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Abstract
Many works recently have focused on comput-
ing optimal solutions for the ex ante coordination
of a team for solving sequential adversarial team
games, where a team of players coordinate against
an opponent (or a team of players) in a zero-sum
extensive-form game. However, it is challeng-
ing to directly compute such an optimal solution
because the team’s coordinated strategy space is
exponential in the size of the game tree due to the
asymmetric information of team members. Col-
umn Generation (CG) algorithms have been pro-
posed to overcome this challenge by iteratively
expanding the team’s coordinated strategy space
via a Best Response Oracle (BRO). More recently,
more compact representations (particularly, the
Team Belief Directed Acyclic Graph (TB-DAG))
of the team’s coordinated strategy space have been
proposed, but the TB-DAG-based algorithms only
outperform the CG-based algorithms in games
with a small TB-DAG. Unfortunately, it is inef-
ficient to directly apply CG to the TB-DAG be-
cause the size of the TB-DAG is still exponential
in the size of the game tree and then makes the
BRO unscalable. To this end, we develop our
novel TB-DAG CG (DCG) algorithm framework
by computing a coordinated best response in the
original game first and then transforming this strat-
egy into the TB-DAG form. To further improve
the scalability, we propose a more suitable BRO
for DCG to reduce the cost of the transformation
at each iteration. We theoretically show that our
algorithm converges exponentially faster than the
state-of-the-art CG algorithms in the worst case,
and experimental results show that our algorithm
is at least two orders of magnitude faster than the
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state-of-the-art baselines.

1. Introduction
Many research efforts on computational game theory have
focused on computing a Nash equilibrium (Nash, 1951) in
two-player zero-sum extensive-form games (Zinkevich et al.,
2008; Moravčı́k et al., 2017; Brown & Sandholm, 2018;
Zhang & Sandholm, 2020), where two players receive oppo-
site payoffs. In this setting, a Nash equilibrium can be com-
puted in polynomial time in the size of the extensive-form
game (Shoham & Leyton-Brown, 2008). Recent landmark
results such as superhuman performance in the heads-up
no-limit Texas hold’em poker game (Moravčı́k et al., 2017;
Brown & Sandholm, 2018) show that researchers have un-
derstood the problem of computing a Nash equilibrium in
two-player zero-sum extensive-form games well in both the-
ory and practice. However, such a problem in multiplayer
games is not well understood, where computing a Nash
equilibrium is generally hard (Chen & Deng, 2005; Zhang
et al., 2023c;b).

In this paper, we focus on sequential adversarial team games
(von Stengel & Koller, 1997; Celli & Gatti, 2018; Zhang
& An, 2020a; Zhang et al., 2021; 2022d;a; 2023a; Li et al.,
2021; 2023b), where a team of players coordinate against an
opponent (or a team of players) in an extensive-form game.
For example, a team of police officers coordinately interdict
an evader (Zhang et al., 2017; 2019; Xue et al., 2021; Li
et al., 2023a). Specifically, we focus on the solution concept
called Team-Maxmin Equilibrium with Coordination device
(TMECor) (Celli & Gatti, 2018), which models the ex ante
coordination of team members who share the same payoff
function. That is, the team members agree on a common
strategy before the game starts, but they cannot communi-
cate during playing the game in face of private information
for each team member. Examples of this setting include col-
lusion in poker games and a team of drones playing against
an intruder (Carminati et al., 2022). Even though a TMECor
is equivalent to a Nash equilibrium in a two-player (a team
and an opponent) zero-sum game, computing a TMECor
is hard (i.e., APX-hard) (Celli & Gatti, 2018). The main
barrier is the team members’ asymmetric information in
this setting, which makes a team of players equivalent to a
single player with imperfect recall and then the behavioral
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strategy space of the team is not realization equivalent to
the normal-form strategy space of the team (Kuhn, 1953).
The normal-form strategies of the team could be arbitrarily
better than the behavioral strategies of the team, but the
normal-form strategy space is exponential in the size of the
game tree.

To efficiently compute a TMECor, some approaches have
been proposed. Even though computing a TMECor can
be formulated as a linear program (Celli & Gatti, 2018),
its size is exponential in the size of the game tree due to
the exponential explosion of the team’s joint normal-form
strategy (i.e., coordinated strategy) space. Column Gener-
ation (CG) algorithms (McMahan et al., 2003; Zhang & An,
2020b; Farina et al., 2021) were proposed to overcome this
challenge (Celli & Gatti, 2018; Zhang et al., 2021; Farina
et al., 2021; Zhang et al., 2022b) by iteratively expanding
the team’s coordinated strategy space via a Best Response
Oracle (BRO) (i.e., normal-form CG). More recently, a
generalization of the sequence form for the team via the tree
decomposition was proposed (Zhang & Sandholm, 2022) as
a compact representation for the team’s coordinated strategy
space, and another similar representation (Carminati et al.,
2022) was proposed to capture the public information of the
team. The Team Belief Directed Acyclic Graph (TB-DAG)
representation (Zhang et al., 2022b;c) was proposed to unify
the previous two representations, which is a decision prob-
lem of the team. However, the TB-DAG-based algorithms
only outperform the CG-based algorithms in games with
a small TB-DAG. To solve games more efficiently, one
straightforward idea is applying CG to the TB-DAG. That is,
we compute a TMECor with a limited size of the TB-DAG
for the restricted game and then expand the TB-DAG by
computing a best response over the whole TB-DAG of the
original game. Unfortunately, it is inefficient to compute a
best response over the whole exponential-sized TB-DAG.
Therefore, the CG directly applied to the TB-DAG is ineffi-
cient.

To this end, we propose our novel TB-DAG CG (DCG)
algorithm framework. DCG first computes a coordinated
best response in the original game tree, which is represented
by a joint normal-form strategy of the team. This best
response is then transformed into the TB-DAG form. DCG
is inspired by the following two observations:

1. By exploiting the team’s correlation property to solve
the BRO’s integer program faster, the state-of-the-art
BRO (Zhang et al., 2021; Farina et al., 2021) can be
used in our DCG to significantly outperform the BRO
computing a best response over the whole exponential-
sized TB-DAG without such a correlation property. As
a result, the DCG should significantly outperform the
CG directly applied to the TB-DAG.

2. Intuitively, this DCG should not be more efficient than

the normal-form CG, as it requires an extra step for
transformation at each iteration. However, we show
that the TB-DAG formed by a set of TB-DAG form
strategies, which are transformed from a set of coordi-
nated strategies, can represent new coordinated strate-
gies due to the new combinations of states and actions
in this TB-DAG. This property makes DCG converge
in significantly fewer iterations than the normal-form
CG in large games. Then DCG outperforms the normal-
form CG when the benefit from reducing the number
of interactions for convergence surpasses the cost of
the transformation.

Unfortunately, DCG suffers from very high cost of transfor-
mation in large games if the coordinated best response is
computed by the prior state-of-the-art BRO (Zhang et al.,
2021; Farina et al., 2021), as it involves randomized strate-
gies and thus induces a large TB-DAG. To further improve
the scalability, we propose a more suitable BRO for DCG
to reduce the cost of the transformation. That is, we pro-
pose an efficient pure BRO to compute a coordinated best
response with a pure strategy for each team member, which
will ensure that the corresponding TB-DAG form is small
enough and avoid the exponential size of constraints in the
prior state-of-the-art BRO (Farina et al., 2021).

We theoretically show that our DCG converges exponen-
tially faster than the normal-form CG shown in (Zhang
et al., 2021) in the worst case. Moreover, experimental re-
sults show that our DCG is at least two orders of magnitude
faster than the state-of-the-art baselines and solves games
that were previously unsolvable. Thus, this paper provides
the first efficient TB-DAG CG algorithm. In addition, this
paper creates a fundamental theory for applying the multia-
gent learning framework – policy-spaced response oracles
(Lanctot et al., 2017) (a variant of CG) – to the TB-DAG for
a TMECor.

2. Preliminaries
Adversarial Team Games. The extensive-form game
G with imperfect information (Shoham & Leyton-Brown,
2008) models the interactions among players through game
trees (e.g., Figure 1(a)). Given a set of players N and the
chance player c used to model the stochastic events (e.g.,
drawing cards in poker), G defines a tree through a tuple
⟨N ∪ {c}, H, Z,A, {ui}i∈N ⟩, where H is the set of nonter-
minal nodes of players in N ∪ {c}, and Z is the set of leaf
nodes (i.e., terminal nodes). A = ∪i∈N∪{c}Ai is the set of
all the possible edges (i.e., actions) in the tree, where Ai

is the set of player i’s actions. A(h) is the set of actions
available at node h ∈ H , and Hi is the set of nodes with
the acting player i. ui : Z → R is player i’s utility function
that assigns a utility to each leaf node. This paper focuses
on adversarial team games, where N = T ∪ {o} with that a
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team of players T with |T | ≥ 2 plays against an opponent
(or a team of players) o, ui = uj for all i and j in T , and
we denote uT =

∑
i∈T ui and HT = ∪i∈THi. We focus

on zero-sum games, where uT = −uo.

