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Abstract
This paper investigates an interesting weakly su-
pervised regression setting called regression with
interval targets (RIT). Although some of the pre-
vious methods on relevant regression settings can
be adapted to RIT, they are not statistically consis-
tent, and thus their empirical performance is not
guaranteed. In this paper, we provide a thorough
study on RIT. First, we proposed a novel statisti-
cal model to describe the data generation process
for RIT and demonstrate its validity. Second, we
analyze a simple selection method for RIT, which
selects a particular value in the interval as the tar-
get value to train the model. Third, we propose
a statistically consistent limiting method for RIT
to train the model by limiting the predictions to
the interval. We further derive an estimation error
bound for our limiting method. Finally, extensive
experiments on various datasets demonstrate the
effectiveness of our proposed method.

1. Introduction
Regression is a significantly important task in machine learn-
ing and statistics (Stulp & Sigaud, 2015; Uysal & Güvenir,
1999). The goal of the regression task is to learn a predictive
model from a given set of training examples, where each
training example consists of an instance (or feature vector)
and a real-valued target. Conventional supervised regres-
sion normally requires a vast amount of labeled data to learn
an effective regression model with excellent performance.
However, it could be difficult to obtain fully supervised
training examples due to the high cost of data labeling in
real-world applications. To alleviate this problem, many
weakly supervised regression settings have been investi-
gated, such as semi-supervised regression (Li et al., 2017;
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Figure 1. An example of facial age estimation. Both photos were
taken when Pele was 58 years old.

Wasserman & Lafferty, 2007; Kostopoulos et al., 2018),
multiple-instance regression (Amar et al., 2001; Wang et al.,
2011; Park et al., 2020), uncoupled regression (Carpentier &
Schlüter, 2016; Xu et al., 2019), and regression with noisy
targets (Ristovski et al., 2010; Hu et al., 2020).

This paper investigates another interesting weakly super-
vised regression setting called regression with interval tar-
gets (RIT). For RIT, we aim to learn a regression model
from weakly supervised training examples, each annotated
with only an interval that contains the true target value.
The learned regression model in this setting is expected to
predict the target value of any test instance as accurately
as possible. In many real-world scenarios, it is difficult to
collect the exact true target value, while it could be easy
to provide an interval in which the true target value is con-
tained. A typical example is facial age estimation (Geng
et al., 2013). In Figure 1, there are two photos of Ballon
d’Or King Pele at the age of 58. The fully supervised re-
gression task requires the exact age of Pele, which is quite
difficult to provide because it is common for a person to
look the same over a long period of time. However, we
can easily get an age interval that contains the true age of
Pele. Based on the facial wrinkles, we can determine that
the true age is at least 40 but not more than 70. In real-
ity, many regression tasks face this challenge (especially in
size/length/age estimation), where it is costly or impossible
to obtain a true target value.

Our studied RIT is highly related to interval-valued data pre-
diction (IVDP) (Ishibuchi & Tanaka, 1991; Neto & De Car-
valho, 2008; 2010; Fagundes et al., 2014). IVDP allows
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each training example to be annotated with an interval and
learns a regression model to predict the interval containing
the true target value of a test instance. There are even some
studies that allow features to be intervals as well (Manski
& Tamer, 2002; Yang & Liu, 2018; Sadeghi et al., 2019).
It is worth noting that IVDP aims to predict the interval
that contains the target value, while our studied RIT aims to
predict the true target value. Although some of the above
methods could be adapted to our studied RIT settings, they
are not statistically consistent (i.e., the learned model is
infinite-sample consistent to the optimal model), and thus
the empirical performance is not guaranteed.

In this paper, we provide a thorough study on RIT, and the
main contributions can be summarized as follows:

• We propose a novel statistical model to describe the data
generation process for RIT and demonstrate its validity.
Having an explicit data distribution helps us understand
how data with interval targets are generated.

• We analyze a simple selection method for RIT, which
selects a particular value in the interval as the target value
to train the model. We show that this intuitive method
could work well if the middlemost value in the interval
is taken as the target value.

• We propose a statistically consistent limiting method for
RIT to train the model by limiting the predictions of the
model to the interval. We further derive an estimation
error bound for our limiting method.

Extensive experiments on various datasets demonstrate the
effectiveness of our proposed method.

2. Related Work
Regression. For the ordinary regression problem, let the
feature space be X ∈ Rd and the label space be Y ∈ R. Let
us denote by (x, y) an example including an instance x and
a real-valued true label y. Each example (x, y) ∈ X × Y
is assumed to be independently sampled from an unknown
data distribution with probability density p(x, y). For the
regression task, we aim to learn a model f : X 7→ R that
tries to minimize the following expected risk:

R(f) = Ep(x,y)[ℓ(f(x), y)], (1)

where Ep(x,y) denotes the expectation over the distribution
p(x, y) and ℓ : R×R 7→ R+ is a conventional loss function
(such as mean squared error and mean absolute error) for
regression, which measures how well a model estimates a
given real-valued label.

Interval-valued data prediction. In order to consider mul-
tiple types of data, such as intervals, weights, and characters,
symbolic data analysis (Bock & Diday, 1999; Billard, 2006)
has been extensively investigated. As a specific task of

symbolic data analysis, the purpose of interval-valued data
prediction (IVDP) is to learn an interval predictor from
training data annotated with intervals. The challenge of
IVDP is mainly to construct a model that outputs intervals
(to ensure that the interval holds, e.g., [0, 10] instead of
[10, 0]). In statistics, Billard & Diday (2000) introduced a
central tendency for interval data. (Lauro & Palumbo, 2000)
introduced principal component analysis methods for inter-
val data. In addition, by designing proper loss functions,
network structures, or output constraints, neural networks
can also be trained to output intervals for IVDP (Neto &
De Carvalho, 2008; 2010; Giordani, 2015; Yang et al., 2019;
Sadeghi et al., 2019).

Regression with interval-censored data. Another related
setting is regression with interval-censored data (RICD)
(Rabinowitz et al., 1995; Lindsey & Ryan, 1998; Lesaffre
et al., 2005; Sun, 2006), which aims to learn a survival
function from interval-censored data. In a sequence of time
points, a specific event (e.g., machine breakdown, disease at-
tack, death) occurs between two time points, and the interval
formed by these two time points is called interval censor-
ing. RICD was widely used in survival analysis (Machin
et al., 2006; Kleinbaum et al., 2012; Wang et al., 2019b). In
contrast to our studied RIT setting, RICD aims to obtain a
survival function to estimate the occurring probability of an
event, instead of learning a predictive model.

3. Regression with Interval Targets
Notations. Suppose the given training set is denoted by
{(xi, Si)}ni=1 where Si represents the interval [y

i
, yi] ∈

Y × Y assigned to the instance x ∈ X , and |Si| = yi − y
i

represents the size of the interval Si. Each training example
(xi, Si) is assumed to be sampled from an unknown joint
distribution with probability density p̃(x, S). In this setting,
the true label yi ∈ Y of the instance xi is guaranteed to
be contained in the interval Si. The goal of interval regres-
sion is to induce a regression model f : X 7→ R that can
accurately predict the target value of a test instance. In-
terestingly, this setting can be considered as a generalized
setting of ordinary regression, because we can easily con-
vert the ordinary regression example (xi, yi) to an interval
regression example by rewriting yi as the interval [y

i
, yi]

where y
i
= yi = yi. In this paper, we denote by p(·) the

probability density and Pr[·] the occurring probability.

Small ambiguity degree. For ensuring that RIT is learnable
(i.e., the true target value concealed in the interval is dis-
tinguishable), we assume that RIT should satisfy the small
ambiguity degree condition (Cour et al., 2011), where the
ambiguity degree in our setting is defined as

λ = sup
(x,y)∼p(x,y),(x,S)∼p̃(x,S),y′∈Y,y′ ̸=y

Pr[y′ ∈ S].
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The ambiguity degree λ is the maximum probability of a
specific incorrect target y′ co-occurring with the true target
y in the same interval S. We can observe that when λ = 1,
the incorrect target y′ always appears with the true target y
together, and thus we can no longer distinguish which one is
the true target. Therefore, the RIT setting requires to assume
that the small ambiguity degree condition is satisfied (i.e.,
λ < 1), in order to ensure that this setting is learnable.

3.1. Data Generation Process

To avoid the sampled intervals being unreasonable (i.e., the
size is unexpectedly large), we use q to denote the maxi-
mum allowed interval size |S|. Then, we assume that each
example (x, S) with S = [y, y] is independently sampled
from a probability distribution with the following density:

p̃(x, S) =

∫ y

y

p(S|y)p(x, y)dy, (2)

where

p(S|y) =


2

q2
, y ∈ S and |S| ≤ q,

0, otherwise.

(3)

In Eq. (2), we assume p(S|y,x) = p(S|y), which means
that given the true label y, the interval S is independent
of the instance x. Such a class-dependent and instance-
independent assumption was widely adopted by many previ-
ous studies in the weakly supervised learning field (Patrini
et al., 2017; Ishida et al., 2019; Feng et al., 2020). In Eq. (3),
we assume that given a specific label y, all possible intervals
{S|y ∈ S, |S| ≤ q} are uniformly sampled.

We show that our presented joint distribution p̃(x, S) is a
valid probability distribution by the following theorem.
Theorem 3.1. The following equality holds:∫

S

∫
X
p̃(x, S)dxdS = 1. (4)

In addition to proving that p̃(x, S) is a valid probability
distribution, we also need to verify that p̃(x, S) meets the
key requirement of RIT, i.e., the true target y is guaranteed
to be contained in the interval S for every example (x, S)
sampled from p̃(x, S). The following theorem provides an
affirmative answer to this question.
Theorem 3.2. For any interval example (x, S) indepen-
dently sampled from the assumed data distribution p̃(x, S)
defined in Eq. (2), the true target y is always in the interval
S, i.e., Pr[y ∈ S|x, S] = 1, ∀(x, S) ∽ p̃(x, S).

3.2. Real-World Motivation

Here, we give a real-world motivation for the assumed data
distribution p̃(x, S). For the data annotations in the regres-
sion task, it could be difficult to directly provide the exact

true target value for each instance. Fortunately, it would be
easier if the annotation system can randomly generate an
interval and ask annotators whether the true target value is
contained in the generated interval or not. Given an instance
x, the maximum size q of the interval, and the maximum and
minimum values ymax, ymin of the label space Y , suppose
the annotation system randomly and uniformly samples y
and y from the interval [ymin−q, ymax+q] (±q is to ensure
that all possible y have the same possible number of inter-
vals) to generate an interval S = [y, y]. If the sampled y and
y satisfy the two conditions: y − y ≤ q and the true target
value y of x belongs to [y, y] i.e., y ∈ [y, y], then we collect
an interval regression example (x, S) where S = [y, y],
otherwise we discard the interval S for the instance x. In
this way, each collected interval regression example (x, S)
exactly follows the data distribution defined in Eq. (2). We
will demonstrate this argument below.

We start by considering the case where the annotation sys-
tem has discarded all intervals larger than a given maximum
interval value q. Then we have the following lemma.

Lemma 3.3. Given the maximum value q allowed for the
interval size, and the maximum value ymax and the minimum
value ymin of the label space Y , for any instance x with its
true target y and any interval S with size no greater than q
(i.e., |S| ≤ q), the following equality holds:

Pr[y ∈ S|x] = q

2(ymax − ymin) + q
. (5)

In the case of no additional information, we can only choose
the interval randomly, so the above probability is uniform.
When the maximum value q allowed in the interval increases,
the probability in Eq. (5) will increase, which is in line with
our knowledge because a larger interval is more likely to
contain the true value y. Similarly, the larger the space
(ymax − ymin) allowed for sampling, the more difficult it is
to obtain an interval containing the true label y. Based on
lemma 3.3, we have the following theorem.

Theorem 3.4. Under the same setting of Lemma 3.3, the
distribution of collected data where the true label y ∈ Y
of an example x belongs to the interval S is the same as
Eq. (2), i.e.,

p(x, S|y ∈ S) = p̃(x, S).

Theorem 3.4 clearly demonstrates that our assumed data
distribution p̃(x, y) exactly accords with the real-world mo-
tivation introduced above.

4. The Proposed Methods
In this section, we introduce a simple method that selects a
particular value in the interval as the target value to train a
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regression model. This method is simple and intuitive, but it
only considers a single value in the interval and ignores the
overall interval information. To overcome this drawback,
we propose a limiting method that limits the predicted value
of the model to be in the interval, which is statistically
consistent under a very mild condition.

4.1. The Simple Selection Method

Given an interval, an intuitive solution is to select a particu-
lar value in the interval as the target value:

ℓsel(f(x), S) = ℓ(f(x), y′),where y′ ∈ S. (6)

As shown in Eq. (6), this method aims to select one value
in the interval as the target value and regard the loss of this
value as the predictive loss for the interval regression exam-
ple (x, S). This simple method has an obvious drawback,
i.e., selecting only one value in the interval ignores the influ-
ence of other values in the interval. Intuitively, the selection
strategy has a significant impact on the final performance of
the trained model. Here, we provide three typical strategies
to select a particular value in the interval:

• Selecting the leftmost value:

ℓleft(f(x), S) = ℓ(f(x), y). (7)

• Selecting the rightmost value:

ℓright(f(x), S) = ℓ(f(x), y). (8)

• Selecting the middlemost value:

ℓmid(f(x), S) = ℓ(f(x),
y + y

2
). (9)

Obviously, these three strategies select the three most par-
ticular values (including the leftmost value, the rightmost
value, and the middlemost value) in the interval. Different
selection strategies could result in different errors of estimat-
ing the true target value. Given any interval example (x, S)
with |S| = a, we analyze the mean absolute error of esti-
mating the true target y by the three strategies when y falls
at any position in the interval. We illustrate this analysis in
Table 1. As shown in Table 1, since any value in the interval
could be the true target, we calculate the maximum error
and the expected error for each selection strategy. Clearly,
if the true target is the rightmost value (i.e., y = y), the
rightmost selection strategy is optimal and the errors (a/2
and a/4) of the leftmost and middlemost selection strategies
are maximum. If the true target is the middlemost value (i.e.,
y = (y + y)/2), the middlemost selection strategy is opti-
mal and both the leftmost and rightmost selection strategies
achieve the error of a/2. If the true target is the leftmost

Table 1. Error analysis for three selection strategies (with |S| = a).
Strategy Selected value Maximum error Expected error

Leftmost y a a/2
Rightmost y a a/2

Middlemost (y + y)/2 a/2 a/4

value (i.e., y = y), the leftmost selection strategy is optimal
and the errors (a/2 and a/4) of the rightmost and middle-
most selection strategies are maximum. When all the values
in the interval have the same probability of being the true
target, the expected error of both the leftmost and rightmost
selection strategies is a/2 and the expected error of the mid-
dlemost selection strategy is a/4. According to the above
analysis, we can find that the middlemost selection strategy
is relatively stable and can achieve a smaller error regardless
of the true target value. Therefore, the middlemost selec-
tion strategy is expected to achieve better performance than
the leftmost and the rightmost selection strategies, and our
empirical results in Section 5 also support this argument.

