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Abstract
Opponent exploitation is an important task for
players to exploit the weaknesses of others in
games. Existing approaches mainly focus on bal-
ancing between exploitation and exploitability but
are often vulnerable to modeling errors and de-
ceptive adversaries. To address this problem, our
paper offers a novel perspective on the safety of
opponent exploitation, named Adaptation Safety.
This concept leverages the insight that strategies,
even those not explicitly aimed at opponent ex-
ploitation, may inherently be exploitable due to
computational complexities, rendering traditional
safety overly rigorous. In contrast, adaptation
safety requires that the strategy should not be
more exploitable than it would be in scenarios
where opponent exploitation is not considered.
Building on such adaptation safety, we further
propose an Opponent eXploitation Search (OX-
Search) framework by incorporating real-time
search techniques for efficient online opponent
exploitation. Moreover, we provide theoretical
analyses to show the adaptation safety and robust
exploitation of OX-Search, even with inaccurate
opponent models. Empirical evaluations in pop-
ular poker games demonstrate OX-Search’s su-
periority in both exploitability and exploitation
compared to previous methods.

1. Introduction
Recent advances in real-time strategy search tech-
niques (Burch et al., 2014; Ganzfried & Sandholm, 2015a;
Brown & Sandholm, 2017; Brown et al., 2018; Liu et al.,
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2023) have achieved notable accomplishments in games
such as Texas Holdem Poker (Moravčı́k et al., 2017; Brown
& Sandholm, 2018; 2019), Hanabi (Lerer et al., 2020),
Mahjong (Li et al., 2020), and Dark Chess (Zhang & Sand-
holm, 2021). These successes highlight the effectiveness
of real-time search in complex game scenarios. However,
despite their theoretical robustness, these strategies often
exhibit excessive caution against suboptimal opponents (Al-
brecht & Stone, 2018; Liu et al., 2022), thus missing op-
portunities for higher payoffs. To better exploit these weak-
nesses, there have been efforts to construct opponent models
based on historical actions (Southey et al., 2005; Ganzfried
& Sandholm, 2011; Bard et al., 2013; He & Boyd-Graber,
2016; Tian et al., 2019), with the aim of exploiting these op-
ponents more effectively and maximizing profits (Albrecht
& Stone, 2018; Zheng et al., 2018; Liu et al., 2022).

Although numerous methodologies exist to model oppo-
nents, opponent exploitation is highly challenging in prac-
tice (Ganzfried & Sandholm, 2011; 2015b). During game-
play, the predictions generated by these models may suffer
from inaccuracy due to limited data availability for con-
structing the models or the variability of an opponent’s strat-
egy. Consequently, players need to ensure the robustness of
their strategies to effectively exploit opponents (Bernasconi-
de Luca et al., 2021), even in the presence of modeling
errors. Additionally, exploiting an opponent inherently risks
being exploited in return, especially when facing a decep-
tive adversary. This challenge is commonly referred to as
the “being taught and exploited” problem (Sandholm, 2007).
The aforementioned concerns necessitate the development
of an opponent exploitation approach that addresses both
safety—securing the profit against the deceptive opponents,
and robust exploitation—upholding the effective exploita-
tion in the presence of modeling inaccuracies.

However, most previous works predominantly excel in either
ensuring strategic safety (Ganzfried & Sandholm, 2015b)
or in achieving robust exploitation (Zheng et al., 2018;
Bernasconi-de Luca et al., 2021; Fu et al., 2022), yet fail
to effectively incorporate both of these two critical aspects.
Few exceptions including (Liu et al., 2022) aim to search
for a Pareto optimal balancing safety and robust exploita-
tion, but their strategies may not always guarantee safety or
increase profits against opponents.
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To address this problem, this paper first redefines safety in
the context of online exploitation for two-player zero-sum
games, introducing the notion of adaptation safety. This
concept diverges from the conventional safety definition,
which is benchmarked against the Nash Equilibrium (NE)
as seen in previous works (Ganzfried & Sandholm, 2015b;
Liu et al., 2022). We notice that in large-scale games, where
computing an exact NE is exceptionally challenging, the
strategies used by players are inherently exploitable. Given
the impracticality of achieving NE-level safety without op-
ponent exploitation, the traditional safety becomes an overly
strict benchmark and limits potential profit. In contrast, an
exploitation strategy that adheres to adaptation safety is de-
signed to be no more exploitable than a predefined initial
strategy, or ‘blueprint’. This definition allows players to
adapt their strategies while avoiding the “being taught and
exploited” problem.

Furthermore, to swiftly respond to potential changes in
opponent models and effectively exploit their weaknesses,
we propose an Opponent-eXploitation Search (OX-Search)
framework, which integrates real-time search techniques for
computationally efficient online adaptation. Unlike tradi-
tional opponent exploitation methods that often treat safety
and exploitation as conflicting goals, balanced through an
exploitation level hyperparameter (Johanson et al., 2007;
Liu et al., 2022), OX-Search aims to exploit the opponent’s
weakness within the bounds of adaptation safety during real-
time search. In essence, OX-Search strives to identify an
exploitation strategy that is best against opponents, without
exceeding the risk level of the initial blueprint. The adap-
tation safety search scheme plays a vital role in mitigating
the impact of modeling errors by bounding the worst-case
profit loss at each infoset.

The main contributions can be summarized as follows.

• Introduction of the “Adaptation Safety” and the
OX-Search framework: We introduce the con-
cept of adaptation safety and present the Opponent-
eXploitation Search (OX-Search) framework, incorpo-
rating real-time search techniques for efficient online
opponent exploitation. Adaptation safety offers a novel
perspective on opponent exploitation, thus addressing
the challenge of balancing exploitation with safety in
dynamic environments.

• Theoretical analysis of OX-Search: We provide a
comprehensive theoretical analysis of OX-Search, elu-
cidating its properties and guarantees. Specifically, it
establishes that OX-Search ensures safety by being no
more exploitable than the blueprint strategy. Moreover,
OX-Search guarantees an anticipated increase of the
worst-case exploitation bounds despite the existence of
opponent modeling errors.

• Development of a specialized gadget game: We de-
velop a novel gadget game tailored to OX-Search,
which facilitates the use of advanced equilibrium-
finding techniques, thereby extending the framework’s
ability to handle large-scale games.

• Empirical evaluation and superior performance:
We demonstrate the superior performance of OX-
Search compared to other opponent exploitation meth-
ods through empirical evaluation on popular poker
variants such as Leduc Hold’em and Flop Hold’em
Poker. The results highlight the efficacy of OX-Search
in achieving high levels of exploitation and safety.

2. Related Works
This paper focuses on the online opponent exploitation prob-
lem in two-player zero-sum games, which is closely related
to the works on the real-time search in imperfect information
games and opponent exploitation.

