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Regularized Matrix Factorization for Multilabel
Learning With Missing Labels

Lei Feng , Jun Huang, Senlin Shu, and Bo An

Abstract—This article tackles the problem of multilabel learn-
ing with missing labels. For this problem, it is widely accepted
that label correlations can be used to recover the ground-truth
label matrix. Most of the existing approaches impose the low-
rank assumption on the observed label matrix to exploit label
correlations by decomposing it into two matrices, which describe
the latent factors of instances and labels, respectively. The quality
of these latent factors highly influences the recovery of ground-
truth labels and the construction of the multilabel classification
model. In this article, we propose recovering the ground-truth
label matrix by regularized matrix factorization. Specifically, the
latent factors of instances are regularized by the local topological
structure derived from the feature space, which can be further
used to induce an effective multilabel model. Moreover, the latent
factors of labels and the label correlations are mutually adapted
via label manifold regularization. In this way, the recovery of the
ground-truth label matrix and the construction of the multilabel
classification model are optimized jointly and can benefit from the
regularized matrix factorization. Extensive experimental studies
show that the proposed approach significantly outperforms the
state-of-the-art algorithms on both full-label and missing-label
data.

Index Terms—Latent factors, multilabel learning, regularized
matrix factorization.

I. INTRODUCTION

IN MULTILABEL learning [1]–[5], each instance is asso-
ciated with multiple labels simultaneously. During the last

few decades, multilabel learning has been widely applied in
numerous real-world application domains [1], [6], [7], includ-
ing image annotation [8], [9]; text categorization [10]; and
object recognition [11]; Web mining [12]; bioinformatics [13];
etc.
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In traditional multilabel learning studies, a basic assump-
tion is that all the relevant labels of each training instance are
known. However, in many applications, such an assumption
is hard to hold because obtaining all relevant labels is diffi-
cult, and generally, only a partial label set can be observed.
For example, many image annotation tasks use crowdsourc-
ing platforms to collect labels. For each image, these labels
are normally generated by collapsing annotated words from
multiple users, while each user may sometimes ignore labels
they do not know or have little interest.

The problem of multilabel learning with missing labels
(MLMLs) undoubtedly increases the difficulty on training a
robust multilabel classifier, and traditional multilabel learn-
ing techniques may be poor at addressing it [14]. There have
been many attempts to recover the ground-truth label matrix
by exploiting label correlations, thereby training an effective
multilabel learning model [2], [15]–[19]. In [15], the formal
definition of weak label learning [15] is initially proposed
to deal with the incomplete relevant label set for multilabel
learning, and the label correlations are exploited by assuming
that there is a group of low-rank base similarities. Recently,
there has been increasing interest in exploiting label correla-
tions using the low-rank assumption on the label matrix, for
example, matrix completion with side information [20], [21];
nuclear norm regularization [16], [18]; and matrix factoriza-
tion [2], [17]. Under the assumption of low rank, the observed
label matrix is generally decomposed into two matrices, which
describe the latent factors of instances and labels, respec-
tively. The well-learned latent factors of instances and labels
should effectively guide the recovery of the ground-truth label
matrix and the learning of the multilabel classification model.
Intuitively, the local topological structure of the latent factors
of instances is supposed to be consistent with that of the fea-
ture space, and the manifold of the latent factors of labels is
supposed to be consistent with the label correlations.

Motivated by the above observations, in this article, we pro-
pose a novel method called RMFL, that is, regularized matrix
factorization for MLMLs. To deal with missing labels, we sug-
gest that the observed label matrix can be decomposed into
two matrices, which describe the latent factors of instances
and labels, respectively. On the one hand, the latent factors
of instances are regularized by the local topological struc-
tural information in feature space. On the other hand, the
latent factors of labels and the label correlations are mutu-
ally adapted via label manifold regularization; thus, the label
correlations are exploited in an explicit manner. Such a regu-
larized matrix factorization is further incorporated into model
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training, which brings the advantage that the ground-truth
label matrix is recovered while the desired multilabel learn-
ing model is trained simultaneously. Extensive experiments
for learning with full labels and learning with missing labels
show that RMFL significantly outperforms the state-of-the-art
algorithms.