Further discussion. In addition to the above middlemost
selection strategy, it is natural to consider another strategy
from the loss perspective, i.e., the average loss of ℓleft and
ℓright. Specifically, for each interval example (x, S), we can
define the average loss as ℓavgl(f(x), S) = 1

2ℓ(f(x), y) +
1
2ℓ(f(x), y). We will theoretically analyze this method and
show that only with a specific choice of the regression loss ℓ
(i.e., mean absolute error), ℓavgl(f(x), S) can achieve good
empirical performance with theoretical guarantees.

4.2. The Statistically Consistent Limiting Method

We can find that the simple selection method only considers
a single value in the interval and ignores the overall interval
information. To overcome this drawback, we propose the
following limiting method that limits the predicted value in
the interval:

ℓLM(f(x), S) = I
[
y − f(x) > 0

]
+ I [f(x)− y > 0] .

(10)

This loss function takes value 0 if y ≤ f(x) ≤ y, otherwise
1. This is in line with our intention to limit the predicted
values in the interval. Then, the expected regression risk of
our proposed limiting method can be represented as follows:

RLM(f) = Ep̃(x,S)[ℓLM(f(x), S)]. (11)

We demonstrate that our proposed limiting method is model-
consistent, i.e., the model learned by the limiting method
from interval data converges to the optimal model learned
from fully supervised data. In particular, we assume that the
hypothesis space F is strong enough (Lv et al., 2020) such
that the optimal model (i.e., f⋆ = argminf∈F R(f)) in
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the hypothesis space makes the optimal risk equal to 0 (i.e.,
R(f⋆) = 0). Then we introduce the following theorem.

Theorem 4.1. Suppose that the hypothesis space F is strong
enough (i.e., f⋆ = argminf∈FR(f) leads to R(f⋆) =
0). The model f⋆LM = argminf∈FRLM(f) learned by our
limiting method is equivalent to the optimal model f⋆ =
argminf∈FR(f).

Theorem 4.1 demonstrates that the optimal regression model
learned from fully labeled data can be identified by our lim-
iting method given only data with interval targets (i.e., our
limiting method is model consistent). However, we can-
not directly train a regression model by using our limiting
method in Eq. (10), since the loss function in Eq. (10) is
non-convex and discontinuous. To address this problem, we
propose the following surrogate loss function of our limiting
method:

ψLM(f(x), S) =max(0, y − f(x)) + max(0, f(x)− y).

(12)

As can be seen from Eq. (12), this surrogate loss is convex
and is an upper bound of the original loss in Eq. (10). With
the surrogate loss in Eq. (12), the expected regression risk
of our proposed limiting method can be represented as:

RψLM(f) = Ep̃(x,S)[ψLM(f(x), S)].

Then, we demonstrate that our limiting method with the
surrogate loss is still consistent, by the following theorem.

Theorem 4.2. Suppose the hypothesis space F is strong
enough (i.e., f⋆ = argminf∈FR(f) leads to R(f⋆) =

0). The model fψ⋆LM = argminf∈FR
ψ
LM(f) learned by the

surrogate method is equivalent to the optimal model f⋆ =
argminf∈FR(f).

Theorem 4.2 shows that the model learned by our limiting
method is also equivalent to the optimal model f⋆ (learned
from fully labeled data). This indicates that using the surro-
gate loss in Eq. (12), our limiting method is still consistent.
Therefore, we can learn an effective regression model from
the given dataset {xi, Si}ni=1 by directly minimizing the
following empirical risk:

R̂ψLM(f) =
∑n

i=1
ψLM(f(x), S). (13)

Here, we further relate our limiting method ψLM to the aver-
age method ℓavgl discussed in Section 4.1, by the following
corollary.

Corollary 4.3. The same minimizer (model) can be derived
from ψLM and ℓavgl if the mean absolute error is used as
the regression loss ℓ in ℓavgl.

Corollary 4.3 implies that with the mean absolute error,
the average loss ℓavgl is also model-consistent, because our

limiting method is model-consistent. However, using other
losses (e.g., the mean squared error) cannot make ℓavgl
theoretically grounded, and thus the empirical performance
is guaranteed. We conduct experiments to demonstrate this
argument, and experimental results (given in Appendix F.5)
show that the mean absolute error clearly outperforms the
mean squared error, when used in ℓavgl.

Consistency analysis. Here, we provide a consistency anal-
ysis for the above limiting method, which shows that the
model f̂ψLM = argminf∈F R̂

ψ
LM(f) (empirically learned

from RIT data by using our limiting method) is infinite-
sample consistent to the optimal model f⋆.
Theorem 4.4. Assume that for all (x, S) with S = [y, y]
drawn from p̃(x, S) and all f ∈ F , there exist con-
stants M and M ′ such that max(y − f(x), 0) ≤ M
and max(f(x) − y, 0) ≤ M ′. Suppose that the pseudo-
dimensions of {(x, y) 7→ max(y − f(x), 0) | f ∈ F} and
{(x, y) 7→ max(f(x)−y, 0) | f ∈ F} are finite, which are
denoted by d and d′. Then, with probability at least 1− δ,

RψLM(f̂ψLM)−RψLM(f⋆) ≤ 2M

√
2d log en

d

n

+ 2M ′

√
2d′ log en

d′

n
+ 2(M +M ′)

√
log 4

δ

2n
.

Theorem 4.4 shows that the risk of f̂ψLM converges to the
risk of f⋆, as the number of training data goes to infinity.

5. Experiments
In this section, we conduct extensive experiments to validate
the effectiveness of our proposed limiting method.

5.1. Experimental Setup

Datasets. We conduct experiments on nine datasets, in-
cluding two computer vision datasets (AgeDB (Moschoglou
et al., 2017) and IMDB-WIKI (Rothe et al., 2018)), one nat-
ural language processing dataset (STS-B (Cer et al., 2017)),
and six datasets from the UCI Machine Learning Repository
(Dua & Graff, 2017) (Abalone, Airfoil, Auto-mpg, Housing,
Concrete, and Power-plant). Following the data distribution
proposed in Section 3.1, We generated the following RIT
datasets, including AgeDB-Interval at q = 10, 20, 30, 40,
and 50, IMDB-WIKI-Interval at q = 20, 30, and 40, and
STS-B-Interval at q = 3.0, 3.5, 4.0, 4.5 and 5.0. For each
UCI dataset, we selected two large values of q to generate
RIT data based on the span of the label space. The specific
descriptions of used datasets with the corresponding base
models and the specific hyperparameter settings are reported
in Appendix E.1.

Base models. For the UCI dataset, we used two models, a
linear model and a multilayer perceptron (MLP), where the
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Table 2. Test performance (mean and std) of each method on AgeDB. The used evaluation metrics include MSE and MAE. We repeat the
sampling-and-training process 3 times. The best performance is highlighted in bold.

Metric MSE MAE
Approach q = 30 q = 40 q = 50 q = 60 q = 70 q = 30 q = 40 q = 50 q = 60 q = 70

Leftmost

MAE 158.38 210.34 205.75 283.83 355.59 9.88 11.59 11.27 13.62 14.93
(6.71) (19.85) (22.04) (15.36) (105.16) (0.22) (0.61) (0.80) (0.62) (2.38)

MSE 134.99 196.83 221.54 295.49 347.27 9.25 11.19 11.91 13.90 14.98
(4.03) (19.28) (18.04) (32.09) (80.77) (0.06) (0.71) (0.48) (1.24) (2.10)

Huber 156.34 175.95 208.03 317.17 360.11 9.85 10.54 11.42 14.39 15.41
(17.95) (7.61) (18.36) (22.57) (53.12) (0.57) (0.19) (0.61) (0.37) (1.30)

Rightmost

MAE 154.87 196.95 233.18 255.24 428.05 9.91 11.31 12.48 13.12 17.51
(13.12) (20.96) (26.58) (15.12) (41.79) (0.45) (0.58) (0.79) (0.40) (0.93)

MSE 146.85 215.06 260.37 304.71 452.61 9.57 11.96 13.27 14.47 18.15
(24.39) (23.92) (15.32) (49.88) (45.87) (0.86) (0.66) (0.49) (1.29) (1.15)

Huber 149.14 179.72 246.29 279.70 436.29 9.72 10.84 12.88 13.90 17.50
(7.74) (10.57) (16.02) (17.45) (78.90) (0.31) (0.37) (0.48) (0.44) (1.86)

Middlemost

MAE 116.14 133.44 129.55 138.95 150.88 8.38 8.93 8.97 9.21 9.57
(2.57) (5.05) (1.37) (5.22) (3.66) (0.13) (0.15) (0.13) (0.11) (0.12)

MSE 119.90 133.27 128.84 138.36 149.82 8.45 8.94 8.89 9.32 9.53
(6.23) (5.18) (3.01) (6.10) (5.28) (0.18) (0.22) (0.21) (0.27) (0.07)

Huber 121.78 131.43 131.38 140.40 149.25 8.62 8.92 8.96 9.28 9.65
(4.75) (3.84) (2.20) (6.18) (0.70) (0.14) (0.15) (0.08) (0.19) (0.09)

CRM 221.66 303.52 398.50 523.53 653.81 12.18 14.57 17.17 20.11 22.89
(1.45) (11.12) (14.80) (4.63) (17.30) (0.07) (0.30) (0.40) (0.08) (0.09)

RANN 125.04 126.02 129.86 139.83 148.25 8.69 8.73 8.89 9.32 9.69
(1.09) (1.74) (1.00) (3.41) (2.33) (0.04) (0.07) (0.05) (0.22) (0.11)

SINN 218.16 302.06 404.80 524.74 649.27 12.11 14.54 17.41 19.97 22.70
(1.53) (6.53) (2.70) (7.17) (2.94) (0.08) (0.24) (0.04) (0.13) (0.14)

IN 118.85 133.86 138.58 147.95 152.34 8.46 9.00 9.15 9.53 9.65
(5.20) (6.46) (4.06) (2.82) (9.30) (0.17) (0.13) (0.09) (0.07) (0.21)

LM 115.76 121.24 123.51 128.04 129.47 8.36 8.67 8.75 8.82 8.92
(1.64) (4.73) (2.78) (3.52) (7.15) (0.07) (0.03) (0.14) (0.16) (0.14)

MLP model is a five-layer (d-20-30-10-1) neural network
with a ReLU activation function. For the linear model and
the MLP model, we use the Adam optimization method
(Kingma & Ba, 2015) with the batch size set to 512 and the
number of training epochs set to 1,000, and the learning rate
for all methods is selected from {10−2, 10−3}. For both the
IMDB-WIKI and AgeDB datasets, we use ResNet-50 (He
et al., 2016) as our backbone network. We use the Adam
optimizer to train all methods for 100 epochs with an initial
learning rate of 10−3 and fix the batch size to 256. For the
STS-B dataset, we follow Wang et al. (2019a) to use the
same 300D GloVe word embeddings and a two-layer 1500D
(per direction) BiLSTM with max pooling to encode the
paired sentences into independent vectors u and v, and then
pass [u; v; |u− v|;uv] to a regressor. We also use the Adam
optimizer to train all methods for 100 epochs with an initial
learning rate of 10−4 and fix the batch size to 256.

Compared methods. We use the leftmost, rightmost, and
middlemost selection strategies analyzed in Section 4.1 as
our baseline methods. Since the three methods do not rely
on any loss function, we use the mean absolute error (MAE),
the mean squared error (MSE), and the Huber loss (com-
monly used in regression tasks) as loss functions to form
our baseline methods. For the Huber loss, the threshold
value is selected from {1, 5}. In particular, we compare
with multiple methods for interval-valued data prediction,

including CRM (Neto & De Carvalho, 2008), SINN (Yang
& Wu, 2012), RANN (Yang et al., 2019), IN (Sadeghi et al.,
2019). Since the outputs of these methods are intervals, we
use the midpoint of the interval as the predicted value.

Evaluation metrics. For metrics, we use common evalu-
ation metrics for regression, such as the MSE, MAE, and
Pearson correlation. We also use another evaluation metric
called Geometric Mean (Yang et al., 2021).

5.2. Experimental Performance

Experimental results. Table 2, Table 3 and Table 4 show
some of the experimental results on the AgeDB, IMDB-
WIKI, and UCI datasets, respectively. From the three tables,
we have the following observations: 1) Our proposed LM
outperforms all the compared methods. This verifies that
our method has the ability to figure out the true real-valued
labels. 2) As q increases, there is a tendency for the perfor-
mance of all the methods to decrease. This is because as the
size of the interval becomes larger, more interfering values
are included in the interval and thus it will be more difficult
to identify the true real-valued labels from the interval. 3)
In our experimental setting, we set various values of q. The
performance gap between our method and compared meth-
ods is more evident when q is large. This indicates that our
method has stronger robustness. It is worth noting that q
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Table 3. Test performance (mean and std) of each method on IMDB-WIKI. The used evaluation metrics include MSE and MAE. We
repeat the sampling-and-training process 3 times. The best performance is highlighted in bold.

