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Optimal Spot-Checking for Improving the
Evaluation Quality of Crowdsourcing:
Application to Peer Grading Systems

Wanyuan Wang , Bo An, and Yichuan Jiang , Senior Member, IEEE

Abstract— Peer grading is a natural crowdsourcing appli-
cation, where dispersed students/peers resources are collected
to evaluate others’ assignments. Peer grading also offers a
promising solution for scaling evaluation and learning to large-
scale educational systems. A key challenge in peer grading is
motivating peers to grade diligently and provide a high-quality
evaluation. Spot-checking (SC) mechanisms, allowing instructors
to check evaluations, can prevent peer collusion where peers
grade arbitrarily and coordinate to report the uninformative
grade. However, existing SC mechanisms unrealistically assume
that peers have the same grading reliability and cost. This is
limiting in practice, where we would expect peers to differ in
reliability and cost. This article proposes the general Optimal SC
(OptSC) model of determining the probability that each assign-
ment needs to be checked to maximize assignments’ evaluation
accuracy aggregated from peers and takes into consideration:
1) peers’ heterogeneous characteristics and 2) peers’ strategic
grading behaviors to maximize their own utility. We prove that
the bilevel OptSC is NP-hard to solve. By exploiting peers’
grading behaviors, we first formulate a single-level relaxation to
approximate OptSC. By further exploiting structural properties
of the relaxed problem, we propose an efficient algorithm to that
relaxation, which also gives a good approximation of the original
OptSC. Extensive experiments on both synthetic and real data
sets show significant advantages of the proposed algorithm over
existing approaches.

Index Terms— Crowdsourcing, game theory, optimization, peer
grading systems (PGSs).

I. INTRODUCTION

CROWDSOURCING has become an effective computing
paradigm of evaluating objectives of interest by collect-

ing evaluations from the ubiquitous human resources [2]–[4].
Peer grading can be viewed as a natural crowdsourcing appli-
cation, where the assignments of students/peers are dispersed
to and evaluated by other students. Peer grading not only helps
the instructor bring qualified feedbacks to classrooms but also
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helps students self-study using other peers’ solutions [5]–[7].
Besides its direct application to educational systems (e.g.,
Coursera and EdX), peer grading is also useful in other
crowdsourcing systems where it is difficult to evaluate peers’
contributions [8]–[10]. One of the key challenges in peer grad-
ing is how to motivate students to grade assignments diligently,
report the truthful grades, and provide high-quality evalua-
tions [11], [12]. Well-known peer prediction (PP) [13], [14]
and the Bayesian truth serum (BTS) [15], [16] mechanisms
work by paying a reward to a peer if his reported grade is
predicted to be correct based on other peers’ reports (referring
to the related work for the detail discussion of these two kinds
of mechanisms). However, most of these incentive mechanisms
are vulnerable to peer collusion, where peers could have a
motivation to report the uninformative grade by a preagreed
grading rule [12], [17], [18].

Spot-checking (SC) mechanisms can prevent the peer collu-
sion issue [11], [19], [20]. In SC, the instructor checks some
assignments by himself and offers a reward to a peer who
grades diligently. Existing SC studies have shown that under
the special setting where peers are homogeneous with the same
grading reliability and cost, a simple SC mechanism, such as
uniform [20] or random [21], is efficient to motivate peers to
be diligent. Different from existing SC studies, our interest
is on the optimization issue of maximizing assignments’
evaluation accuracy under a more practical and general setting,
in which peers have heterogeneous grading reliability and
cost [16], [22], [23]. For example, in an empirical online
peer grading test [24], peers with suitable backgrounds have
25% disagreements in average, and varied by peers, about
75% grading is completed in 9.5 to 17.3 min. Under such
a general setting, randomized SC mechanisms might perform
poorly (as we show in this article) on maximizing assignments’
evaluation accuracy. The focus of this article is to find the
optimal SC mechanism to maximize assignments’ evaluation
accuracy in such a practical setting with heterogeneous peers.

The peer grading literature has a great deal of work on
optimizing evaluation accuracy [3], [25], and the PP literature
has a lot of work on truthful reporting [26]–[29]; this is one
of the few pieces of work that makes progress on the combi-
nation of these two problems [30], [31]. Our contributions are
summarized as follows.