II. RELATED WORK

Label embedding methods [22]–[28] have emerged as a
mainstream solution for general multilabel learning (i.e.,
multilabel learning with full labels). These methods normally
adopt different manipulations on the original label space to
find an optimal low-dimensional latent label space and train
the desired multilabel model from such latent label space
for improving performance. For example, techniques, such
as principal component analysis [29]; canonical correlation
analysis [22]; manifold deduction [30], [31]; and sparse recon-
struction [32], are used to transform the original label space
to the desired latent label space. However, most of these label
embedding methods are designed for general multilabel learn-
ing with full labels, which cannot deal with missing labels
directly.

The problem of MLMLs has attracted great interest and
many algorithms have been proposed to solve it. As label cor-
relations are crucially important for multilabel learning, most
of the existing algorithms aim to recover the ground-truth
label matrix by exploiting label correlations with the low-
rank assumption on the label matrix. Examples include matrix
completion with side information [20], [21]; nuclear norm
regularization [16], [18]; and matrix factorization [2], [17].
Although label correlations can be exploited via low-rank
assumption, it would be more beneficial to exploit label corre-
lations explicitly. In addition, the above approaches normally
exploit label correlations by focusing on the label space and,
thus, ignore making full use of potentially useful information
in the feature space. One recent work [2] learns a latent label
representation with both local and global label correlations to
deal with missing labels. However, they only exploit the label-
ing information from the label space, while the potentially
useful information in the feature space is not fully exploited.
In the presence of missing labels, the label space could be
noisy, and the learned label correlations may be misleading.
Hence, how to effectively leverage the feature space to recover
the label space becomes significantly important.

In the next section, a novel approach called RMFL based
on regularized matrix factorization will be introduced for
MLMLs. Different from the above approaches, RMFL not only
leverages the topological information in feature space but also
explicitly exploits the label correlations.

III. PROPOSED APPROACH

In MLMLs, the given label matrix is partially observed.
Some approaches [15], [33] directly treat the missing labels
as negative labels and deal with such label bias. In this article,
we adopt the general setting [2], [17], [20] that both posi-
tive and negative labels can be missing. In other words, the
observed label matrix is denoted by Y = [y1, y2, . . . , ym]� ∈

{+1, 0,−1}m×l, where m denotes the number of examples,
l denotes the number of labels, +1 denotes positive labels,
−1 denotes negative labels, and 0 denotes missing labels.
In addition, we denote by � the set containing indices of
observed labels in Y (indices of nonzero elements in Y), thus
[��(Y)]i,j equals Yi,j if (i, j) ∈ �, and 0 otherwise. We denote
by X = [x1, x2, . . . , xm]� ∈ R

m×n the matrix containing all
the instances, where m is the number of instances and n is the
number of dimensions of each instance. With these notations,
we introduce RMFL in the following sections.

A. Regularized Matrix Factorization

1) Matrix Factorization: In multilabel learning, labels are
normally correlated; thus, the label matrix is usually assumed
to be low rank [2], [17], [18]. We assume that Y can be
approximately represented by the product of two matrices

min
U,V

∥
∥
∥��

(

Y − UV�)∥
∥
∥

2

F
(1)

where ‖ · ‖F denotes the Frobenius norm, and U ∈ R
m×k and

V ∈ R
l×k denote the latent factors (high level and abstract

descriptions) of instances and labels, respectively. Note that
with the presence of ��, we only focus on the positive and
negative labels, and missing labels would not incur any loss.
However, such decomposition fails to leverage potential useful
information in feature space and correlations among labels, to
regularize the latent factors of instances and labels.

2) Regularization on Instances: To regularize the latent fac-
tors of instances, we suggest that the topological structure of
the feature space can be transferred to the latent factors of
instance local by local, which means, only local topological
structure of the feature space can be transferred. In order to
retain such locality, we need to first use the local neighborhood
information of each instance to construct a KNN graph and
denote by Ni the set of K-nearest neighbors of the instance xi.
Then, we assume that each instance can be optimally recon-
structed by a linear combination of its neighbors [34]; thus,
the reconstruction weights are computed as follows:

min
S

m
∑

i=1

∥
∥
∥
∥
∥
∥

xi −
∑

xj∈Ni

sijxj

∥
∥
∥
∥
∥
∥

2

2

s.t.
∑

j

sij = 1 ∀ 1 ≤ i ≤ m (2)

where S is the weight matrix and sij = 0 if xj /∈ Ni.
Problem (2) can be solved by the following m independent
standard quadratic programming problems:

min
si

s�
i Gisi

s.t. 1�si = 1 (3)

where Gi is the local Gram matrix at xi with [Gi]j,k =
(xi − xj)

