 2019; Kumar et al.,
2020; Kostrikov et al., 2021; Fujimoto et al., 2019b). They
empirically and theoretically reveal that the critical issue
in offline RL is the overestimation error induced by o.o.d.
actions. As a result, they propose a variety of behavioral
regularizations in RL training that compel the learned policy
to stay close to the offline data. These regularizations consist
of incorporating some divergence regularization into the

critic (Kumar et al., 2020; Nachum et al., 2019), policy
divergence penalties (Kumar et al., 2019; Wu et al., 2019),
and appropriate network initializations (Matsushima et al.,
2021). These works show effective results in simulated
tasks, like Mujoco (Todorov et al., 2012) and Atari games
(Gulcehre et al., 2021). However, we empirically show that
they fail in the real-world applications with large discrete
actions, likely due to the difficulty of generalization over
large action sets or the excessive restriction induced by a
large proportion of o.o.d. actions.

Action Representations in RL Existing works on action
representations focus on the online setting. For example,
Lee et al. (2018) uses predefined action embeddings to repre-
sent discrete actions and utilize continuous policy gradients
for policy optimization. Chandak et al. (2019) avoid pre-
defined embeddings by linking action representations to
state transitions. Tennenholtz & Mannor (2019) regard ac-
tion trajectories as natural languages and thus learn action
representations from trajectories of expert demonstrations.
Wang et al. (2021) learn action representations that focus
on accurate reconstruction of rewards and next observations.
Though these works show good results in online RL tasks,
we empirically show that their performance is extremely
unstable when combined with offline RL algorithms, due to
the lack of explicitly defined metric.

Some other works use action representations as pre-training
behavioral priors or primitives (Zhou et al., 2020; Ajay et al.,
2021; Singh et al., 2021). They train policies on latent ac-
tion spaces which are learned from past successful trials and
thus avoid a serious distributional shift in offline RL. How-
ever, these works heavily rely on the existence of optimal
behaviors to learn useful priors. By contrast, our method
learns from natural results of actions, e.g., transitions and
rewards, therefore works well with more general datasets.

Metrics in RL A crucial principle to generalization in rein-
forcement learning is to assign similar predictions to similar
states. A standard implementation is to use the similarity
in an adaptive fashion and group states into clusters while
preserving some desired properties. The fundamental as-
sumption behind it is the existence of a metric characterizing
the real-valued distance between states (Le Lan et al., 2021).
A related concept is bisimulation metrics that measure how
“behaviorally similar” states are (Ferns et al., 2004). Re-
cently, Zhang et al. (2021) extend this concept by proposing
a gradient-based method for learning a representation space
with the properties of bisimulation metrics. Unfortunately, a
recent work empirically shows that the bisimulation metric
of states does not work well in the offline setting (Yang &
Nachum, 2021). In offline RL, Dadashi et al. (2021) propose
a metric to measure the closeness of state-action pairs to
the support of logged transitions, but does so directly, with-
out learning a representation. These works mainly focus
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on metrics on states or joint state-action pairs, while our
work focuses on measuring the relations between actions
conditioned on the given state.

3. Preliminaries
We start by introducing notation in this work. We consider
the underlying environment as a Markov decision process
(MDP) with a discrete action space, represented by the
tuple M = (S,A,P,R, γ). Here, S is the state space.
A is a finite set of actions, called the action set, and |A|
denotes the size of the action set. P andR are the transition
function and the reward function, respectively, indicating
that when the agent takes the action a ∈ A under the state
s ∈ S, the probability of transitioning from state s to state
s′ ∈ S is P(s′|s, a), and there is a environmental reward
R(s, a) ∈ R. The goal of the agent is to learn a good
policy a ∼ π(s) that maximizes the expected cumulative
discounted rewards: EP [

∑∞
t=1[γ

tR(st, π(st)]]. Our work
focuses on the offline setting, in which the agent cannot
collect new experience data and learns policy from a static
dataset D = {(s, a, s′, r)} generated by some other policy.
We call the policy that generates D the behavioral policy
and denote it as πβ(a|s).

4. Offline RL with MERLION
In this section, we elaborate on MERLION, our proposed
method for leveraging pseudometric-based action represen-
tations to address offline RL tasks with large discrete action
spaces. We begin by describing the paradigm of how to train
and execute policies according to the action representations.
Next, we discuss which properties of action representations
are crucial to the performance of this framework and de-
fine a pseudometric function to measure these properties.
Then, we propose an action encoder architecture to learn
the pseudometric-based action representations from the of-
fline dataset. Finally, we give a theoretical analysis of the
generalization ability of the value function and the offline
policy improvement using MERLION.

Overview. We first introduce a two-phase paradigm for solv-
ing such tasks. In the first phase, we train an action eocoder
ϕ for generating action representations and then convert the
original dataset to a new dataset De = {(s, e, s′, r)}, where
e = ϕ(a; s) is the state-conditional action representation
and e ∈ E . Note that we introduce how to train ϕ in next
subsections. In the second phase, an arbitrary offline RL al-
gorithm would be applied to learn an internal policy πi(ê|s)
from De. πi(ê|s) would provide a latent action ê ∈ E for a
given state, but ê would likely not be a valid action, i.e., it
does not equal any action representation e of a ∈ A. There-
fore, we need to map from ê to an element in A. Here, we
adopt a simple nearest neighbor lookup g(ê) introduced in

(Lee et al., 2018):

g(ê) = argmin
a∈A
∥ê− ϕ(a; s)∥1 (1)

where g is a mapping function from the continuous represen-
tation space to the discrete action set. It returns the original
action whose representation is the closest to ê by ℓ1 distance.
Therefore, the overall policy πo = g(πi(e|s)). Its scheme
is also described by Fig.1 (a) and Alg.1 in the appendix.

4.1. Pseudometric Function for Measuring Relations
between Actions

In this section, we discuss which properties are important
to our action representations and introduce a pseudometric
function to measure these properties.