Information sets that are partitions of nonterminal nodes are
used to model imperfect (private) information. An informa-
tion set Ii (i.e., private state) of player i is a set of nodes that
are indistinguishable to player i, and Ii is the set of player
i’s information sets. IT = ∪i∈TIi is the set of information
sets of team T . Ii’s action set is A(Ii), and A(Ii) = A(h)
for each h ∈ Ii, i.e., the nodes in Ii have the same set of
actions. For two nodes h and h′, h ⪯ h′ represents that
there is a path in the game tree from h to h′, and h ≺ h′ if
h ̸= h′ and h ⪯ h′. Similarly, h ⪯ Ii if there is a node h′ in
Ii such that h ⪯ h′. For example, in Figure 1(a), b ⪯ d, and
b ⪯ I2 (node b also represents an information set). We focus
on games with perfect recall for each player, where players
do not forget information. The team as a whole may have
imperfect recall due to potentially asymmetric information
among team members. After treating the team as a whole,
the game in this paper can be formulated as a two-player
imperfect-recall game.

Sequences. For each h ∈ H ∪ Z, the ordered set of player
i’s actions on the path from the root to h can be defined by
a sequence σi. Σi = {(Ii, ai) : Ii ∈ Ii, ai ∈ A(Ii)}∪{∅}
is the set of player i’s sequences, where ∅ is the empty
sequence. σi(h) is h’s parent sequence, which is the last
sequence of player i on the path from the root to h. For
each Ii ∈ Ii, Ii’s parent sequence is σi(Ii), and σi(Ii) =
σi(h) for each h ∈ Ii due to the perfect recall of player i.
Let σi(Ii) = ∅ if there is no information set of player i’s
before Ii. ΣN ′ = ×i∈N ′⊆NΣi defines the combinations
of sequences σN ′ of players in N ′ ⊆ N , σN ′ [j] is the
sequence of player j in the joint sequence σN ′ ∈ ΣN ′ .
σN ′(h) is the joint sequence of N ′ reaching h. For example,
for node 1 in Figure 1(a), σT (1) = (α, β).

Reduced-normal-form plans. A reduced-normal-form
plan πi of player i defines an action for every reach-
able information set Ii ∈ Ii due to earlier actions. We
use πi(Ii, ai) = 1 to represent that Ii is reachable and
ai ∈ A(Ii) is played in πi. Specifically, πi(∅) = 1. For ex-
ample, in Figure 1(a), the paths a−b−d−1 and a−c−g−7
show a πT such that πi(σi(1)) = 1 (node 1 is a leaf) for
each player i ∈ T , i.e., πT (σT (1)) = 1. Πi is the set of
reduced-normal-form plans of player i. ∆(Πi) is the set of
mixed normal-form strategies, i.e., a probability distribution
over Πi. ΠT = ×i∈TΠi is the set of pure coordinated strate-
gies of the team, and µT ∈ ∆(ΠT ) is a mixed coordinated
strategy. For each h ∈ H ∪ Z and a pure coordinated strate-
gies πT ∈ ΠT with that πi(σi(h)) = 1 for each player
i ∈ T , we denote πT (σT (h)) = 1. For example, in Figure
1(a), the paths a − b − d − 1 and a − c − g − 7 show a

coordinated strategy πT such that πi(σi(1)) = 1 (node 1 is
a leaf) for each player i ∈ T , i.e., πT (σT (1)) = 1.

Sequence-form strategies. Given player i, a mixed
sequence-form strategy is a vector yi ∈ [0, 1]|Σi|, and a pure
sequence-form strategy is a vector yi ∈ {0, 1}|Σi|, which
satisfy: yi(∅) = 1, and

∑
ai∈A(Ii)

yi(Ii, ai) = yi(σi(Ii))
for each Ii ∈ Ii. The set of sequence-form strategies is
Yi. Two strategies are equivalent if they assign the same
probability for reaching each leaf node. Any pure (mixed)
normal-form strategy of each player i is equivalent to a pure
(mixed) sequence-form strategy and vice versa (von Stengel,
1996). However, coordinated strategies in ∆(ΠT ) cannot
be concisely represented by sequence-form strategies due
to the imperfect recall of the team (Farina et al., 2018).

TMECor. A Team-Maxmin Equilibrium with Coordination
device (TMECor) (Celli & Gatti, 2018) is a Nash equilib-
rium, where the opponent plays the strategy µo ∈ ∆(Πo)
(equivalent to yo ∈ Yo), and the team plays µT ∈ ∆(ΠT ).
The team’s expected utility over (µT ,yo) is:

uT (µT ,yo) =
∑

πT∈ΠT

µT (πT )uT (πT ,yo),

where ûT (z) = uT (z)pc(z), pc(z) is the chance probability
of reaching z, and the utility for (πT ,yo) is:

uT (πT ,yo) =
∑
z∈Z

ûT (z)πT (σT (z))yo(σo(z)).

An optimal solution TMECor can be found by solving the
following optimization problem, which is equivalent to a
linear program by dualizing the inner linear minimization
problem over yo:

max
µT∈∆(ΠT )

min
yo∈Yo

uT (µT ,yo). (1)

Team Belief DAG. We introduce the definitions related to
Team Belief Directed Acyclic Graph (TB-DAG) (Zhang
et al., 2022c;b; 2023a). When a piece of information is
common knowledge to the team T , it is public to T . Two
nodes h and h′ within the same level (i.e., the same length of
the paths from the root to both nodes) are indistinguishable
(not public) to the team if there is an information set I ∈ IT
such that h ⪯ I and h′ ⪯ I , e.g., in Figure 1(a), nodes b and
c are indistinguishable to the team. A connected component
of a graph induced by nodes’ indistinguishable relation to
the team is a public state of the team.

The TB-DAG is a decision problem of the team. The nodes
in D of the TB-DAG include a set of observation nodes
O (e.g., rectangle nodes in Figure 1(b)), i.e., including
the information observed by the team about states of the
game, and a set of decision nodes called beliefs B (e.g.,
circle nodes in Figure 1(b)). Each belief or observation
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node includes a set of nodes in H ∪ Z that the team can-
not distinguish based on their public information. Start-
ing from the root {∅} ∪ J∗ as a decision node (J∗ is a
set of nodes before reaching any node of the team, e.g.,
node a in Figure 1(b)), the TB-DAG is constructed recur-
sively, where beliefs alternate with observation nodes, as
shown in Figure 1(b). Each edge outgoing from a belief
B is a joint action called prescription that assigns an ac-
tion to each information set that shares some nodes with
B. A(B) = {a | a ∈ ×I∩B ̸=∅A(I)} is the set of possible
prescriptions at B. B also includes a set J of nodes that
are on the path to the next decision node of the team but
do not belong to the team. The observation node transiting
from B by taking a is: Ba =

⋃
I∩B ̸=∅,aI∈a{haI | h ∈

I ∩B} ∪ {ha | h ∈ J, a ∈ A(h)}. For example, in Figure
1(b), circle node a is the root with the unique prescription ∅
for the team ({∅} is omitted in node a), which will transit to
an observation node bc due to two actions of the opponent.
The circle node bc has four prescriptions because bc includes
two information sets b and c, each of which has two actions.
A belief is a leaf node if it contains a leaf node, e.g., circle
nodes labeled by numbers in Figure 1(b). An observation
node O is a set of nodes, which form a set of public states
of the team (connected components of the graph induced
by O), and each public state represents one action (outgo-
ing edge) of O. For example, in Figure 1(b), observation
node fg (or bc) has only one action because its two nodes
are connected and then only form one connected compo-
nent, but observation node ef has two actions because ef
includes two connected components, i.e., node e and node
f are not connected. Formally, the procedure for generating
the TB-DAG is shown in Algorithm 1, which starts with
EXPANDTBDAG(∅, br) at Line 21, where br assigns 1 to
each sequence (I, ai) of the team, i.e., AI = A(I) in Line
9.