�(xi − xk) where xj, xk ∈ Ni. With the transferred
topological structure, the latent factors of instances can be
regularized by

min
U

m
∑

i=1

∥
∥
∥
∥
∥
∥

ui −
∑

j

sijuj

∥
∥
∥
∥
∥
∥

2

2

= min
U

‖U − SU‖2
F. (4)
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3) Regularization on Labels: To regularize the latent factors
of labels, we suggest that the latent factors of similar labels
should be similar. Concretely, let C = [cij]l×l be the label
correlation matrix where cij denotes the similarity between
the ith label and the jth label. We suggest that the distance
‖vi − vj‖2

2 should be small with a high similarity cij. Thus, the
label manifold regularization is presented as

min
V

l
∑

i,j

cij
∥
∥vi − vj

∥
∥

2
2 = min

V
tr

(

V�LV
)

(5)

where tr(·) is the trace operator, L = diag (C1) − C is
the Laplacian matrix, and 1 denotes the vector with all
components set to 1. Although there are multiple ways to
calculate C with full labels, it could be much more diffi-
cult to calculate C with missing labels, since missing labels
may severely ruin the label space. To overcome this problem,
instead of specifying any correlation metric or label correlation
matrix, we choose to learn the Laplacian matrix L directly.
Specifically, we suggest that L and V are mutually adapted
via label manifold regularization, thus label correlations are
exploited in an explicit manner. Note that L is symmetric pos-
itive definite, hence we can decompose L into ZZ� where
Z ∈ Rl×k [2]. To avoid the problem that optimization with
respect to (w.r.t.) Z may lead to trivial solution Z = 0,
we add a constraint that each diagonal element of ZZ� is
set to 1. In this way, the following optimization problem
is presented:

min
V,Z

tr
(

V�ZZ�V
)

s.t. ziz�
i = 1 ∀ 1 ≤ i ≤ l (6)

where zi is the ith row vector of Z. It is worth noting that (6)
comes from [2], and we apply it here for accurately capturing
the label correlations.

Let R = [rij]m×l be the indicator matrix where rij equals
1 if (i, j) ∈ � and 0 otherwise. Thus, ��(Y − UV�) can
be represented by the Hadamard product R ◦ (Y − UV�). By
combining (1), (3), and (5) with tradeoff parameters λ1 and λ2,
we propose a novel regularized matrix factorization method as
follows:

min
U,V,Z

1

2

∥
∥
∥R ◦

(

Y − UV�)∥
∥
∥

2

F
+ λ1

2
‖U − SU‖2

F

+ λ2

2
tr
(

V�ZZ�V
)

s.t. ziz�
i = 1 ∀ 1 ≤ i ≤ l. (7)

B. Regularized Matrix Factorization for MLML

Since U ∈ R
m×k can be regarded as the latent labels (high

level or abstract descriptions) of X ∈ R
m×n, we can learn

from such latent labels U, thereby getting out of the dilemma
of missing labels. To instantiate the learning model, we use the
widely used squares loss ‖U− f (X)‖2

F where f is the common
model: f (X) = XW + 1b�. In addition, we use the common
squared Frobenius norm ‖W‖2

F to control the model complex-
ity. By integrating the regularized matrix factorization into this

learning model, we obtain the final objective function

min
U,V,Z,W,b

1

2

∥
∥
∥R ◦

(

Y − UV�)∥
∥
∥

2

F
+ λ1

2
‖U − SU‖2

F

+ λ2

2
tr

(

V�ZZ�V
)

+ λ3

2

∥
∥
∥U − XW − 1b�

∥
∥
∥

2

F

+ λ4

2
‖W‖2

F

s.t. ziz�
i = 1 ∀ 1 ≤ i ≤ l (8)

where λ3 and λ4 control the weight of the training loss
incurred by the model f with the target U and the model
complexity, respectively. Clearly, the proposed model tackles
missing labels by matrix factorization, and the regularization
terms encourage that similar labels have similar outputs, and
structural information in feature space is also retained in output
space.

IV. OPTIMIZATION

Problem (8) can be solved by alternating optimization,
which enables us to iteratively update each variable in an
alternating way. Besides, the MANOPT toolbox [35] is
employed to implement gradient descent with line search on
the Euclidean space.