2.1. Real-time Search in Imperfect Information Games

Real-time search has been widely used in solving real-world
imperfect information problems (Moravčı́k et al., 2017;
Brown & Sandholm, 2018; 2019; Li et al., 2020; Zhang &
Sandholm, 2021; Ge et al., 2023). Typical real-time search
methods employ precomputed blueprints and improve them
in various ways.

One kind of approach involves utilizing online Monte Carlo
sampling techniques (Lisỳ et al., 2015; Šustr et al., 2019;
Li et al., 2020), which leverage regret or action values com-
puted during offline training and update them through cus-
tomized sampling. While they fine-tune the blueprint and
reduce exploitability, the conservative nature of the adjust-
ments may limit their ability to effectively adapt to opponent
exploitation, potentially forgoing higher payoffs.

Another prevalent approach is subgame solving (Burch et al.,
2014; Ganzfried & Sandholm, 2015a; Brown & Sandholm,
2017), which serves as a fundamental technique for several
benchmark AI systems (Moravčı́k et al., 2017; Brown &
Sandholm, 2018; 2019). In subgame solving, the player con-
structs a subgame based on the current state and computes a
strategy specifically tailored for that subgame. The player
then plays according to this new strategy rather than strictly
adhering to the blueprint. Unlike Monte Carlo online sam-
pling methods, safe subgame solving approaches (Moravcik
et al., 2016; Brown & Sandholm, 2017) do not restrict the
new strategy to be minor variations on the blueprint. In-
stead, their objective is to ensure that the exploitability is
reduced compared to the blueprint. This is accomplished by
constructing augmented subgames that offer the opponent
the option to abstain from entering the subgame, thereby
compelling the player to develop a strategy that matches or
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exceeds the blueprint. Additionally, efforts have been made
to alleviate the computational demands of subgame solving
in large games (Zhang & Sandholm, 2021; Liu et al., 2023)
by focusing on shrinking the subgame tree, thus facilitating
the application of subgame solving methods to large game
scenarios.

2.2. Opponent Exploitation

Within the realm of opponent exploitation, previous
works (Gilpin & Sandholm, 2006; Li & Miikkulainen, 2018;
Wu et al., 2021; Ge et al., 2022; Yu et al., 2022) have pri-
marily centered around constructing opponent models based
on historical data and developing best response strategies.
However, these studies have not thoroughly addressed two
critical aspects: safety, which involves ensuring profitability
against deceptive opponents, and robust exploitation, which
requires maintaining effective exploitation even in the face
of inaccuracies in opponent modeling.

Certain methodologies, such as those proposed in (He &
Boyd-Graber, 2016; Zheng et al., 2018), constrain the scope
of potential exploitation strategies when applying opponent
exploitation. For example, DRON (He & Boyd-Graber,
2016) leverages expert networks to exploit opponents by se-
lecting strategies from a predefined set. Deep BPR+ (Zheng
et al., 2018) utilizes Bayesian optimization to reuse a library
of strategies for exploitation. These methods lack safety
guarantees and can be highly ineffective if used with an
improper strategy set.

In the context of repeated games, the work of (Ganzfried &
Sandholm, 2015b) explores safe exploitation methods that
risk only those utilities that have been won over NE in ex-
pectation. They establish the existence of a non-equilibrium
safe exploitation method. Although the method is theoret-
ically sound, calculating the utility expected from playing
an NE is computationally intensive, and finding the exact
NE strategy might not be feasible in large games.

Another approach (Bernasconi-de Luca et al., 2021) consid-
ers modeling errors in opponent exploitation. They construct
a trust region around the opponent model based on historical
actions, delineating a feasible strategy space in which utility
is bounded against the opponent’s strategy within this region.
A strategy is then selected through a process akin to the Up-
per Confidence Bound (UCB) approach (Abbasi-Yadkori
et al., 2011). GSCU (Fu et al., 2022) employs a similar
decision-making procedure, wherein greedy exploitation is
pursued when certainty is high, and resorts to a conservative
strategy amid uncertainty. While robust against modeling er-
rors, these approaches may still be vulnerable to exploitation
by deceptive opponents.

An alternative approach, known as the p-Restricted Nash
Response (RNR) (Johanson et al., 2007), seeks to optimize

an objective that integrates safety and exploitation consid-
erations. RNR assumes the opponent follows the modeled
strategy with probability p and can select any strategy with
probability 1 − p. This can be treated as an equilibrium-
finding problem. Although RNR has been shown to com-
pute a solution that is Pareto-optimal between safety and
exploitation, it fails to furnish guarantees regarding safety
and robust exploitation.

More recently, the Safe Exploitation Search (SES)
method (Liu et al., 2022) has been proposed, building upon
the idea of RNR (Johanson et al., 2007). SES incorporates
real-time solving techniques into the opponent exploitation
procedure and strikes a balance between safety and exploita-
tion during subgame solving. However, it is noteworthy
that the strategy resulting from this combination may not
necessarily be safer than the blueprint strategy, nor surpass
the efficacy of previous strategies against the opponent, as
inferred from their theoretical analysis.

These existing methods have primarily concentrated on ei-
ther safety or robust exploitation, yet often fall short in
simultaneously addressing both. However, this dual focus
is particularly vital in practical applications, as neglecting
either aspect can render the exploitation strategy vulnera-
ble, potentially leading to suboptimal performance. Our
work aims to address this problem by developing a novel
approach that integrates real-time search techniques with a
new perspective of adaptation safety in two-player zero-sum
games. While our focus is formulating a safe exploitation
algorithm, it is noteworthy that it can be complemented
with existing agent modeling techniques (Albrecht & Stone,
2018) for estimating opponent’s strategies.

3. Notations and Background
3.1. Extensive-form Games

Extensive-form games (EFGs) with imperfect information
serve as a highly effective framework for modeling sequen-
tial decision-making problems. Such games are represented
by G = ⟨N,H,P, {ui}, I⟩. In an extensive-form game, the
player set N = {1, 2, . . . }∪{c} includes all the players par-
ticipating in the game along with a unique player known as
the chance player, denoted by c, who acts according to a pre-
determined probability distribution. The history set H rep-
resents the sequence of actions that have taken place in the
game. When an action a leads from history h to history h′,
it is denoted as h ·a = h′. Additionally, the notation h ⊏ h′

signifies that there is a sequence of actions leading from
history h to history h′. For each h ∈ H , the acting player
can choose an action from the action set {a | h · a ∈ H},
denoted by A(h). The set of terminal histories are defined
as Z, and it comprises nodes where the action set is empty.
These terminal histories correspond to the leaf nodes of the
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game tree. For any history h ∈ H\Z, a player function
assigns the acting player at h, i.e., P (h) = i ∈ N . Upon
reaching each of the leaf nodes z ∈ Z, the utility function
ui(z) specifies the payoff received by player i. Imperfect
information is captured by the notion of information sets, or
infosets. The set I represents the partition of the history set
H into these infosets. Each infoset Ii ∈ Ii corresponds to
the information that is available to player i. Within player
i’s infoset, the player cannot distinguish between two his-
tories h and h′, implying that the player function and the
action set are identical for all histories in Ii. Hence, they
can be denoted as P (Ii) and A(Ii), respectively.

