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Combining game-

theoretic solution 

concepts with 

existing models of 

taxi markets helps 

model drivers’ 

strategy-making 

process as a game, 

transforming 

the problem of 

optimizing taxi 

system efficiency 

to finding a market 

policy that leads 

to the desired 

equilibrium.

long amount of time trying to get a ride. 
Some even switch to unlicensed cabs, which 
typically charge a higher rate and create big 
threats to road safety. It turns out that the 
improper distance-based pricing scheme is 
the main cause of this situation, also called 
the peak-time dilemma. Low travel speed 
during peak time as a result of heavy traffic 
causes low or even negative revenue genera-
tion for taxi drivers, leaving them to pursue 
the only option that makes them money: not 
working during peak time.

We propose a solution: increasing fare 
price during the peak time to incentivize taxi 
drivers to work, specifically, with the use of 
a dynamic time-dependent fare structure  
that differentiates peak and non-peak times. 
The key is to calculate the best fare price 
that maximizes taxi system efficiency. We 

call this the TAxi System Efficiency Optimi-
zation (TASEO) problem.

Artificial Intelligence and  
Game Theory
Research about the economics of taxi mar-
kets dates back to 1969, when Daniel Orr 
pointed out the inadequacy of applying tradi-
tional cost-demand theory.1 In 1972, George 
Douglas introduced an aggregate demand 
and supply model that assumes customer de-
mand for taxi services depends on expected 
monetary and time costs, and expected cus-
tomer waiting time depends on total vacant 
taxi hours.2 Based on this model, Hai Yang 
and colleagues studied congestion externali-
ties and time variance in service intensity.3,4 
Other studies investigated taxi fare pricing in 
various places, such as New York City.5 Kim 

There are more than 60,000 licensed taxis in Beijing serving nearly 20 

million citizens. However, despite rising customer demand during peak 

times, most taxi drivers act counterintuitively, intentionally avoiding work-

ing during those times. Consequently, passengers spend an unreasonably 
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Young-Joo and Hark Hwang stud-
ied an incremental discount policy on 
taxi fare with the objective of maxi-
mizing average profit.6 Hai Yang and 
colleagues examined a nonlinear fare 
structure and showed its advantages 
over existing options in Hong Kong.7 
However, none of these works have 
investigated the effect of taxi drivers’ 
strategic behavior. To solve our prob-
lem, we need to know how taxi driv-
ers will react to fare price changes.

Fortunately, the artificial intelli-
gence field has provided many tech-
niques for studying human behavior, 
and there’s a growing trend of apply-
ing AI techniques to problems in the 
transportation sector, such as traffic 
control, intersection management, and 
transportation system simulation.8–10 
Most recently, we’ve seen the success-
ful application of game theory in the 
AI community, such as in security re-
source allocation.11 Game theory pro-
vides rich mathematic foundations and 
concepts for studying conflicts and co-
operation between intelligent, rational 
decision makers. Existing applications 
have demonstrated the potential of 
game theory in addressing comprehen-
sive real-world problems, motivating us 
to seek solutions along this direction.

Taxi System Efficiency 
Optimization
To improve system efficiency by adjust-
ing fare price, the primary task is to 
know how system efficiency is affected 
by fare price. Results from existing re-
search3,12 suggest that the taxi market 
is determined by two key factors: fare 
price and taxi supply (that is, the num-
ber of working taxis). Due to the taxi 
system’s decentralized management, 
taxi supply is determined by the driv-
ers’ operation strategy and isn’t directly 
controllable by the market regulator. 
Thus, we have an indirect dependency: 
for a given fare price, drivers react with 
a best strategy to keep their profits max-

imized. As Figure 1 shows, we can com-
bine a game-theoretic behavior model 
and an existing taxi market model. 