A. Updating V

With U, Z, W, and b fixed, problem (8) reduces to

min
V

1

2

∥
∥
∥R ◦

(

Y − UV�)∥
∥
∥

2

F
+ λ2

2
tr

(

V�ZZ�V
)

. (9)

Computing the gradient for V, we have

∇V =
(

R� ◦
(

VU� − Y�))

U + λ2ZZ�V. (10)

B. Updating W and b

With U, V, and Z fixed, problem (8) reduces to

min
W,b

λ3

2

∥
∥
∥U − XW − 1b�

∥
∥
∥

2

F
+ λ4

2
‖W‖2

F. (11)

By setting λ̂ = (λ4/λ3), the gradient w.r.t. W and b can be
obtained as follows:

∇W = X�(

XW − U + 1b�)

+ λ̂W

∇b =
(

W�X� + b1� − U�)

1. (12)

By further setting ∇W and ∇b to 0, it would be easy to obtain
the closed-form solutions

W =
(

X�X + λ̂I − X�11�X
m

)−1(

X�U − X�11�U
m

)

b = 1

m

(

U� − W�X�)

1. (13)

Here, the learning model employed in (13) is a linear-in-
input model, which cannot deal with the nonlinear case where
the given data are not linearly separable. It is worth not-
ing that many of the existing multilabel learning algorithms
(e.g., [2], [36], and [37]) adopt the linear model, while we
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Algorithm 1 RMFL Algorithm
Require:

the multi-label training set D = {(X, Y)}
the observation indicator matrix R
the unseen test instance x̂

Ensure:
the predicted label vector ŷ

1: learn the weight matrix S by solving problem (3);
2: construct the kernel matrix K by Gaussian kernel;
3: randomly initialize U and Z;
4: repeat
5: update V in terms of eq. (10);
6: update A and b in terms of eq. (16);
7: update T = KA + 1b�;
8: update U in terms of eq. (18);
9: update Z in terms of eqs. (20) and (21);

10: until convergence or the maximum number of iterations.
11: return ŷ = sign(V(

∑m
i=1 aiκ(x̂, xi) + b)).

expect that better performance could be achieved if a non-
linear model is used. Therefore, we introduce the nonlinear
kernel extension [38], [39]. Specifically, we utilize the fea-
ture mapping ϕ(·) to map the feature space X to some higher
(maybe infinite) dimensional Hilbert space ϕ(X). According
to the representer theorem [40], W can be represented by a
linear combination of input variables, that is, W = ϕ(X)�A
where A = [aij]m×k stores the weights. Let K = [kij]m×m =
ϕ(X)ϕ(X)� be the kernel matrix with kij = κ(xi, xj) where
κ(·, ·) denotes the employed kernel function. In this article,
we use the Gaussian kernel function

κ
(

xi, xj
) = exp

(−∥
∥xi − xj

∥
∥2

2

2σ 2

)

(14)

where σ is set to the average Euclidean distance of paired
instances. In this way, ϕ(X)W = ϕ(X)ϕ(X)�A = KA, thus
problem (11) can be written as

min
A,b

1

2

∥
∥
∥U − KA − 1b�

∥
∥
∥

2

F
+ λ̂

2
tr

(

A�KA
)

(15)

where we have used the property of the trace operator, that is,
‖W‖2

F = tr(W�W) = tr(A�KA). Similarly, we can obtain the
gradient w.r.t. A and b to 0 as follows:

∇A = K�(

KA − U + 1b�)

+ 2λ̂A

∇b =
(

A�K� + b1� − U�)

1.

Hence, we can obtain the following closed-form solutions:

A =
(

K�K + λ̂K − K�11�K
m

)−1(

K�U − K�11�U
m

)

b = 1

m

(

U� − A�K�)

1. (16)

C. Updating U

With V, Z, W, and b fixed, we denote by T = ϕ(X)W +
1b� = KA + 1b�, problem (8) reduces to

min
U

1

2

∥
∥
∥R ◦

(

Y − UV�)∥
∥
∥

2

F
+ λ1

2
‖U − SU‖2

F

+ λ3

2
‖U − T‖2

F. (17)

The gradient w.r.t. U can be obtained as follows:

∇U = R ◦
(

UV� − Y
)

V + λ1

(

I + S�S − S� − S
)

U

+ λ3(U − T). (18)

D. Updating Z

With U, V, W, and b fixed, problem (8) reduces to

min
Z

1

2
tr

(

V�ZZ�V
)

s.t. ziz�
i = 1 ∀ 1 ≤ i ≤ l. (19)

The gradient w.r.t. Z can be obtained as follows:

∇Z = VV�Z. (20)

To satisfy the constraint ziz�
i = 1, we project each row of Z

onto the unit �2 norm ball after each update

zi = zi

‖zi‖2
∀ 1 ≤ i ≤ l. (21)

After the completion of the optimization process, given the
test instance x̂, we first induce the corresponding latent factors
û = (

∑m
i=1 aiκ(x̂, xi)+ b), and then derive the predicted label

vector ŷ = sign(Vû).
The pseudocode of RMFL is presented in Algorithm 1. The

convergence of RMFL will be empirically demonstrated by
experiments.