An imperfect information subgame is a collection of histo-
ries structured as a forest of trees and is closed under the
descendant relation and infosets for any player. For any
history h in subgame S, if h′ ⊐ h, then h′ ∈ S. Addi-
tionally, for any player i, if h, h′ ∈ Ii, then h′ ∈ S. We
further denote the earliest reach history set as Stop. That is,
Stop = {h ∈ S | ∀h′ ⊏ h, h′ /∈ S}.

3.2. Strategies and Counterfactual Values in EFGs

A strategy σi(Ii) for player i represents a probability dis-
tribution over valid actions A(Ii). The probability of se-
lecting a specific action a is denoted by σi(Ii, a). The
joint probability of reaching a history h when all players
adhere to their strategies σ is given by πσ(h). The contri-
bution of player i to the reach probability, assuming other
players and the chance player picks actions leading to h,
is πσ

i (h) = Πh′·a⊏h,P (h′)=iσi(h
′, a). Let −i be all the

players excluding player i, and σ−i be their strategies, the
contribution of the chance and all players other than i is
denoted by πσ

−i(h).

The expected utility for player i, given the strategy profile of
all players σ = ⟨σi, σ−i⟩, is

∑
z∈Z(π

σ(z)ui(z)), and we
denote it by ui(σi, σ−i) for simplicity. A best response strat-
egy BR(σ−i) is a strategy that maximizes player i’s payoff
against σ−i. Formally, BR(σ−i) = argmaxσ′

i
ui(σ

′
i, σ−i).

A Nash Equilibrium is a self-enforcing strategy profile
σ∗ = (σ∗

i , σ
∗
−i) that no one has an incentive to unilaterally

change its strategy, which means ∀i ∈ N, ui(σ
∗
i , σ

∗
−i) ≥

maxσ′
i
ui(σ

′
i, σ

∗
−i).

The exploitability of a strategy σi in a two-player zero-
sum game is represented by exp(σi), which quantifies how
much player i would lose if the opponent plays according
to BR(σi) compared to the Nash Equilibrium strategy σ∗

i .
Formally, exp(σi) = ui(σ

∗
i , σ

∗
−i)− ui(σi, BR(σi)).

Let πσ(h, h′) be the probability of reaching h′ given
that h is reached if h ⊑ h′, and πσ(h, h′) = 0 oth-
erwise. The expected value at history h is vσi (h) =∑

z∈Z πσ(h, z)ui(z) and vσi (h, a) is the expected value
assumed action a is chosen. The counterfactual value

of infoset Ii is the sum of the expected value of his-
tories h ∈ Ii weighted with the other players’ reach
probability, given Ii is reached. Formally, vσi (Ii) =∑

h∈Ii
(πσ

−i(h)v
σ
i (h))∑

h∈Ii
πσ
−i(h)

, and the counterfactual value of action

a is vσi (Ii, a) =
∑

h∈Ii
(πσ

−i(h)v
σ
i (h,a))∑

h∈Ii
πσ
−i(h)

. The player i’s coun-

terfactual best response CBR(σ−i) is a best response strat-
egy that also maximizes the expected value at infoset Ii
even with πσi

i (Ii) = 0. That is, CBR(σ−i)(Ii, a) ≥ 0
only if vσi (Ii, a) ≥ maxa′∈A(Ii) v

σ
i (Ii, a

′). The counterfac-
tual best response value CBV

σ−i

i (I) is further defined as
the counterfactual value player i will receive when play-
ing according to CBR(σ−i) against σ−i at I . Formally,
CBV

σ−i

i (I) = v
⟨CBR(σ−i),σ−i⟩
i (I), and CBV

σ−i

i (I, a) =

v
⟨CBR(σ−i),σ−i⟩
i (I, a).

4. Exploitation in Subgame Refinement
4.1. Definition of Adaptation Safety

Previous works (Ganzfried & Sandholm, 2015b; Liu et al.,
2022) have primarily focused on safety guarantees that en-
sure the expected payoff of an exploitation strategy is not
lower than that of a Nash Equilibrium against a best re-
sponse player. While these safety guarantees guard against
worst-case scenarios and prevent further exploitation in toy
games, they are not suitable for real-world games where
computing the exact equilibrium is a daunting task. In such
games, strategies that players can employ are inherently
exploitable, rendering the traditional safety concept, which
is based on Nash Equilibrium, inadequate and excessively
rigorous.

To address this limitation, we introduce the notion termed
adaptation safety for opponent exploitation methods. Adap-
tation safety captures the idea that the strategy a player
employs could be exploitable and might result in a decrease
in profits compared to NEs. In light of this, it is natural to
ask why a player would not seek to exploit the opponent
while accepting the risk of a potential loss in profit, as long
as the loss is not greater than what would be incurred us-
ing the current strategy. By constraining the risk in such a
way, the exploitation strategy is rendered safe as it cannot
be exploited beyond this point. The formal definition of
adaptation safety is provided in Definition 4.1.

Definition 4.1. (Adaptation Safety) An opponent exploita-
tion method is adaptation safe if, for any blueprint strategy
σ, it yields an exploitation strategy σ′ such that exp(σ′) ≤
exp(σ).

The concept of adaptation safety can be viewed as an exten-
sion of traditional safety, as traditional safety is a special
case of adaptation safety where the blueprint is a NE. The
new safety perspective offers a pragmatic and realistic ap-
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proach to safety in opponent exploitation. Recognizing the
inherently exploitable nature of the strategy that the player
employs, it ensures that the exploitation strategy is no less
profitable than the blueprint strategy.

In essence, adaptation safety eases the constraints on the
range of possible exploitation strategies, allowing for a more
flexible exploration of strategies. Below is an illustrative
example that demonstrates a strategy capable of exploiting
the opponent beyond what the blueprint strategy would
allow while adhering to the principle of adaptation safety.
Example 4.2. Consider the traditional two-player zero-sum
game, Rock-Paper-Scissors, where each player chooses
rock, paper, or scissors simultaneously. The rules are sim-
ple: rock defeats scissors, scissors defeats paper, and paper
defeats rock. The winner receives a payoff of +1, while the
loser gets -1. If both players choose the same option, it is a
tie, and they both receive a payoff of 0.

Now assuming the blueprint is ( 14 ,
1
2 ,

1
4 ) for rock, paper and

scissors respectively. If the opponent always chooses scis-
sors, the expected value of the blueprint strategy would be
− 1

4 . However, if the player were to recognize the opponent’s
pattern and apply a safe exploitation method, the player
could turn to an exploitation strategy ( 12 ,

1
4 ,

1
4 ) that has the

same exploitability as the blueprint. With this adapted strat-
egy, the player now has a higher expected value of 1

4 against
this opponent, thus improving by 1

2 .