The Existing Taxi Market Model
A taxi market is a dynamic time- 
varying system. To model its variances, 
we discretize the optimization horizon 
(such as a whole day) into a set of n 
equal-length periods, such that when 
each period’s duration is sufficiently 
short, the market can be treated as 
uniform in each period. In a single pe-
riod i, the number of passengers served 
by the whole taxi system is determined 
by the average monetary and time cost 
of a trip, that is,
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where e is the base of the natural loga-
rithm; Fi is the average fare price, Li is 
the average travel time, and Wi is the 
average customer waiting time; b > 0  
is a sensitivity parameter; j1 and j2 are 
parameters used for converting time 

costs into monetary costs; g is the aver-
age number of passengers per ride; and 
Di is the number of potential custom-
ers, an ideal number achieved when the 
total cost is zero. The waiting time Wi 
in turn depends on Di as
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where w > 0 is a parameter depending 
on the density of taxi stands; pi is the 
proportion of working taxis (PoW); 
NT  is the total number of taxis; and 
pi × NT - DiLi/(g × t) represents vacant 
taxis in period i. It’s proven that when 
Fi, Li, and pi are fixed, Di and Wi are 
uniquely determined by Equations 1 
and 2.13 Therefore, Di and Wi are in 
fact implicit functions of Fi, Li, and pi. 
We denote them as Di = Di(Fi, Li, pi) 
and Wi = Wi(Fi, Li, pi).

Given the average trip distance di, 
travel time can be represented by travel 
speed Vi as Li = di/Vi. Travel speed in a 
road network can be approximated by a 
linear function of the number of on-road  
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Figure 1.  Game-theoretic modeling based on an existing taxi market model.
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Figure 2.  Interdependencies of factors in a taxi market.
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vehicles,14 which is linear to PoW pi 
as we assume that the number Nv

i  of 
non-taxi vehicles in the network is a 
period-specified constant. Thus, Vi is a 
linear function of pi, that is, 

V p p N N ,i i i
T v

iµ λ( ) ( )= ⋅ + +

where m and l are parameters de-
pending on road conditions. We write 
Li, Di, and Wi as Li(pi), Di(Fi, pi), and 
Wi(Fi, pi), respectively.

Next, we adopt a distance-based 
fare structure 

Fi = ƒ0 + ƒi . (di - d0),

where ƒ0 is the initial charge and d0 
is the distance covered by ƒ0; ƒi is the 
charge rate for period i, that is, the per-
unit distance charge. We optimize the 
fare structure by adjusting the charge 
rate ƒi and thus treat Fi as a function 
Fi(ƒi). Accordingly, all market factors, 
particularly the number Di of served 
customers, now depend on ƒi and pi, 
that is, Di = Di(ƒi, pi). For ease of de-
scription, we denote a market factor 
over all periods as a column vector, 
where each component corresponds 
to a period. For example, we denote 
charge rate over all periods as f = 〈ƒi〉. 
Figure 2 summarizes the interdepend-
encies of the factors.

The Taxi Driver’s Strategy
Taxi drivers decide which time peri-
ods to work by considering the po-
tential profits. In other words, a taxi 
driver’s strategy is a schedule specify-
ing several time periods (in a day) in 
which to work. We allow randomi-
zation into the strategy, letting the 
driver play a mixed strategy, which is 
an assignment of probabilities to each 
schedule. In this sense, each schedule 
is called a pure strategy. We denote 
a pure strategy as a vector s ∈ {0,1}n, 
where si = 1 (respectively, si = 0) indi-
cates working (respectively, not work-

ing) in period i. Let the pure strategy 
set, that is, the set of pure strategies 
feasible for the taxi driver to choose, 
be S. We then denote a mixed strat-
egy as x ∈ ℝ|S| such that x ≥ 0 and 
1⊤x = 1. Considering the capability 
of taxi drivers in real situations, we 
impose the following constraints on 
each schedule in the pure strategy set:

•	Constraint 1 (C1): The taxi driver 
doesn’t work for more than nw 
periods. 

•	Constraint 2 (C2): The taxi driver 
doesn’t work continuously for 
more than nc periods.

Namely, S = {s ∈ {0,1}n | s satisfies C1 
and C2}.

Our framework applies to different 
models of taxi driver behavior. We illus-
trate with two models: symmetric strat-
egy, in which every taxi driver assumes 
that all other drivers adopt the same 
strategy as he or she does, given that  
all taxis are identical (same car type, 
operation cost, and charging scheme), 
and egoistic strategy, in which the 
classic solution concept Nash equilib-
rium (NE) is adopted and we assume a 
driver deviates from his or her strategy 
(and the others don’t) unless he or she 
can’t benefit from doing so.