V. EXPERIMENTS

In this section, we evaluate our proposed approach through
extensive experiments.

A. Experimental Setup

In this section, we empirically evaluate our proposed
approach by comparing with seven state-of-the-art algorithms
on multiple real-world multilabel benchmark datasets, in terms
of five widely used evaluation metrics.

1) Real-World Multilabel Benchmark Datasets: We con-
duct experiments on 30 benchmark datasets from various
domains. Table I shows the detailed information of these
datasets, including the number of instances, the number
of dimensions for each instance, the number of classes,
and the corresponding domain. For each dataset, we gen-
erate missing labels by considering the missing label ratio
(M.L.Ratio) {40%, 60%, 80%}. In other words, we randomly
drop {�0.4l�, �0.6l�, �0.8l�} labels for each instance in the
training set. We compare all the algorithms under the same
data setting. For each dataset, we randomly choose 80% exam-
ples to form the training set, and the remaining 20% examples
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Fig. 1. Statistical comparison of RMFL (the control algorithm) against other comparing algorithms based on the Nemenyi test for learning with full labels.
Algorithms not connected with RMFL in the CD diagram are considered to have a significantly different performance from the control algorithm.

TABLE I
DETAILED INFORMATION OF THE BENCHMARK DATASETS

constitute the test set. To reduce statistical variability, all
the experimental results are averaged over ten independent
repetitions, and mean results with standard deviations are
reported.

2) Comparing Algorithms: We compare RMFL with seven
state-of-the-art multilabel learning algorithms.

1) FastTag [41]: It reconstructs the ground-truth label
matrix and learns the multilabel classification model
simultaneously. Parameter topk is set to be the number
of classes l for each dataset, and other parameters are
automatically tuned by its built-in function.

2) LEML [17]: It exploits the low-rank assumption to con-
struct the loss function for learning with missing labels.
Parameters: p is set to the number of classes l for
each dataset, k is selected in {0.1l, . . . , 0.5l}, and the
regularization parameter is selected in {10−5, . . . , 10−1}.

3) GLOCAL [2]: It utilizes both global and local label
correlations to perform MLMLs. Parameters: λ = 1,
λ2 = 0.125, and λ3, λ4 are searched in {10−6, . . . , 100},
and g is searched in {22, . . . , 25}.

4) LSML [36]: It learns label-specific features for MLMLs.
Parameters: λ1, λ2, λ3, and λ4 are searched in
{10−5, . . . , 103}.

5) ML2 [30]: It leverages the manifold in the label space for
multilabel learning. Parameters: C1 and C2 are searched
in {1, . . . , 10}.

6) JFSC [37]: It performs joint feature selection and clas-
sification for multilabel learning. Parameters: α, β, and
γ are searched in {4−5, . . . , 45}, and η is searched in
{0.1, 1, 10}.

7) LLSF [42]: It learns label-specific features for multilabel
learning. Parameters: α and β are searched in
{2−10, . . . , 210}.

8) RMFL: This is our proposed approach, which lever-
ages regularized matrix factorization for MLMLs.
Parameters: λ1 and λ2 are searched in {10−5, . . . , 105},
λ3 is selected from {1, 2}, and λ4 is searched in
{4−7, . . . , 42}.

In addition, for methods that use the KNN technique, K is
empirically fixed at 10. For methods that use latent represen-
tations, the latent representation dimension k is simply set to
20. The parameters for all the above algorithms are selected
by five-fold cross-validation on the training set. For the above
approaches that use the KNN technique, K is empirically fixed
at 10.

3) Evaluation Criteria: We measure the performance of
each algorithm in items of five widely used evaluation cri-
teria, including one error (O), Hamming loss (H), ranking
loss (R), coverage (C), and average precision (A). For aver-
age precision, the larger value means better performance (↑).
While for the other four criteria, the smaller the value, the
better performance (↓). More detailed information about these
evaluation criteria is provided in [1].

B. Experimental Results

Here, we report the experimental results for learning with
full labels and learning with missing labels.