In a TB-DAG, a pure TB-DAG form strategy is x ∈
{0, 1}|D|, and a mixed TB-DAG form strategy is x ∈
[0, 1]|D|, which are similar to sequence-form strategies
and are constrained by: x(B) =

∑
a∈A(B) x(Ba) and

x(B) =
∑

(O,B)∈E x(O) for B ∈ B with x({∅}∪J∗) = 1,
where {∅}∪J∗ represents the root. The set of the TB-DAG
form strategies is equivalent to the set of the team’s coordi-
nated strategies (Zhang et al., 2022c). By using x to replace
µT in Eq.(1), we obtain a TMECor by solving Problem (1)
through the TB-DAG.

3. DAG-Based Column Generation
Solving Problem (1) is challenging because the team’s co-
ordinated strategy space is exponential in the size of the
game tree. With the procedure shown in Figure 1(c), the
normal-form CG can mitigate this challenge but still con-
verges slowly in large games due to such a large strategy

Algorithm 1 Expanding the TB-DAG
1: Function ADDBELIEF(B,D, br):
2: if B /∈ D then
3: Add B to D
4: if B = {z} for z ∈ Z then
5: Make B a leaf node and Return B
6: end if
7: I′ ← {I ∩B ̸= ∅, I ∈ I′}
8: J ← {h ∈ B, ρ(h) ∈ {o, c}}, ρ(h) is the player acting at

node h
9: AI ← {ai ∈ A(I) : br(I, ai) > 0},∀I ∈ I′

10: for a ∈ ×I∈I′AI do
11: Ba ← ∪I∈I′,aI∈a{haI | h ∈ I ∩ B} ∪ {ha | h ∈

J, a ∈ A(h)}
12: add edge B → ADDOBSERVE(Ba,D, br)
13: end for
14: end if

Function ADDOBSERVE(O,D, br):
15: if O /∈ D then
16: Add O to D
17: for each connected component P for O do
18: add edge O → ADDBELIEF(P,D, br)
19: end for
20: end if

Function EXPANDTBDAG(D, br):
21: ADDBELIEF({∅} ∪ J∗,D, br), where J∗ is a set of nodes

before reaching any node of the team

space. It has been shown that the TB-DAG-based algo-
rithms are more efficient than CG in games with a small
TB-DAG (Zhang et al., 2022b;c). However, solving Prob-
lem (1) through the TB-DAG is impractical in large games
because the size of the TB-DAG is still exponential in the
size of the game tree (Zhang et al., 2022c). To speed up,
one straightforward idea is applying CG with the proce-
dure shown in Figure 1(c) to the TB-DAG, which also is
the direct application of the sequence-form double oracle
(Bosansky et al., 2014) to the TB-DAG. That is, we com-
pute a TMECor with a limited size of the TB-DAG, and
then expand the DAG by computing a best response over the
whole TB-DAG form strategy space, i.e., solving the prob-
lem: maxx uT (x,yo). However, it is inefficient to compute
a best response over the whole exponential-sized TB-DAG.
As shown in experiments, this exponential size will make
CG with the DAG-based BRO very inefficient.

3.1. A Novel CG Procedure Based on the TB-DAG

To compute a TMECor more efficiently, we propose our
novel TB-DAG CG (DCG) framework to combine two mer-
its of the existing algorithm frameworks: 1) by exploiting
the team’s correlation property to solve the BRO’s inte-
ger program significantly faster, the state-of-the-art BRO
(Zhang et al., 2021; Farina et al., 2021) should significantly
outperform the BRO computing a best response over the
whole exponential-sized TB-DAG without such a correla-
tion property available, and 2) the TB-DAG formed by a set
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Figure 1. (a) An example of a game tree (α, β, γ are actions): paths a-b-d-1 and a-c-g-7 represent a pure coordinated strategy π1
T for the

team, and paths a-b-d-2 and a-c-g-8 represent π2
T . (b) The TB-DAG for the example of (a): paths a-bc-bc-dg-d-1-1 and a-bc-bc-dg-g-7-7

represent a TB-DAG form strategy x1, and paths a-bc-bc-dg-d-2-2 and a-bc-bc-dg-g-8-8 represent x2. (c) The procedure of CG or DCG.

of TB-DAG form strategies transformed from a set of coordi-
nated strategies could represent new coordinated strategies,
as shown in Example 1 and Theorem 6 of Appendix C.

Example 1. TB-DAG form strategies x1 and x2 in Figure
1(b) are equivalent to coordinated strategies π1

T and π2
T

in Figure 1(a), respectively. Let D({π1
T ,π

2
T }) be the TB-

DAG induced by {π1
T ,π

2
T }, i.e., consisting of beliefs and

actions reachable in x1 and x2. Then the TB-DAG form
strategy space of D({π1

T ,π
2
T }) includes all combinations of

beliefs and actions reachable in x1 and x2. For example, a
TB-DAG form strategy x3 with paths a-bc-bc-dg-d-1-1 and
a-bc-bc-dg-g-8-8 (i.e., the probability of reaching nodes 1
and 8 is 1) in Figure 1(b) is obtained by using the beliefs and
actions represented by the sub-path g-8-8 in x2 to replace
the beliefs and actions represented by the sub-path g-7-
7 in x1 to make x1 become x3. x3 is in the TB-DAG
form strategy space of D({π1

T ,π
2
T }) and is equivalent to

the coordinated strategy π3
T with paths a-b-d-1 and a-c-g-

8 in Figure 1(a). However, π3
T /∈ ∆{π1

T ,π
2
T } because

only using π1
T and π2

T cannot guarantee the probability of
reaching leaf nodes 1 and 8 is 1. That is, any combinations
of π1

T and π2
T cannot represent π3

T .

Example 1 implies that, if we expand the restricted game G′

in CG by using the TB-DAG form strategies instead of co-
ordinated strategies, the corresponding CG could converge
in fewer iterations. To combine the above merits, our DCG
framework has a special transformation step, which trans-
forms a coordinated best response into the TB-DAG form
before adding it into G′. The procedure of this step is shown
in Algorithm 1, where br represents the coordinated best re-
sponse of the team, and br(I, ai) at Line 9 is the probability
of playing sequence (I, ai) according to br. This proce-
dure is similar to the procedure for generating the whole
TB-DAG mentioned in the previous section, except that,
in Line 9 of Algorithm 1, we only consider actions played
by the team in the coordinated best response with nonzero
probabilities. Here, we define the transformation cost for
transforming a coordinated strategy into the TB-DAG form
as the size of this transformed TB-DAG.

The general procedure of DCG is shown in Figure 1(c):

DCG starts from a restricted game G′ with the TB-DAG
form for the team, then solves G′ for the corresponding
TMECor (x∗,y∗

o) via solving Problem (1) (using x to re-
place µT ), and then uses the BRO (e.g., solving the problem:
maxπT∈ΠT

uT (πT ,y
∗
o)) to compute a coordinated best re-

sponse against the adversarial strategy y∗
o. If this best re-

sponse improves the team’s utility obtained by the TMECor
of G′, DCG expands G′ by adding this best response to G′

via the transformation step; otherwise, CG terminates.

3.2. An Efficient Joint-Sequence-Space BRO

DCG can employ any BRO to compute a coordinated best
response in the original game tree against the adversarial
strategy yo in the TMECor of the restricted game G′. To
make our DCG efficient, the BRO must be efficient and the
transformation cost must be low. Therefore, we develop our
efficient pure BRO to compute a pure coordinated best re-
sponse with a pure strategy instead of a randomized strategy
for each team member because a pure strategy causes lower
transformation cost than a randomized strategy shown in
Example 2.
Example 2. The TB-DAG induced by the pure coordinated
strategy π1

T in Figure 1(a) is very small and only involves
the node dg and its succeeding nodes in the paths of x1 in
Figure 1(b). However, if team member 1 plays a randomized
strategy at information sets b and c of Figure 1(a), the size of
the TB-DAG induced by this coordinated strategy increases
about threefold, i.e., four nodes fg , ef , dg , de and
half of their succeeding nodes in Figure 1(b) are involved.

To be efficient, our novel pure BRO exploits the von Stengel-
Forges polytope that can represent the team’s correlation
property by defining probability flows on a set of joint se-
quences (Von Stengel & Forges, 2008). Specifically, we
extend the two-player von Stengel-Forges polytope to cases
with multiple players playing pure strategies based on the
following set of relevant joint sequences,

Σ▷◁
T ={σT (h) |h ∈ H ∪Z}∪{(σi,∅−i) |σi ∈ Σi,i ∈ T},

where ∅−i = ×j∈T\{i}∅ is an empty joint sequence or
called the root of players in −i = T \ {i}. We define
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∅T = ×j∈T∅ as the root of the team’s joint sequence.
Then, Σ▷◁

T includes the team’s joint sequences (i.e., σT (h))
on nodes of the game tree (e.g., for node 1 in Figure 1(a),
the team’s joint sequences σT (1) = (α, β) is in Σ▷◁

T ) and
the joint sequences (i.e., (σi,∅−i)) where only one player
moves. If (σi(Ii),σ−i) ∈ Σ▷◁

T , we call that information set
Ii is relevant to joint sequence σ−i (denoted as Ii ▷◁ σ−i).