Metric MSE MAE
Approach q = 40 q = 50 q = 60 q = 70 q = 80 q = 40 q = 50 q = 60 q = 70 q = 80

Leftmost

MAE 270.15 336.73 402.05 494.84 581.54 13.06 14.76 16.28 18.30 20.39
(15.14) (30.92) (39.13) (28.64) (19.81) (0.53) (0.77) (1.10) (0.82) (0.46)

MSE 255.40 305.92 358.15 383.77 421.16 12.67 13.95 15.21 15.86 16.66
(13.45) (7.33) (25.61) (16.82) (94.72) (0.40) (0.60) (0.57) (0.36) (2.36)

Huber 291.25 320.37 385.99 512.73 596.39 13.39 14.24 15.82 18.57 20.71
(14.98) (10.01) (41.84) (107.26) (46.08) (0.26) (0.42) (1.14) (2.54) (0.79)

Rightmost

MAE 197.26 265.60 328.77 608.51 679.26 11.15 13.38 14.74 20.80 22.82
(17.24) (27.79) (63.99) (76.85) (80.82) (0.62) (0.75) (1.55) (1.50) (2.21)

MSE 214.42 280.99 357.06 497.47 643.99 11.71 13.50 15.29 18.82 21.38
(10.40) (12.52) (64.59) (43.98) (85.80) (0.35) (0.35) (1.54) (1.05) (1.49)

Huber 198.97 243.81 379.34 536.87 491.39 11.23 12.82 16.19 19.63 18.24
(6.47) (11.64) (45.10) (21.50) (103.54) (0.21) (0.31) (1.01) (0.67) (2.22)

Middlemost

MAE 140.29 148.93 152.20 154.79 157.17 8.96 9.24 9.47 9.55 9.76
(6.68) (3.00) (9.59) (4.29) (5.96) (0.10) (0.08) (0.36) (0.21) (0.22)

MSE 135.57 142.68 144.34 153.10 153.80 8.89 9.10 9.23 9.61 9.79
(2.77) (2.43) (2.60) (9.34) (3.57) (0.10) (0.06) (0.11) (0.30) (0.08)

Huber 142.21 148.52 153.97 152.52 154.77 9.04 9.22 9.49 9.49 9.70
(6.33) (3.93) (2.31) (3.48) (3.58) (0.19) (0.15) (0.05) (0.12) (0.15)

CRM 302.50 380.12 519.7 602.65 740.99 14.38 16.81 20.11 21.85 24.61
(12.53) (15.30) (10.23) (7.20) (19.56) (0.42) (0.28) (0.20) (0.16) (0.78)

RANN 137.37 140.79 145.40 150.11 166.33 8.98 8.98 9.32 9.52 10.09
(3.09) (2.28) (2.20) (2.48) (4.02) (0.10) (0.12) (0.08) (0.07) (0.08)

SINN 314.49 385.29 515.80 629.51 754.28 14.79 16.73 19.84 22.36 24.73
(4.08) (8.26) (9.95) (11.10) (15.20) (0.14) (0.19) (0.30) (0.23) (0.65)

IN 147.09 148.71 152.66 155.73 156.04 9.25 9.28 9.51 9.59 9.79
(0.59) (1.01) (2.54) (5.67) (2.89) (0.04) (0.09) (0.10) (0.17) (0.06)

LM 133.98 134.15 141.45 148.19 146.52 8.75 8.83 9.07 9.40 9.39
(1.57) (2.49) (2.32) (2.44) (5.00) (0.06) (0.07) (0.11) (0.08) (0.04)
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Figure 2. The test performance (MSE) on the Abalone, Auto-mpg, Airfoil and Power-plant datasets of our proposed LM when the number
of training data increases.

represents the maximum interval size allowed. In real-world
scenarios, a large value of q will be a more common situ-
ation because this kind of data is easier to collect. 4) The
methods for interval-valued data prediction and the methods
for selecting the middlemost value of the interval as the tar-
get value have similar performance. This is because when
the interval predicted by the interval-valued data prediction
is accurate, the middlemost value of the interval is exactly
the target value of the methods that select the middlemost
value of the interval as the target value.

Performance of Increasing Training Data. We demon-
strate in Theorem 4.4 that the model learned by our proposed

LM can converge to the optimal model learned from the fully
labeled data when the number of training examples for RIT
approaches infinity. To empirically validate such a theoret-
ical finding, we further conduct experiments by changing
the fraction of training examples for RIT, where 100% in-
dicates the use of all training examples to train the model.
The experimental performance of LM is shown in Figure 2,
where the test loss of the model generally decreases when
more training examples are used to train the model. This
empirical observation accords with our theoretical analysis
that the learned model will be closer to the optimal model,
if more training examples are provided.
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Table 4. Test performance (mean and std) of each method on the six UCI datasets trained with the MLP model. The used evaluation
metrics include MSE and MAE. We repeat the sampling-and-training process 5 times. The best performance is highlighted in bold.

Dataset Metric q
Leftmost Rightmost Middlemost CRM RANN SINN IN LMMSE MAE Huber MSE MAE Huber MSE MAE Huber

Abalone

MSE
30 65.33 55.73 59.82 7.99 8.08 8.03 6.38 5.45 6.01 6.51 6.67 6.44 5.61 4.66

(2.09) (1.79) (3.07) (0.70) (0.71) (0.71) (0.44) (0.43) (0.44) (0.52) (0.48) (0.44) (0.40) (0.49)

40 90.12 85.71 89.27 8.13 8.23 8.21 7.77 7.81 7.79 7.85 7.74 7.85 7.84 4.81
(3.16) (6.28) (4.47) (0.67) (0.63) (0.64) (0.68) (0.76) (0.76) (0.81) (0.64) (0.81) (0.75) (0.42)

MAE
30 7.60 6.96 7.21 2.01 2.11 2.10 1.94 1.77 1.91 1.94 1.91 1.94 1.86 1.50

(0.11) (0.13) (0.16) (0.08) (0.08) (0.08) (0.06) (0.08) (0.07) (0.07) (0.07) (0.07) (0.05) (0.05)

40 9.03 8.80 9.03 2.02 2.12 2.11 1.96 1.95 1.96 1.99 2.02 1.99 1.97 1.53
(0.15) (0.32) (0.18) (0.08) (0.07) (0.07) (0.08) (0.06) (0.06) (0.07) (0.08) (0.07) (0.06) (0.08)

Airfoil

MSE
30 122.58 89.68 93.90 105.20 79.28 85.16 19.24 18.71 18.24 17.40 17.30 17.35 19.20 16.72

(89.68) (5.26) (8.01) (9.19) (7.75) (14.44) (1.70) (1.16) (2.02) (3.07) (2.86) (3.13) (1.30) (3.42)

40 200.70 164.64 183.30 134.36 115.92 120.34 24.32 20.43 20.99 23.12 22.98 23.08 19.37 18.31
(13.62) (9.28) (23.42) (13.66) (5.56) (7.57) (1.16) (1.87) (1.89) (2.30) (1.92) (2.38) (2.51) (2.63)

MAE
30 9.81 8.50 8.71 8.00 7.78 7.98 3.41 3.30 3.28 3.26 3.23 3.26 3.33 3.09

(0.52) (0.39) (0.62) (0.26) (0.38) (0.51) (0.24) (0.15) (0.25) (0.33) (0.32) (0.32) (0.16) (0.35)

40 11.93 11.96 12.18 8.93 9.24 9.29 3.97 3.54 3.61 3.85 3.85 3.85 3.47 3.24
(0.31) (0.38) (0.60) (0.64) (0.43) (0.46) (0.12) (0.13) (0.20) (0.22) (0.22) (0.21) (0.26) (0.27)

Auto-mpg

MSE
30 76.60 34.99 50.43 51.52 30.41 24.06 11.59 11.69 11.52 11.68 23.60 11.67 11.60 9.63

(12.72) (12.83) (18.98) (20.31) (11.25) (7.60) (1.42) (1.69) (1.17) (1.25) (3.86) (1.28) (1.23) (1.62)

40 145.11 93.80 92.64 119.54 48.03 61.49 20.14 18.30 19.25 21.11 34.57 21.08 18.23 11.11
(19.52) (23.82) (32.76) (20.53) (15.25) (28.88) (5.44) (4.52) (4.69) (6.18) (8.40) (6.30) (4.97) (3.03)

MAE
30 7.97 4.47 5.98 6.33 4.47 3.89 2.52 2.51 2.48 2.50 3.76 2.50 2.50 2.19

(0.76) (1.03) (1.34) (1.63) (0.94) (0.78) (0.23) (0.18) (0.18) (0.19) (0.38) (0.19) (0.17) (0.18)

40 11.59 8.09 8.16 10.91 5.78 6.68 3.46 3.15 3.18 3.39 4.62 3.36 3.24 2.31
(1.02) (1.16) (1.84) (1.75) (1.03) (1.92) (0.48) (0.37) (0.43) (0.50) (0.59) (0.52) (0.41) (0.30)

Housing

MSE
30 55.46 52.66 52.79 75.37 78.40 83.83 27.49 26.24 25.07 27.58 25.45 26.32 25.06 22.13

(8.52) (15.47) (7.06) (27.20) (8.87) (15.28) (11.60) (8.20) (5.82) (6.80) (8.95) (10.12) (7.59) (3.71)

40 88.85 101.70 83.96 109.01 124.34 124.14 30.70 35.84 32.63 32.66 31.15 34.92 33.00 24.53
(22.73) (13.36) (15.88) (32.28) (12.16) (12.18) (4.04) (2.72) (4.86) (4.47) (5.46) (4.47) (5.71) 8.00

MAE
30 6.02 5.61 5.49 6.88 7.63 8.31 3.52 3.54 3.50 3.52 3.51 3.63 3.56 3.47

(0.65) (1.06) (0.61) (0.54) (0.33) (0.85) (0.36) (0.45) (0.27) (0.50) (0.56) (0.66) (0.43) (0.57)

40 7.15 7.46 7.17 7.87 8.27 8.26 4.06 4.41 4.11 4.14 3.95 4.25 4.19 3.49
(0.66) (0.53) (0.62) (0.92) (0.42) (0.42) (0.45) (0.28) (0.31) (0.45) (0.48) (0.39) (0.46) (0.48)

Concrete

MSE
70 283.72 291.78 296.00 278.35 278.30 278.26 70.94 72.84 73.01 74.68 74.16 71.68 67.22 58.45

(13.93) (17.85) (7.37) (18.24) (18.16) (18.18) (8.19) (7.78) (6.65) (5.80) (4.23) (5.84) (5.82) (3.52)

80 420.44 424.03 423.70 284.03 284.04 284.02 88.26 95.09 86.54 86.40 80.77 83.38 92.48 59.47
(68.96) (57.64) (40.60) (15.41) (15.41) (15.43) (6.35) (8.56) (13.11) (3.13) (2.78) (3.13) (16.38) (7.81)

MAE
70 13.93 14.07 14.42 13.38 13.38 13.38 6.70 6.81 6.83 6.78 6.51 6.77 6.38 5.86

(1.04) (0.99) (0.64) (0.49) (0.49) (0.49) (0.54) (0.25) (0.32) (0.81) (0.82) (0.82) (0.34) (0.41)

80 17.74 17.67 17.93 13.47 13.47 13.47 7.42 7.62 7.35 7.40 7.26 7.48 7.49 5.71
(1.55) (1.48) (1.26) (0.38) (0.38) (0.38) (0.46) (0.89) (0.61) (0.68) (0.33) (0.47) (0.70) (0.34)

Power-plant

MSE
60 264.98 201.00 245.19 262.00 246.15 268.46 31.96 28.95 29.38 32.85 31.30 32.66 29.36 23.54

(49.48) (51.72) (35.67) (107.86) (69.44) (53.87) (2.69) (3.03) (3.76) (3.78) (2.84) (3.95) (3.41) (1.41)

70 279.48 316.33 337.53 280.29 269.03 293.51 48.82 39.41 40.83 48.53 47.62 48.62 40.04 24.91
(3.14) (72.10) (61.63) (76.53) (81.76) (2.20) (1.53) (2.76) (3.41) (1.20) (2.37) (1.22) (3.13) (0.60)

MAE
60 14.48 12.55 14.08 13.92 13.98 14.60 4.55 4.30 4.36 4.59 4.49 4.58 4.37 3.84

(0.10) (1.58) (0.34) (3.31) (2.39) (1.43) (0.18) (0.21) (0.32) (0.28) (0.21) (0.31) (0.29) (0.11)

70 14.29 14.48 14.70 14.17 14.70 14.99 5.59 4.94 5.13 5.62 5.51 5.62 5.01 3.96
(0.16) (1.51) (0.94) (1.85) (2.56) (0.10) (0.14) (0.18) (0.20) (0.08) (0.10) (0.07) (0.16) (0.05)

More experimental results. We provide more experimen-
tal results including the comparison results with the fully
supervised method, maximum margin interval trees method
(MMIT (Drouin et al., 2017)), and more results on evalua-
tion metrics and models in Appendix F. These results also
demonstrate the effectiveness of our method.

6. Conclusion
In this paper, we studied an interesting weakly supervised
regression setting called regression with interval targets
(RIT). For the RIT setting, we first proposed a novel statisti-
cal model to describe the data generation process for RIT
and demonstrated its validity. The explicitly derived data

distribution can be helpful to empirical risk minimization.
Then, we analyzed a simple selection method that selects
a particular value in the interval as the target value to train
the model. We empirically showed that this simple method
could work well if the middlemost value in the interval is
selected. Afterward, we proposed a statistically consistent
limiting method to train the model by limiting the predic-
tions to the interval. We further derived an estimation error
bound for this method. Finally, we conducted extensive
experiments on various datasets to demonstrate the effec-
tiveness of our proposed method. In future work, it would
be interesting to study a harder setting of RIT, where the
true target value might be outside the given interval.
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Uysal, I. and Güvenir, H. A. An overview of regression
techniques for knowledge discovery. The Knowledge
Engineering Review, 14(4):319–340, 1999.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. Glue: A multi-task benchmark and analy-
sis platform for natural language understanding. In ICLR,
2019a.

Wang, P., Li, Y., and Reddy, C. K. Machine learning for
survival analysis: A survey. ACM Computing Surveys, 51
(6):1–36, 2019b.

Wang, Z., Lan, L., and Vucetic, S. Mixture model for
multiple instance regression and applications in remote
sensing. IEEE Transactions on Geoscience and Remote
Sensing, 50(6):2226–2237, 2011.

Wasserman, L. and Lafferty, J. Statistical analysis of semi-
supervised regression. In NeurIPS, 2007.

Xu, L., Honda, J., Niu, G., and Sugiyama, M. Uncoupled
regression from pairwise comparison data. In NeurIPS,
2019.

Yang, D. and Liu, Y. L1/2 regularization learning for
smoothing interval neural networks: Algorithms and con-
vergence analysis. Neurocomputing, 272:122–129, 2018.

Yang, D. and Wu, W. A smoothing interval neural network.
Discrete Dynamics in Nature and Society, 2012, 2012.

Yang, Y., Zha, K., Chen, Y., Wang, H., and Katabi, D.
Delving into deep imbalanced regression. In ICML, pp.
11842–11851, 2021.

Yang, Z., Lin, D. K., and Zhang, A. Interval-valued data
prediction via regularized artificial neural network. Neu-
rocomputing, 331:336–345, 2019.