1) Learning With Full Labels: Table II shows the predictive
performance of each algorithm on fully labeled data (i.e.,
M.L.Ratio = 0). As can be seen, RMFL is better than
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TABLE II
PREDICTION RESULTS FOR MULTILABEL LEARNING WITH FULL LABELS ON FIVE EVALUATION CRITERIA. THE BEST RESULTS

ARE HIGHLIGHTED IN BOLD, AND THE NUMBER IN THE BRACKET INDICATES THE RANKING OF THIS ALGORITHM. THE LAST

COLUMN SHOWS THE AVERAGE RANKING OF EACH ALGORITHM ON EACH EVALUATION METRIC

TABLE III
FRIEDMAN STATISTICS FF ACCORDING TO EACH EVALUATION METRIC

FOR LEARNING WITH FULL LABELS

other comparing algorithms on the whole. Concretely, on all
datasets, across all the evaluation metrics, RMFL ranks first
in 72.5% cases and ranks second in 22.5% cases. We can
also observe that FastTag, LEML, LSML, and GLOCAL gen-
erally achieve inferior performance against other approaches
for learning with full labels. This is due to that these four
approaches are specially designed for learning with miss-
ing labels. Instead of extracting label correlations from the
given label matrix, they aim to learn latent label correlations
for recovering the given label matrix, thus useful labeling
information is regrettably discarded when there are no missing
labels. Although RMFL also aims to recover the given label
matrix, the advantage of RMFL lies in that the proposed reg-
ularized matrix factorization not only enables similar labels
to have similar predictions but also leverages the topological

information in feature space for model training. However, we
can also observe that RMFL obtains slightly worse results on
the datasets emotions and corel5k. We speculate that this is
because the alternating optimization method could get stuck
in a local minimum, and this phenomenon is especially severe
in these two datasets.

To further statistically perform performance comparison, the
widely accepted Friedman test [43] is employed as the sta-
tistical test to analyze the relative performance among the
comparing algorithms. Table III summarizes the Friedman
statistics FF and the corresponding critical value on each
evaluation metric for learning with full labels. As shown in
Table III, for learning with full labels, the null hypothesis that
all the comparing algorithms perform equivalently is rejected
on each evaluation metric at the significance level α = 0.05.
Furthermore, the post-hoc Nemenyi test [43] is employed to
show the relative performance between our proposed algo-
rithm (the control algorithm) and other comparing algorithms
in detail. The significant differences between RMFL and other
algorithms can be calibrated with the critical difference (CD).
For learning with full labels, at the significance level α = 0.05,
we can obtain CD = 3.27 with the number of comparing algo-
rithms A = 8 and the number of datasets N = 8. Fig. 1
illustrates the CD diagrams on each evaluation metric for
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TABLE IV
PREDICTION RESULTS FOR MULTILABEL LEARNING WITH MISSING 40% LABELS ON FIVE EVALUATION CRITERIA. THE BEST RESULTS ARE

HIGHLIGHTED IN BOLD, AND THE NUMBER IN THE BRACKET INDICATES THE RANKING OF THIS ALGORITHM. THE LAST COLUMN SHOWS

THE AVERAGE RANKING OF EACH ALGORITHM ON EACH EVALUATION METRIC

TABLE V
PREDICTION RESULTS FOR MULTILABEL LEARNING WITH MISSING 60% LABELS ON FIVE EVALUATION CRITERIA. THE BEST RESULTS ARE

HIGHLIGHTED IN BOLD, AND THE NUMBER IN THE BRACKET INDICATES THE RANKING OF THIS ALGORITHM. THE LAST COLUMN SHOWS

THE AVERAGE RANKING OF EACH ALGORITHM ON EACH EVALUATION METRIC

learning with full labels. In each subfigure, any comparing
algorithm whose average rank is within one CD to that of
RMFL is connected with RMFL. Otherwise, the algorithm
not connected with RMFL is considered to have a signifi-
cantly different performance from RMFL. As can be seen from
Fig. 1, RMFL achieves the best average rank on all the evalu-
ation metrics. It is also worth noting that RMFL significantly
outperforms FastTag, GLOCAL, LEML, and JFSC on all the
evaluation metrics.