Symmetric strategy. The assumption is 
in accordance with the focal point the-
ory,15 which states that people tend to 
use solutions depending on simple so-
cial beliefs (others drivers play the same 
strategy), especially in the absence of 
communication. Given the symmetric 
strategy x, PoW is then given by 

∑( ) = ⋅∈p x s,s sx � (3)

which is the same as the probability 
of taxi drivers working in each period 
and can be viewed as a compact repre-
sentation of taxi driver strategy. Taxi 
drivers are profit-driven, and they al-

ways choose the best strategy to maxi-
mize their utility, that is,

 ( )( )∈ ≥ =x f p xx x x Uargmax , .*
: 0, 1 1 � (4)

Before we define the utility function 
U(f,p), note that the above optimi-
zation, although defined on a single 
strategy, captures the behavior of all 
players under the assumption that all 
drivers are the same (as we can see, 
the profit for working in a period de-
pends also on how many other taxis 
are working in that same period). Un-
der this condition, each player solves 
the same optimization problem in 
which the player’s utility depends on 
the strategies of other players using 
the same mixed strategy.

U(f, p) is defined as the sum of utili-
ties in all periods, that is, 

∑ ( )( ) = ⋅=f pU p G f p, , ,i
n i i i i

1

where Gi(fi, pi) is the profit of work-
ing in period i, defined as 
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where Di/g . NT represents the aver-
age number of trips each taxi serves, 
and cg is the cost in gasoline con-
sumption per unit time.

It follows that the fare price deter-
mines taxi driver strategy via the opti-
mization in Equation 4, and strategy in 
turn determines PoW via Equation 3.  
U(f, p) is strictly concave with respect 
to p,16 so there’s only one p maximiz-
ing U, given that the feasible set of 
p is convex.17 This means that even 
if there’s more than one solution to 
Equation 4, the solutions must all yield 
the same PoW, and a one-to-one cor-
respondence from f to p is guaranteed.

Egoistic strategy. To analyze taxi 
driver behavior under NE, we let the 
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and the utility of each taxi is
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Under NE, no player can benefit 
from changing his or her strategy, as-
suming that the other players stick to 
theirs. Namely, …x x, , N1 T

 is said to 
be in NE if, for every taxi j, 



( )
( )

… ≥

… ′ …

∀ ′ ≥ ∧ ′ =

− +

f x x

f x x x x x

x 1 x

U U, , ,  

, , , , , , , ,  

0  1.

j N j

j j N

1

1 1 1

T

T

� (8)

Because there are a large number of 
taxis, the game is non-atomic, meaning 
that the effect of a single taxi is negligi-
bly small. When a single taxi deviates, it 
doesn’t change the overall PoW, that is, 
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In addition, as the utility function 
(Equation 7) is identical to all taxis, 
the game is symmetric. For symmetric 
games, there always exists a symmet-
ric equilibrium under which all players 
play the same strategy.18 In this case, the 
strategy profile can be concisely repre-

sented with a universal strategy, say, x. 
We again write PoW as ( ) = Σ ⋅∈p x ss sx  
as in Equation 3, and the equilibrium 
criterion in Equation 9 becomes 
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To analyze the equilibrium strategy, 
we construct the following function: 

G ∑ ∫ ( )( ) = =f p G f p p, , d .i
n i i ip
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Let x∗ be an equilibrium strategy. We 
claim that the induced PoW p∗ = p(x∗) 
maximizes G(f, p) for a given f, which 
implies that, similar to Equation 4 x∗ is 
captured by the following optimization: 

G� f p xx x xx argmax , .*
: 0, 1 1 ( )( )∈ ≥ = � (12)

To see this, we observe that 
G� ( )( )∈ ≥ = f p p p x  x 1 xmax ,{ | 0,    1}  is a con-

vex optimization: the feasible space of 
p is clearly convex, and G(f, p) is con-
cave to p (which we will show later). 
According to the optimality criterion 
of convex optimization,17 p∗ is opti-
mal if and only if ∇G(p∗)⊤(p* - p) ≥ 
0 for all feasible p, which is exactly 
the same as the equilibrium criterion 
in Equation 10.

To see the concaveness of G(f, p), we 
note that Di(fi, pi) is strictly concave to 
pi, as pointed out elsewhere16 (as sug-
gested by the strict concaveness of Ui). 
We verify the concaveness through 
checking the Hessian matrix of G(f, p):
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where the last inequality holds be-
cause ∂ ∂ <D f p p( ( , ) ( ) ) 0i i i i2 2  due to 
the strict concaveness of Di. There-
fore, the Hessian matrix is positive  
definite. This also implies that there’s 
only one p maximizing G(f, p), which, 
similar to that for U(f, p), guarantees a 
one-to-one correspondence from f to p.