To effectively represent the space of pure coordinated strate-
gies through joint relevant joint sequences, we define a
correlation plan ξ ∈ [0, 1]|Σ

▷◁
T | that satisfies the follow-

ing polynomial-sized set of constraints of the probabil-
ity flow and represents the team’s correlation property:
ξ(∅T ) = 1, and for each σi ∈ Σi, ξ(σi,∅−i) ∈ {0, 1}
and ∀i ∈ T,σT = (σi,σ−i) ∈ Σ▷◁

T , Ii ▷◁ σ−i, Ii ∈ Ii,

∑
ai∈A(Ii)

ξ((Ii, ai),σ−i) = ξ(σi(Ii),σ−i) (2a)

∑
j∈T

ξ(σT [j],∅−j)+1− |T | ≤ ξ(σT ) ≤ ξ(σT [i],∅−i), (2b)

where Eq.(2a) represents the constraints of “probability
mass conservation”, i.e., the incoming probability is equal
to the outgoing probability for each information set under
the correlation plan ξ, and Eq.(2b) ensures that ξ(σT ) is
the product of the binary variables ξ(σT [i],∅−i) (∀i ∈ T ).
For example, for information set I2 with two actions β
and γ in Figure 1(a), ξ(α, β) + ξ(α, γ) = ξ(α,∅) because
σ2(I2) = ∅ (−i is team member 1); and ξ(α, β) = 1 if and
only if ξ(α,∅) and ξ(β,∅) both are 1. Therefore, we have
that yi ∈ {0, 1}|Σi| such that yi(σi) = ξ(σi,∅−i) for each
σi ∈ Σi represents a pure reduced-normal-form plan, and
then ξ(σT (z)) for z ∈ Z represents the reaching probability
of a team’s pure coordinated strategy (see Lemmas 1 and 2
in Appendix C).

By using the correlation plan ξ to represent the pure coordi-
nated strategy πT , we can obtain our pure BRO:

max
ξ

∑
z∈Z ûT (z)ξ(σT (z))yo(σo(z)) (3a)

subject to Eq.(2), ξ(σT ) ∈ [0, 1] σT ∈ Σ▷◁
T . (3b)

The number of constraints in our BRO is O(|H ∪ Z||T |).

3.3. Theoretical Analysis

DCG uses our pure BRO shown in Program (3) to compute
a pure coordinated best response and then transforms it
into the TB-DAG form. Now, we theoretically show that
Program (3) guarantees a pure coordinated best response,
and the transformation cost is not high. Finally, we show
our DCG’s convergence with a TMECor. (All proofs are in
Appendix C)

Theorem 1. The optimal solution ξ∗ of Program (3) defines
a pure best response against yo.

The transformation cost for a pure coordinated best response
is only polynomial in the size of the original game tree.

Theorem 2. The size of the transformed TB-DAG for a pure
coordinated best response is at most O(|H ∪ Z|).

The maximum number of iterations for the convergence of
our DCG depends the size of the TB-DAG, where DCG
needs to expand the whole TB-DAG in the worst case. The
TB-DAG has at most O∗((b(p+1))w) edges, where b is the
branching factor, p is the largest effective size (the number of
distinct team sequences) of any public state (i.e., connected
component), w is the maximum number of information sets
involved in any belief, and O∗ hides factors polynomial
in the size of the original game tree (Zhang et al., 2022c).
Then, we have the following result.

Theorem 3. DCG with any BRO converges to a TMECor
in at most O∗((b(p+ 1))w) iterations.

Program (3) is our pure BRO, then we have:

Corollary 4. DCG with the pure BRO shown in Program
(3) converges to a TMECor in at most O∗((b(p + 1))w)
iterations.

Corollary 5. DCG with any BRO converges exponentially
faster than the normal-form CG in the worst case.

3.4. Closely-Related Algorithms

Our DCG algorithm framework and our pure BRO both
combine and extend existing techniques, which results in a
novel algorithm framework having an additional transforma-
tion step and a novel BRO having low transformation cost
and avoiding the exponential size of constraints in the prior
state-of-the-art BRO, respectively.

Our DCG algorithm framework combines and extends the
normal-form CG (Celli & Gatti, 2018; Farina et al., 2018;
Zhang et al., 2021; Farina et al., 2021; Zhang et al., 2022b)
(variants of normal-form double-oracle (McMahan et al.,
2003) by using a single oracle) and the sequence-form dou-
ble oracle (Bosansky et al., 2014). In both existing algorithm
frameworks, the strategy representations in the restricted
game and the BRO are the same. That is, the normal-form
CG always uses normal-form (coordinated) strategy and
the sequence-form double oracle always uses sequence-
form (TB-DAG form) strategy. To combine the merits of
both frameworks shown in Section 3.1, our DCG algorithm
framework adopts different strategy representations in the
restricted game and the BRO: the strategy representation
in the restricted game is sequence-form via the TB-DAG,
and the strategy representation is normal-form in the BRO.
These strategy representations are connected by our extra
transformation procedure, which does not exist in the exist-
ing frameworks and overcomes the limitations of existing
frameworks. 1) DCG can overcome the challenge of the
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sequence-form CG (an direct application of the sequence-
form double oracle to the TB-DAG) because we compute the
normal-form best response in the original game tree with the
team’s correlation property available, and the original game
tree is exponentially smaller than the whole TB-DAG. And
2) DCG can overcome the challenge of the normal-form
CG because the size of the TB-DAG is significantly smaller
than the size of the team’s coordinated strategies (Carminati
et al., 2022; Zhang et al., 2023a). Intuitively, DCG should
not outperform the normal-form CG because DCG needs an
extra step for the transformation at each iteration. However,
we show that the TB-DAG formed by a set of TB-DAG form
strategies transformed from a set of the team’s normal-form
strategies could represent new coordinated strategies of the
team due to the new combinations of states and actions in
this TB-DAG in Example 1. This property makes DCG
converge in significantly fewer iterations than the normal-
form CG in large games, as shown in Corollary 5. Then,
DCG outperforms the normal-form CG when the benefit
from reducing the number of interactions for convergence
surpasses the cost of the transformation.

Our pure BRO combines and extends the randomized BRO
(Zhang et al., 2021; Farina et al., 2021) and the pure BRO
(Celli & Gatti, 2018) to make our BRO efficient and its
transformation cost low. The randomized BRO is more
efficient than the previous pure BRO (Zhang et al., 2021;
Farina et al., 2021), but the pure BRO has lower transfor-
mation cost than the randomized BRO shown in Example
2. Our BRO combines the merits of the randomized BRO
and the pure BRO. That is, we compute a pure coordinated
best response through the techniques (i.e., the two-player
von Stengel-Forges polytope (Von Stengel & Forges, 2008))
used in the state-of-the-art randomized BRO (Farina et al.,
2021). However, extending the von Stengel-Forges polytope
to multiplayer games results in the exponential size of con-
straints because it will involve the exponential size of joint
sequences in multiplayer games (see Appendix A). There-
fore, the main novelty of our BRO is that we develop a novel
approach to effectively represent the team’s correlation prop-
erty by effectively defining a set of relevant joint sequences,
which avoids the exponential size of constraints caused by
the original von Stengel-Forges polytope used in the exist-
ing BRO (Farina et al., 2021). Our pure BRO is fundamen-
tally different from the previous pure BRO (Celli & Gatti,
2018), which expresses whether or not a leaf is reached
by a pure joint normal-form strategy of all team members
with |Z| (the number of leaf nodes) integer variables. Our
pure BRO expresses whether a sequence is played by a pure
joint normal-form strategy represented by a correlation plan,
which involves only

∑
i∈T |Σi| (the number of sequences

of all players) integer variables. As shown in Tables 1 and
2,

∑
i∈T |Σi| is significantly smaller than |Z|. The large

number of integer variables makes the previous pure BRO

(Celli & Gatti, 2018) inefficient, which is the reason why
the randomized BRO was developed (Zhang et al., 2021;
Farina et al., 2021). In addition, our BRO is also different
from the sparse blueprint in subgame solving (Zhang et al.,
2022a) (see Appendix B).