2) Learning With Missing Labels: Since ML2, LLSF, and
JFSC cannot deal with missing labels, we exclude these
three approaches in experiments on learning with missing
labels. We conduct experiments with the M.L.Ratio ranging in
{40%, 60%, 80%}. Tables IV–VI report the prediction results
for learning with missing labels when M.L.Ratio is set to
0.4, 0.6, and 0.8, respectively. It can be seen that RMFL is
clearly superior to other comparing approaches. The advan-
tage of RMFL over other approaches is that the structural
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TABLE VI
PREDICTION RESULTS FOR MULTILABEL LEARNING WITH MISSING 80% LABELS ON FIVE EVALUATION CRITERIA. THE BEST RESULTS ARE

HIGHLIGHTED IN BOLD, AND THE NUMBER IN THE BRACKET INDICATES THE RANKING OF THIS ALGORITHM. THE LAST COLUMN SHOWS

THE AVERAGE RANKING OF EACH ALGORITHM ON EACH EVALUATION METRIC

Fig. 2. Statistical comparison of RMFL (the control algorithm) against other comparing algorithms based on the Nemenyi test for learning with full labels.
Algorithms not connected with RMFL in the CD diagram are considered to have significantly different performance from the control algorithm.

information in the feature space is used to regularize the latent
factors of instances. Such well-represented latent factors of
instances could recover the ground-truth label matrix with the
latent factors of labels while guiding the desired model train-
ing simultaneously. In addition, we can observe that predictive
performance improves with more observed labels in general.
This agrees with the intuition that as more elements in the label
matrix are observed, more supervised information can be pro-
vided. As shown in Table VII, for learning with missing labels,
the null hypothesis that all the comparing algorithms perform
equivalently is also rejected on each evaluation metric at the
significance level α = 0.05. Following the above instructions,
for learning with missing labels, we can obtain CD = 2.15

with the number of comparing algorithms A = 5 and the
number of datasets N = 8 at the significance level α = 0.05.
Fig. 2 illustrates the CD diagrams on each evaluation met-
ric for learning with missing labels. As can be seen from
Fig. 2, RMFL ranks the first on all the evaluation metrics,
and RMFL significantly outperforms FastTag and LEML in
most cases. These experimental results clearly demonstrate the
effectiveness of the RMFL.

We also conduct additional experiments on four large-scale
datasets pascal07, corel16ks1, corel16ks2, and corel16ks3.
The experimental results are reported in Table VIII. As can be
seen from Table VIII, RMFL still outperforms other compared
multilabel learning algorithms on these large-scale datasets.
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TABLE VII
FRIEDMAN STATISTICS FF ACCORDING TO EACH EVALUATION METRIC

FOR LEARNING WITH MISSING LABELS

C. Further Analysis

1) Time Complexity Analysis: The time complexity of
RMFL is dominated by matrix multiplication and inversion.
In Algorithm 1, the time complexity of learning S and con-
structing K is O(m2n). For each iteration, the time complexity
of computing ∇V and ∇U is O(mlk+ l2k), and the time com-
plexity of computing ∇Z is O(mlk + l2k). As has been shown
before, it is very flexible for our RMFL algorithm to choose a
linear or kernel model. If the linear model is chosen, the time
complexities of updating W and b are O(mnk + mn2 + n3)

and O(mnk), respectively; if the kernel model is chosen, the
time complexities of updating A and b are O(m3 + m2k)
and O(m2k), respectively. Since m > l, m > k, n > l,
n > k normally hold, the overall time complexity of RMFL is
min{O(Tm3 +m2n),O(T(n3 +n2m)+m2n)}, where T denotes
the total number of iterations. Such a conclusion can guide
us to choose a linear or kernel model for saving computation
time. Specifically, if n > m for a dataset, we can choose a
kernel model, and the time complexity will be in the linear
order w.r.t. n; otherwise, we can choose a linear model, and
the time complexity will be in the quadratic order w.r.t. m.
In addition, we will show in the following that RMFL con-
verges very fast (within a few iterations), hence T could be
very small.

2) Sensitivity Analysis: There are four regularization
parameters λ1, λ2, λ3, and λ4 and two hyperparameters,
including the latent dimension k and the number of near-
est neighbors K. We provide the sensitivity analysis of these
parameters by varying one parameter while keeping others
fixed. We first perform sensitivity analysis on the four regu-
larization parameters, and the experimental results are shown
in Fig. 3.