How to formulate the structure of action representations
is crucial to the performance of our framework. The agent
acting in the representation space would generalize the infor-
mation of an action to other actions with similar representa-
tions. However, if actions with similar representations have
different environmental effects, this generalization might
result in poor performance. Furthermore, existing offline RL
algorithms usually adopt various approaches for behavioral
regularizations to avoid serious overestimation errors; they
enforce the learned policy to choose actions close to the
in-distribution actions. Therefore, different action spaces
induce distinct results of the behavioral regularizations, and
an inappropriate representation space would destroy the be-
havioral regularizations. For example, if one o.o.d. action,
which induces distinct transitions and rewards, is close to
another in-distribution action in the representation space, a
false result of behavioral regularization would happen. To
this end, we expect that the learned action representations’
relative distances reflect two major relations between any
two discrete actions:

(i) The Behavioral Relation: The distance between any
two actions in the representation space should reflect the
difference between their induced transitions and rewards.
Intuitively, if two actions result in the same transitions and
rewards at all states, they are identical to the associated
MDP. The action representations following this relation
should help to improve the generalization of value function
approximators across the action space.

(ii) The Data-distributional Relation: The distance be-
tween any actions in the representation space should reflect
whether they are in the same distribution of the experience
dataset. If they are not in the same distribution, there is a
penalty distance between them. This helps the behavioral
regularized policy select actions close to the in-distribution
actions so that to avoid serious overestimation errors.

In order to formalize the first relation, we start by defining
a distance function d : A × A 7→ R≥0 measuring the
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Figure 1. MERLION framework. (a) The overall policy scheme. (b) The architecture of pseudometric-based action representation
learning. The action encoder aims to generate the action representations, where the ℓ1 distance between any two representations equals the
pseudometric distance between their original actions. The action embeddings eis and ejs are both conditioned on the same state s. During
training, (s, ai,Rai

s ) is sampled from the dataset, and aj is uniformly sampled from the finite action set A. The reward of (s, aj) and the
transitions of (s, aj) and (s, ai) are estimated by corresponding models. Îβ is a function to estimate whether aj is an in-distribution
action and thus determine whether there is an o.o.d. penalty on the pseudometric distance. The objective J is the mean square error
between ∥eis − ejs∥1 and the summation of the reward distance, the discounted transition distribution distance, and the o.o.d. penalty.

behavioral similarity between two actions.

Definition 4.1 (Behavioral Metric of Actions). 1Given an
MDPM, a behavioral metric of actions is a function d :
A×A 7→ R≥0 such that:

d(ai, aj) = Es∈S [|Rai
s −Raj

s |+ γ ·W2(Pai
s ,Paj

s )] (2)

where W2 is the 2nd Wasserstein distance between two
distributions.

This definition is similar with the form of the state bisimu-
lation (Zhang et al., 2021). However, “state” and “action”
are intrinsically different in the context of MDP. Simply
extending the bisimulation definition of state to action in
our setting fails for two reasons. First, one action could
exhibit distinct behavioral semantics at different states. If
we directly estimate the behavioral relation between two
actions by the expectation over S-as is shown in equation 2-
the result would suffer from very large variance. Second,
o.o.d. actions influence both the action representation learn-
ing and the policy learning significantly, especially in the
setting of large action spaces. Therefore, we need to balance
in-distribution actions and o.o.d. actions when defining the
metric. To tackle these challenges, we first extend the defini-
tion 4.1 to a state-conditional version to reduce the variance
of results and then propose to use a distributional penalty
to reduce the influence of o.o.d. actions. We first give the
conditional definition as follows:

Definition 4.2 (State-conditional Behavioral Metric of Ac-
1Note that d is a pseudometric, meaning that it allows the

distance between two different actions to be 0.

tions). Given an MDPM and a state s, a state-conditional
behavioral metric of actions is a function d : S ×A×A 7→
R≥0 such that:

d(ai, aj |s) = |Rai
s −Raj

s |+ γ ·W2(Pai
s ,Paj

s ) (3)

This definition avoids estimating the expectation over S
and brings a higher representation capability: It allows the
actions’ relations to be changed under different states. E.g.,
in a maze environment, the actions “move left” and “move
right” are behaviorally equivalent at the corner where they
both induce a collision, but different at the position where
they induce movements with opposite directions.

Data-distribution Detection. In the offline setting, the
estimation about relations of o.o.d. actions might be inac-
curate. This mismatch would allow those o.o.d. actions to
be too close to the in-distribution actions, which have dis-
tinct effects from them. So we also add a penalty distance
between the o.o.d. and the in-distribution actions, forcing
the behavioral regularized policy tends to cautiously choose
o.o.d. actions. Thus, we modify the pseudometric function
d (Eq.3) to reflect the data-distributional relation between
actions:

d(ai, aj |s) =|Rai
s −Raj

s |+ γ ·W2(Pai
s ,Paj

s )

+ p · Iβ(ai, aj |s)
(4)

where p > 0 is a penalty coefficient, Iβ(ai, aj |s) is a func-
tion indicating the relation of actions: Iβ(ai, aj |s) = 0
if ai and aj are from two data distributions, otherwise
Iβ(ai, aj |s) = 1.
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4.2. Learning Pseudometric-based Action
Representations

This section introduces how to learn action representations
complying with the pseudometric d (Eq.4). One key chal-
lenge is that the data of in-distribution actions are poor
due to the large proportion of o.o.d. actions. To overcome
this, we propose to use a relation network architecture (San-
toro et al., 2017), as is illustrated in Fig.1 (b), to balance
in-distribution and o.o.d. actions.

In detail, we train an action encoder ϕ : S ×A 7→ E for gen-
erating action representations that possess the desired prop-
erty d(ai, aj |s) := ∥ϕ(ai; s)−ϕ(aj ; s)∥1. It means that the
ℓ1 distance between any two actions in the learned represen-
tation space equals their pseudometric distance. Concretely,
the learning objective can be written as follows:

J(ϕ) =
(
∥eis − ejs∥1 − d(ai, aj |s)

)2 (5)

where eis = ϕ(ai; s), e
j
s = ϕ(aj ; s). In practice, this objec-

tive requires sampling state-action pairs with the same state
s but different actions ai and aj . However, it is challenging
to search for sufficient such pairs from the dataset. Thus,
we modify the objective by using the estimated samples:

J(ϕ) = Es,ai,R
ai
s ∼D,aj∼A

(
∥eis − ejs∥1 − d̂(ai, aj |s)