4.2. Opponent-Exploitation Search

We now introduce a new exploitation framework called
Opponent-eXploitation Search (OX-Search). Let σ be the
precomputed blueprint. Without loss of generality, we as-
sume the existence of an opponent model σ̂1, and through
the implementation of OX-Search on a specific subgame
S ∈ S, we refine player 2’s strategy σS

2 . Consequently,
Player 2 opts to adhere to σS

2 , as opposed to σ, within S.

Upon reaching an infoset I2 in Stop of S, let p̂(I1) =∑
h∈I1

πσ̂1
1 (h) be the estimated reach probability of the

opponent, OX-Search seeks to find a subgame strategy σS
2

that maximizes the following objective:∑
Ii
1∈Stop

p̂(Ii1)
(
CBV σ

1 (Ii1)− CBV
σS
2

1 (Ii1)
)
, (1)

which is subject to the safety constraints:

CBV σ
1 (Ii1)− CBV

σS
2

1 (Ii1) ≥ 0, (2)

for all Ii1 ∈ Stop. Here, the term CBV σ
1 (Ii1)−CBV

σS
2

1 (Ii1)
represents the improvement in strategy σS

2 at infoset Ii1.
The objective in Equation (1) maximizes the improvement
over the estimated distribution p̂ while satisfying the safety
constraints (2) at the same time.

The safety constraints (2) are commonly used in safe sub-
game solving methods, and they ensure that the refined
strategy σS

2 does not decrease the expected payoff against
optimal opponent at each opponent’s infoset. Additionally,
the constraints prevent the opponent from gaining an advan-
tage through altering its reach probability over Ii1. Therefore,
strategy σS

2 is safer than player 2’s strategy σ2 in strategy
profile σ both inside and outside the subgame S, leading to
adaptation safety in the OX-Search context.

We provide the formal description in Theorem 4.3.

Theorem 4.3. Let S be a set of disjoint subgames S. Assume
that OX-Search is performed on each subgame within S. The
resulting refined strategy is denoted as σ′

2. The exploitability
of the refined strategy adheres to the following inequality:

exp(σ′
2) ≤ exp(σ2) . (3)

Theorem 4.3 guarantees that the exploitability of the refined
strategy σ′

2 is no greater than that of the original strategy
σ2. This implies that OX-Search ensures the refined strategy
achieves exploitability equal to or better than the original
strategy. Furthermore, by enforcing the safety constraints
(2), OX-Search guarantees a increment of the profit lower
bound against the opponent, even in the presence of errors or
inaccuracies in the predictions or opponent modeling. This
highlights the robust exploitation of OX-Search in handling
uncertainties and deviations from the opponent model, as
further illustrated in Theorem 4.4.

Theorem 4.4. Let ϵ=maxIi
1∈Stop,p̂(Ii

1 )̸=0
p̂(Ii

1)−p(I
i
1)

p̂(Ii
1)

≤1 be
the metric quantifying the estimation error between the true
distributions p(Ii1) and the estimated distributions p̂(Ii1). We
use BR

[S,σ1]
1 (σ) to denote the strategy for player 1, which

maximizes its utility in subgame S against σ−1 under the
constraint that BR

[S,σ1]
1 (σ) and σ1 differs only inside S.

Let δ=maxσ′
2
minIi

1∈Stop

(
CBV σ2

1 (Ii1)−CBV
σ′
2

1 (Ii1)
)
≥

0. The expected payoff of OX-Search u
⟨BR

[S,σ1]
1 (σ′

2),σ
′
2⟩

2 (S)
at subgame S is lower bounded by

u
⟨BR

[S,σ1]
1 (σ′

2),σ
′
2⟩

2 (S) ≥ u
⟨BR

[S,σ1]
1 (σ2),σ2⟩

2 (S) + (1− ϵ)δ.
(4)

Since OX-Search only leverage the knowledge of the pre-
diction about the opponent’s strategy before the reaching
infoset, Theorem 4.4 assume the the opponent plays opti-
mally throughout the remaining portion of the game. As
suggested in Theorem 4.4, applying OX-Search elevates the
expected payoff by at least (1 − ϵ)δ, when the opponent
plays optimally thereafter. To further exploit the opponent
and amplify profit, players can employ OX-Search repeat-
edly at each newly encountered information set in a nested
fashion, which maintains adaptation safety at the same time.
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𝒌𝜷+ 𝟏

C

Figure 1. The constructed gadget game of OX-Search. C repre-
sents the chance node and P1 represents player 1’s action node.

The iterative use of OX-Search enables the player to contin-
uously refine its strategy and exploit opportunities for higher
payoff, while simultaneously ensuring a level of robustness
against the opponent’s actions and modeling uncertainties.

It is important to underscore the significant differences be-
tween OX-Search and the SES (Liu et al., 2022) method,
which uses a convex combination of exploitation and safety.
1) OX-Search provides theoretical guarantees regarding both
safety and potential profit. In contrast, SES can only deliver
an approximate safety guarantee under stringent assump-
tions, failing to ensure robust exploitation amidst estimation
errors. 2) SES requires a hyperparameter to control the level
of exploitation. Identifying an optimal hyperparameter can
be daunting, thereby potentially restricting the practical util-
ity of SES. 3) OX-Search can be easily extended for nested
applications without sacrificing safety. Contrarily, applying
SES in a nested manner could lead to severe problems due to
potential loss stemming from a lack of safety and robustness
against estimation errors.

4.3. Gadget Game

While OX-Search can be solved using Linear Programming
(LP), it has been shown that LP may not effectively utilize
the structural properties of extensive-form games, making
it challenging to apply to large games (Davis et al., 2019;
Liu et al., 2022). A common method to overcome this
issue involves the use of the Constrained Counterfactual
Regret Minimization (CFR) method (Davis et al., 2019).
However, the direct application of Constrained CFR to OX-
Search necessitates the computation of the exact gradient
value ∇σt

2
CBV σt

21(Ii1) for each Ii1 ∈ Stop at each itera-
tion t, which is a non-trivial task. In order to expedite the
strategy-solving process and make it compatible with ad-
vanced equilibrium-finding algorithms for extensive-form
games, we need to construct a gadget game, in which the
NE is the solution to objective (1) and constraint (2).

We begin by transforming the problem formulation. Given

the feasibility of constraint (2), the problem is equivalent to

min
σS
2

max
σ1,λ≥0

∑
Ii
1∈Stop

p̂(Ii1)
(
v
⟨σ1,σ

S
2 ⟩

1 (Ii1)− CBV σ
1 (Ii1)

)
+

∑
Ii
1∈Stop

λi

(
v
⟨σ1,σ

S
2 ⟩

1 (Ii1)− CBV σ
1 (Ii1)

)
,

(5)
where λ = ⟨λ1, λ2, . . . ⟩ is the Lagrange multiplier.