We show that our approach is sound by theoretically show-
ing that the transformation cost is not overly expensive, and
our DCG converges exponentially faster than the normal-
form CG in the worst case. Thus, this paper provides the
first efficient TB-DAG CG algorithm and will be the base for
applying the multiagent learning framework–policy-spaced
response oracles (Lanctot et al., 2017) (a variant of CG) to
the TB-DAG for a TMECor. Moreover, our TB-DAG CG
with an extra transformation step and a novel BRO with
more integer variables but fewer constraints than the prior
state-of-the-art randomized BRO represents a new approach
for computing a TMECor, and its surprising performance
shows the promise of this approach and makes us understand
TMECor better.

4. Experimental Evaluation
We evaluate the performance of DCG and run all experi-
ments on a machine with a 4-core 2.3GHz CPU (8 threads)
and 16GB of RAM available by using CPLEX 20.1.

Algorithms. We denote the DCG with our pure BRO of
solving Program (3) in Section 3.1 by DCGpure. We con-
sider four variants of DCGpure: 1) CGpure: normal-form CG
with our pure BRO; 2) DCGrandom: DCG with the BRO in
(Zhang et al., 2021; Farina et al., 2021) computing a semi-
randomized coordinated strategy; and 3) DCG2random: DCG
with two-sided CG (Zhang et al., 2022b), i.e., computing
two best-response semi-randomized strategies at each it-
eration, and each one corresponds to one player playing
a randomized strategy. We consider two state-of-the-art
normal-form CG algorithms: 1) CGrandom: CG in (Zhang
et al., 2021; Farina et al., 2021) and 2) CG2random: two-
sided CG in (Zhang et al., 2022b) computing two best-
response semi-randomized strategies and transforming the
sequence-form (randomized) strategy in each strategy into
variables to be re-optimized, i.e., CG2random adds not only
two best response strategies but also |Σi| variables for the
sequence-form strategy of each i ∈ T with the correspond-
ing constraints. For each of these algorithms, we consider
one more variant: at each iteration, it solves the linear re-
laxation of the BRO first to see if it can output the opti-
mal solution added to the restricted game; if it cannot do
that, it solves the original mixed-integer BRO and adds all
feasible solutions for the BRO from the CPLEX solution
pool to the original game. These variants are DCGlinrelax

pure ,
DCGlinrelax

random, DCGlinrelax
2random, CGlinrelax

pure , CGlinrelax
random, and CGlinrelax

2random
for DCGpure, DCGrandom, DCG2random, CGpure, CGrandom, and
CG2random, respectively. For these CG-based algorithms, we
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Relatively Shallow Game Trees Deeper and Deeper Game Trees Relatively Deep Game Trees Iterations
Game 3K15 3K16 3K110 3K113 3K18 3K28 3K38 3K48 3K45 3K46 3K310 3K213 3K38 3K213
∆U 6 6 6 6 6 9 12 15 15 15 12 9 12 9
|Σi| 41 49 81 105 65 201 497 1113 696 835 621 326 497 326
|Z| 780 1560 9360 22308 4368 14448 36624 82992 14820 29640 78480 73788 36624 73788
Rank 5 6 10 13 8 8 8 8 5 6 10 13 8 13
Depth 6 6 6 6 6 8 9 12 12 12 9 8 9 8
Value -0.025 -0.024 -0.016 -0.012 -0.019 -0.008 0.007 0.016 -0.014 0.006 0.011 0.0004 0.007 0.0004
DCGpure 0.86s 2.2s 33s 295s 11s 52s 203s 642s 49s 107s 936s 21m 166 239
DCGlinrelax

pure 0.92s 2.5s 48s 374s 17s 61s 180s 17m 47s 103s 19m 33m 63 117
DCGrandom 2.1s 11s >10h >10h 515s 34m 576m >10h 50s 301s >10h >10h 157 -
DCGlinrelax

random 2.1s 11s >10h >10h 482s 31m 528m >10h 31s 257s >10h >10h 66 -
DCG2random 3.2s 19s >10h >10h 861s 579m >10h >10h 97s 595s >10h >10h - -
DCGlinrelax

2random 3.7s 21s >10h >10h 925s 582m >10h >10h 68s 581s >10h >10h - -
CGpure 0.56s 0.96s 5s 12s 2.3s 161s 37m >10h 893s 32m 65m 63m 1379 1129
CGlinrelax

pure 0.52s 0.94s 5.7s 22s 3.5s 211s 25m 10h 819s 33m 37m 47m 449 513
CGrandom 0.46s 1s 4s 18s 3s 135s 44m >10h 34m 37m 60m 53m 1482 1158
CGlinrelax

random 0.48s 0.98s 6.2s 23s 2.7s 210s 20m 337m 630s 18m 39m 65m 411 542
CG2random 0.23s 0.61s 2.5s 15s 1.3s 51s 272s ∞ 60s 138s ∞ ∞ 47 -
CGlinrelax

2random 0.3s 0.99s 13s 64s 1.7s 68s ∞ ∞ 95s ∞ ∞ ∞ - -
DAG 0.28s 2s ∞ ∞ ∞ ∞ ∞ ∞ 91s ∞ ∞ ∞ - -
CGdag 35m >10h >10h >10h >10h >10h >10h >10h >10h >10h >10h >10h - -

Table 1. Results on Kuhn poker: ∞ means ‘out of memory’ and ∆U = maxz∈Z uT (z)−minz∈Z uT (z).

randomly initialize the restricted game with a coordinated
strategy for the team, and for the CG-based algorithms with
semi-randomized strategies, we initialize a uniform strategy
for the corresponding player. We consider two additional
baselines: 1) DAG: it directly solves the linear program
for a TMECor after generating the whole TB-DAG; and 2)
CGdag: CG with the sequence-form BRO (Bosansky et al.,
2014) on the whole TB-DAG.

Game instances. There are many extensive-form games
available for experiments, but we only need extensive-form
games with different widths and depths to verify that DCG
performs better in games with wider or deeper game trees.
We then use two standard extensive-form games (Farina
et al., 2018; 2021; Carminati et al., 2022): Kuhn poker and
Leduc poker (details on them can be found in these refer-
ences). nKcr: n-player Kuhn poker with r ranks and at
most c bets. n

s Lc1
c2r: n-player Leduc poker with r ranks, at

most c1 bets in the first betting round, at most c2 bets in the
second betting round, and s suits. We consider two dimen-
sions of the game tree in each game: depth and width. A
game with more bets or ranks is larger. That is, a game with
more bets means that its game tree is deeper according to the
maximum number of actions at any sequence of any team
member. Similarly, a game with more ranks (proportional
to the maximum number of information sets involved in any
belief) means that its game tree is wider. As we discussed
in Section 3, the size of the TB-DAG is mainly influenced
by this maximum number of information sets involved in
any belief, so the TB-DAG is larger in games with wider
game trees (more ranks). In addition, the game tree in Leduc
poker with two rounds is deeper than the game tree in Kuhn
poker with only one round. A game tree is wide if the value
of ‘Rank’ is relatively large, and a game tree is narrow if the

value of ‘Rank’ is relatively small. Similarly, a game tree is
deep if the value of ‘Depth’ is relatively large, and a game
tree is shallow if the value of ‘Depth’ is relatively small.
Without loss of generality, the last player is the opponent.

Results. Results in Tables 1 and 2 show the algorithms’
performance on runtime for converging to a TMECor with
target precision of the team value in a TMECor is 10−6

and the corresponding number of iterations for CG algo-
rithms if they converge within 10 hours. Results on varying
target precision values are shown in Appendix D. Results
show that our proposed algorithm DCGpure and its relaxed
version DCGlinrelax

pure significantly outperform all baselines in
large games with deep and wide game trees. Normal-form
CG algorithms (i.e., CGpure, CGlinrelax

pure , CGrandom, CGlinrelax
random,

CG2random, and CGlinrelax
2random) are the fastest algorithms in

games with shallow game trees, and the DAG-based lin-
ear program (i.e., DAG) is the fastest algorithm in games
with very narrow game trees (e.g., 3

3L1
13) but runs out of

memory in games with wide game trees. However, CGdag
is not efficient in all games because it needs to compute a
best response on the whole TB-DAG. Finally, DCGrandom,
DCGlinrelax

random, DCG2random, and DCGlinrelax
2random are relatively fast

in games with narrow game trees but not efficient in games
with wide game trees.