)2

(6)

where

d̂(ai, aj |s) =|Rai
s − R̂(s, ejs)|

+ γ ·W2(P̂(·|s, eis), P̂(·|s, ejs))
+ p · Îβ(aj |s)

(7)

Specifically, d̂(ai, aj |s) is an estimation of d(ai, aj |s). es
denotes ϕ(a; s) with stop gradients, R̂ and P̂ is the reward
model and transition model, which have their own training
steps. Îβ(aj |s) is also a trainable model to predict whether
aj is an o.o.d. action. Îβ(aj |s) = 1 if aj is out of distri-
bution, otherwise Îβ(aj |s) = 0. In practice, we follow the
prior work to derive Îβ(a|s) (Fujimoto et al., 2019a): We
train a model G(a|s) ≈ πβ(a|s) to predict the probabilities
of every action in the dataset and then scale all probabil-
ities by the maximum probability. aj would be predicted
as the o.o.d. action if the relative probability is below a
threshold constant τ . This procedure can be summarized as
Îβ(a|s) = G(a|s)

max
â∈A

G(â|s) ≤ τ .

During training, we sample the tuple (s, ai,Rai
s ) from D

and directly sample the other action aj from the finite action
set A. Then, other lacked data would be estimated by the
trained models. To a certain extent, this estimation operation
would reduce the accuracy of the learned action representa-
tions, but our empirical study shows that it is sufficient to

derive a latent space with effective representative ability in
offline RL tasks. Further details of the action encoder and
all models are described in Alg.2 in the appendix.

Theoretical Analysis. We first theoretically analyze the
generalization ability of the value function using our action
representations. We prove that the value function of any
given policy π is Lipschitz with respect to our proposed
pseudometric function d.

Theorem 4.3 (Qπ is Lipschiz with respect to d). Given a
policy π, let Qπ be the value function for a given discount
factor γ. Qπ is Lipschitz continuous with respect to d with
a Lipschitz constant 1

1−γ

|Qπ(s, ai)−Qπ(s, aj)| ≤
1

1− γ
d(ai, aj |s) (8)

Proof in appendix. This theorem means that, the closer two
actions are in terms of d, the more likely they are to share
the similar value. If we explicitly force the distance between
action representations to comply with d, the value function
of the learned policy would be Lipschitz continuous in the
action representation space. This continuity brings an effec-
tive generalization capability to the value function, and thus,
intuitively, reduces the estimation errors of o.o.d. actions
(Le Lan et al., 2021). On the other hand, when the policy
is regularized to select actions close to the in-distribution
actions in our representation space, it would choose similar
actions in terms of the long-term return, avoiding selecting
actions with distinct effects. This conculsion can be further
represented as: If one of ai and aj is the o.o.d. action but the
other is not, |Qπ(s, ai)−Qπ(s, aj)| ≤ 1

1−γ · (|R(s, ai)−
R(s, aj)|+ γ ·W2(P(s′|s, ai),P(s′|s, aj)+ p), otherwise,
|Qπ(s, ai) − Qπ(s, aj)| ≤ 1

1−γ · (|R(s, ai) −R(s, aj)| +
γ ·W2(P(s′|s, ai),P(s′|s, aj)). This indicates that if two
actions are from two distributions, the difference between
their values tends to have a looser upper bound depending
on the constant p, and p plays a role in balancing between
penalizing and exploring the o.o.d. actions. If p is large
enough, the difference between two values tends to be large,
so the offline algorithms would ignore most o.o.d. actions. If
p is proper and the two actions’ behavioral relation is close,
the values of o.o.d. actions and the values of in-distribution
actions would be similar but avoid to be the same. This can
encourage the offline policy to cautiously explore the effect
of o.o.d. actions.

Now, we would show how action representations complying
the pseudemetric d improve downstream offline RL tasks.
Assuming that the MERLION action encoder ϕ(a; s) has
a learning error ϵ: If the pseudometric distance between
any two action is smaller than ϵ, they would be aggregated
together. Building on the policy theoretical analysis from
Ajay et al. (2021) and Kumar et al. (2020), we now bound
the performance of the policy obtained when offline RL is
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performed with MERLION.

Theorem 4.4 (Performance bound in offline RL). Let
π∗
i (e|s) be the policy obtained by CQL performing with

MERLION in the constructed MDPM and π∗
i,g(a|s) refer

to the overall policy when π∗
i (e|s) is used together with

nearest lookup function g. Let J(π,M) refer to the ex-
pected return of π inM and ϕ(a; s) is the MERLION ac-
tion encoder, which has a learning error ϵ. Let πβ refer
to the behavioral policy generating D and πβ(e|s) ≡ e =
ϕ(a; s), a ∼ πβ(a|s).Then, J(π∗

i,g,M) ≥ J(πβ ,M) − k
where

k = O

(
1

(1− γ)2
E
s∼d

π∗
i
(s)

M̂

[√
|E|DCQL(π∗

i , πβ)(s) + 1

])

− α

1− γ
E
s∼d

π∗
i
(s)

M

[DCQL(π
∗
i , πβ)(s)] +

ϵ+ 2γRmax

1− γ
(9)

Proof in appendix. This bound suggests that the lower
bound over the performance of the learned overall policy
depends on three factors: 1) the divergence between the
learned latent-space policy and the latent behavioral pol-
icy (DCQL(π

∗
i , πβ)(s)), which is controlled by the applied

offline algorithm. 2) The number of the projected latent
actions |E|. According to Eq.(6) in Kumar et al. (2020), if
we directly learn an offline policy from the original action
space A, the lower bound of offline policy performance
would depend on |A|. In general, we have |E| ≤ |A|.
However, in special cases where actions naturally group
together, we will have |E| ≪ |A|. For example, in the Maze
environment mentioned in the next section, the original ac-
tions correspond to the combined state of 8 atuators, and
|A| = 28 = 4096 . However, since the actual effect of an
action is the vectorial summation of the displacements asso-
ciated with the selected actuators, there are only 722 unique
efects of actions (|E| = 722). This also gives us an intuition:
MERLION provides a tighter bound for policy improvement
when the actions group together in the latent spaces. 3) The
learning error of MERLION action encoder ϵ. This term is
induced by a self-supervised loss function. Compared with
errors induced by offline RL algorithms, this term is much
easier to be controlled. In conclusion, MERLION provides
a therotically gurrantee of policy improvement for offline
RL tasks with large discrete action spaces.