Solution Algorithm
We use the total number of served cus-
tomers ( ) = Σf pD D f p, ( , )i

i i  to measure  
system efficiency and formulate a  
TASEO as the following bilevel opti-
mization program: 
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where for the egoistic case, we replace 
U(f,p) with G(f,p) in Equation 14.  
The model can also handle other 
measures of system efficiency with 
the same form of optimization pro-
gram as long as the optimization ob-
jective is a function of f and p.

To solve this bilevel optimization 
problem, we can discretize the continu-
ous fare price space into a small set of 
candidate prices, such as {Y–1.00, Y–1.20, 
…, Y–5.00}, and solve the lower-level  
program (Equation 14) under each of the  
candidate prices to find the optimal fare 
price. Thus the problem reduces to the 
lower-level program. Unfortunately,  
the lower-level program suffers from a 
scalability issue as a result of the expo-
nential growth of the drivers’ pure strat-
egy set. For example, when n = 18, the 
pure strategy set contains more than 1.7 
× 105 strategies. How to design efficient 
algorithms to address the scalability is-
sue is therefore the key to our approach.

One way to compactly represent strat-
egy is to break drivers’ working sched-
ules into sections with fewer patterns. 
Each section is a set of consecutive peri-
ods during which taxi drivers work con-
tinuously (see Figure 3). We call these 
working sections atom schedules (or 
atom for short), and we refer to the ap-
proach as the Atom Schedule Method 
(ASM).16 Obviously, given an n-period 
model, we only need O(n2) atom sched-
ules to represent any original schedule (that 
is, by specifying a starting and an ending 
period). This is in contrast to the exponen-
tial size of the original strategy space.

We denote an atom as a tuple o〈j,k〉, 
where j and k are the indices of the 
starting and ending periods, respec-

tively. To reformulate the lower level on 
atom schedules, we assign a weight wo 
to each atom o to denote the percent-
age of taxis using this atom. It follows 
that PoW can be computed as

∑ δ ( )= ⋅ ∀ = …∈p w o i i n, ,    1, ,i
o o ,

where d(o, i) encodes whether atom o cov-
ers period i or not, that is, d(o, 〈j,k〉, i) = 1 
if j ≤ i ≤ k and d(o, 〈j,k〉, i) = 0 otherwise. 
O is the set of all atoms we need. Clearly, 
p is now defined as a function p = p(w), 
so that the lower-level program can be re-
formulated as a compact one that takes w  
(instead of x) as a variable. Specially, 
when C2 is enforced on S, we only need 
atoms of at most nc periods, so that 

O ⊆ {o〈j,k〉 | 1 ≤ j ≤ k ≤ n, 0 ≤ k - j < nc},

and there are less than nc × n atoms in 
O and as many variables in the com-
pact formulation. The new formula-
tion is structured as
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and, similar to PoW, qi(w) is the 
percentage of taxis switching from 
working to resting at period i - 1, 
that is,  δ( ) ( )= Σ ⋅∈wq w o i' ,i

o o , where 

d ′(o, 〈j,k〉, i) = 1 if k = i - 1 (if o ends 
at period i - 1) and d ′(o, 〈j,k〉, i) = 0 
otherwise. It can be proven that W 
ensures equivalence of the compact 
formulation to the original formula-
tion.16 Without W, the obtained solu-
tion might not find a feasible mixed 
strategy whose compact representa-
tion corresponds to it.

Experimental Evaluations
We conducted empirical experiments 
with real data from the Beijing Trans-
portation Research Centre. We com-
puted the optimal fare price for the 
real taxi market, examined the ef-
fects of scheduling constraints, and 
evaluated ASM performance. Taxi 
driver behavior is modeled with the 
assumption of symmetric strategies.

Optimal Fare Price
We examined prices from Y–1.00 to 
Y–5.00 with an interval of 0.20. For 
each price, we computed the driv-
ers’ optimal operation strategy and 
checked system efficiency with the ob-
tained driver strategy against the ex-
isting taxi market model (the flow in 
Figure 1). Figure 4a shows system ef-
ficiency variance. As suggested by the 
blue curve, system efficiency peaks at 
Y–2.60 when constraints C1 and C2 are 
considered.