10



Weakly Supervised Regression with Interval Targets

A. Proofs about the Problem Setting
A.1. Prove of Theorem 3.1

For a specific label y, we define the set of all the possible intervals whose size is less than q as

Syq = {S | S ∈ S, |S| ≤ q, y ∈ S}

Since Syq is a continuous space, we use the sum of the number of all possible intervals to represent the size of Syq , that is, the
integral over all possible intervals. We might as well discuss the range of values of y and then fix y to discuss the values of y.
We can easily know that y ∈ [y − q, y]. If y < y − q, even the largest interval S′ = [y, y + q] cannot contain y (y + q < y).
If y > y, then the interval must not contain y (y > y). After determining y, the maximum value of y is y + q (y − y ≤ q)

and the minimum value is y (y ≤ y), so y ∈ [y, y + q], then |Syq | =
∫ y
y−q

∫ y+q
y

1 dydy = q2

2 . From our formulation of the
interval data distribution p̃(x, S), we can obtain the simplified expression p̃(x, S) = 2

q2

∫
y∈S p(x, y) dy. Then, we have∫

S

∫
X
p̃(x, S)dx dS =

∫
X

∫
S

∫
y∈S

2

q2
p(x, y) dydSdx

=
2

q2

∫
X

∫
Y

∫
Sy
q

p(x, y) dSdydx

=
2

q2

∫
X

∫
Y
p(x, y)

∫
Sy
q

1 dSdydx

=
2

q2

∫
X

∫
Y
p(x, y)|Syq |dydx

=
2

q2

∫
X

∫
Y
p(x, y)

q2

2
dydx

=

∫
X

∫
Y
p(x, y)dydx

= 1,

which concludes the proof of Theorem 3.1.

A.2. Prove of Theorem 3.2

It is intuitive to express Pr[y ∈ S|x, S] as

Pr[y ∈ S|x, S] = 1− Pr[y /∈ S|x, S]

= 1−
∫
y/∈S

p(y|x, S)dy

= 1−
∫
y/∈S

p(S|y,x)p(y,x)
p(S|x)

dy

= 1−
∫
y/∈S

p(S|y)p(y,x)∫
y′∈S p(S|y′)p(y′|x)dy′

dy

= 1− |Sy
′

q |
∫
y/∈S

p(S|y)p(y,x)∫
y∈S p(y

′|x)dy′
dy

= 1− q2

2

∫
y/∈S

p(S|y)p(y,x)∫
y′∈S p(y

′|x)dy′
dy

= 1,

where the last equality holds because p(S|y) = 0 if y /∈ S , in terms of Eq. (3). Which concludes the proof of Theorem
3.2.
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A.3. Prove of Lemma 3.3

We consider the case where the true label y is a specific value, then we have

p(y ∈ S, y|x) = Pr[y ∈ S|x, y]p(y|x)

=

∫
S
p(y ∈ S, S|x, y)p(y|x) dS

=

∫
S
Pr[y ∈ S|x, y, S]p(y|x)p(S|x, y) dS

=

∫
S
Pr[y ∈ S|x, y, S]p(y|x)p(S) dS

where the last equality holds due to the fact that for each example (x, y), S is uniformly and randomly chosen, if q
is specific, p(S) = 1

|Sq| . As with Syq , we integrate over all possible intervals to calculate the size of |Sq|. We can
easily know that when y ∈ [ymin − q, ymin], y ∈ [ymin, y + q], when y ∈ [ymin, ymax], y ∈ [y, y + q], so |Sq| =∫ ymin

ymin−q
∫ y+q
ymin

1 dyrdy +
∫ ymax

ymin

∫ y+q
y

1 dydy = 1
2q

2 + q(ymax − ymin), we have

p(y ∈ S, y|x) =
∫
S
Pr[y ∈ S|x, y, S]p(y|x)p(S) dS

=
2

2q(ymax − ymin) + q2

∫
S
Pr[y ∈ S|x, y, S]p(y|x) dS

=
2

2q(ymax − ymin) + q2

∫
S
Pr[y ∈ S|x, y, S]dS p(y|x)

=
2

2q(ymax − ymin) + q2
|Syq |p(y|x)

=
2

2q(ymax − ymin) + q2
q2

2
p(y|x) (∵ |Syq | =

q2

2
)

=
q

2(ymax − ymin) + q
p(y|x)

By integrating y on both sides, we can obtain

Pr[y ∈ S|x] = q

2(ymax − ymin) + q

which concludes the proof of Lemma 3.3.

A.4. Prove of Theorem 3.4

Let us express p(S|y ∈ S,x) as

p(S|y ∈ S,x) =
p(y ∈ S, S|x)
Pr[y ∈ S|x]

=
Pr[y ∈ S|S,x]p(S|x)

Pr[y ∈ S|x]

=
Pr[y ∈ S|S,x]p(S)

Pr[y ∈ S|x]

where the last equality holds due to the fact that for each instance x, S is uniformly and randomly chosen. Since p(S) = 1
|Sq|

if q is specific. We can easily know that when y ∈ [ymin − q, ymin], y ∈ [ymin, y+ q], when y ∈ [ymin, ymax], y ∈ [y, y+ q],
so |Sq| =

∫ ymin

ymin−q
∫ y+q
ymin

1 dydy +
∫ ymax

ymin

∫ y+q
y

1 dydy = 1
2q

2 + q(ymax − ymin), we have
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p(S|y ∈ S,x) =
Pr[y ∈ S|S,x]p(S)

Pr[y ∈ S|x]

=
2

2q(ymax − ymin) + q2
Pr[y ∈ S|S,x]
Pr[y ∈ S|x]

=
2

2q(ymax − ymin) + q2
2(ymax − ymin + q)

q
Pr[y ∈ S|S,x] (by Lemma 3.3)

=
2

q2
Pr[y ∈ S|S,x]

=

∫
y∈S

2

q2
p(y|x)dy

By multiplying p(x) on both side, we have

p(x, S|y ∈ S) =

∫
y∈S

2

q2
p(x, y)dy

=

∫ yr

yl

2

q2
p(x, y)dy

= p̃(x, S)

which concludes the proof of Theorem 3.4.

B. Proofs of The Model Consistent
B.1. Prove of Theorem 4.1

First, we prove that the optimal model f⋆ learned from ordinary regression expected risk (1) is also the optimal model for
RLM (f) as follows.

RLM(f⋆) = Ep̃(x,S)[ℓLM(f⋆(x), S)]

=

∫
X

∫
S
p̃(x, S)ℓLM(f⋆(x), S)dSdx

=

∫
X

∫
S

∫
Y
p(x, y, S)ℓLM(f⋆(x), S)dydSdx

=

∫
X

∫
S

∫
Y
p(S|x, y)p(y|x)p(x)ℓLM(f⋆(x), S)dydSdx

=

∫
X

∫
Y
p(y|x)p(x)ℓ(f⋆(x), y)dydx

∫
S
p(S|x, y)dS

=

∫
X

∫
Y
ℓ(f⋆(x), y)p(x, y)dydx

= R(f⋆) = 0

(14)

where we used the equality ℓLM(f⋆(x), S) = ℓ(f⋆(x), y). This because when the true label y ∈ S, ℓLM(f⋆(x), S) =
I{y−f⋆(x)>0} + I{f⋆(x)−y>0} = ℓ(f⋆(x), y) = 0. Therefore f⋆ is the optimal model for RLM.

On the other hand, we prove that f⋆ is the sole optimal model for RLM by contradiction. Specifically, we assume that there
is at least one other model g that makes RLM(g) = 0 and predicts a label yg ̸= y for at least one instance x. Therefore, for
any S containing yg we have

ℓLM(g(x), S) = I{y−yg>0} + I{yg−y>0} = 0 (15)
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Nevertheless, the above equality could be always true on the condition that yg is invariably included in the interval S of x.
In the problem setting, there is no other false label that always occurs with true label in the interval S. Therefore, there is
one, and only one minimizer of RLM, which is the same as the minimizer f⋆ learned from fully labeled data. The proof is
completed.

B.2. Prove of Theorem 4.2

First, we prove that the optimal model f⋆LM learned from limiting method expected risk (11) is also the optimal model for
RψLM(f) as follows.

RψLM(f⋆LM) = Ep̃(x,S)[ψLM(f⋆LM(x), S)]

=

∫
X

∫
S
p̃(x, S)ψLM(f⋆LM(x), S)dSdx

=

∫
X

∫
S

∫
Y
p(x, y, S)ψLM(f⋆LM(x), S)dydSdx

=

∫
X

∫
S

∫
Y
p(S|x, y)p(y|x)p(x)ψLM(f⋆LM(x), S)dydSdx

=

∫
X

∫
Y
p(y|x)p(x)ℓLM(f⋆LM(x), y)dydx

∫
S
p(S|x, y)dS

=

∫
X

∫
Y
ℓLM(f⋆LM(x), y)p(x, y)dydx

= RLM(f⋆LM) = 0

(16)

where we used the equality ψLM(f⋆LM(x), S) = ℓLM(f⋆LM(x), y). This because when the true label y ∈ S,
ψLM(f⋆LM(x), S) = max(0, y − f⋆LM(x)) + max(0, f⋆LM(x) − y) = ℓLM(f⋆LM(x), y) = 0. Therefore f⋆LM is the op-
timal model for RψLM.

On the other hand, we prove that f⋆LM is the sole optimal model for RψLM by contradiction. Specifically, we assume that there
is at least one other model h that makes RψLM(h) = 0 and predicts a label yh ̸= y for at least one instance x. Therefore, for
any S containing yh we have

ψLM(h(x), S) = max(0, y − yh) + max(0, yh − y) = 0 (17)

Nevertheless, the above equality could be always true on the condition that yh is invariably included in the interval S of x.
In the problem setting, there is no other false label that always occurs with true label in the interval S. Therefore, there is
one, and only one minimizer of RψLM, which is the same as the minimizer f⋆LM learned from limiting method. By Theorem
4.1, f⋆LM is the same as the minimizer f⋆ learned from fully labeled data. The proof is completed.

C. Proof of Corollary 4.3
For any interval instance (x, S), We consider three possible cases of model prediction: the predicted value is on the left
side of the interval (f(x) < y), the predicted value is on the right side of the interval (f(x) > y) and the predicted value is
exactly inside the interval (y ≤ f(x) ≤ y).

If the predicted value of the model lie on the left side of the interval, the losses of AVGL MAE and the surrogate method are
as follows.

ℓavgl mae(f(x), S) =
1

2
(|f(x)− y|+ |f(x)− y)|) = 1

2
(y − f(x) + y − f(x)) =

y + y

2
− f(x),

ψLM(f(x), S) = max(0, y − f(x)) + max(0, f(x)− y) = y − f(x) + 0 = y − f(x).

If the predicted value of the model lie on the right side of the interval, the losses of AVGL MAE and the surrogate method
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are as follows.

ℓavgl mae(f(x), S) =
1

2
(|f(x)− y|+ |f(x)− y)|) = 1

2
(f(x)− y + f(x)− y) = f(x)−

y + y

2
,

ψLM(f(x), S) = max(0, y − f(x)) + max(0, f(x)− y) = 0 + f(x)− y = f(x)− y.

If the predicted value of the model lie in the interval, the losses of AVGL MAE and the surrogate method are as follows.

ℓavgl mae(f(x), S) =
1

2
(|f(x)− y|+ |f(x)− y)|) = 0

ψLM(f(x), S) = max(0, y − f(x)) + max(0, f(x)− y) = 0

We can see that the losses of AVGL MAE and the surrogate loss differ only in constant terms on the three possible cases. If
our training model uses gradient descent, the gradients of AVGL MAE and the surrogate method are the same on all three
possible cases.

D. Proof of Theorem 4.4
Before directly proving Theorem 4.4, we first introduce the following lemma.

Lemma D.1. Let f̂ be the empirical risk minimizer (i.e., f̂ = argminf∈F R̂(f)) and f⋆ be the true risk minimizer (i.e.,
f⋆ = argminf∈F R(f)), then the following inequality holds:

R(f̂)−R(f⋆) ≤ 2 sup
f∈F

∣∣∣R̂(f)−R(f)
∣∣∣ .

Proof. It is intuitive to obtain

R(f̂)−R(f⋆) ≤ R(f̂)− R̂(f̂) + R̂(f̂)−R(f⋆)

≤ R(f̂)− R̂(f̂) +R(f̂)−R(f⋆)

≤ 2 sup
f∈F

∣∣∣R̂(f)−R(f)
∣∣∣ ,

which completes the proof. The same proof has been provided in Mohri et al. (2012).

Recall that RψLM(f) is denoted by

RψLM(f) = Ep(x,y,y)
[
ψ(y − f(x)) + ψ(f(x)− y)

]
= Ep(x,y,y)

[
max(y − f(x), 0) + max(f(x)− y, 0)

]
= Ep(x,y,y)

[
max(y − f(x), 0)

]
+ Ep(x,y,y)

[
max(f(x)− y, 0)

]
= Rψ,lLM(f) +Rψ,rLM(f),

where we have introduced Rψ,lLM(f) = Ep(x,y,y)
[
max(y − f(x), 0)

]
and Rψ,rLM(f) = Ep(x,y,y)

[
max(f(x)− y, 0)

]
in the

last equality. In this way, we have

RψLM(f̂LM)−RψLM(f⋆) = RψLM(f̂LM)−RψLM(f⋆LM)

≤ 2 sup
f∈F

∣∣∣RψLM(f̂LM)−RψLM(f⋆LM)
∣∣∣

≤ 2 sup
f∈F

∣∣∣Rψ,lLM(f̂LM)−Rψ,lLM(f⋆LM)
∣∣∣+ 2 sup

f∈F

∣∣∣Rψ,rLM(f̂LM)−Rψ,rLM(f⋆LM)
∣∣∣

where the first equality holds, and the last inequality means that we can directly bound supf∈F

∣∣∣Rψ,lLM(f̂LM)−Rψ,lLM(f⋆LM)
∣∣∣

and supf∈F

∣∣∣Rψ,rLM(f̂LM)−Rψ,rLM(f⋆LM)
∣∣∣. Based on the assumptions introduced in Theorem 4.4 and using the discussion of
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Theorem 10.6 in Mohri et al. (2012), with probability 1− δ,

sup
f∈F

∣∣∣Rψ,lLM(f̂LM)−Rψ,lLM(f⋆LM)
∣∣∣ ≤M

√
2d log en

d

n
+M

√
log 2

δ

2n
,

sup
f∈F

∣∣∣Rψ,rLM(f̂LM)−Rψ,rLM(f⋆LM)
∣∣∣ ≤M ′

√
2d′ log en

d′

n
+M ′

√
log 2

δ

2n
.