5. Experiments
In this section, we empirically show that MERLION could
be used as a drop-in extension for improving the policy
performance in existing offline RL algorithms for problems
with large discrete action spaces. Combing MERLION with
two standard offline RL algorithms, BCQ (Fujimoto et al.,
2019b) and CQL (Kumar et al., 2020), we evaluate our
method in two simulated tasks and two real-world problems.

All experiments in this paper are carried out with 5 different
random seeds. We believe that the reported results can
be further improved by using our framework with other
offline RL algorithms; we leave this for future work. Details
of architectures and hyperparameters can be found in the
appendix.

Evaluation Environments. We consider four environments
with large discrete action spaces: A maze environment
introduced in Chandak et al. (2019). It has 4096 discrete
actions. A multi-step maze environment that requires select
actions from the 6-step planning decisions. It is modified
from the maze environment and also has 4096 actions. A
video recommender system that sets 1000 videos as the
action set (Ie et al., 2019). A dialogue system that sets 1500
dialogues as the action set. The experience trajectories are
policies with sub-optimal performance. They are all trained
by online methods. Note that more details of environments
and datasets can be found in the appendix.

5.1. Experimental Results

We empirically reveal that optimizing policies on the learned
action representation spaces leads to better performance than
directly training policies on the original action spaces. We
consider two widely-used offline RL algorithms: CQL (Ku-
mar et al., 2020) and BCQ (Fujimoto et al., 2019b). We first
learn our pseudometric-based action representations from
the given datasets. We utilize our framework to train policies
using the two offline RL algorithms. The developed policies
are annotated by MERLION-CQL and MERLION-CQL,
respectively. The baselines are the discrete versions of CQL
and BCQ and behavior cloning (BC).

The average performance curves are illustrated in Fig.2 (a).
We also visualize the average performance of the behav-
ioral policy. Overall, we find that MERLION-CQL and
MERLION-BCQ show faster convergence and better perfor-
mance than their discrete versions in the four environments.
Furthermore, discrete CQL and discrete BCQ cannot out-
perform the behavior policies and show unstable learning
curves in some situations. This indicates that in offline RL
with large action sets, directly training policies on the origi-
nal action spaces might suffer from serious generalization
or extrapolation errors. In addition, the poor performance
of BC in most environments indicates that simple imitation
learning cannot address this problem well.

Comparison with Existing Action Encoders in Offline
Setting. A natural question is whether training policies
on other kinds of action representation spaces can lead
to similar results? To reply to this question, we compare
MERLION-CQL against baselines using the same archi-
tecture but exchange our action representations with other
representations. We first consider both random action rep-
resentations to examine whether simply projecting discrete
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Multi-step maze Recommendation system Dialogue system

MERLION-BCQ MERLION-CQL Discrete BCQ Discrete CQL BC Behavioral

Maze

Maze Multi-step maze Recommendation system Dialogue system

MERLION  Rand-1  Rand-2  Transition Reconstruction External PLAS Behavioral

Figure 2. Experimental results. (a) Comparing MERLION equipped with BCQ and CQL against directly training offline RL algorithms
(Discrete BCQ, Discrete CQL, and BC) on the original action spaces in 4 environments with large action spaces. (b) Comparing
the performance of MERLION against other widely used action representations (transition-based representation, reconstruction-based
representation, two kinds of random representations, and external representation ) in 4 environments with large action spaces.

actions into continuous action spaces can improve the perfor-
mance. The first scheme generates random vectors ranging
from -1 to 1 as action representations (Rand-1). The other
scheme also generates random vectors but forces the ℓ1
distance between any two action embeddings to be larger
than a constant. This scheme avoids actions overlapping
together (Rand-2). Then, we consider three schemes for
learning action representations widely used in online tasks:
(1) Transition (Chandak et al., 2019): An encoder that cap-
tures information about corresponding state transitions into
action representations. (2) Reconstruction: An encoder-
decoder scheme in which the decoder takes the state and
the action representations generated by the encoder as in-
put, and its objective is to predict the next state and reward.
(3) External (Lee et al., 2018): Action representations are
given by external information. In the maze environment, the
action embeddings are set as the movement vectors. In the
multi-step environment, the actions are represented as the
concatenation of the base action at each step of the plan. In
the recommendation system, the action embedding is the
concatenation of video type (expressed as a one-hot vector),
video quality, and video length. Note that there is no proper
external information to represent dialogue actions, so we
did not consider external action representations in this task.
Finally, we consider a similar work for offline RL (PLAS
(Zhou et al., 2020)) since it also trains policies on the latent

action spaces.

The average performance curves are illustrated in Fig.2
(b). Both random action representations fail in the four
environments, indicating that simply converting discrete
action spaces to continuous action spaces cannot address
this task. By comparison, transition and reconstruction rep-
resentations show better performance in certain situations,
revealing that generalization over actions with similar ef-
fects can improve the policy performance. However, these
two representations also show poor performance in most
environments. In contrast, our method show superior results
among all environments, revealing that action representa-
tions complying with the proposed pseudometric are more
suitable to offline RL. In addition, external representations
and PLAS both show poor performance in all tasks. The
reason might be that external representations do not capture
the information of dynamics in MDPs, resulting in mislead-
ing generalization effects. And the objective of PLAS is to
constrain policies more naturally instead of improving the
generalization ability of action representations, so it cannot
address the tasks with large discrete action spaces well.