1) We first propose a general SC model for peer grad-
ing systems (PGSs) with strategic and heterogeneous
peers. We assume that the instructor has an SC budget,
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denoting the maximum number of assignments that he
is capable of checking. Given such a budget, the instruc-
tor’s objective is maximizing assignments’ evaluation
accuracy aggregated from peers, which can be formu-
lated as a bilevel Optimal SC (OptSC) problem. In the
upper level, the instructor determines the probability
each assignment needs to be checked, and in the lower
level, peers are strategic that choose the optimal grading
strategies to maximize their own utility.

2) To address the NP-hardness of OptSC, our second
contribution is formulating a single-level relaxation to
approximate the bilevel OptSC. Compared with the
original OptSC, the relaxation not only achieves nearly
the same solution but also has an elegant structure that
can be well exploited. By further exploiting the struc-
tural properties of the relaxed problem, we propose an
efficient algorithm that achieves accuracy within nearly
a constant factor with respect to the original OptSC.

3) We extend and propose an exploration algorithm for the
incomplete information OptSC variant where peers have
uncertain reliability and cost information.

4) For the large-scale PGSs with millions of peers,
we extend and propose a scalable algorithm by parti-
tioning these peers into subgroups in a fair manner.

5) Finally, we conduct extensive experiments on both syn-
thetic and real data sets to validate the advantage and
robustness of the proposed algorithm over other existing
approaches.

The remainder of this article is organized as follows.
In Section II, we provide a brief review of related studies
on PGSs. In Section III, we model the OptSC problem.
We analyze the problem in Section IV and propose an effi-
cient approximation algorithm in Section V. In Section VI,
we consider the uncertain OptSC variant where peers have
uncertain reliability and cost. In Section VII, we conduct
a set of experiments to evaluate our proposed algorithm’s
performance on evaluation accuracy. Finally, we conclude this
article and discuss future work in Section VIII.

II. RELATED WORK

Many PGSs, such as peerScholar [6], Crowdgrader [32],
Mechanical TA [21], and Peer Assessment [33], have been
developed. Existing PGSs mainly include three phases, cali-
bration, grading, and aggregation. In the following, we review
and discuss the related studies in the three phases, respectively.

A. Calibration

The calibration studies can be grouped into two categories,
i.e., gold-standard-based calibration and estimation-based cal-
ibration.

1) “Gold-Standard”-Based Calibration: In this calibration
category, peers’ grading reliability and cost are calibrated and
learned on sample assignments with “gold-standard” grades
[21], [34]. During calibration, peers can request to review
any sampled assignment, and immediately after the review
is submitted, peers’ time/cost used for reviewing can be
learned. Meantime, the peer’s reliability can be calibrated by

the configurable distance between his review and the gold-
standard review [35]–[39]. Moreover, peers can also improve
their reliability by highlighting the contexts in which the
student’s review differed from the gold standard [24].

2) Estimation-Based Calibration: No sample assignments
that have the “gold standards” are available in this calibration
category. The peers’ reliability is modeled as the function
of peers’ and assignment characteristics, e.g., the Gaussian
function with respect to the true score of the peer [22], [40].
Immediately after reviews are submitted, peers’ reliability can
be estimated by the inference approach, such as the simple
Gibbs sampling approach [22], the expectation-maximization
(EM) approach [41], and probabilistic graphical [40].

Those studies of learning peers’ reliability and cost can
be orthogonal to our work of optimizing SC mechanisms
and providing parameters input for peer modeling. Given
these inputs, this article mainly focuses on designing SC
mechanisms to motivate peers to review articles diligently,
which closes the loop of the PGSs.

B. Grading

In the grading phase, students grade peer assignments
according to the predesigned incentive mechanisms. The key
challenge in grading is to ensure that the strategic peers
grade diligently and have the right incentives to report honest
grade [26].