Therefore, with probability 1− δ,

RψLM(f̂LM)−RψLM(f⋆) ≤ 2M

√
2d log en

d

n
+ 2M ′

√
2d′ log en

d′

n
+ 2(M +M ′)

√
log 4

δ

2n
,

which completes the proof of Theorem 4.4.

E. Additional Information of Experiments
E.1. Details of Datasets

In our experiments, we used AgeDB, IMDB-WIKI, STS-B and 6 UCI benchmark datasets including Abalone, Airfoil,
Auto-mpg, Housing, Concrete and Power-plant. For each dataset, we follow the data distribution proposed in Section 3.1 to
generate interval data. Then we randomly split each dataset into training, validation, and test sets by the proportions of 60%,
20%, and 20%, respectively. Here, we provide the detailed information of these datasets we used in our experiments.

AgeDB is a regression dataset on age prediction collected by (Moschoglou et al., 2017). It contains 16.4K face images with
a minimum age of 0 and a maximum age of 101. We generated the interval regression dataset AgeDB-Interval at q = 10, 20,
30, 40, and 50, respectively, and manually corrected the unreasonable intervals, such as intervals containing negative ages
and intervals containing too old ages (less than 0 and greater than 150).

IMDB-WIKI is a regression dataset about age prediction collected by (Rothe et al., 2018). It contains 523.0K face images,
and we filtered the images that do not match the criteria and finally kept 213.5K images, where the minimum age is 0 years
and the maximum age is 186 years. We generated the interval regression dataset IMDB-WIKI-Interval at q = 20, 30, and 40,
respectively, and manually corrected the unreasonable intervals, such as those containing negative ages and those containing
too old ages (less than 0 and greater than 200).

Semantic Textual Similarity Benchmark (STS-B) (Cer et al., 2017) is a collection of sentence pairs extracted from news
headlines, video and image captions, and natural language inference data. Each sentence pair is scored for similarity by
multiple annotators, and the final score is averaged as the final score. We created a dataset with 15.7K from (Yang et al.,
2021). We generated interval regression datasets for STS-B-Interval at q = 3.0, 3.5, 4.0, 4.5 and 5.0, respectively.

We conducted experiments on 6 UCI benchmark datasets including Abalone, Airfoil, Auto-mpg, Housing, Concrete and
Power-plant. All of these datasets can be downloaded from the UCI Machine Learning. Based on the span of the dataset
labels, we selected two larger q values to generate interval regression data for each dataset.

E.2. Evaluation Metrics

We describe in detail all the evaluation metrics we used in our experiments.

MSE. The mean squared error (MSE) is defined as 1
n

∑n
i=1(yi − ŷi)

2, where n denotes the number of samples, yi denotes
the ground truth value, and ŷi denotes the predicted value. MSE represents the averaged squared difference between the
ground truth and predicted values over all samples.

MAE. The mean absolute error (MAE) is defined as 1
n

∑n
i=1 |yi − ŷi|, where n denotes the number of samples, yi denotes

the ground truth value, and ŷi denotes the predicted value. MAE represents the averaged absolute difference between the
ground truth and predicted values over all samples.

GM. We use the Geometric Mean (GM) proposed by (Yang et al., 2021) as our evaluation method, and is defined as
(
∏n
i=1 ei)

1
n , where ei ≜ |yi − ŷi|. GM is using the geometric mean to describe the fairness of the model predictions rather

than the arithmetic mean.
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Table 5. Complete evaluation results on AgeDB
Metric MSE MAE GM

Approach q = 30 q = 40 q = 50 q = 60 q = 70 q = 30 q = 40 q = 50 q = 60 q = 70 q = 30 q = 40 q = 50 q = 60 q = 70

Supervised 102.71 7.82 5.22
(3.12) (0.14) (0.13)

LEFT

MAE 158.38 210.34 205.75 283.83 355.59 9.88 11.59 11.27 13.62 14.93 6.32 7.69 7.37 9.14 10.00
(6.71) (19.85) (22.04) (15.36) (105.16) (0.22) (0.61) (0.80) (0.62) (2.38) (0.13) (0.32) (0.67) (0.40) (1.77)

MSE 134.99 196.83 221.54 295.49 347.27 9.25 11.19 11.91 13.90 14.98 6.08 7.46 7.88 9.54 10.47
(4.03) (19.28) (18.04) (32.09) (80.77) (0.06) (0.71) (0.48) (1.24) (2.10) (0.04) (0.55) (0.39) (1.18) (1.83)

Huber 156.34 175.95 208.03 317.17 360.11 9.85 10.54 11.42 14.39 15.41 6.37 7.00 7.56 9.62 10.64
(17.95) (7.61) (18.36) (22.57) (53.12) (0.57) (0.19) (0.61) (0.37) (1.30) (0.33) (0.14) (0.59) (0.05) (1.16)

RIGHT

MAE 154.87 196.95 233.18 255.24 428.05 9.91 11.31 12.48 13.12 17.51 6.64 7.74 8.67 8.97 12.77
(13.12) (20.96) (26.58) (15.12) (41.79) (0.45) (0.58) (0.79) (0.40) (0.93) (0.39) (0.40) (0.65) (0.29) (0.94)

MSE 146.85 215.06 260.37 304.71 452.61 9.57 11.96 13.27 14.47 18.15 6.34 8.04 9.12 10.28 13.31
(24.39) (23.92) (15.32) (49.88) (45.87) (0.86) (0.66) (0.49) (1.29) (1.15) (0.87) (0.54) (0.34) (1.10) (1.26)

Huber 149.14 179.72 246.29 279.70 436.29 9.72 10.84 12.88 13.90 17.50 6.54 7.41 8.85 9.77 12.77
(7.74) (10.57) (16.02) (17.45) (78.90) (0.31) (0.37) (0.48) (0.44) (1.86) (0.19) (0.25) (0.63) (0.24) (1.79)

Middle

MAE 116.14 133.44 129.55 138.95 150.88 8.38 8.93 8.97 9.21 9.57 5.44 5.75 6.22 5.93 6.35
(2.57) (5.05) (1.37) (5.22) (3.66) (0.13) (0.15) (0.13) (0.11) (0.12) (0.04) (0.04) (0.72) (0.08) (0.11)

MSE 119.90 133.27 128.84 138.36 149.82 8.45 8.94 8.89 9.32 9.53 5.57 5.91 5.75 6.16 6.33
(6.23) (5.18) (3.01) (6.10) (5.28) (0.18) (0.22) (0.21) (0.27) (0.07) (0.18) (0.05) (0.10) (0.24) (0.03)

Huber 121.78 131.43 131.38 140.40 149.25 8.62 8.92 8.96 9.28 9.65 5.54 5.76 5.83 6.15 6.35
(4.75) (3.84) (2.20) (6.18) (0.70) (0.14) (0.15) (0.08) (0.19) (0.09) (0.07) (0.10) (0.05) (0.18) (0.12)

CRM 221.66 303.52 398.50 523.53 653.81 12.18 14.57 17.17 20.11 22.89 8.42 10.51 12.82 15.86 18.63
(1.45) (11.12) (14.80) (4.63) (17.30) (0.07) (0.30) (0.40) (0.08) (0.09) (0.07) (0.24) (0.44) (0.20) (0.21)

RANN 125.04 126.02 129.86 139.83 148.25 8.69 8.73 8.89 9.32 9.69 5.62 5.69 5.92 6.82 6.42
(1.09) (1.74) (1.00) (3.41) (2.33) (0.04) (0.07) (0.05) (0.22) (0.11) (0.12) (0.07) (0.03) (1.01) (0.09)

SINN 218.16 302.06 404.80 524.74 649.27 12.11 14.54 17.41 19.97 22.70 8.39 10.45 13.32 15.69 18.52
(1.53) (6.53) (2.70) (7.17) (2.94) (0.08) (0.24) (0.04) (0.13) (0.14) (0.14) (0.29) (0.13) (0.24) (0.25)

IN 118.85 133.86 138.58 147.95 152.34 8.46 9.00 9.15 9.53 9.65 5.75 5.88 5.94 6.23 6.30
(5.20) (6.46) (4.06) (2.82) (9.30) (0.17) (0.13) (0.09) (0.07) (0.21) (0.25) (0.09) (0.05) (0.16) (0.15)

LM 115.76 121.24 123.51 128.04 129.47 8.36 8.67 8.75 8.82 8.92 5.41 5.61 5.65 5.73 5.84
(1.64) (4.73) (2.78) (3.52) (7.15) (0.07) (0.03) (0.14) (0.16) (0.14) (0.03) (0.02) (0.13) (0.07) (0.11)

Table 6. All results on IMDB-WIKI.
Metrics MSE MAE GM

Approach q = 40 q = 50 q = 60 q = 70 q = 80 q = 40 q = 50 q = 60 q = 70 q = 80 q = 40 q = 50 q = 60 q = 70 q = 80

Supervised 123.82 8.38 5.40
(3.06) (0.07) (0.09)

LEFT

MAE 270.15 336.73 402.05 494.84 581.54 13.06 14.76 16.28 18.30 20.39 8.60 10.09 13.54 12.98 15.28
(15.14) (30.92) (39.13) (28.64) (19.81) (0.53) (0.77) (1.10) (0.82) (0.46) (0.63) (0.53) (2.46) (0.93) (0.69)

MSE 255.40 305.92 358.15 383.77 421.16 12.67 13.95 15.21 15.86 16.66 8.24 9.35 10.34 10.91 11.70
(13.45) (7.33) (25.61) (16.82) (94.72) (0.40) (0.60) (0.57) (0.36) (2.36) (0.43) (0.29) (0.42) (0.45) (2.36)

Huber 291.25 320.37 385.99 512.73 596.39 13.39 14.24 15.82 18.57 20.71 8.71 11.40 10.83 13.46 15.57
(14.98) (10.01) (41.84) (107.26) (46.08) (0.26) (0.42) (1.14) (2.54) (0.79) (0.17) (3.00) (1.07) (2.67) (0.47)

RIGHT

MAE 197.26 265.60 328.77 608.51 679.26 11.15 13.38 14.74 20.80 22.82 8.07 10.74 13.29 15.69 17.55
(17.24) (27.79) (63.99) (76.85) (80.82) (0.62) (0.75) (1.55) (1.50) (2.21) (0.55) (1.61) (3.84) (1.31) (3.04)

MSE 214.42 280.99 357.06 497.47 643.99 11.71 13.50 15.29 18.82 21.38 7.82 9.17 10.48 13.63 15.55
(10.40) (12.52) (64.59) (43.98) (85.80) (0.35) (0.35) (1.54) (1.05) (1.49) (0.31) (0.32) (1.18) (0.96) (1.24)

Huber 198.97 243.81 379.34 536.87 491.39 11.23 12.82 16.19 19.63 18.24 8.48 10.84 14.15 14.14 12.83
(6.47) (11.64) (45.10) (21.50) (103.54) (0.21) (0.31) (1.01) (0.67) (2.22) (0.16) (0.16) (2.10) (0.48) (1.88)

Middle

MAE 140.29 148.93 152.20 154.79 157.17 8.96 9.24 9.47 9.55 9.76 5.94 6.20 6.82 7.43 6.96
(6.68) (3.00) (9.59) (4.29) (5.96) (0.10) (0.08) (0.36) (0.21) (0.22) (0.38) (0.51) (0.06) (0.71) (0.61)

MSE 135.57 142.68 144.34 153.10 153.80 8.89 9.10 9.23 9.61 9.79 5.97 5.92 6.45 6.61 6.97
(2.77) (2.43) (2.60) (9.34) (3.57) (0.10) (0.06) (0.11) (0.30) (0.08) (0.54) (0.20) (0.70) (0.16) (0.43)

Huber 142.21 148.52 153.97 152.52 154.77 9.04 9.22 9.49 9.49 9.70 5.71 6.05 6.25 6.12 6.41
(6.33) (3.93) (2.31) (3.48) (3.58) (0.19) (0.15) (0.05) (0.12) (0.15) (0.13) (0.17) (0.24) (0.10) (0.14)

CRM 302.50 380.12 519.7 602.65 740.99 14.38 16.81 20.11 21.85 24.61 10.18 12.81 13.26 18.16 21.34
(12.53) (15.30) (10.23) (7.20) (19.56) (0.42) (0.28) (0.20) (0.16) (0.78) (0.56) (0.46) (0.44) (0.39) (0.56)

RANN 137.37 140.79 145.40 150.11 166.33 8.98 8.98 9.32 9.52 10.09 5.82 6.14 6.74 6.85 6.63
(3.09) (2.28) (2.20) (2.48) (4.02) (0.10) (0.12) (0.08) (0.07) (0.08) (0.12) (0.14) (0.18) (0.25 (0.10)

SINN 314.49 385.29 515.80 629.51 754.28 14.79 16.73 19.84 22.36 24.73 10.88 12.59 15.77 17.31 20.28
(4.08) (8.26) (9.95) (11.10) (15.20) (0.14) (0.19) (0.30) (0.23) (0.65) (0.23) (0.45) (0.55) (0.72) (0.49)

IN 147.09 148.71 152.66 155.73 156.04 9.25 9.28 9.51 9.59 9.79 6.45 7.08 6.60 6.90 7.61
(0.59) (1.01) (2.54) (5.67) (2.89) (0.04) (0.09) (0.10) (0.17) (0.06) (0.24) (0.36) (0.42) (0.70) (0.15)

LM 133.98 134.15 141.45 148.19 146.52 8.75 8.83 9.07 9.40 9.39 5.59 5.79 5.81 6.10 6.12
(1.57) (2.49) (2.32) (2.44) (5.00) (0.06) (0.07) (0.11) (0.08) (0.04) (0.08) (0.20) (0.07) (0.10) (0.14)

Pearson correlation. Pearson correlation is an evaluation of the linear relationship between the predicted value and the

ground truth value, and is defined as
∑n

i=1(yi−y)(ŷi−ŷ)√∑n
i=1(yi−y)2

√∑n
i=1(ŷi−ŷ)2

, where y denotes the average of all ground truth values, ŷ

denotes the average of all predicted values, i.e., y = 1
n

∑n
i=1 yi, ŷ = 1

n

∑n
i=1 ŷi.