Fig.4 illustrates the action representations. Since we set the
dimension of representations as 2 in the multi-step maze en-
vironment, we directly plot the action representations. The
position of each dot in these plots equals the correspond-
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Multi-step maze

MERLION-CQL MERLION-BCQ MERLION-CQL MERLION-BCQ
MERLION  p = 0.1  MERLION  p = 0.3 MERLION   p = 0.5 MERLION w/o p CVAE

Recommendation system

Figure 3. Ablations. We perform two offline algorithms (CQL and BCQ) with MERLION in two environments (Multi-step maze and
Recommendation system). We consider MERLION with different penalty distances (MERLION with p = 0.1, 0.3, 0.5), removing the
penalty distance from the learning objective (MERLION w/o p), and removing the distance learning objective (Eq.6) from the learning
procedure (CVAE).
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Figure 4. Visualization of different representation spaces.

ing action embeddings, and the color corresponds to the
ground-truth action value predicted by a model (Chandak
et al., 2019) with online training. Two rows are in terms of
two different states. Each column from left to right corre-
sponds to the representations learned by the online model,
the rand-1 representations, the reconstruction representa-
tions, and ours. We see that, in offline settings, the rand
action representations cannot generalize well since actions
with different values are mixed together. The reconstruction-
based representations and our pseudometric-based represen-
tations both show generalization over actions: The changes
of action value are continuous in both representation spaces
to a certain extent. Furthermore, the reconstruction-based
representations are scattered throughout the space while our
representations with similar values are arranged as a more
compact structure, indicating that our learning framework
introduces an explicit mechanism to aggregate the action
representations with similar behavioral effects. Intuitively,
we believe that this is the reason why our method shows
faster convergence performance than reconstruction-based
representations.

Comparison with Other Action Encoders in Online Set-
ting. MERLION can also be applied in the online setting.

We compared MERLION with the transition and the recon-
struction representations in the online setting. The results
are illustrated in Fig.7 in the appendix. As illustrated, three
action representations can all achieve fast convergence in the
online setting, while only MERLION shows stable perfor-
mance in the offline setting (Fig.2 (b)). This indicates that
merely by using the data in the offline dataset, MERLION
is able to learn effective action representations.

Ablations We perform several ablations on the multi-step
maze environment and recommendation system to figure out
the importance of each component in our framework. Fig.3
illustrates the results. We first consider the effects of differ-
ent scales of the penalty constant. We set p = 0.1, 0.3, 0.5
respectively. The results show that a proper penalty constant
would bring better performance, but a large penalty constant
might make the performance collapse in some situations.
The reason might be that large penalty distances destroy the
generalization structure of action representations. Then, we
consider removing the penalty constant (denoted as MER-
LION w/o p). The results of this ablation show that without
the distance penalty mechanism to ensure the distribution
detection, there is performance degradation in our frame-
work. Finally, we remove the objective function (Eq.6) for
controlling the distances between actions. As a result, the
architecture of this scenario is similar to a conditional varia-
tional auto-encoder that takes current states and actions as
input and aims to reconstruct next states and rewards (de-
noted as CVAE) from the action embeddings. This ablation
shows worse performance than MERLION w/o p in many
situations, indicating that controlling the pseudometric dis-
tances between actions provides extra information for action
representations, leading to better policy performance.

6. Conclusions
This paper proposes MERLION, a novel action represen-
tation learning framework for offline RL with large action
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spaces. In the learned action representation spaces, the dis-
tances between representations of discrete actions reflect
their behavioral and data-distributional relations. We de-
rive theoretically statements about the benefits of learning
policies based on MERLION action representations. Exper-
imental results and ablations show that our method signifi-
cantly outperform prior works in a variety of environments.
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A. Appendix
A.1. Additional Theorems and Proofs

Theorem 4.3 (Qπ is Lipschiz with respect to d). Given a policy π(a|s), let Qπ be the value function for a given discount
factor γ. Qπ is Lipschitz continuous with respect to d with a Lipschitz constant 1

1−γ

|Qπ(s, ai)−Qπ(s, aj)| ≤
1

1− γ
d(ai, aj |s) (10)

Proof. follows by expanding each Q, rearranging terms and then simplifying the expression.

|Qπ(s, ai)−Qπ(s, aj)| = |R(s, ai) + γ ·
∑
s′

P(s′|s, ai)V π(s′)− (R(s, aj) + γ ·
∑
s′

P(s′|s, aj))V π(s′)|

≤ |R(s, ai)−R(s, aj)|+ γ ·
∑
s′

|P(s′|s, ai)− P(s′|s, aj)| · V π(s′)
(11)

We assume thatR ≤ 1, so we get

V π(s) =

∞∑
t=0

γt · Rt ≤
1

1− γ
(12)

The assumption of R ≤ 1 is equivalent to that the reward function is bounded, i.e.,R ∈ [−Rmax,Rmax] whereRmax is a
real number. Because we can simply normalize the reward signals asR ← R/Rmax without loss of generality. Combing
the above equations, we have

|Qπ(s, ai)−Qπ(s, aj)| ≤ |R(s, ai)−R(s, aj)|+ γ ·
∑
s′

|P(s′|s, ai)− P(s′|s, aj)| · V π(s′)

≤ |R(s, ai)−R(s, aj)|+
γ

1− γ
·
∑
s′

|P(s′|s, ai)− P(s′|s, aj)|

=
1

1− γ
·

(
(1− γ) · |R(s, ai)−R(s, aj)|+ γ ·

∑
s′

|P(s′|s, ai)− P(s′|s, aj)|

)

≤ 1

1− γ
·

(
|R(s, ai)−R(s, aj)|+ γ ·

∑
s′

|P(s′|s, ai)− P(s′|s, aj)|

)
(13)

Since in Eq.(4), p > 0 and Iβ(ai, aj |s) ∈ {0, 1}, we get

|Qπ(s, ai)−Qπ(s, aj)| ≤
1

1− γ
·

(
|R(s, ai)−R(s, aj)|+ γ ·

∑
s′

|P(s′|s, ai)− P(s′|s, aj)|+ p · Iβ(ai, aj |s)

)

≤ 1

1− γ
d(ai, aj |s)

(14)

According to theorem 4.3, we can derive the bound between value functions in the original MDP and the MDP constructed
by the learned MERLION action representations. Assuming that the MERLION action encoder ϕ(a; s) has a learning error
ϵ: If the pseudometric distance between any two action is smaller than ϵ, they would be aggregated together.

Lemma A.1 (Value bound based on ϕ). Given the MERLION action encoder ϕ(a; s) which has a learning error ϵ and
maps from actions in the original MDPM to actions in the MDPM constructed by the action representations. The value
functions for a given policy π in the orginal MDP and its converted version π in the constructed MDP are bounded as:

|Qπ
M(s, a)−Qπ

M(s, ϕ(a; s))| ≤ ϵ

1− γ
(15)

Proofs. First, let us give some notation and assumptions concerning the form of the constructed MDPM. We assume
M = (S,Aϕ,Pϕ,Rϕ, γ), where S is the same state space, Aϕ is the action representation space where the ℓ1 distances
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between any two representations corresponds to our defined pseudometric distance, and there exists a learning error of ϕ:
If the pseudometric distance between any two action is smaller than ϵ, they would be aggregated together. Recall that the
nearest neighbor lookup g is as follow:

g(e) = argmin
a∈A
∥e− ϕ(a; s)∥1 (16)

As a result, we can define the relationships between the transition probabilities and rewards in the two MDPs, i.e.