To facilitate the construction of the gadget game, similar
to (Davis et al., 2019), we operate under the assumption
that λ is upper-bounded, i.e., ∀i, λi ≤ β. This allows us to
rewrite Equation (5) as follows:

min
σS
2

max
σ1,0≤λ≤β

∑
Ii
1∈Stop

p̂(Ii1)
(
v
⟨σ1,σ

S
2 ⟩

1 (Ii1)− CBV σ
1 (Ii1)

)
+

β
∑

Ii
1∈Stop

(
λi

β

(
v
⟨σ1,σ

S
2 ⟩

1 (Ii1)− CBV σ
1 (Ii1)

)
+

β − λi

β
0

)
.

(6)
Considering that β is a fixed value, we can further simplify
the problem by introducing the normalise operation. Sup-
pose the number of Ii1 in Stop is k, solving Equation (6) is
equivalent to solving:

min
σS
2

max
σ1,0≤λ≤β

1

kβ + 1

∑
Ii
1∈Stop

p̂(Ii1)M
⟨σ1,σ

S
2 ⟩

1 (Ii1)

+
kβ

kβ + 1
· 1
k

∑
Ii
1∈Stop

(
λi

β
M

⟨σ1,σ
S
2 ⟩

1 (Ii1) +
β − λi

β
· 0

)
.

(7)
where M

⟨σ1,σ
S
2 ⟩

1 (Ii1) = v
⟨σ1,σ

S
2 ⟩

1 (Ii1)− CBV σ
1 (Ii1).

As a result, we can treat λ as player 1’s strategy for selecting
each information set Ii1, and the optimal λ can be identified
during the equilibrium-finding process in Equation (7). This
approach facilitates the construction of the gadget game and
enables efficient strategy solving.

Constructing the gadget game, as shown in Figure 1, in-
volves several steps:

1. The original subgame is duplicated into two identical
parts, denoted as S1 and S2. Only player 1 can dis-
tinguish between these two parts. For each history in
S1 and S2, the utility is adjusted by subtracting the
corresponding counterfactual value. Specifically, for
all Ii1 ∈ Stop, h ∈ Ii1, and h ⊏ z, the utility is updated
as u′

1(z) = u1(z)−CBV σ
1 (Ii1) and u′

2(z) = −u′
1(z).

2. A chance node is added as the root of the gadget game.
This chance node has two possible outcomes: selecting
the left part with probability 1

kβ+1 , or choosing the

right part with probability kβ
kβ+1 . The outcome of the

chance node is visible to player 1.
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Figure 2. Exploitability of OX-Search and other methods in Leduc Hold’em and Flop Hold’em Poker. (Lower is better).
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Figure 3. Head-to-head evaluation of OX-Search and other ex-
ploitation methods against evolving opponents. (Higher is better).

3. In the left part of the game, the chance node selects
each of player 1’s information sets Ii1 ∈ Stop with
a probability proportional to p̂(Ii1). The following
chance node then selects the actual history with a prob-
ability proportional to πσ

−1(h). This part corresponds
to the first term in Equation (7).

4. In the right part of the game, the first chance node
randomly selects one information set Ii1 ∈ Stop using a
uniform distribution. The following player 1’s node is
an option node that allows player 1 to decide whether
to enter the subgame or not. If player 1 opts not to enter,
it receives a payoff of 0. If player 1 decides to enter,
the game proceeds, and the subsequent chance node
selects the history h with a probability proportional to
πσ
−1(h). This part corresponds to the second term in

Equation (7).

Since only player 1 can distinguish between S1 and S2,
player 2’s strategy remains the same in both S1 and S2.
Consequently, player 1’s counterfactual value and counter-
factual regret in the corresponding information sets of S1

and S2 remain consistent. Therefore, the NE generated by
CFR of the gadget game is exactly the solution of Equa-
tion (7). Moreover, this solution can be computed efficiently
in real-time, as evidenced by prior research (Ganzfried &
Sandholm, 2015a; Moravcik et al., 2016; Brown & Sand-
holm, 2017; Liu et al., 2022).

While the NE is the solution when the optimal λ∗ lies
in the interval [0, β]k, this equivalence may not persist if
λ∗ /∈ [0, β]k, and the resulting strategy might not be adap-
tation safe. Fortunately, we can identify this by examining
player 1’s NE at each option node and increasing the value
of β if player 1 chooses to enter with a 100% probability
(or very close, in the case of an approximate NE) at some
option nodes, as outlined in Theorem 4.5.
Theorem 4.5. Let σS∗ be the NE of the gadget game. If
there is no optimal λ∗ ∈ [0, β]k, then exists option node ho

such that σS∗(ho, enter) = 1.

Furthermore, if a minimum acceptable safety violation ex-
ists, we can opt for a fixed value of β as per Theorem 4.6,
eliminating the need for constantly increasing its value.
Theorem 4.6. Let ∆ = maxz∈Z u1(z) − minz∈Z u1(z).
σS
2 is solved in Equation (7). The exploitability of refined

strategy σS
2 is bounded by:

exp(σS
2 )− exp(σ) ≤ ∆

β
. (8)

The above theorems provide crucial guidelines for deter-
mining the appropriate value of β, as well as ensuring the
safety and exploitability bounds of the refined strategy in
OX-Search.

5. Experiment
For a thorough assessment of OX-Search, our evaluation
employs three key metrics: (I) safety in the face of the
worst-case opponent; (II) effectiveness against evolving op-
ponent strategies; and (III) robust exploitation in scenarios
involving modeling errors. Extensive experiments are con-
ducted on Leduc Hold’em (Southey et al., 2005; Wu et al.,
2021) and Flop Hold’em Poker (FHP) (Brown et al., 2018;
Liu et al., 2022) to evaluate the performance of OX-Search.
Leduc Hold’em represents a small-scale poker game, while
FHP represents a large-scale one. We compare OX-Search
with Safe Exploitation Search (SES) (Liu et al., 2022) and a
real-time search variant of RNR (Real-time RNR) (Johan-
son et al., 2007), as adapted in Liu et al. 2022. For SES and

7
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Figure 4. Head-to-head evaluation of OX-Search and other opponent exploitation methods against different opponents. (Higher is better).

Real-time RNR, we set the exploitation level hyperparam-
eter to 0.3, as it has proven to yield the best performance
with inaccurate opponent models in these two games (Liu
et al., 2022).

5.1. Experiment Settings

For all experiments, the performance is evaluated against
several distinct opponents, where the action probability is
randomly shifted with probability Prshuffle from an approx-
imate NE strategy. The constructed opponent is close to
NE and is competitively strong (Liu et al., 2022). The es-
timation error of opponent modeling is also implemented
by introducing noise into the reach probabilities (Liu et al.,
2022), which is measured by the ℓ1 distance between p̂ and
p, namely ||p− p̂||1. Please refer to Appendix B for details.

5.2. Safety Against Worst-case Opponents

We first evaluate the exploitability of the OX-Search frame-
work. Exploitability measures the maximum potential gain
an opponent can achieve by misleading the player to create
an inaccurate model of the opponent’s strategy.