F. Additional Results
In the experiment of main paper, we show some of the experiments on the three datasets AgeDB, IMDB-WIKI and STS-B.
Here, we provide the complete evaluation results on the nine used datasets, which include more evaluation metrics in
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Table 7. All results on STS-B.
Metrics MSE MAE Pearson

Approach q = 3.0 q = 3.5 q = 4.0 q = 4.5 q = 5.0 q = 3.0 q = 3.5 q = 4.0 q = 4.5 q = 5.0 q = 3.0 q = 3.5 q = 4.0 q = 4.5 q = 5.0

Supervised 1.16 0.87 0.71
(0.05) (0.02) (0.01)

LEFT

MAE 1.54 1.88 2.35 2.63 3.03 1.01 1.11 1.26 1.33 1.43 0.69 0.66 0.64 0.62 0.59
(0.06) (0.06) (0.15) (0.13) (0.06) (0.02) (0.02) (0.05) (0.03) (0.02) (0.01) (0.01) (0.01) (0.02) (0.01)

MSE 2.02 2.16 2.55 2.88 3.13 1.17 1.20 1.32 1.40 1.47 0.66 0.65 0.63 0.61 0.58
(0.08) (0.07) (0.12) (0.11) (0.12) (0.03) (0.02) (0.03) (0.03) (0.04) (0.01) (0.01) (0.01) (0.01) (0.03)

Huber 1.92 2.26 2.51 2.76 3.05 1.14 1.23 1.31 1.37 1.44 0.67 0.65 0.63 0.61 0.59
(0.13) (0.10) (0.14) (0.10) (0.15) (0.04) (0.03) (0.05) (0.03) (0.04) (0.01) (0.01) (0.01) (0.01) (0.02)

RIGHT

MAE 1.75 1.87 2.09 2.05 2.31 1.06 1.12 1.17 1.16 1.23 0.68 0.63 0.62 0.55 0.55
(0.14) (0.19) (0.18) (0.28) (0.40) (0.04) (0.07) (0.05) (0.08) (0.10) (0.01) (0.05) (0.02) (0.09) (0.05)

MSE 1.53 1.74 1.78 2.00 2.26 1.00 1.06 1.08 1.14 1.21 0.63 0.60 0.56 0.53 0.52
(0.05) (0.13) (0.19) (0.17) (0.16) (0.02) (0.03) (0.06) (0.05) (0.03) (0.01) (0.02) (0.05) (0.02) (0.02)

Huber 1.56 1.77 1.86 1.91 2.39 1.01 1.07 1.10 1.12 1.24 0.64 0.62 0.58 0.56 0.52
(0.08) (0.11) (0.27) (0.15) (0.08) (0.03) (0.04) (0.08) (0.05) (0.03) (0.02) (0.01) (0.02) (0.02) (0.02)

Middle

MAE 1.18 1.23 1.27 1.31 1.41 0.88 0.91 0.92 0.94 0.98 0.69 0.66 0.66 0.64 0.62
(0.03) (0.05) (0.07) (0.03) (0.05) (0.01) (0.02) (0.03) (0.01) (0.02) (0.01) (0.02) (0.01) (0.01) (0.02)

MSE 1.31 1.33 1.41 1.41 1.49 0.94 0.95 0.98 0.99 1.02 0.65 0.64 0.62 0.61 0.59
(0.02) (0.05) (0.04) (0.01) (0.03) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01)

Huber 1.37 1.30 1.37 1.39 1.48 0.96 0.94 0.97 0.97 1.01 0.64 0.64 0.62 0.62 0.59
(0.16) (0.04) (0.08) (0.02) (0.03) (0.06) (0.02) (0.03) (0.01) (0.01) (0.03) (0.01) (0.01) (0.01) (0.01)

CRM 1.36 1.50 1.53 1.52 1.56 0.96 1.00 1.02 1.02 1.05 0.64 0.60 0.59 0.58 0.56
(0.02) (0.10) (0.08) (0.06) (0.06) (0.01) (0.04) (0.03) (0.02) (0.03) (0.01) (0.03) (0.03) (0.03) (0.02)

RANN 1.44 1.52 1.55 1.63 1.62 0.98 1.01 1.02 1.05 1.06 0.59 0.57 0.55 0.52 0.51
(0.05) (0.04) (0.06) (0.06) (0.06) (0.02) (0.02) (0.03) (0.02) (0.03) (0.01) (0.02) (0.02) (0.02) (0.02)

SINN 1.37 1.50 1.50 1.54 1.61 0.96 1.00 1.01 1.03 1.06 0.64 0.60 0.60 0.58 0.54
(0.04) (0.05) (0.10) (0.05) (0.09) (0.01) (0.01) (0.03) (0.02) (0.03) (0.01) (0.01) (0.02) (0.01) (0.03)

IN 1.26 1.39 1.37 1.37 1.41 0.91 0.96 0.96 0.96 0.98 0.67 0.62 0.62 0.62 0.61
(0.12) (0.21) (0.14) (0.08) (0.07) (0.04) (0.06) (0.04) (0.03) (0.03) (0.04) (0.06) (0.05) (0.01) (0.01)

LM 1.19 1.22 1.27 1.31 1.37 0.88 0.90 0.93 0.94 0.96 0.69 0.66 0.65 0.64 0.62
(0.04) (0.02) (0.04) (0.04) (0.05) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02)

addition to the results in the main paper.

F.1. Complete Results on AgeDB

We show the complete results of AgeDB in Table 5. In the table, we show the test performance (mean and std) of each
method with ResNet-50, evaluated using MSE, MAE and GM. We repeat the sampling-and-training process 3 times. The
best performance is highlighted in bold. In addition, Our Vs Sup means the mean error between our proposed method and
the supervised method (Our - Supervised). Specifically, we use red color to indicate that our method is weaker than the
supervised method and green color to indicate that our method is better than the supervised method. As the table shows, our
proposed method LM has significant advantages in all evaluation metrics.

F.2. Complete Results on IMDB-WIKI

We show the complete results of IMDB-WIKI in Table 6. Similar to AgeDB, we evaluate each method using MSE, MAE
and GM. We repeat the sampling-and-training process 3 times. It is worth noting that we chose different q values for AgeDB
and IMDB-WIKI, although both are age predictions. IMDB-WIKI has a larger training set, and we want to test our method
on a large dataset in a harsh environment (large q). As shown in the table 6, our proposed method LM has significant
advantages in all evaluation metrics. Even in the case of q = 80, the performance does not degrade excessively after learning
from a large number of training sets.

F.3. Complete Results on STS-B

We show the complete results of STS-B in Table 7. In the table, we show the test performance (mean and std) of each
method with BiLSTM + GloVe word embeddings baseline, evaluated using MSE, MAE and Pearson. Unlike AgeDB and
IMDB-WIKI, STS-B has a smaller span of labels, so we can only choose smaller q values to generate interval data. As
shown in the table, the difference between methods is not significant when q is small. As q keeps increasing, all the methods
tend to decrease in performance, while our method decreases more slowly and has a significant advantage at large q.

F.4. Complete Results on UCI Benchmark Datasets

Table 10 and Table 11 show the mean squared error with standard deviation on the test set using the MLP model and
the linear model, respectively. We evaluate each method using MSE, MAE, Pearson correlation and GM. We repeat the
sampling-and-training process 5 times. As the table shows, our proposed method LM has significant advantages in all
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Table 8. Comparison of MMIT and LM with MLP model
Metrics MSE MAE Pearson GM

Approach Linear Square LM MLP Linear Square LM MLP Linear Square LM MLP Linear Square LM MLP

Abalone
q=30 6.41 6.77 4.66 1.88 1.98 1.50 0.63 0.63 0.74 1.17 1.28 0.91

(0.31) (0.82) (0.49) (0.03) (0.15) (0.05) (0.02) (0.04) (0.02) (0.03) (0.09) (0.07)

q=40 7.03 6.99 4.81 2.01 2.02 1.53 0.61 0.62 0.75 1.36 1.37 0.90
(0.79) (0.69) (0.42) (0.17) (0.12) (0.08) (0.02) (0.01) (0.01) (0.13) (0.13) (0.04)

Airfoil
q=30 18.74 17.98 16.72 3.33 3.25 3.09 0.80 0.80 0.81 2.15 2.03 1.93

(3.41) (1.70) (3.42) (0.30) (0.14) (0.35) (0.05) (0.04) (0.04) (0.22) (0.12) (0.27)

q=40 23.61 19.57 18.31 3.72 3.46 3.24 0.74 0.78 0.80 2.38 2.25 2.08
(3.20) (1.98) (2.63) (0.26) (0.16) (0.27) (0.03) (0.02) (0.03) (0.25) (0.16) (0.22)

Auto-mpg
q=30 17.82 15.51 9.63 3.16 2.91 2.19 0.84 0.87 0.92 1.95 1.81 1.36

(2.72) (2.23) (1.62) (0.25) (0.25) (0.18) (0.04) (0.01) (0.01) (0.23) (0.25) (0.16)

q=40 19.07 25.29 11.11 3.24 3.78 2.31 0.85 0.80 0.92 2.00 2.50 1.40
(4.45) (5.37) (3.03) (0.36) (0.44) (0.30) (0.03) (0.05) (0.01) (0.25) (0.38) (0.12)

Housing
q=30 32.85 32.00 22.13 3.94 3.78 3.47 0.80 0.82 0.86 2.36 2.31 2.08

(8.39) (9.79) (3.71) (0.32) (0.38) (0.57) (0.05) (0.05) (0.04) (0.12) (0.13) (0.32)

q=40 30.67 31.79 24.53 3.99 4.11 3.49 0.82 0.81 0.85 2.56 2.61 2.22
(5.06) (5.00) (8.00) (0.49) (0.38) (0.48) (0.04) (0.04) (0.05) (0.51) (0.32) (0.31)

Concrete
q=70 106.74 105.08 58.45 8.02 8.00 5.86 0.80 0.80 0.89 5.21 5.16 3.68

(8.94) (14.70) (3.52) (0.33) (0.53) (0.41) (0.03) (0.02) (0.01) (0.26) (0.50) (0.32)

q=80 107.80 109.25 59.47 8.01 8.03 5.71 0.80 0.80 0.89 5.25 5.24 3.57
(13.61) (11.09) (7.81) (0.41) (0.51) (0.34) (0.04) (0.02) (0.02) (0.25) (0.47) (0.27)

Table 9. Comparison of AVGL MSE and AVGL MAE
Metric MSE MAE Pearson GM

Approach AVGL MSE AVGL MAE AVGL MSE AVGL MAE AVGL MSE AVGL MAE AVGL MSE AVGL MAE

Abalone
q = 30

6.41 4.66 1.94 1.50 0.73 0.74 1.04 0.91
(0.43) (0.49) (0.06) (0.05) (0.03) (0.02) (0.05) (0.07)

q = 40
7.77 4.81 1.96 1.53 0.73 0.75 1.18 0.90

(0.68) (0.42) (0.08) (0.08) (0.01) (0.01) (0.05) (0.04)

Airfoil
q = 30

19.24 16.72 3.41 3.09 0.78 0.81 2.21 1.93
(1.70) (3.42) (0.24) (0.35) (0.04) (0.04) (0.24) (0.27)

q = 40
24.37 18.31 3.99 3.24 0.77 0.80 2.74 2.08
(1.12) (2.63) (0.11) (0.27) (0.01) (0.03) (0.21) (0.22)

Auto-mpg
q = 30

11.63 9.63 2.50 2.19 0.92 0.92 1.75 1.36
(1.49) (1.62) (0.29) (0.18) (0.01) (0.01) (0.17) (0.16)

q = 40
20.08 11.11 3.43 2.31 0.91 0.92 2.42 1.40
(5.51) (3.03) (0.49) (0.30) (0.02) (0.01) (0.43) (0.12)

Housing
q = 30

25.69 22.13 3.44 3.47 0.85 0.86 2.27 2.08
(10.69) (3.71) (0.43) (0.57) (0.05) (0.04) (0.16) (0.32)

q = 40
31.74 24.53 4.07 3.49 0.83 0.85 2.55 2.22
(4.97) (8.00) (0.39) (0.48) (0.03) (0.05) (0.43) (0.31)

Concrete
q = 70

69.04 58.45 6.55 5.86 0.88 0.89 4.26 3.68
(7.92) (3.52) (0.34) (0.41) (0.02) (0.01) (0.38) (0.32)

q = 80
86.05 59.47 7.29 5.71 0.86 0.89 5.02 3.57
(7.66) (7.81) (0.26) (0.34) (0.03) (0.02) (0.14) (0.27)

Power-plant
q = 60

31.70 23.54 4.52 3.84 0.95 0.96 3.26 2.62
(2.89) (1.41) (0.19) (0.11) (0.00) (0.00) (0.19) (0.03)

q = 70
47.59 24.91 5.55 3.96 0.95 0.96 4.07 2.76
(2.86) (0.60) (0.13) (0.05) (0.00) (0.00) (0.29) (0.14)

evaluation metrics. In particular, by comparing the experimental results reported in Table 10 and Table 11 we can observe
that training with the MLP model is generally better than training with the linear model. This observation is consistent with
the common knowledge that MLP models are more powerful than linear models. It is worth noting that we also compare
with the maximum margin interval trees method (MMIT(Drouin et al., 2017)), which is similar to our limiting method. They
both want to limit the predicted values to the interval. Table 8 shows the results of our method with the MLP model and
MMIT with linear (Linear) and squared (Square) hinge loss variants.