Pϕ(s
′|s, e) = P(s′|s, g(e))

Rϕ(s, e) = R(s, g(e))
(17)

The converted policy π(e|s) can be regarded as the policy π′(a′|s) executed inM, where a′ = g(e), e = ϕ(a; s). Due to
the learning error, π′(a′|s) takes a different action than π(a|s) with probability at most ϵp, so we get |π′(a′|s)− π(a|s)| ≤
ϵp.Then, we can represent the stationary distribution dπ′(st) of the policy π′ as follows:

dπ′(st) = (1− ϵp)
tdπ(st) + (1− (1− ϵp)

t)dm(st) (18)

where (1−ϵp)t indicates the probability that π′ takes the same action sequence as π, and dm refers to some other distributions.
Given this, we bound |dπ′(st)− dπ(st)| by:

|dπ′(st)− dπ(st)| = (1− (1− ϵp)
t)|dm(st)− dπ(st)|

≤ 2(1− (1− ϵp)
t)

(19)

Proofs of both equations mentioned above are based on (Schulman et al., 2015). Now, we obtain

|V πβ

M (s)− V
πβ

M (s)| = |V π′

β M(s)− V
πβ

M (s)|

= |
∑
t

∑
st

dπ′(st) · γt · Ea∼π′
β
Ra

st −
∑
t

∑
st

dπ(st) · γt · Ea∼πβ
Ra

st |

≤
∑
t

γt · Rmax|dπ′(st)− dπ(st)| ≤ Rmax

∑
t

γt ·
(
2(1− (1− ϵp)

t
)

≤ 2Rmax

∑
t

γt ≤ 2Rmax

1− γ

(20)

Next, we can get

|Qπ
M(s, a)−Qπ

M(s, ϕ(a; s))|

= |Ra
s + γ ·

∑
s′

Pa
s V

π
M(s′)−Rϕ,g

s − γ ·
∑
s′

Pϕ,g
s V π

M(s′)

+ γ ·
∑
s′

Pϕ,g
s V π

M(s′)− γ ·
∑
s′

Pϕ,g
s V π

M(s′)|

≤ |Ra
s −Rϕ,g

s |+ γ
∑
s′

|Pa
s − Pϕ,g

s |V π
M(s′) + γ

∑
s′

Pϕ,g
s |V π

M(s′)− V π
M(s′)|

≤ ϵ

1− γ
+

2γRmax

1− γ
=

ϵ+ 2γRmax

1− γ

(21)

We have argued that there exists some near-optimal value functions based on the constructed MDPM, if ϕ is sufficiently
learned. Now, we would show how action representations complying the pseudemetric d improve dowenstream offline RL.
Building on the policy theoretical analysis from Ajay et al. (2021) and Kumar et al. (2020), we now bound the performance
of the policy obtained when offline RL is performed with MERLION.

Theorem 4.4 (Performance bound in offline RL). Let π∗
i (e|s) be the policy obtained by CQL performing with MERLION

in the constructed MDPM and π∗
i,g(a|s) refer to the overall policy when π∗

i (e|s) is used together with nearest lookup
function g. Let J(π,M) refer to the expected return of π inM and ϕ(a; s) is the MERLION action encoder, which has
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a learning error ϵ. Let πβ refer to the behavioral policy genearting D and πβ(e|s) ≡ e = ϕ(a; s), a ∼ πβ(a|s).Then,
J(π∗

i,g,M) ≥ J(πβ ,M)− k where

k = O

(
1

(1− γ)2
E
s∼d

π∗
i
(s)

M̂

[√
|E|DCQL(π∗

i , πβ)(s) + 1

])

− α

1− γ
E
s∼d

π∗
i
(s)

M

[DCQL(π
∗
i , πβ)(s)] +

ϵ+ 2γRmax

1− γ

(22)

Proof. First, let’s break |J(π∗
i,g,M)− J(πβ ,M)| into

|J(π∗
i,g,M)− J(πβ ,M)| ≤ |J(π∗

i,g,M)− J(π∗
i ,M)|

+ |J(π∗
i ,M)− J(πβ ,M)|

+ |J(πβ ,M)− J(πβ ,M)|
(23)

where πβ is the converted behavioral policy executed on the constructed MDPM mentioned in the proofs of lemma A.1. It
can be defined as e ∼ πβ ≡ e = ϕ(a; s), a ∼ πβ(a|s). According to theorem 3.6 in Kumar et al. (2020), we apply it toM,
we get

|J(π∗
i ,M)− J(πβ ,M)|

≤ 2

(
Cr,δ

1− γ
+

Pϕ,δ

(1− γ)2

)
E
s∼d

π∗
i
(s)

M̂

[√
|E|
|D(s)|

DCQL(π∗
i , πβ)(s) + 1

]
− α

1− γ
E
s∼d

π∗
i
(s)

M

[DCQL(π
∗
i , πβ)(s)] = k1

(24)

Note that this theorem holds only when the number of actions is finite. Note that, in our setting, the latent action space is
continuous for the ease of learning, but the number of learned action representations is finite because each original action
corresponds to one projected latent action. But note that two different projected actions may have the same representation,
therefore |E| ≤ |A|.

Then, we try to bound |J(π∗
i,g,M) − J(π∗

i ,M)|. According to the definition πi,g(a|s) ≡ a = g(e), e ∼ πi(e|s), a
latent action e executed inM is equivalent to a executed inM. Therefore, πi(e|s) executed inM is also equivalent to
the overall policy πi,g(a|s) executed inM. So, the decisions of π∗

i and π∗
i,g are in one-to-one correspondence. we get

|J(π∗
i,g,M)− J(π∗

i ,M)| = 0.