The results in Figure 2 reveal that OX-Search consistently
demonstrates lower exploitability compared to the blueprint
strategy in both Leduc Hold’em and FHP. This suggests that
the strategies derived from OX-Search are less vulnerable to
worst-case opponents, thereby enhancing the safety of our
opponent exploitation approach. Notably, the exploitability
of OX-Search also appears to be insensitive to increases
in modeling error. While the SES was able to reduce ex-
ploitability in FHP, it was less effective in Leduc Hold’em.
This disparity in performance can be attributed to our use
of a finer-grained abstraction in FHP for subgame solving,
whereas in Leduc Hold’em, we implemented the strategy
without employing any form of abstraction. Furthermore,
RNR shows an increase in exploitability concurrent with
rising modeling errors, likely due to its assumptions about
the opponent’s behavior in the remainder of the subgame
and its vulnerability to modeling inaccuracies.

5.3. Effectiveness against Evolving Opponent Strategies

In addition to worst-case scenarios, we also evaluate OX-
Search in situations where opponents might change their
strategies, potentially making the constructed opponent
model less reliable. For this test, we set the opponent model
to be the strategy shifted by Prshuffle = 0.2 in Leduc Hold’em
and 0.5 in FHP. The expected value is then computed against
opponents with Prshuffle = 0.0. As demonstrated in Figure 3,
OX-Search consistently outperforms other methods in adapt-
ing to these strategic evolutions in both games.

5.4. Robustness in the Presence of Modeling Errors

Even with a static opponent strategy, the constructed model
may have inaccuracies due to the complexities of opponent
modeling (Albrecht & Stone, 2018). Therefore, it is crucial
to assess the resilience of opponent-exploitation methodolo-
gies against such modeling errors.

As shown in Figure 4, OX-Search maintains comparable
performance to SES in Leduc Hold’em and outperforms
both SES and RNR in FHP. While RNR demonstrates better
exploitation in Leduc Hold’em under conditions of minor
modeling errors, its performance significantly deteriorates
with increasing errors. Combined with the findings in Fig-
ure 2, these results suggest that OX-Search is not only as
or more efficient in exploitation as other methods but also
maintains its non-exploitability in worst-case scenarios.

6. Conclusion
In this paper, we have introduced the new notion of adap-
tation safety for opponent exploitation and developed the
OX-Search framework, which exploits components based
on this principle. Our theoretical analysis confirms that
OX-Search is adaptation-safe and capable of exploiting op-
ponents, even when faced with inaccurate opponent models.

This work opens two promising avenues for future research:
(I) Exploring the extension of the OX-Search framework
with advanced techniques, like estimating counterfactual
best values (Brown & Sandholm, 2017), could further en-
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hance its applicability. It is important to investigate whether
such extensions can still uphold the principles of adapta-
tion safety, and to understand the specific safety guarantees
they provide; (II) While our current framework focuses
on utilizing opponent reach probabilities from opponent
models, it does not consider predictions of the opponent’s
future actions. Future research could aim to develop a more
comprehensive search framework that incorporates these
predictions while preserving adaptation safety.
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A. Proofs
A.1. Proof of Theorem 4.3

Proof. We adopt the proof structure outlined in (Burch et al., 2014) to establish Theorem 4.3 via induction based on the
predecessor relationships within the game. Let Stop = ∪S∈SStop be the earliest reach state in S. Define pre(I1) = 0 for all
I1 ∈ Stop and pre(I ′1) = maxI′

1⊏I1 pre(I1) + 1. Furthermore, we set pre(·) to 0 for states that cannot lead to S.

According to the definition of σ′
2, we have CBV σ

1 (I1)− CBV
σ′
2

1 (I1) ≥ 0 for all I1 with pre(I1) = 0.

For the inductive step, we assume CBV σ
1 (I1)− CBV

σ′
2

1 (I1) ≥ 0 holds for all I1 with pre(I1) = k. Now, let’s consider an
arbitrary I ′1 with pre(I ′1) = k + 1:

Case 1. If I ′1 is the turn for player 1 to act, then ∀a ∈ A(I ′1), pre(I
′
1 · a) ≤ k + 1, CBV σ

1 (I ′1 · a) − CBV
σ′
2

1 (I ′1 ·
a) ≥ 0. According to the definition of CBR, CBR(I ′1) ∈ argmaxa∈A(I′

1)
CBV σ

1 (I ′1 · a), and thus CBV σ
1 (I ′1) =

maxa∈A(I′
1)
CBV σ

1 (I ′1 · a) ≥ maxa∈A(I′
1)
CBV

σ′
2

1 (I ′1 · a) = CBV
σ′
2

1 (I ′1).

Case 2. If I ′1 is not the turn for player 1 to act, then player 2 will play according to σ2 outside S and the chance player will
always act according to a fixed distribution, π⟨CBR(σ2),σ2⟩

−i (h)=π
⟨CBR(σ′

2),σ
′
2⟩

−i (h) for all h ∈ I ′1. It is followed by

CBV σ
1 (I ′1) =

∑
h∈Ii

(π
⟨CBR(σ2),σ2⟩
−i (h)v

⟨CBR(σ2),σ2⟩
i (h))∑

h∈Ii
π
⟨CBR(σ2),σ2⟩
−i (h)

=

∑
h∈Ii,a∈A(h)(π

⟨CBR(σ2),σ2⟩
−i (h · a)v⟨CBR(σ2),σ2⟩

i (h · a))∑
h∈Ii

π
⟨CBR(σ2),σ2⟩
−i (h)

=

∑
h∈Ii,a∈A(h)(π

⟨CBR(σ′
2),σ

′
2⟩

−i (h · a)v⟨CBR(σ2),σ2⟩
i (h · a))∑

h∈Ii
π
⟨CBR(σ′

2),σ
′
2⟩

−i (h)

≥
∑

h∈Ii,a∈A(h)(π
⟨CBR(σ′

2),σ
′
2⟩

−i (h · a)v⟨CBR(σ′
2),σ

′
2⟩

i (h · a))∑
h∈Ii

π
⟨CBR(σ′

2),σ
′
2⟩

−i (h)

= CBV σ′

1 (I ′1) .