Our DCGpure is at least two orders of magnitude faster than
prior state-of-the-art baselines in large games. DCGpure
needs to transform the coordinated best response into the
corresponding TB-DAG form at each iteration, so it runs
relatively slower than normal-form CG algorithms in games
with shallow game trees, as shown in the first column of
Table 1. When the game tree grows deeper and deeper,
our DCGpure performs closer and closer to normal-form CG
algorithms first and then outperforms normal-form CG algo-
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Relatively Deep Game Trees Iterations for Convergence
Game 3

3L1
13

3
3L1

14
3
3L1

15
3
1L1

16
3
1L1

17
3
1L2

010
3
1L2

013
3
3L1

13
3
3L1

14
3
3L1

15
3
1L1

16
3
1L1

17
3
1L2

010
3
1L2

013
∆U 21 21 21 21 21 15 15 21 21 21 21 21 15 15
|Σi| 457 801 1241 1489 2073 2411 4070 457 801 1241 1489 2073 2411 4070
|Z| 6477 20856 51215 29880 69510 164880 552551 6477 20856 51215 29880 69510 164880 552551
Rank 3 4 5 6 7 10 13 3 4 5 6 7 10 13
Depth 12 12 12 12 12 11 11 12 12 12 12 12 11 11
Value 0.215 0.107 0.025 -0.015 -0.035 -0.031 -0.025 0.215 0.107 0.025 -0.015 -0.035 -0.031 -0.025
DCGpure 40s 381s 117m 357s 103m 725s 119m 82 130 239 110 246 167 264
DCGlinrelax

pure 34s 188s 36m 324s 37m 21m 238m 32 42 60 52 63 94 119
DCGrandom 46s 537s 99m 31m 289m >10h >10h 82 146 211 84 230 - -
DCGlinrelax

random 29s 191s 42m 647s 74m >10h >10h 27 45 62 32 60 - -
DCG2random 88s 76m >10h 21m 303m >10h >10h 81 134 - 63 166 - -
DCGlinrelax

2random 36s 723s 173m 524s 66m >10h >10h 20 31 40 22 42 - -
CGpure 822s 434m >10h >10h >10h 49m >10h 1149 4364 - - - 1172 -
CGlinrelax

pure 549s 151m >10h >10h >10h 28m ∞ 384 798 - - - 342 -
CGrandom 933s 10h >10h >10h >10h 29m >10h 1132 4165 - - - 1020 -
CGlinrelax

random 485s 224m >10h >10h >10h 36m ∞ 326 816 - - - 411 -
CG2random 609s ∞ ∞ 57m ∞ ∞ ∞ 73 - - 59 - - -
CGlinrelax

2random 308s ∞ ∞ ∞ ∞ ∞ ∞ 33 - - - - - -
DAG 0.75s 9s 43m 24m ∞ ∞ ∞ - - - - - - -
CGdag 30m >10h >10h >10h >10h >10h >10h 88 - - - - - -

Table 2. Results on Leduc Poker: ∞ means ‘out of memory’ and ∆U = maxz∈Z uT (z)−minz∈Z uT (z).

rithms with larger and larger gaps, as shown in the second
column of Table 1. Then, in games with relatively deep
game trees, our DCGpure is at least two orders of magnitude
faster than normal-form CG algorithms, as shown in the
third column of Table 1 and the first column of Table 2.
The relaxed version DCGlinrelax

pure of DCGpure, in most games
with relatively narrow game trees, outperforms DCGpure be-
cause it could reduce the cost of calling the mixed-integer
BRO. However, in games with relatively wide game trees,
DCGpure outperforms DCGlinrelax

pure because DCGlinrelax
pure trans-

forms too many coordinated strategies into the TB-DAG
form, which incurs very high cost in games with relatively
wide game trees. Our CGpure is comparable with the prior
state-of-the-art single-side CGrandom, and its relaxed version
CGlinrelax

pure always outperforms CGpure because it could re-
duce the cost of calling the mixed-integer BRO. In large
games (e.g., 3

1L2
013), due to transforming too many coordi-

nated strategies into the TB-DAG form, CGlinrelax
pure could run

out of memory. Results of DCGrandom, DCGlinrelax
random, CGrandom,

and CGlinrelax
random have the similar pattern.

DCG2random still performs worse than DCGpure and
DCGrandom in these games because this two-sided CG-based
algorithm transforms two strategies instead of one strat-
egy into the TB-DAG form at each iteration. Similar to
DCGrandom and DCGlinrelax

random, DCG2random and DCGlinrelax
2random do

not perform well in games with relatively wide game trees
due to the extra cost of the transformation for randomized
strategies. CG2random performs the best in small games with
relatively shallow game trees, as shown in the first column of
Table 1, but performs worse and worse in games with deeper
and deeper game trees, as shown in the second column of
Table 1. Overall, CG2random cannot perform well in large
games because it adds too many variables and constraints to

the program for solving the restricted game at each iteration
and then usually runs out of memory. In addition, CGlinrelax

2random
generally performs worse than CG2random because CGlinrelax

2random
usually adds more variables and constraints than CG2random.

Results on the number of iterations for convergence in Ta-
bles 1 and 2 further confirm our analysis. We can see that our
DCG algorithms require significantly fewer iterations for
convergence than CGpure, CGlinrelax

pure , CGrandom, and CGlinrelax
random.

CG2random and its variant CGlinrelax
2random require relatively few

iterations for convergence in relatively small games, but
they run out of memory in large games.

Limitations. Runtime values reported in this paper for
baselines may be different from the runtime values reported
in previous papers (Zhang et al., 2021; Farina et al., 2021;
Zhang et al., 2022c;b) because results reported in different
papers may be obtained from different settings (see details
in Appendix E). Thus, to have a fair comparison with the
previous baselines, all algorithms in our experiments are
tested with the same setting.

5. Conclusions
In this paper, we develop a novel TB-DAG CG framework
to compute a TMECor by computing a coordinated best
response in the original game first and then transforming
it into the TB-DAG form. We further reduce the cost of
transformation by proposing a more suitable BRO. We the-
oretically and experimentally show the advantage of our
algorithm. In the future, by applying the multiagent learn-
ing framework (Lanctot et al., 2017; McAleer et al., 2023)
with the aid of deep learning techniques for the transforma-
tion step and the best response oracle, we believe that our
algorithm framework can scale to very large-scale games.
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Appendix

A. About the Representation Size in BRO
According to the original two-player von Stengel-Forges polytope (Von Stengel & Forges, 2008; Farina et al., 2021) for the
team’s correlation property, the constraints involve all relevant joint sequences. Note that, two information sets Ii and Ij
are connected, denoted by Ii ⇌ Ij , if there are h ∈ Ii and h′ ∈ Ij such that h ⪯ h′ or h′ ⪯ h. Two sequences σi ∈ Σi

and σj ∈ Σj are relevant if any of them is ∅, or Ii ⇌ Ij with σi = (Ii, ai) and σj = (Ij , aj), denoted by σi ▷◁ σj . A
joint sequence σN ′ is relevant if, for any i, j ∈ N ′, σN ′ [i] and σN ′ [j] in σN ′ are relevant. Let |Σmax| = maxi∈T |Σi|,
then the set of relevant joint sequences for the team T is O(|Σmax||T |). Then number of constraints (similar to Eq.(2a)) for
representing the team’s correlation property is about O(|Σmax||T ||T |), which is exponential in the size of the game.

In our BRO, we use constraints to represent the team’s correlation property by extending the two-player von Stengel-Forges
polytope (Von Stengel & Forges, 2008) to cases with multiple team players playing pure strategies. To reduce the number of
constraints, we consider only a subset of relevant joint sequences for nodes and sequences of the original game tree (i.e.,
Σ▷◁

T ) and limit the relevant relation of an information set and a joint sequence to Σ▷◁
T in Eq.(2a) representing a probability

flow. That is:
Σ▷◁

T = {σT (h) | h ∈ H ∪ Z} ∪ {(σi,∅−i) | σi ∈ Σi, i ∈ T}
and Ii ▷◁ σ−i only if (σi(Ii),σ−i) ∈ Σ▷◁

T . We further add constraints in Eq.(2b) to ensure that ξ(σT ) =∏
i∈T ξ(σT [i],∅−i) for each σT ∈ Σ▷◁

T (see Lemma 2). Therefore, our pure BRO shown in Program (3) has polynomial-
sized constraints, i.e., O(|H ∪ Z||T |) constraints.

Therefore, compared with the von Stengel-Forges polytope, we propose a novel approach to represent the team’s correlation
property. That is, instead of considering all relevant joint sequences in the von Stengel-Forges polytope, we only consider
the relevant joint sequences in each node of the game tree. Therefore, we can use polynomial-sized constraints for our BRO
by enumerating all nodes in the game tree, which avoids the exponential size of constraints.