F.5. Comparison between AVGL MSE and AVGL MAE

Table 9 shows the comparison between AVGL MSE and AVGL MAE on the used UCI benchmark datasets with the MLP
model, where AVGL MSE and AVGL MAE substitute the regression loss function in the average loss method with MSE
and MAE, respectively. As shown in the table, AVGL MAE is significantly better than AVGL MSE.
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Table 10. Complete evaluation results on UCI benchmark datasets with MLP model
Datasets Metrese q Supervised Leftmost Rightmost Middlemost CRM RANN SINN IN LMMSE MAE Huber MSE MAE Huber MSE MAE Huber

Abalone

MSE
30 65.33 55.73 59.82 7.99 8.08 8.03 6.38 5.45 6.01 6.51 6.67 6.44 5.61 4.66

4.57 (2.09) (1.79) (3.07) (0.70) (0.71) (0.71) (0.44) (0.43) (0.44) (0.52) (0.48) (0.44) (0.40) (0.49)

40 (0.50) 90.12 85.71 89.27 8.13 8.23 8.21 7.77 7.81 7.79 7.85 7.74 7.85 7.84 4.81
(3.16) (6.28) (4.47) (0.67) (0.63) (0.64) (0.68) (0.76) (0.76) (0.81) (0.64) (0.81) (0.75) (0.42)

MAE
30 7.60 6.96 7.21 2.01 2.11 2.10 1.94 1.77 1.91 1.94 1.91 1.94 1.86 1.50

1.46 (0.11) (0.13) (0.16) (0.08) (0.08) (0.08) (0.06) (0.08) (0.07) (0.07) (0.07) (0.07) (0.05) (0.05)

40 (0.04) 9.03 8.80 9.03 2.02 2.12 2.11 1.96 1.95 1.96 1.99 2.02 1.99 1.97 1.53
(0.15) (0.32) (0.18) (0.08) (0.07) (0.07) (0.08) (0.06) (0.06) (0.07) (0.08) (0.07) (0.06) (0.08)

Pearson
30 0.73 0.72 0.73 0.71 0.71 0.71 0.73 0.72 0.72 0.73 0.72 0.73 0.72 0.74

0.75 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.03) (0.02) (0.02) (0.02)

40 (0.02) 0.72 0.66 0.69 0.72 0.71 0.71 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.75
(0.02) (0.03) (0.03) (0.01) (0.03) (0.02) (0.01) (0.01) (0.01) (0.00) (0.00) (0.00) (0.01) (0.01)

GM
30 7.18 6.51 6.79 1.18 1.24 1.25 1.04 1.06 1.03 1.14 1.19 1.05 1.04 0.91

0.85 (0.11) (0.12) (0.16) (0.05) (0.05) (0.05) (0.05) (0.08) (0.05) (0.15) (0.18) (0.05) (0.03) (0.07)

40 (0.03) 8.62 8.31 8.56 1.18 1.28 1.28 1.18 1.14 1.18 1.20 1.20 1.20 1.18 0.90
(0.17) (0.27) (0.15) (0.06) (0.04) (0.04) (0.05) (0.04) (0.05) (0.09) (0.07) (0.09) (0.06) (0.04)

Airfoil

MSE
30 122.58 89.68 93.90 105.20 79.28 85.16 19.24 18.71 18.24 17.40 17.30 17.35 19.20 16.72

16.27 (89.68) (5.26) (8.01) (9.19) (7.75) (14.44) (1.70) (1.16) (2.02) (3.07) (2.86) (3.13) (1.30) (3.42)

40 (3.23) 200.70 164.64 183.30 134.36 115.92 120.34 24.32 20.43 20.99 23.12 22.98 23.08 19.37 18.31
(13.62) (9.28) (23.42) (13.66) (5.56) (7.57) (1.16) (1.87) (1.89) (2.30) (1.92) (2.38) (2.51) (2.63)

MAE
30 9.81 8.50 8.71 8.00 7.78 7.98 3.41 3.30 3.28 3.26 3.23 3.26 3.33 3.09

3.02 (0.52) (0.39) (0.62) (0.26) (0.38) (0.51) (0.24) (0.15) (0.25) (0.33) (0.32) (0.32) (0.16) (0.35)

40 (0.33) 11.93 11.96 12.18 8.93 9.24 9.29 3.97 3.54 3.61 3.85 3.85 3.85 3.47 3.24
(0.31) (0.38) (0.60) (0.64) (0.43) (0.46) (0.12) (0.13) (0.20) (0.22) (0.22) (0.21) (0.26) (0.27)

Pearson
30 0.78 0.78 0.78 0.78 0.77 0.79 0.79 0.78 0.79 0.81 0.81 0.80 0.78 0.81

0.81 (0.04) (0.04) (0.04) (0.04) (0.03) (0.05) (0.04) (0.03) (0.03) (0.05) (0.05) (0.05) (0.04) (0.04)

40 (0.05) 0.77 0.75 0.76 0.76 0.76 0.77 0.78 0.78 0.79 0.79 0.79 0.79 0.80 0.80
(0.02) (0.03) (0.03) (0.02) (0.02) (0.02) (0.01) (0.03) (0.02) 0.02 0.02 0.02 (0.04) (0.03)

GM
30 6.59 7.29 7.23 5.42 5.42 5.43 2.17 2.12 2.06 2.11 2.12 2.11 2.21 1.93

1.90 (0.35) (0.60) (0.48) (0.73) (0.37) (0.33) (0.27) (0.19) (0.24) (0.21) (0.25) (0.20) (0.28) (0.27)

40 (0.22) 8.98 8.66 8.59 5.60 6.31 6.44 2.73 2.46 2.47 2.66 2.75 2.64 2.26 2.08
(0.30) (0.84) (0.91) (0.35) (1.01) (0.89) (0.21) (0.07) (0.22) (0.09) (0.25) (0.12) (0.19) (0.22)

Auto-mpg

MSE
30 76.60 34.99 50.43 51.52 30.41 24.06 11.59 11.69 11.52 11.68 23.60 11.67 11.60 9.63

9.73 (12.72) (12.83) (18.98) (20.31) (11.25) (7.60) (1.42) (1.69) (1.17) (1.25) (3.86) (1.28) (1.23) (1.62)

40 (1.95) 145.11 93.80 92.64 119.54 48.03 61.49 20.14 18.30 19.25 21.11 34.57 21.08 18.23 11.11
(19.52) (23.82) (32.76) (20.53) (15.25) (28.88) (5.44) (4.52) (4.69) (6.18) (8.40) (6.30) (4.97) (3.03)

MAE
30 7.97 4.47 5.98 6.33 4.47 3.89 2.52 2.51 2.48 2.50 3.76 2.50 2.50 2.19

2.16 (0.76) (1.03) (1.34) (1.63) (0.94) (0.78) (0.23) (0.18) (0.18) (0.19) (0.38) (0.19) (0.17) (0.18)

40 (0.22) 11.59 8.09 8.16 10.91 5.78 6.68 3.46 3.15 3.18 3.39 4.62 3.36 3.24 2.31
(1.02) (1.16) (1.84) (1.75) (1.03) (1.92) (0.48) (0.37) (0.43) (0.50) (0.59) (0.52) (0.41) (0.30)

Pearson
30 0.91 0.90 0.90 0.91 0.90 0.91 0.92 0.91 0.91 0.92 0.79 0.92 0.90 0.92

0.92 (0.02) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.05) (0.01) (0.01) (0.01)

40 (0.02) 0.91 0.90 0.91 0.89 0.87 0.87 0.92 0.91 0.92 0.91 0.72 0.91 0.91 0.92
(0.02) (0.03) (0.03) (0.01) (0.04) (0.04) (0.02) (0.02) (0.02) (0.02) (0.07) (0.02) (0.02) (0.01)

GM
30 6.72 2.82 5.05 4.69 3.17 2.60 1.75 1.60 1.57 1.60 2.55 1.57 1.60 1.36

1.31 (0.27) (0.83) (2.15) (1.27) (0.89) (0.75) (0.16) (0.18) (0.14) (0.14) (0.54) (0.18) (0.17) (0.16)

40 (0.13) 8.45 6.68 7.19 8.87 4.38 4.92 2.39 1.90 1.92 2.37 3.31 2.11 2.10 1.40
(1.50) (1.87) (2.52) (1.08) (0.99) (1.45) (0.51) (0.20) (0.20) (0.59) (0.40) (0.42) (0.34) (0.12)

Housing

MSE
30 55.46 52.66 52.79 75.37 78.40 83.83 27.49 26.24 25.07 27.58 25.45 26.32 25.06 22.13

16.76 (8.52) (15.47) (7.06) (27.20) (8.87) (15.28) (11.60) (8.20) (5.82) (6.80) (8.95) (10.12) (7.59) (3.71)

40 (6.28) 88.85 101.70 83.96 109.01 124.34 124.14 30.70 35.84 32.63 32.66 31.15 34.92 33.00 24.53
(22.73) (13.36) (15.88) (32.28) (12.16) (12.18) (4.04) (2.72) (4.86) (4.47) (5.46) (4.47) (5.71) (8.00)

MAE
30 6.02 5.61 5.49 6.88 7.63 8.31 3.52 3.54 3.50 3.52 3.51 3.63 3.56 3.47

2.77 (0.65) (1.06) (0.61) (0.54) (0.33) (0.85) (0.36) (0.45) (0.27) (0.50) (0.56) (0.66) (0.43) (0.57)

40 (0.44) 7.15 7.46 7.17 7.87 8.27 8.26 4.06 4.41 4.11 4.14 3.95 4.25 4.19 3.49
(0.66) (0.53) (0.62) (0.92) (0.42) (0.42) (0.45) (0.28) (0.31) (0.45) (0.48) (0.39) (0.46) (0.48)

Pearson
30 0.84 0.83 0.83 0.84 0.83 0.81 0.85 0.85 0.85 0.84 0.85 0.85 0.85 0.86

0.91 (0.04) (0.03) (0.04) (0.06) (0.05) (0.04) (0.04) (0.04) (0.03) (0.05) (0.06) (0.06) (0.05) (0.04)

40 (0.00) 0.84 0.76 0.80 0.77 0.72 0.74 0.82 0.78 0.82 0.81 0.83 0.81 0.81 0.85
(0.04) (0.02) (0.03) (0.05) (0.04) (0.05) (0.03) (0.03) (0.04) (0.03) (0.03) (0.03) (0.06) (0.05)

GM
30 4.00 3.51 3.46 4.85 5.04 5.03 2.72 2.19 2.22 2.20 2.25 2.12 2.16 2.08

1.73 (0.50) (0.90) (0.62) (0.54) (0.41) (0.44) (0.11) (0.24) (0.15) (0.28) (0.31) (0.24) (0.21) (0.32)

40 (0.21) 4.92 4.78 4.69 5.04 5.06 4.93 2.41 2.67 2.41 2.74 2.42 2.49 2.60 2.22
(0.89) (0.37) (0.68) (0.66) (0.60) (0.69) (0.29) (0.30) (0.27) (0.54) (0.49) (0.29) (0.60) (0.31)

Concrete

MSE
70 283.72 291.78 296.00 278.35 278.30 278.26 70.94 72.84 73.01 74.68 74.16 71.68 67.22 58.45

43.53 (13.93) (17.85) (7.37) (18.24) (18.16) (18.18) (8.19) (7.78) (6.65) (5.80) (4.23) (5.84) (5.82) (3.52)

80 (1.00) 420.44 424.03 423.70 284.03 284.04 284.02 88.26 95.09 86.54 86.40 80.77 83.38 92.48 59.47
(68.96) (57.64) (40.60) (15.41) (15.41) (15.43) (6.35) (8.56) (13.11) (3.13) (2.78) (3.13) (16.38) (7.81)

MAE
70 13.93 14.07 14.42 13.38 13.38 13.38 6.70 6.81 6.83 6.78 6.51 6.77 6.38 5.86

4.97 (1.04) (0.99) (0.64) (0.49) (0.49) (0.49) (0.54) (0.25) (0.32) (0.81) (0.82) (0.82) (0.34) (0.41)

80 (0.14) 17.74 17.67 17.93 13.47 13.47 13.47 7.42 7.62 7.35 7.40 7.26 7.48 7.49 5.71
(1.55) (1.48) (1.26) (0.38) (0.38) (0.38) (0.46) (0.89) (0.61) (0.68) (0.33) (0.47) (0.70) (0.34)

Pearson
70 0.86 0.84 0.86 0.86 0.82 0.85 0.88 0.88 0.87 0.87 0.88 0.87 0.88 0.89

0.92 (0.04) (0.04) (0.02) (0.03) (0.05) (0.03) (0.03) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

80 (0.00) 0.84 0.84 0.84 0.85 0.78 0.79 0.86 0.84 0.85 0.85 0.48 0.85 0.84 0.89
(0.03) (0.03) (0.04) (0.02) (0.04) (0.06) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.02)

GM
70 9.77 10.37 10.17 8.92 8.95 8.95 4.44 4.38 4.50 4.56 4.24 4.42 3.97 3.68

3.16 (1.24) (1.41) (0.94) (0.47) (0.49) (0.48) (0.38) (0.36) (0.30) (0.30) (0.34) (0.36) 0.14 (0.32)

80 (0.27) 13.14 13.14 13.49 9.33 9.34 9.34 5.16 5.09 4.90 4.96 4.91 5.01 5.08 3.57
(1.51) (1.10) (0.66) (0.54) (0.56) (0.55) (0.62) (0.36) (0.54) (0.37) (0.27) (0.38) (0.82) (0.27)

Power-plant

MSE
60 264.98 201.00 245.19 262.00 246.15 268.46 31.96 28.95 29.38 32.85 31.30 32.66 29.36 23.54

22.23 (49.48) (51.72) (35.67) (107.86) (69.44) (53.87) (2.69) (3.03) (3.76) (3.78) (2.84) (3.95) (3.41) (1.41)

70 (0.96) 279.48 316.33 337.53 280.29 269.03 293.51 48.82 39.41 40.83 48.53 47.62 48.62 40.04 24.91
(3.14) (72.10) (61.63) (76.53) (81.76) (2.20) (1.53) (2.76) (3.41) (1.20) (2.37) (1.22) (3.13) (0.60)

MAE
60 14.48 12.55 14.08 13.92 13.98 14.60 4.55 4.30 4.36 4.59 4.49 4.58 4.37 3.84

3.71 (0.10) (1.58) (0.34) (3.31) (2.39) (1.43) (0.18) (0.21) (0.32) (0.28) (0.21) (0.31) (0.29) (0.11)

70 (0.06) 14.29 14.48 14.70 14.17 14.70 14.99 5.59 4.94 5.13 5.62 5.51 5.62 5.01 3.96
(0.16) (1.51) (0.94) (1.85) (2.56) (0.10) (0.14) (0.18) (0.20) (0.08) (0.10) (0.07) (0.16) (0.05)

Pearson
60 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96

0.96 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

70 (0.00) 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.96
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

GM
60 10.43 9.24 9.75 11.81 10.91 11.63 3.19 3.00 2.98 3.17 3.19 3.10 3.05 2.62

2.57 (1.26) (0.89) (0.18) (2.43) (1.87) (0.91) (0.14) (0.23) (0.17) (0.24) (0.14) (0.24) (0.11) (0.03)

70 (0.14) 9.84 9.45 9.65 10.82 11.35 12.80 3.95 3.56 3.56 3.85 3.89 3.87 3.52 2.76
(0.30) (0.55) (0.29) (2.78) (1.92) (2.52) (0.13) (0.07) (0.06) (0.08) (0.18) (0.08) (0.05) (0.14)
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Table 11. Complete evaluation results on UCI benchmark datasets with Linear model
Datasets Metrese q Supervised Leftmost Rightmost Middlemost CRM RANN SINN IN LMMSE MAE Huber MSE MAE Huber MSE MAE Huber