Now, we try to bound |J(πβ ,M)− J(πβ ,M)|:

|J(πβ ,M)− J(πβ ,M)| = |
∑
s∼S

d0(s)V
πβ

M (s)−
∑
s∼S

d0(s)V
πβ

M (s)|

= |
∑
s∼S

d0(s)
∑
e∼E

πβ(e|s)Q
πβ

M(s, e)−
∑
s∼S

d0(s)
∑
a∼A

πβ(a|s)Q
πβ

M(s, a)|

= |
∑
s∼S

d0(s)
∑
a∼A

πβ(a|s)Q
πβ

M(s, e)−
∑
s∼S

d0(s)
∑
a∼A

πβ(a|s)Q
πβ

M(s, a)|

=
∑
s∼S

d0(s)
∑
a∼A

πβ(a|s)|Q
πβ

M(s, e)−Q
πβ

M(s, a)|

(25)

According to lemma A.1, |Qπβ

M(s, eas)−Q
πβ

M(s, a)| = ϵ+2γRmax

1−γ , so |J(πβ ,M)− J(πβ ,M)| = ϵ+2γRmax

1−γ = k2. Finally,
we get k = k1 + k2. We apply O to get the notation in the theorem.

A.2. Algorithms

A.3. Architecture, Hyperparameters, and Infrastructure

In our implementations, the nearest neighbor lookup function g can be regarded as finding the minimum distance between ê
and all actions’ embeddings. So, we directly adopted the torch.min() function in the PyTorch python package. Its time
complexity is O(N), so there would not be a serious scale problem when the action set is enormous.



Submission and Formatting Instructions for ICML 2022

Algorithm 1 Train policy
Data: Offline Dataset D, the action encoder ϕ, Any offline RL algorithm Y , and number of iterations T .
Result: Policy πi,θ(ê|s).
for t = 0 to T do

Sample data (s, a, s′, r) ∼ D
e← ϕ(a; s)
Update policy πi,θ(ê|s) with (s, e, s′, r) using the given algorithm Y

end for

Algorithm 2 Pseudometric-based representation learning
Data: Offline Dataset D and number of iterations T .
Result: Action encoder ϕ.
for t = 0 to T do

Sample data (s, ai,R(s, ai)) ∼ D
Sample the other action aj ∼ A
Compute representations eis = ϕ(ai; s) and ejs = ϕ(aj ; s)

Estimate the transition distributions: P̂(·|s, eis) and P̂(·|s, ejs)
Estimate the reward of (s, aj): R̂(s, ejs)
Estimate whether aj is an o.o.d. action: Îβ(aj |s)
Compute the estimated pseudometric distance: d̂(ai, aj |s) Eq.3
Train encoder: J(ϕ) = (∥eis − ejs∥1 − d̂(ai, aj |s))2
Train transition model: J(P̂, ϕ) = (P̂(·|s, eis)− s′)2

Train reward model: J(R̂, ϕ) = (R̂(s, eis)−R(s, ai))2
Train prediction model: J(G) = CrossEntropy(G(·|s), ai)

end for

For Îβ(a|s). We train a model G(a|s) ≈ πβ(a|s) to predict the probabilities of every action under a given state s and then
scale all probabilities by the maximum probability. aj would be predicted as the o.o.d. action if its relative probability is
below a threshold constant τ . This procedure can be summarized as Îβ(a|s) = G(a|s)

max
â∈A

G(â|s) ≤ τ . We have searched over

τ = {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1} and found that the best setting is τ = 0.3

Furthermore, the transition model P̂ , the reward model R̂, and the distribution detection model G are all implemented by
neural networks. Their learning objective can be represented as follow:

J(P̂) = (P̂(·|s, eis)− s′)2

J(R̂) = (R̂(s, eis)−R(s, ai))2

J(G) = CrossEntropy(G(·|s), ai)
(26)

During training, all data are randomly sampled from the offline dataset. We set the batch size as 128 and set the training
gradient steps for all models as 10000. We control the scale of the learning objective function in all models by controlling the
optimization procedure. It is conducted using Adam with a learning rate of 10−2, and with no momentum or weight decay.
We set the dimension of the action representations |E| = 2, 2, 10, 30 and the penalty coefficient p = 0.01, 0.1, 0.1, 0.3
respectively in the maze environment, the multi-step maze environment, the recommender system, and the dialogue system
respectively. Details of the neural network architectures used in our experiments are provided in Fig.5.

For the applied offline RL algorithms: BCQ (Fujimoto et al., 2019b), CQL (Kumar et al., 2020), and their discrete versions,
we all adopt their open-source implementations released by the authors. For the discrete CQL, We have searched over
the crucial hyperparameter α = {0.1, 0.3, 0.5, 0.7, 0.9}, which determines the extent of conservative estimation of value
functions. The best settings for four environments (Maze, Multi-step maze, Recommendation system, Dialogue system) are
0.5, 0.5, 0.5, 0.3, respectively. For the discrete BCQ, we have searched over 0.1, 0.3, 0.5, 0.7, 0.9 for the hyperparameter
of the threshold τ , which determines the range of the candidate actions. The best settings for four environments (Maze,



Submission and Formatting Instructions for ICML 2022

FC, |S| units

FC, |E| X |A|units

FC, 200 units

Tanh

s

MERLION action 
encoder 

e
)(J

FC, 2|S| units

FC, |E| units

FC, 200 units

Tanh

(s,s`)

Transition-based action 
encoder

FC, |A| units

FC, |E| units

FC, 200 units

Tanh

a

e
CrossEntropy 

Loss

FC, |S| +|E| units

FC, 1 units

FC, 200 units

Tanh

(s,e)

Reward model

r

FC, |S| units

FC, |A| units

FC, 200 units

softmax

s

Reward model

)(PJ )(RJ

)(GJ

FC, |S| +|E| units

FC, |S| units

FC, 200 units

Tanh

(s,e)

Transition 
model

s`

FC, |S| units

FC, 200 units

Tanh

s

Reconstruction-based 
action encoder

FC, |A| units

FC, |E| units

Tanh

a

FC, 50 units

FC,200 units

FC, 50+|E| units

FC, 200 units FC, 200 units

FC, |S| units FC, 1 units

e

Tanh Tanh
s` r

MSE Loss MSE Loss

FC, |S| units

FC, 200 units

Tanh

s

Reconstruction-based 
action encoder

FC, |A| units

FC, |E| units

Tanh

a

FC, 50 units

FC,200 units

FC, 50+|E| units

FC, 200 units FC, 200 units

FC, |S| units FC, 1 units

e

Tanh Tanh
s` r

MSE Loss MSE Loss

Figure 5. Details of the network architectures used in our experiments.