Note that these polynomial-sized constraints involve integer variables because computing a coordinated best response for
TMECor is generally computationally intractable (Celli & Gatti, 2018).

B. About Column Generation for Sparser Solutions in Subgame Solving
Zhang et al. (2022a) provided a subgame technique to solve adversarial team games and proposed using CG for sparse
solutions in the subgame solving algorithm. That is, for each reachable belief in each public state, they compute a best
response starting from this belief. To keep the number of these reachable beliefs small, they create sparse blueprints in the
subgame solving algorithm by using a CG algorithm because “the support size of the blueprint generated by a CG algorithm,
scales linearly with the number of iterations, which, under reasonable time constraints, rarely exceeds the hundreds” (Zhang
et al., 2022a). Their sparse blueprint and our pure best response are both sparse solutions, but theirs is different from our
suitable BRO:

1. The goals are different: Our goal is to reduce the cost of the transformation in our DCG, but their goal is to reduce the
number of times that the BRO is called.

2. The sparsity concepts are different: Their sparse blueprint is about a small support size of the blueprint (a mixed
strategy of the gadget game), but our pure best response is just about an action for each reachable state/belief.

3. The approaches are different: We propose a new suitable BRO, i.e., pure BRO, to improve our DCG, but they just
directly use an existing CG algorithm for a sparse blueprint, i.e., they do not provide a new BRO algorithm.

C. Proofs
To show Theorem 1, we first show that the above correlation plan ξ defines a pure sequence-form strategy, i.e., a reduced-
normal-form plan, for each player i ∈ T . Recall that −i = T \ {i} and empty joint sequences ∅−i = ×j∈T\{i}∅ and
∅T = ×j∈T∅.

Lemma 1. Let yi ∈ {0, 1}|Σi| such that yi(σi) = ξ(σi,∅−i) for each σi ∈ Σi, then yi is a pure sequence-form strategy
and also a reduced-normal-form plan.

12



DAG-Based Column Generation for Adversarial Team Games

Proof. By Eq.(2), we have yi(∅) = 1, and
∑

ai∈A(Ii)
yi(Ii, ai) = yi(σi(Ii)) for each Ii ∈ Ii. Therefore, yi is a pure

sequence-form strategy. yi(Ii, ai) = 1 if Ii is reachable and ai ∈ A(Ii) is played in πi, which is the definition of a
reduced-normal-form plan. Then yi is a reduced-normal-form plan.

Now we show that the probability of each joint sequence in the correlation plan ξ is the product of the probabilities for
playing the individual sequence of each team member.

Lemma 2. For each σT ∈ Σ▷◁
T , ξ(σT ) =

∏
i∈T ξ(σT [i],∅−i).

Proof. For each σT ∈ Σ▷◁
T and each i ∈ T , ξ(σT [i],∅−i) ∈ {0, 1}. By Eq.(2b), (1) if there is i ∈ T such that

ξ(σT [i],∅−i) = 0, then ξ(σT ) = 0; and (2) if for all i ∈ T with ξ(σT [i],∅−i) = 1, then ξ(σT ) = 1. Therefore, for each
σT ∈ Σ▷◁

T , ξ(σT ) =
∏

i∈T ξ(σT [i],∅−i).

Theorem 1. The optimal solution ξ∗ of Program (3) defines a pure best response against yo.

Proof. By Lemmas 1 and 2, let yi(σi) = ξ(σi,∅−i) for each i ∈ T and σi ∈ Σi, then ξ(σT (z)) = 1 for each z ∈ Z could
represent that z is reachable according to the coordinated strategy ×i∈Tyi, i.e., ×i∈Tyi ∈ ΠT (z). Then we can compute a
pure best response against yo via Program (3), i.e., the optimal solution ξ∗ of Program (3) defines a pure best response
against yo.

Theorem 2. The size of the transformed TB-DAG for a pure coordinated best response is at most O(|H ∪ Z|).

Proof. The size of this transformed TB-DAG for a pure coordinated best response is at most O(|H ∪ Z|) because:

1. The number of beliefs at any level in the TB-DAG form is not greater than the number of nodes in the corresponding
level of the original game tree because each belief is a connected component in its parent (an observation node), and
these beliefs in this transformed TB-DAG do not share nodes in the original game tree due to the unique prescription in
each belief. Therefore, the number of beliefs in this transformed TB-DAG is less than |H ∪ Z|.

2. Each observation node corresponds to one outgoing edge (a prescription) of a belief, and there is only one prescription
for each belief now. Therefore, the number of observation nodes in this transformed TB-DAG is less than |H|.

Theorem 3. DCG with any BRO converges to a TMECor in at most O∗((b(p+ 1))w) iterations.

Proof. The TB-DAG has at most O∗(b(p+ 1))w) edges (Zhang et al., 2022c). In the worst case, DCG will add all of these
edges to restricted game G′. Then DCG converges to a TMECor in at most O∗(b(p+ 1))w) iterations.

Corollary 4. DCG with the pure BRO shown in Program (3) converges to a TMECor in at most O∗((b(p+ 1))w) iterations.

Proof. By Theorem 3, we obtain this result immediately.

Corollary 5. DCG with any BRO converges exponentially faster than the normal-form CG in the worst case.

Proof. In the worst case, DCG and the normal-form CG both need to expand the whole strategy space. Then, DCG converges
exponentially faster than the normal-form CG in the worst case because the size of the TB-DAG is exponentially smaller
than size of the team’s coordinated strategies (Carminati et al., 2022; Zhang et al., 2023a). Formally, the normal-form CG
with the state-of-the-art randomized BRO was shown (Zhang et al., 2021) to converge to a TMECor in at most 2|Π1| |ΠT |

|Π1|
iterations, while DCG with any BRO converges to a TMECor in at most O∗((b(p + 1))w) iterations shown in Theorem
3. b, p, and w are exponentially smaller than the size of the game tree, but |Πi| is exponential in the size of the game tree.
Therefore, theoretically, DCG converges exponentially faster than the normal-form CG in the worst case.
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Let Π′
T ⊆ ΠT . D(Π′

T ) is the TB-DAG induced by Π′
T according to the equivalent TB-DAG form strategy of each

coordinated strategy in Π′
T . Let ΠT (D(Π′

T )) be the set of coordinated strategies induced by D(Π′
T ) according to the

equivalent coordinated strategy of each TB-DAG form strategy in D(Π′
T ). Inspired by Example 1, we have the following

formal result.

Theorem 6. Given π1
T and π2

T ∈ ΠT , there is π3
T ∈ ΠT (D({π1

T ,π
2
T })) such that π3

T /∈ ∆({π1
T ,π

2
T }) if:

1. There are two nodes in two different unconnected information sets, i.e., h1 ∈ I1 ∈ IT and h2 ∈ I2 ∈ IT with I1 ̸= I2,
I1 ̸⇌ I2, such that h1 and h2 are exclusively reachable in I1 and I2 by π1

T and π2
T , respectively, i.e.,

π1
T (σT (h1)) = π1

T (σT (h2)) = π2
T (σT (h1)) = π2

T (σT (h2)) = 1

and for any h′
1 ∈ I1 with h′

1 ̸= h1 and h′
2 ∈ I2 with h′

2 ̸= h2

π1
T (σT (h

′
1)) = π1

T (σT (h
′
2)) = π2

T (σT (h
′
1)) = π2

T (σT (h
′
2)) = 0.

2. h1 and h2 (i.e., I1 and I2) both have two different actions, i.e., a1, a′1 ∈ A(h1) with a1 ̸= a′1 and a2, a
′
2 ∈ A(h2) with

a2 ̸= a′2, such that different actions are played by π1
T and π2

T , i.e.,

π1
T (I1, a1) = π1

T (I2, a2) = π2
T (I1, a

′
1) = π2

T (I2, a
′
2) = 1.