Effects of scheduling constraints. We 
also evaluated how C1 and C2 af-
fect driver behavior (and conse-
quently, system efficiency) by removing 
them from the model. As shown by 
the red curve in Figure 4a, system ef-
ficiency continues to increase when 
constraints are ignored, leading to an 
imprecise optimal fare of Y–5.00 (or 
even higher). The additional increase 
in system efficiency improvement is ac-
tually unreachable due to impractical 
overworking of the drivers. This can be 
seen in Figure 4b, where PoW variances 
show that taxi drivers are reluctant to 

1

0 1 1 1 1 0 1 1 1 1 0 1 1 0

2 3 4 5 6 7 8 9 10 11 12 13 14

o 2,5 o 7,10 o 12,13

Figure 3. Atom Schedule Method (ASM): representing a schedule with a set of atom 
schedules.
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work during peak times because of 
scheduling constraints. In this case, the 
system doesn’t benefit from higher fare 
prices because when a higher price fails 
to improve service quality by incentiv-
izing more taxis to work, it only leads 
to a decrease in the number of custom-
ers and undermines efficiency.

ASM performance. Finally, we evalu-
ated our solution algorithm ASM’s 
scalability. First, we discretized the 
time horizon into different numbers of 
periods to scale up the problem. Fig-
ures 5a and 5b depict ASM’s runtime 
and memory use for problems of differ-
ent sizes compared to the naive formu-
lation (Equations 13 and 14). Whereas 
the naive formulation runs out of mem-
ory at 15 periods, ASM can handle 
problems of up to 100 periods very eas-
ily. When data is available, the capabil-
ity of scaling up to more periods allows 
us to use a more fine-grained model to 
achieve higher accuracy. It also lets us 
consider longer market cycles (for ex-
ample, a week, considering the differ-
ence in customer demand on weekends 
and weekdays).

While the current model and 
algorithm are capable of han-

dling TASEOs with specific settings, 
They’re still inadequate for more ex-
tensive and complex real-world sce-
narios. We point out the following 
directions for future research:

•	Algorithms with better scalability. In 
practice, customer demand and road 
condition might not be the same on 
different days. The taxi market’s cy-
cle is more likely to be a week rather 
than a day, so to cover a whole week 
with the same granularity, more pe-
riods are needed. Similarly, when the 
model needs to be more fine-grained 
to achieve higher accuracy, shorter 
periods, such as half an hour or 
even 10 minutes, are required, and 
the number of periods increases ac-
cordingly. Although a more scalable 
algorithm based on conversion of rep-
resentations of polytopes is presented 
elsewhere,19 the algorithm might not 
scale well when we consider other re-
alistic constraints and uncertainties.

•	Heterogeneous taxis and taxi driv-
ers. Our current model is established 
on the assumption that all taxis and 
drivers are homogenous. Although 
this is generally true in taxi systems 
in many cities, some exceptions re-

quire special consideration. For ex-
ample, a taxi cab can be operated by 
more than one driver in some cities 
to maximize the usage. In this case, 
taxis can run for a longer time, and 
constraints C1 and C2 might actu-
ally be violated. Differences in car 
types and taxi companies are also 
worthy of our consideration.

•	Uncertainties in human behaviors. 
Uncertainties have always been issues 
in modeling intelligent behaviors.  
In a taxi system, drivers face uncer-
tainties when implementing their 
strategies. They can’t decide when 
the next customer will show up or 
the time needed to serve the next 
customer. In practice, taxi drivers 
would choose their actions accord-
ing to the market conditions they 
face. How to model their behavior 
under uncertainties is another ques-
tion to focus on.

•	 Impact of app-based services. The 
fast development of smartphones in 
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recent years has made available vast 
new apps and services. Ride-sharing 
apps and customer-to-driver taxi-
booking apps, such as Uber and Didi 
Dache, which connect taxi drivers 
with customers looking for a ride, are 
reshaping the traditional taxi mar-
ket. Notably, these services are more 
than a simple dispatching system—
they also make available negotiation 
between customers and drivers and 
provide wider choices to both parties. 
Growing uses of these new services 
suggest the necessity of considering 
them in taxi system research.

•	 Spatial variances. Although our model 
only considered time variance in a taxi 
system, spatial variance is a common 
feature in taxi systems, especially in 
megacities. Density of customer de-
mand and levels of congestion might 
vary over different locations, which 
pose significant impact on the taxi 
system’s performance. We’ll consider 
them in our future work. 
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