(9)

Therefore, CBV σ
1 (I ′1)−CBV

σ′
2

1 (I ′1) ≥ 0 holds for all I ′1 with pre(I ′1) = k+1. By induction, CBV σ
1 (I1)−CBV

σ′
2

1 (I1) ≥
0 holds for all predecessors, including the root of the game, which implies u1(BR(σ2), σ2) ≥ u(BR(σ′

2), σ
′
2). Hence,

exp(σ′
2) = u1(σ

∗
1 , σ

∗
2)− u1(BR(σ′

2), σ
′
2) ≤ u1(σ

∗
1 , σ

∗
2)− u(BR(σ2), σ2) = exp(σ2). (10)

A.2. Proof of Theorem 4.4

Proof. Let σm
2 = argmaxσ′

2
minIi

1∈Stop

(
CBV σ2

1 (Ii1)− CBV
σ′
2

1 (Ii1)
)
≥ 0, since Equation (1) is maximized,

∑
Ii
1∈Stop

p̂(Ii1)
(
CBV σ

1 (Ii1)− CBV
σS
2

1 (Ii1)
)
≥

∑
Ii
1∈Stop

p̂(Ii1)
(
CBV σ

1 (Ii1)− CBV
σm
2

1 (Ii1)
)

⇔
∑

Ii
1∈Stop

p̂(Ii1)
(
CBV

σm
2

1 (Ii1)− CBV
σS
2

1 (Ii1)
)
≥ 0

⇔
∑

Ii
1∈Stop

p̂(Ii1)
(
CBV σ2

1 (Ii1)− CBV
σS
2

1 (Ii1)
)
≥

∑
Ii
1∈Stop

p̂(Ii1)
(
CBV σ2

1 (Ii1)− CBV
σm
2

1 (Ii1)
)

⇔
∑

Ii
1∈Stop

p̂(Ii1)
(
CBV σ2

1 (Ii1)− CBV
σS
2

1 (Ii1)
)
≥ δ

(11)
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Consider the modeling error ϵ,∑
Ii
1∈Stop

p(Ii1)
(
CBV σ2

1 (Ii1)− CBV
σS
2

1 (Ii1)
)

=
∑

Ii
1∈Stop

(
p(Ii1)− p̂(Ii1)

) (
CBV σ2

1 (Ii1)− CBV
σS
2

1 (Ii1)
)
+

∑
Ii
1∈Stop

p̂(Ii1)
(
CBV σ2

1 (Ii1)− CBV
σS
2

1 (Ii1)
) (12)

As constrained by Equation (2), CBV σ
1 (Ii1)− CBV

σS
2

1 (Ii1) ≥ 0, the first term in the right hand side of Equation (12) can
be decomposed into two part {Ii,+1 } and {Ii,−1 }, where p(Ii,+1 )− p̂(Ii,+1 ) ≥ 0 and p(Ii,−1 )− p̂(Ii,−1 ) < 0. Thus,∑

Ii
1∈Stop

p(Ii1)
(
CBV σ2

1 (Ii1)− CBV
σS
2

1 (Ii1)
)

=
∑

Ii
1∈Stop

p̂(Ii1)
(
CBV σ2

1 (Ii1)− CBV
σS
2

1 (Ii1)
)
+

∑
Ii,+
1

(
p(Ii,+1 )− p̂(Ii,+1 )

)(
CBV σ2

1 (Ii,+1 )− CBV
σS
2

1 (Ii,+1 )
)

+
∑
Ii,−
1

(
p(Ii,−1 )− p̂(Ii,−1 )

)(
CBV σ2

1 (Ii,−1 )− CBV
σS
2

1 (Ii,−1 )
) (13)

Apparently,
∑

Ii,+
1

(
p(Ii,+1 )− p̂(Ii,+1 )

)(
CBV σ2

1 (Ii,+1 )− CBV
σS
2

1 (Ii,+1 )
)

≥ 0. Since p(Ii,−1 ) − p̂(Ii,−1 ) < 0 and

p(Ii,−1 ) ≥ 0, we have p̂(Ii,−1 ) > 0. Therefore,∑
Ii,−
1

(
p(Ii,−1 )− p̂(Ii,−1 )

)(
CBV σ2

1 (Ii,−1 )− CBV
σS
2

1 (Ii,−1 )
)
≥− ϵ

∑
Ii,−
1

p̂(Ii,−1 )
(
CBV σ2

1 (Ii,−1 )− CBV
σS
2

1 (Ii,−1 )
)

≥− ϵ
∑

Ii
1∈Stop

p̂(Ii1)
(
CBV σ2

1 (Ii1)− CBV
σS
2

1 (Ii1)
) (14)

Back to Equation (13)∑
Ii
1∈Stop

p(Ii1)
(
CBV σ2

1 (Ii1)− CBV
σS
2

1 (Ii1)
)
≥(1− ϵ)

∑
Ii
1∈Stop

p̂(Ii1)
(
CBV σ2

1 (Ii1)− CBV
σS
2

1 (Ii1)
)

≥(1− ϵ)δ,

(15)

which means
u
⟨BR

[S,σ1]
1 (σ′

2),σ
′
2⟩

2 (S) ≥ u
⟨BR

[S,σ1]
1 (σ2),σ2⟩

2 (S) + (1− ϵ)δ (16)

A.3. Proof of Theorem 4.5

Proof. Suppose ∀ho, σS∗(ho, enter) < 1. Since σS∗ is the NE, then σS∗
1 (ho) is a best response to σS∗

1 . ∀ho,
σS∗(ho, enter) < 1 implies vσ

S∗

1 (ho, enter) = vσ
S∗

1 (ho, out) = 0 and player 1 can not benefit from changing the strategy
at ho. Therefore, ∃λ′ = (σS∗(h1

o, enter)β, σ
S∗(h2

o, enter)β, . . . , σ
S∗(hk

o , enter)β) ∈ [0, β]k is optimal in Equation (6),
which conflicts with the condition. Thus, ∃ho, σS∗(ho, enter) = 1.

A.4. Proof of Theorem 4.6

Proof. Let MσS
2 (Ii1) = CBV

σS
2

1 (Ii1)− CBV σ
1 (Ii1) ≥ −∆, Since σS

2 is the optimal strategy in Equation (7), then

max
0≤λ≤β

∑
Ii
1∈Stop

p̂(Ii1)M
σS
2 (Ii1) +

∑
Ii
1∈Stop

λiM
σS
2 (Ii1)

≤ max
0≤λ≤β

∑
Ii
1∈Stop

p̂(Ii1)M
σ2(Ii1) +

∑
Ii
1∈Stop

λiM
σ2(Ii1) = 0.

(17)

12



Safe and Robust Subgame Exploitation in Imperfect Information Games

Therefore,
max

0≤λ≤β

∑
Ii
1∈Stop

λiM
σS
2 (Ii1) ≤ −

∑
Ii
1∈Stop

p̂(Ii1)M
σS
2 (Ii1) ≤ ∆, (18)

Since λ is optimal, then if MσS
2 (Ii1) ≤ 0, then λi = 0. It implies

max
Ii
1∈Stop

CBV
σS
2

1 (Ii1)− CBV σ
1 (Ii1) ≤

∆

β
. (19)

Thus,

exp(σS
2 )− exp(σ) ≤ ∆

β
. (20)

B. Implementation Details
Same as the approach outlined in (Liu et al., 2022), the action probability in each infoset is multiplied by a random variable
with probability Prshuffle. The estimated error is implemented by first dividing the earliest reached state into two sets and
then applying reject sampling to add/subtract the given error to/from each set.