Proof. We construct a new strategy π3
T , which is initialized by π3

T = π1
T . By the definition of π1

T , h1 and h2 are reachable
in the current π3

T that plays a1 and a2 in these nodes. To be different from π1
T and π2

T , we modify the current π3
T

by: for each node h′ ∈ HT ∪ Z with h1 ⪯ h′, π3
T (σT (h

′)) = π2
T (σT (h

′)). Then, for each node h′ ∈ HT ∪ Z with
h1 ⪯ h′, π3

T (σT (h
′)) = 1 if and only if π2

T (σT (h
′)) = 1 because π1

T (σT (h1)) = π2
T (σT (h1)) = 1, and only one node

is assigned the probability 1 in the corresponding information set I1. It means that π3(I1, a
′
1) = π2

T (I1, a
′
1) = 1 and

π3(I2, a2) = π1
T (I2, a2) = 1. Then, for each node h′ ∈ HT with π3

T (σT (h
′)) = 1, there is a node B ∈ D({π1

T ,π
2
T })

such that h′ ∈ B because D({π1
T ,π

2
T }) includes all nodes h ∈ HT with π1

T (σT (h)) = 1 or π2
T (σT (h)) = 1. That is,

π3
T ∈ ΠT (D({π1

T ,π
2
T })). However, π3

T /∈ {π1
T ,π

2
T } and π3

T /∈ ∆({π1
T ,π

2
T }) because any combination of π1

T and π2
T

cannot represent π3
T with π3

T (I1, a
′
1) = 1 and π3

T (I2, a2) = 1.

D. More Experimental Results
Tables 3 and 4 show the results on varying the target precision values on games 3

3L1
13 and 3

3L1
14. Solving a game with a

smaller target precision value is similar to solving a larger game. In Tables 3 and 4, we can see that CG2random and CGlinrelax
2random

perform well in cases with larger target precision values but cannot perform well in cases with smaller target precision values
because they add too many variables and constraints to the program for solving the restricted game at each iteration and then
usually run out of memory. Other CG algorithms outperform our DCG algorithms in cases with larger target precision values,
but they perform worse than our DCG algorithms in cases with smaller target precision values because they need too many
iterations for convergence. Our DCG algorithms need significantly fewer indentations for the convergence in cases with
smaller target precision values and then perform well. In addition, with more ranks (the game tree is wider, i.e., in 3

3L1
14),

our DCG with a pure BRO (DCGpure or DCGlinrelax
pure ) performs better than the DCG with a randomized BRO (DCGrandom

or DCGlinrelax
random). These results are consistent to our results shown in Section 4. Achieving a small target precision value is

important because computing an accurate (or exact) solution is the core task of CG/double oracle algorithms (Bosansky
et al., 2014).

E. Details on Limitations
Runtime values reported in this paper for baselines may be different from the runtime values reported in previous papers
(Zhang et al., 2021; Farina et al., 2021; Zhang et al., 2022c;b) because results reported in different papers may be obtained
from different settings, e.g., different target precision values: 10−6 in this paper, 0.005 ×∆U (at least 0.03) in (Zhang
et al., 2022b), and 0.001×∆U (at least 0.006) in (Zhang et al., 2022c); different program solvers: CPLEX in this paper
and Gurobi (Farina et al., 2021; Zhang et al., 2022c;b); different implementations (the codes for these baselines are not
available); and different computers, e.g., 2.3GHz CPU used in our paper but 2.80GHz CPU used in (Farina et al., 2021),
16GB RAM used in our paper but 64GB or 60GB RAM used in (Zhang et al., 2022c;b). If we directly compare our results
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Runtime: 3
3L1

13 with ∆U = 21
Target Precision 0.1×∆U 0.05×∆U 0.01×∆U 0.005×∆U 0.001×∆U 0.01 10−4 10−6

DCGpure 1.7s 3.3s 10s 13s 28s 32s 40s 40s
DCGlinrelax

pure 2s 3s 10s 15s 25s 27s 34s 34s
DCGrandom 1.3s 4s 12s 14.5s 31s 38s 45.5s 46s
DCGlinrelax

random 2s 4.8s 10.4s 11.5s 22s 25s 29s 29s
DCG2random 1.8s 6.3s 19s 28s 47s 59s 85.8s 88s
DCGlinrelax

2random 4s 5s 14s 16s 26s 32s 36s 36s
CGpure 2.4s 6.6s 47s 115s 301s 414s 813s 822s
CGlinrelax

pure 1.5s 6.3s 46s 83s 227s 312s 530s 549s
CGrandom 1s 6s 50s 90s 325s 374s 907s 933s
CGlinrelax

random 0.8s 7s 43s 77s 223s 276s 435s 485s
CG2random 0.7s 2s 9s 14.6s 92s 148s 578s 609s
CGlinrelax

2random 0.7s 11.6s 32s 46s 107s 136s 298s 308s
Iterations: 3

3L1
13 with ∆U = 21

Target Precision 0.1×∆U 0.01×∆U 0.01×∆U 0.005×∆U 0.001×∆U 0.01 10−4 10−6

DCGpure 7 14 34 40 66 72 82 82
DCGlinrelax

pure 3 4 13 17 25 27 32 32
DCGrandom 4 12 36 40 64 73 81 82
DCGlinrelax

random 4 6 12 13 22 24 27 27
DCG2random 3 11 30 41 58 66 80 81
DCGlinrelax

2random 3 5 11 12 16 18 20 20
CGpure 9 28 151 284 565 712 1140 1149
CGlinrelax

pure 3 11 55 85 187 242 372 384
CGrandom 6 30 163 245 582 630 1111 1132
CGlinrelax

random 5 17 62 85 175 204 297 326
CG2random 2 4 10 14 37 44 72 73
CGlinrelax

2random 2 3 7 8 14 17 32 33

Table 3. Results on Leduc Poker 3
3L1

13: ∞ means ‘out of memory’.

Runtime: 3
3L1

14 with ∆U = 21
Target Precision 0.1×∆U 0.01×∆U 0.01×∆U 0.005×∆U 0.001×∆U 0.01 10−4 10−6

DCGpure 4.5s 12s 54s 88s 177s 206s 358s 381s
DCGlinrelax

pure 9s 18s 61s 79s 104s 120s 162s 188s
DCGrandom 6.2s 10s 61s 100s 249s 302s 501s 537s
DCGlinrelax

random 11s 25s 66s 90s 117s 134s 191s 191s
DCG2random 17s 29s 139 230s 506 991s 75m 76m
DCGlinrelax

2random 19s 32s 89s 99s 149s 279s 590s 723s
CGpure 4.5s 13.3s 270s 18m 93m 138m 372m 434m
CGlinrelax

pure 8.3s 29s 340s 712s 38m 51m 129m 151m
CGrandom 3.4s 13s 216s 764s 150m 206m 557m 10h
CGlinrelax

random 7.4s 23s 209s 434s 39m 68m 204m 224m
CG2random 1.8s 72s ∞ ∞ ∞ ∞ ∞ ∞
CGlinrelax

2random 1.6s 66s ∞ ∞ ∞ ∞ ∞ ∞
Iterations: 3

3L1
14 with ∆U = 21

Target Precision 0.1×∆U 0.01×∆U 0.01×∆U 0.005×∆U 0.001×∆U 0.01 10−4 10−6

DCGpure 6 19 53 68 92 98 127 130
DCGlinrelax

pure 3 8 20 23 28 31 38 42
DCGrandom 3 8 48 63 98 108 140 146
DCGlinrelax

random 5 11 24 28 33 36 45 45
DCG2random 4 12 50 65 92 101 133 134
DCGlinrelax

2random 2 5 14 15 19 23 29 31
CGpure 7 23 253 569 1562 2031 3394 4364
CGlinrelax

pure 5 17 95 151 346 426 744 798
CGrandom 6 23 207 450 1476 1934 3935 4165
CGlinrelax

random 6 13 68 110 308 392 756 816
CG2random 2 3 - - - - - -
CGlinrelax

2random 2 3 - - - - - -

Table 4. Results on Leduc Poker 3
3L1

14: ∞ means ‘out of memory’.
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with the result reported in previous papers for the same algorithm, we may obtain different conclusions: CGlinrelax
random solves

3
3L

1
13 with target precision 10−6 by using 485s shown in Table 2, which is 203s reported in (Farina et al., 2021). We may

conclude that our implemented baseline CGlinrelax
random is slower than the algorithm in (Farina et al., 2021). However, CGlinrelax

random
solves 3

3L
1
13 with target precision 0.005×∆U by using 77s shown in Appendix D, which is 82s reported in (Zhang et al.,

2022b) for the algorithm in (Farina et al., 2021). We may conclude that our implemented baseline CGlinrelax
random is faster than

the algorithm in (Farina et al., 2021). Thus, to have a fair comparison with the previous baselines, all algorithms in our
experiments are tested with the same setting. Overall, our results of baselines are consistent with the results reported in
previous papers: normal-form CG algorithms perform well in games with shallow game trees but cannot perform well in
games with deep game trees, and the baseline DAG performs well in games with narrow game trees but cannot perform well
in games with wide game trees. Our DCG significantly overcomes their limitations.
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