It is worth noting that λ1 and λ2 control the importance
of the latent factors of instances and labels, respectively. It
can be seen that the highest performance is usually achieved
at some intermediate values of λ1 and λ2. This phenomenon
clearly validates the importance of learning effective represen-
tations of instances and labels in the model training process.
Concretely, when λ1 and λ2 are too small, the performance
of RMFL is not good enough, because the importance of
regularization on instances and labels is hardly taken into
consideration, and we may not obtain the well-learned rep-
resentations of instances and labels. While if λ1 and λ2 are
overly large, the performance of RMFL is also not so good,
because we focus too much on learning the representations
of instances and labels, and regrettably ignore the importance
of training a good model with a good fitting ability. Through

(a) (b)

(c) (d)

Fig. 3. Sensitivity analysis of the four regularization parameters on yeast.
(a) Varying λ1. (b) Varying λ2. (c) Varying λ3. (d) Varying λ4.

(a) (b)

Fig. 4. Sensitivity analysis of the two hyperparameters on yeast.
(a) Varying k. (b) Varying K.

the above analysis, the effectiveness of the two regularization
terms on instances and labels is clearly demonstrated.

In addition, we can find that RMFL is relatively insensitive
to λ3. This observation is due to the fact that the ground-
truth label matrix can be recovered by both model training and
matrix factorization, which means, for recovering the ground-
truth label matrix, the two techniques (model training and
matrix factorization) play a similar role and there is no obvi-
ous advantage of one over the other one. This observation can
guide us to easily choose a suitable hyperparameter for λ3.

Besides, λ4 controls the model complexity, and we can
observe that the performance of RMFL is relatively poor when
λ4 is too small or too large. If λ4 is too small, RMFL suffers
from the overfitting issue. While, if λ4 is too large, RMFL
suffers from the underfitting issue. This observation clearly
agrees with our intuition that it is important to balance between
overfitting and underfitting.

We also conduct a parameter sensitivity analysis of the
two hyperparameters k and K, and the experimental results
are shown in Fig. 4. As can be seen from Fig. 4, RMFL is
quite robust to k and K. The two hyperparameters are not
key parameters of RMFL, while we have to take a value for
them (due to KNN and the latent dimension). This observation
indicates that we can easily take a suitable value for the two
hyperparameters, and alleviate the heavy work of tuning the
hyperparameters.
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TABLE VIII
PREDICTION RESULTS FOR MULTILABEL LEARNING WITH DIFFERENT RATIOS (40%,60%, AND 80%) OF MISSING LABELS

ON FIVE EVALUATION CRITERIA. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

TABLE IX
ABLATION STUDY OF RMFL ON yeast AND image

3) Ablation Study: Here, we provide an ablation study that
demonstrates the effectiveness of respective parts in our RMFL
algorithm. We compare RFML with three weakened ver-
sions, including: 1) removing the regularization on instances
(λ1 = 0); 2) removing the regularization on labels (λ2 = 0);
and 3) using the linear model instead of the kernel model.
The experimental results of the ablation study are reported in
Table IX. As shown in Table IX, the original RMFL algorithm
always achieves the best performance. Besides, RMFL with
λ1 = 0 achieves similar performance as RMFL with λ2 = 0,
which demonstrates that the regularization on instances is as
important as the regularization on labels. In addition, RMFL
with the kernel model clearly outperforms RMFL with the
linear model.

4) Convergence Analysis: We empirically study the conver-
gence of RMFL. Fig. 5 shows the difference of the variable U
between two successive iterations on yeast and emotions. As
can be seen, RMFL converges within a few iterations. Such
convergence trends can be also observed on other datasets.

(a) (b)

Fig. 5. Convergence analysis of RMFL on yeast and emotions.
(a) Convergence trend on yeast. (b) Convergence trend on emotions.

VI. CONCLUSION

In this article, we proposed a regularized matrix
factorization-based method to solve the problem of MLMLs.
By decomposing the observed label matrix into two matri-
ces, the latent factors of instances and labels can be obtained,
which were regularized by the structural information in fea-
ture space and the latent label correlations, respectively. In
this way, the ground-truth label matrix was recovered while
the desired model was trained simultaneously. Experiments
on both full-label data and missing-label data demonstrated
the effectiveness of RMFL.

In the future, we will explore if there exist better ways
to exploit the feature space for recovering the label space.
Besides, since our RMFL method could converge to a local
minimum, it would be very interesting to show that the
obtained local minima by the alternating optimization method
would be provable to achieve satisfying performance in future
work. In addition, it is worth noting that both the linear model
and the kernel model in our RMFL method are shallow mod-
els. Therefore, we will also explore the deep neural networks
to further improve the practical performance.
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