Multi-step maze, Recommendation system, Dialogue system) are 0.3, 0.3, 0.3, 0.3, respectively.

A.4. Environments and Datasets

Maze: We first adopt the maze environment introduced in Chandak et al. (2019). The state is the coordinates of the agent’s
current location, and the agent has n equally spaced actuators (each actuator corresponds to a unit of movement in one
direction). It can choose whether each actuator should be on or off. The effect of an action is the vectorial summation of the
movements associated with the selected actuators. Thus, the size of the action space |A| = 2n. We set n = 12, so there are
4096 actions in total. There are three reward types: a reward of 10 is given if the agent visits a rewarding region, a reward of
-20 is given for visiting a penalizing region, and a reward of 100 is given with the episode ending if it is on a goal region.
The noise was added to the action 10% of the time, and the maximum episode length was 60 steps.

Multi-step maze: Selecting one decision from all possible m-step plans is a general problem with a large action set. If an
environment has i actions available at each step, the number of m-step plans would increase exponentially. In this setting,
|A| = mi. We implement a version of this task on the maze environment mentioned above. The reward settings are the
same in this task, but the agent only has 4 base actions: down, right, upward, and left. It needs to choose a 6-step plan per 6
time steps. Thus, the actual action size in this environment is 46 = 4096.

Recommender environment: We consider a real-world domain with a large action set. The agent needs to recommend
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Figure 6. An example of the influence of different action spaces on the behavioral regularizations of offline RL algorithms.

Online Performance in Multi-step maze

MERLION

Figure 7. Online performance of MERLION, the transition-based action representations, and the reconstruction-based representa-
tions in the Multi-step maze environment.

different videos to the simulated users, and its goal is to extend the user’s viewing time. We utilize the open-source platform
Recsim (Ie et al., 2019) and adopt the provided scenario called interest evolution as our simulated environment.
There are 1000 candidate videos in the action set. All videos are split into 20 types, and each video has its quality and video
length. The sampled user has different initial interest values ranging from -1 to 1 on different video types at each episode.
The user would decide whether to view the recommended video according to the interest value of the video’s type. The
higher the interest value, the more likely the user is to view the video. The user has a latent attribute called time budget to
control whether to continue to view another video. The episode ends when the time budget is smaller than 0. The initial
time budget is 100, and it would be deducted by the video length if the user has viewed a video. In addition, the viewed
video’s quality would also influence the user’s interest value and time budget: a high-quality video brings an increase, but a
low-quality video leads to a decrease. To improve the diversity of the recommended videos, we deduct the time budget by
2.5 if two videos of the same type are recommended successively. The observed state at each time step is the users’ interest
values and the history of its viewed videos’ types. A reward equaling the video length is given once one video is viewed.

Dialogue environment: Building dialogue systems for providing information (Young, 2006) or improving engagement
(Li et al., 2016) is a real-world challenge. One solution is to employ RL to optimize dialog strategies in multi-turn dialog
models. We adopt an open-source platform called convlab (Lee et al., 2019) to simulate a dialogue environment in which
each action is a dialogue. We focus on the MultiWOZ domain (Eric et al., 2019). Its main task is to help a tourist in



Submission and Formatting Instructions for ICML 2022

various situations involving multiple sub-domains, such as requesting basic information about attractions and booking
a hotel room. Specifically, there are 7 sub-domains - Attraction, Hospital, Police, Hotel, Restaurant, Taxi, Train. We
adopt dialogues in the top 1500 using frequencies as our action set. In detail, we utilize the provided scenario called
UserPolicyAgendaMultiwoz to simulate the tourists’ policies and use MultiWozStateEncoder to encode the
histories of dialogs into vectorized states.

Data collection: Since there are no open-source datasets for the offline RL tasks with large discrete action spaces, we
collected logged experience trajectories generated from online RL policies. These policies were all developed by the
open-source implementation of the work (Chandak et al., 2020), which can be used to address tasks with large discrete
action spaces by setting the hyperparameter of the action change number as 1. We trained policies until they achieved
sub-optimal performance. Then, policies of checkpoints were used to collect transition data, and the noise was added to the
action 50% of the time. In this way, we collected 100000 pieces of transition data in each environment.

A.5. Example

To better understand the influence of action spaces to the behavioral regularization of offline algorithms, we give a toy
example iluustrated in Fig.6. The task is to reach the goal from the starting position as fast as possible, and collisions with
the wall induce negative reward. The agent needs to learn a policy from the logged suboptimal (blue) trajectory. Assuming
that a simple behavioral regularization scenario is applied to the target policy: the agent can only select actions within a
particular range near the in-distribution action. At the agent’s current position, we can find that different action spaces induce
different results of the behavioral regularization. The target policy is limited to selecting the sub-optimal in-distribution
action (move upward) in the discrete action space since other actions are isolated from it. By contrast, the policy is permitted
to choose actions near the in-distribution action in the other representation spaces where there could be some other actions
in the range of behavioral regularization. This is crucial to the policy improvement since the agent has the opportunity
to choose the optimal action (move right). However, actions’ relative distances also largely influence the results of the
behavioral regularization. In representation space 1, behaviorally different actions (the transitions and rewards induced by
them are different) are grouped together, so the agent is more likely to choose ‘bad’ actions. By contrast, if the relative
distances between behaviorally similar actions are close (like in representation space 2), the agent tends to select the optimal
or other ‘safe’ actions.

A.6. Online Performance of MERLION

MERLION action representations can be directly applied on the online setting. We use the framework mentioned in
Chandak et al. (2019) which can incorporate action representaions and online RL algorithms. We get the online performance
of MERLION, the transion-based representations, and the reconstruction-based representations in the Multi-step maze
environment. The results are illustrated in Fig.7. We can find that, in the online setting, three action representations can all
achieve fast convergence, while only MERLION can get good performance in the offline setting (Fig.2 (b)). This indicates
that the MERLION is more effective in offline RL tasks with large discrete action spaces.