For Leduc Hold’em, the blueprint is solved by Monte Carlo CFR (Lanctot et al., 2009) for 1,000,000 iterations. No
abstraction technique is used in Leduc Hold’em and the opponent exploitation methods are applied at each state after the
public card is dealt. For the chance outcomes of the root node in the gadget game, we set 1

kβ+1 to 1
16 in Leduc Hold’em.

In the case of Flop Hold’em Poker, the blueprint is solved by Monte Carlo CFR for 100,000 iterations, incorporating the
abstraction technique (Johanson et al., 2013) at the flop turn. For each public betting history, the infosets are clustered into
200 buckets. The opponent with Prshuffle = 0.0 is also set to the same as the blueprint. The opponent exploitation method is
applied right after the public cards are dealt, with a finer-grained abstraction that has 400 buckets for each public betting
history. Given that there are 400 alteration nodes for the opponent in the gadget game, we increase the value of 1

kβ+1 to 1
51 ,

as per Theorem 4.6, to mitigate the potential increase in exploitability.

C. Discussion about OX-Search and Maxmargin Subgame Solving.

The goal of MaxMargin can be reformulated as maxσS
2
minλ,σ1 λi(CBV σ

1 (Ii1)− v
⟨σ1,σ

S
2 ⟩

1 (Ii1)), s.t.
∑

λi = 1, which can
be simply constructed as a zero-sum game with λ representing the action probability of player 1’s root node.

The gadget game designed for OX-Search (especially the right hand side) is inspired by the Subgame Resolving and the
MaxMargin method. Subgame Rsolving method aims to find a strategy σS

2 such that CBV σ
1 (Ii1)− CBV

σS
2

1 (Ii1) ≥ 0 for all
Ii1 . Since OX-Search does not require the subgame margin to be maximized, the gadget game has to give the opponent
an oppotunity to ”opt out” as in Subgame Resolving. The players’ value is also shifted by CBV σ

1 in order to reflect the
violation of the safety constraints. Thus the right hand side of the gadget game is constructed as a combination of MaxMargin
gadget game and Subgame Resolving gadget game according to Equation (7).

While MaxMargin aims to find a better strategy that is less exploitable, it could be regarded as a ”conservative” opponent
exploitation method, as it tries to maximize the mimium improvement m = maxσS

2
minIi

1
CBV σ

1 (Ii1)− CBV
σS
2

1 (Ii1) at
each opponent infoset. Conversely, OX-Search adopts a more flexible approach by not insisting on maximizing the subgame
margin minIi

1
CBV σ

1 (Ii1) − CBV
σS
2

1 (Ii1), but rather allowing it to be non-negative. The underlying intuition is that the
estimated opponent’s strategy implicitly gives us a gift of m at each infoset compared to MaxMargin, such that we can
afford to let player 1’s value increase beyond the CBV σ

1 (Ii1)−m at low reach probability infoset Ii1 and lower the value
of other infoset, thereby leveraging the estimated opponent’s strategy. The idea shares similarities with Reach Subgame
Solving, which improves the MaxMargin by utilizing another kind of ”gift” to increase the alternative value, consequently
reducing the exploitability of the subgame solving strategy.

D. Ablation Studies of β and Comparison with Maxmargins.
See Figure 5 and Figure 6.
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Figure 5. Performance of OX-Search with different β and Maxmargin subgame solving in Leduc poker.
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Figure 6. Performance of OX-Search with different β and Maxmargin subgame solving in Leduc poker against evolving opponents.

E. Experiments against Weaker Opponents.
See Figure 7. For weaker opponent such as PRshuffle = 0.4, 0.6, 0.8, OX-Search demonstrated superior exploitability
preservation while SES and Real-time RNR fail even with small estimation errors. However, due to its inherent safety
constraints, OX-Search could not exploit these opponents as aggressively as SES and Real-time RNR could, despite
achieving notable utility improvements over the blueprint.
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(b) Exploitability.
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(c) Exploitability.
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Figure 7. Performance of OX-Search and other methods in Leduc poker.

F. Experiments of Different Blueprint Strategies.
See Figure 8. In contexts with a stronger blueprint, OX-Search uniquely managed to maintain safety and achieve utility
improvements even with significant estimation errors (e.g., error = 1), showcasing its robustness and safety-oriented design.
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(a) Exploitability using the
bluprint strategy of 100K
iterations.
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(b) Exploitability using the
bluprint strategy of 100K
iterations.
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(c) Exploitability using the
bluprint strategy of 10M itera-
tions.
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(d) Exploitability using the
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(f) Evaluations using the bluprint
strategy of 100K iterations.
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Figure 8. Performance of OX-Search and other methods in Leduc poker using different bluprint strategies.

For weaker blueprint, OX-Search could still remain comparable performance with SES. We can find that the blueprint
strategy indeed influence the final results, since the weaker blueprint gives more space for OX-Search to exploit more about
the opponent.

G. Experiments in Other Games
Further experimentation in games like Liar’s Dice and Goofspiel, with kβ set to 15, has provided additional insights as
shown in Figure 9. The results in Liar’s Dice implies OX-Search can be well generalized to this game, while increasing
the β value may help to improve the performance since some result strategy violate the constraints. Goofspiel presented a
surprising outcome: exploitability remained consistent regardless of estimation error. We hypothesize this is attributable to
Goofspiel’s unique information structure, where players’ actions are not directly observable, possibly rendering estimation
errors less impactful on minimizing CBV s.

H. Further Experiments in FHP.
We conducted additional experiments on MaxMargin subgame solving in Flop Hold’em Poker, as results depicted in Fig-
ure 10. The results indicate that MaxMargin can enhance both exploitability and exploitation to some extent. Notably, the
improvements to the blueprint strategy by MaxMargin were not as substantial as anticipated based on previous literature.
This discrepancy may be attributed to the application of additional techniques in prior works that were not implemented in
our current study. Despite this, the experiment is a fair comparison, since we consistently use the same solver across all the
experiments.

We also carried out ablation studies on the parameter β in Flop Hold’em Poker. Preliminary findings suggest that a smaller
β enhances exploitation by directing OX-Search to prioritize exploitation more intensely. Conversely, a larger β does not
significantly alter the outcomes, as β essentially serves as an upper bound and OX-Search will automatically adjust its focus
between exploitation and safety based.
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(a) Exploitability in Liar’s Dice.
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(b) Exploitability in Liar’s Dice.
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(c) Exploitability in Goofspiel.
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(d) Exploitability in Goofspiel.
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(f) Evaluation in Liar’s Dice.
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(g) Evaluation in Goofspiel.
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(h) Evaluation in Goofspiel.

Figure 9. Performance of OX-Search and other methods in Liar’s Dice and 5-card Goofspiel with 3 round ascending order.
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(b) Exploitability.
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Figure 10. Performance of OX-Search and other methods in FHP.
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Figure 11. Performance of OX-Search with different β in FHP.
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