Abalone

MSE
30 67.82 60.42 64.36 8.11 8.26 8.29 6.63 5.65 6.13 6.65 6.70 6.65 5.70 4.92

4.87 (3.53) (4.52) (3.58) (0.68) (0.59) (0.59) (0.44) (0.48) (0.44) (0.45) (0.45) (0.45) (0.49) (0.50)

40 (0.51) 93.18 92.28 93.58 8.33 8.33 8.37 7.80 7.80 7.77 8.02 7.54 8.02 8.44 5.05
(6.04) (5.87) (6.28) (0.64) (0.56) (0.56) (0.80) (0.76) (0.72) (0.84) (0.65) (0.84) (0.92) (0.50)

MAE
30 7.75 7.25 7.52 2.09 2.17 2.18 1.90 1.83 1.91 1.91 1.90 1.91 1.86 1.58

1.57 (0.20) (0.28) (0.15) (0.08) (0.07) (0.07) (0.06) (0.08) (0.06) (0.06) (0.08) (0.06) (0.08) (0.06)

40 (0.06) 9.17 9.17 9.22 2.11 2.15 2.16 1.95 1.93 1.94 1.93 1.94 1.93 1.94 1.59
(0.28) (0.33) (0.33) (0.07) (0.05) (0.05) (0.08) (0.08) (0.08) (0.10) (0.09) (0.10) (0.12) (0.09)

Pearson
30 0.72 0.71 0.71 0.71 0.70 0.70 0.72 0.71 0.71 0.72 0.72 0.72 0.72 0.73

0.73 (0.03) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03) (0.02) (0.03) (0.02) (0.02)

40 (0.02) 0.72 0.71 0.72 0.71 0.70 0.71 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73
(0.02) (0.03) (0.02) (0.01) (0.03) (0.02) (0.00) (0.01) (0.01) (0.00) (0.00) (0.00) (0.01) (0.00)

GM
30 7.33 6.81 7.08 1.25 1.25 1.26 1.06 1.07 1.06 1.17 1.10 1.07 1.29 0.96

0.93 (0.19) (0.27) (0.14) (0.03) (0.04) (0.04) (0.05) (0.08) (0.04) (0.20) (0.21) (0.05) (0.07) (0.05)

40 (0.04) 8.72 8.74 8.77 1.26 1.24 1.25 1.16 1.12 1.13 1.04 1.16 1.04 1.22 0.97
(0.23) (0.29) (0.27) (0.04) (0.05) (0.06) (0.05) (0.06) (0.06) (0.03) (0.06) (0.03) (0.05) (0.06)

Airfoil

MSE
30 40.18 60.30 59.22 44.64 63.92 58.96 23.95 23.68 23.86 24.01 23.99 24.01 23.71 23.46

23.17 (3.45) (4.79) (4.03) (5.63) (8.93) (9.98) (2.42) (1.80) (2.26) (2.44) (2.11) (2.44) (1.97) (2.08)

40 (1.75) 59.07 121.62 122.79 58.30 72.40 68.87 28.02 25.28 25.81 28.23 28.08 28.23 25.48 24.61
(3.84) (22.47) (24.81) (8.16) (24.28) (20.67) (0.79) (1.52) (1.86) (0.80) (0.48) (0.80) (1.70) (1.60)

MAE
30 4.91 6.21 6.16 5.36 6.55 6.23 3.84 3.79 3.84 3.85 3.86 3.85 3.78 3.74

3.76 (0.29) (0.31) (0.27) (0.17) (0.53) (0.57) (0.27) (0.21) (0.24) (0.28) (0.24) (0.28) (0.22) (0.24)

40 (0.22) 6.37 9.15 9.16 6.15 6.80 6.55 4.27 4.00 4.03 4.30 4.30 4.30 4.01 3.86
(0.28) (0.98) (1.07) (0.53) (1.39) (1.13) (0.10) (0.14) (0.18) (0.10) (0.08) (0.10) (0.17) (0.19)

Pearson
30 0.71 0.71 0.71 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72

0.72 (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

40 (0.04) 0.72 0.71 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.73
(0.03) (0.04) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

GM
30 3.17 4.14 4.08 3.64 5.23 4.53 2.52 2.44 2.47 2.54 2.47 2.53 2.47 2.37

2.50 (0.45) (0.37) (0.39) (0.15) (1.19) (0.51) (0.28) (0.21) (0.21) (0.29) (0.25) (0.30) (0.24) (0.21)

40 (0.16) 4.44 6.25 6.28 4.02 4.50 4.20 2.97 2.76 2.69 3.00 3.03 3.05 2.75 2.54
(0.30) (0.80) (0.82) (0.50) (1.05) (0.73) (0.08) (0.18) (0.22) (0.13) (0.13) (0.22) (0.19) (0.21)

Auto-mpg

MSE
30 93.36 45.46 45.90 67.14 30.94 26.01 13.02 12.46 12.50 12.68 14.56 12.84 12.63 11.54

11.11 (5.38) (12.61) (9.43) (25.25) (11.27) (4.50) (1.85) (1.94) (2.09) (1.95) (1.77) (1.92) (2.09) (1.48)

40 (1.29) 153.90 85.61 94.23 116.87 45.75 40.00 21.57 18.20 19.07 20.67 23.98 21.04 18.22 12.39
(23.12) (17.01) (24.25) (30.73) (21.05) (21.19) (5.47) (5.34) (5.41) 6.31 6.07 6.22 4.94 (2.70)

MAE
30 8.87 5.23 5.27 7.65 4.70 4.13 2.67 2.57 2.52 2.55 2.87 2.57 2.56 2.43

2.44 (0.24) (1.04) (0.65) (1.89) (1.15) (0.49) (0.25) (0.28) (0.30) (0.26) (0.27) (0.28) (0.28) (0.21)

40 (0.15) 11.69 7.18 7.88 11.06 5.79 5.25 3.64 2.99 3.10 3.29 3.83 3.27 2.98 2.48
(1.19) (0.77) (1.30) (2.18) (1.80) (1.66) (0.45) (0.38) (0.42) (0.47) (0.49) (0.48) (0.33) (0.33)

Pearson
30 0.89 0.89 0.89 0.90 0.89 0.90 0.90 0.90 0.90 0.91 0.90 0.91 0.90 0.91

0.91 (0.02) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02)

40 (0.01) 0.89 0.90 0.89 0.89 0.88 0.88 0.90 0.90 0.90 0.90 0.89 0.90 0.90 0.91
(0.02) (0.02) (0.02) (0.04) (0.04) (0.04) (0.03) (0.02) (0.01) (0.03) (0.04) (0.03) (0.02) (0.02)

GM
30 7.33 3.63 3.51 6.36 3.46 2.91 1.89 1.61 1.74 1.66 1.91 1.60 1.63 1.56

1.59 (0.72) (1.42) (0.67) (1.57) (0.92) (0.66) (0.33) (0.30) (0.15) (0.22) (0.29) (0.18) (0.31) (0.25)

40 (0.19) 8.55 4.58 6.15 8.79 4.58 4.71 2.67 1.72 1.85 2.02 2.84 2.00 1.71 1.59
(1.38) (1.08) (2.23) (1.27) (1.73) (2.53) (0.38) (0.21) (0.18) (0.22) (0.46) (0.21) (0.11) (0.21)

Housing

MSE
30 42.83 64.42 57.15 45.79 50.48 40.35 27.28 26.27 27.29 27.38 27.35 26.80 26.50 25.83

24.11 (13.89) (24.29) (14.15) (5.79) (14.49) (9.13) (7.11) (6.78) (6.89) (6.98) (7.73) (7.48) (6.48) (7.12)

40 (7.02) 70.36 109.98 91.33 89.01 84.52 84.94 31.64 31.16 30.93 31.70 32.64 31.44 32.05 28.39
(12.79) (16.74) (22.84) (8.30) (9.19) (9.24) (5.54) (6.31) (5.87) (5.71) (5.39) (5.65) (6.30) (5.47)

MAE
30 4.79 5.99 5.66 5.69 5.82 5.04 3.59 3.50 3.49 3.55 3.58 3.56 3.45 3.43

3.21 (0.71) (1.38) (0.77) (0.78) (0.64) (0.72) (0.48) (0.36) (0.44) (0.50) (0.53) (0.49) (0.35) (0.47)

40 (0.41) 6.39 7.71 7.17 6.27 6.52 6.54 3.75 3.79 3.72 3.74 3.82 3.72 3.87 3.58
(1.05) (0.93) (1.21) (0.38) (0.38) (0.35) (0.27) (0.25) (0.24) (0.25) (0.30) (0.28) (0.20) (0.39)

Pearson
30 0.84 0.84 0.84 0.84 0.83 0.83 0.84 0.83 0.84 0.84 0.84 0.84 0.84 0.85

0.85 (0.04) (0.04) (0.04) (0.04) (0.03) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.03) (0.03)

40 (0.03) 0.83 0.80 0.81 0.81 0.80 0.81 0.83 0.82 0.83 0.83 0.83 0.83 0.82 0.83
(0.05) (0.08) (0.07) (0.04) (0.03) (0.04) (0.05) (0.05) (0.05) (0.05) (0.04) (0.05) (0.05) (0.04)

GM
30 2.79 3.90 3.71 3.72 3.77 3.33 2.31 2.15 2.16 2.25 2.35 2.26 2.17 2.01

1.83 (0.48) (0.96) (0.64) (0.31) (0.48) (0.38) (0.27) (0.24) (0.24) (0.29) (0.32) (0.22) (0.31) (0.22)

40 (0.22) 3.91 4.35 4.52 3.42 3.72 3.78 2.48 2.36 2.30 2.32 2.51 2.46 2.31 2.08
(0.70) (0.72) (0.46) (0.34) (0.60) (0.42) (0.40) (0.20) (0.49) (0.48) (0.54) (0.36) (0.29) (0.23)

Concrete

MSE
70 287.59 290.36 291.17 327.72 309.91 309.93 129.31 124.56 125.82 128.68 128.42 128.28 124.22 119.87

115.78 (17.80) (18.25) (18.48) 25.02 (22.77) (22.79) (13.45) (15.44) (16.30) (11.69) (13.31) (11.68) (14.47) (11.85)

80 (12.97) 296.92 302.81 303.02 327.88 312.69 312.71 131.52 123.90 126.83 130.45 129.06 130.22 122.19 118.43
(20.90) (23.17) (23.73) (22.98) (22.25) (22.26) (6.88) (8.73) (6.99) (6.55) (8.81) (5.96) (8.99) (8.06)

MAE
70 13.70 13.75 13.76 14.49 14.13 14.13 9.21 8.87 8.94 9.18 9.17 9.17 8.91 8.76

8.50 (0.55) (0.56) (0.56) (0.53) (0.52) (0.53) (0.63) (0.73) (0.73) (0.59) (0.64) (0.59) (0.69) (0.64)

80 (0.58) 13.84 13.89 13.89 14.36 14.08 14.08 9.30 8.95 9.10 9.24 9.20 9.22 8.97 8.57
(0.33) (0.33) (0.34) (0.24) (0.28) (0.28) (0.44) (0.41) (0.42) (0.40) (0.50) (0.40) (0.45) (0.39)

Pearson
70 0.76 0.76 0.76 0.75 0.74 0.74 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.77

0.78 (0.05) (0.04) (0.04) (0.05) (0.07) (0.07) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

80 (0.04) 0.78 0.76 0.77 0.77 0.76 0.77 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78
(0.02) (0.02) (0.02) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

GM
70 9.01 9.23 9.19 10.10 9.55 9.55 6.24 5.78 5.81 6.22 6.22 6.21 5.84 5.58

5.52 (0.62) (0.55) (0.55) (0.41) (0.46) (0.46) (0.72) (0.77) (0.85) (0.65) (0.70) (0.67) (0.95) (0.64)

80 (0.42) 9.49 9.47 9.12 9.74 9.45 9.45 6.15 6.15 6.05 6.13 6.16 6.14 6.15 5.54
(0.35) (0.54) (0.30) (0.17) (0.31) (0.30) (0.46) (0.63) (0.74) (0.54) (0.63) (0.55) (0.61) (0.21)

Power-plant

MSE
60 224.57 108.40 190.98 293.95 172.70 194.29 34.76 30.56 32.36 34.08 32.89 34.71 30.87 25.56

25.18 (49.55) (43.46) (83.33) (52.38) (106.10) (111.80) (1.43) (1.55) (3.60) (1.27) (1.62) (1.44) (1.57) (0.90)

70 (0.75) 265.96 190.35 299.01 288.43 171.97 246.64 50.06 43.05 45.07 49.67 46.28 50.23 43.48 27.25
(11.44) (118.97) (8.63) (5.14) (136.70) (150.10) (1.84) (2.09) (0.98) (0.98) (2.63) (2.75) (1.39) (0.70)

MAE
60 12.83 8.65 11.65 14.56 11.23 11.92 4.72 4.43 4.53 4.68 4.57 4.74 4.44 4.05

4.00 (1.23) (2.39) (2.86) (0.12) (3.94) (4.20) (0.11) (0.14) (0.21) (0.10) (0.10) (0.15) (0.11) (0.07)

70 (0.05) 13.79 11.29 14.41 14.57 10.80 13.54 5.68 5.23 5.34 5.63 5.40 5.69 5.24 4.16
(0.19) (4.27) (6.00) (0.13) (4.77) (5.12) (0.11) (0.14) (0.16) (0.09) (0.15) (0.06) (0.11) (0.07)

Pearson
60 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.96

0.96 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

70 (0.00) 0.95 0.95 0.95 0.94 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

GM
60 9.57 6.37 8.18 9.97 8.77 9.43 3.27 3.15 3.11 3.28 3.28 2.78 3.16 2.79

2.76 (0.48) (2.27) (2.14) (0.18) (3.11) (3.50) (0.13) (0.18) (0.11) (0.21) (0.14) (1.44) (0.14) (0.07)

70 (0.09) 9.69 8.59 10.51 11.74 9.41 10.48 3.84 3.53 3.56 3.94 4.39 4.26 3.51 3.06
(0.16) (4.53) (0.28) (3.59) (4.35) (4.19) (0.15) (0.07) (0.14) (0.41) (0.74) (0.60) (0.12) (0.21)
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