1) Peer Prediction Mechanisms: Miller et al. [13] first
introduced the PP mechanisms by scoring a peer if his report
is predicted to be correct based on other peers’ reports. They
theoretically prove that with appropriate payment rule, truthful
reporting is a Nash equilibrium. Its extension of designing
practical scoring rules, e.g., the reward should be scaled to be
positive and within a range, is proposed for real-world applica-
tions [33]. Besides eliciting truthful reporting, effort exertion
is necessary as well, and without effort contribution, even the
truthful reporting is uninformative [2], [29]. Effort elicitation
can be achieved by designing reward schemes to cover the cost
of effort [27], [28]. Although PP mechanisms have theoretical
advantages, there are two weaknesses preventing it from being
practical. First, PP mechanisms hold the impractical assump-
tion of common priors about an assignment’s inherent quality
and about the way in which grade is generated by peers given
assignment quality type [42]. Second, there might be multiple
equilibria of PP mechanisms, and the truthful equilibrium
might be dominated by other uninformative equilibria, e.g.,
the peer collusion equilibrium where all peers coordinate to
report the same uninformative grade [17], [43].

2) Bayesian Truth Serum Mechanisms: To relax the com-
mon prior assumption, BTS mechanisms elicit additional
information to compensate for the lack of knowledge about
peers’ beliefs. The additional information provided by peers
is a prediction of the empirical distribution of grades of
other peers. BTS assigns high scores to grades that are more
common than collectively predicted [15]. By taking advantage
of a quadratic scoring rule, BTS can be extended to small
population scenarios [44]. By relating the information score
with peer reports, divergence-based BTS is proposed to handle

Authorized licensed use limited to: Nanyang Technological University. Downloaded on September 19,2020 at 12:31:39 UTC from IEEE Xplore.  Restrictions apply. 



942 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 7, NO. 4, AUGUST 2020

nonbinary signal scenarios [45]. On the other hand, without
the assumption of a common prior, Witkowski and Parkes [42]
directly extended PP mechanisms by combining a peer’s belief
report and grade report to calculate a “shadow” posterior
belief. Recently, Radanovic and Faltings [18] systemically
analyzed how information structures, such as without knowing
agents’ beliefs (i.e., PP mechanisms) or eliciting additional
information (i.e., BTS mechanisms), affect the efficiency of
equilibrium solutions.

3) Spot-Checking Mechanisms: Jurca and Faltings [11] first
realized that SC can prevent such an uninformative equilibrium
issue by allowing the instructor to check some assignments
and rewarding a peer if he is verified to grade diligently.
Extensions of SC theoretically prove that with homogeneous
peers, the simple uniform [20], or random [21] policies,
peers can focal on truthful equilibrium. However, existing
SC mechanisms do not address the optimization problem of
maximizing assignments’ evaluation accuracy with the general
setting where the instructor has a limited SC budget and peers
are heterogeneous on grading reliability and cost. There are
also a number of other methods attempting to elicit truthful
reporting to be focal. For example, in the binary signals’
setting, by enumerating all Nash equilibria and carefully
designing the payment rule, peers will prefer to the truthful
equilibrium with the highest payment [46]. To guarantee the
truthful reporting to be the unique equilibrium, a multitask-
based PP (MTPP) mechanism is proposed [2]. In MTPP, given
a peer i and her reference peer r j (i), if i and r j (i) agree
with each other on their overlapping tasks but disagree on the
nonoverlapping tasks, peer i will achieve a higher reward, and
vice versa. Liu and Chen [31] proposed a machine learning-
aided PP mechanism that compares a peer’s label with the
benchmark label that is generated by a classification algorithm.
Shnayder et al. [12] extended MTPP to nonbinary signal
scenarios by proposing correlated agreement rule. However,
in MTPP, without the assumption about task quality, peer
collusion is unavoidable.

In summary, compared with PP mechanisms, our mecha-
nisms can prevent uninformative grading behavior. Compared
with BTS mechanisms, our mechanism can elicit truthful
reporting without the additional information of a prediction
of other peers’ report. Compared with the most related SC
mechanisms that use simple random policy for homogeneous
PGSs, we consider designing the optimal SC mechanism and
the aggregation rule to maximize PGSs’ reliability in a more
practical and general setting where the instructor has the
budget constraint and peers are strategic and heterogeneous.

C. Aggregation

In the aggregation phase, peers’ grades are aggregated to
estimate assignments’ true grades [7]. The followings are
four typical aggregation methods: 1) majority voting, where
estimated type is determined by the most common report
[47]; 2) EM that models the label given by a peer is con-
ditioned on the task difficulty and peer expertise, and the
estimated true label can be estimated by the EM inference rule
[41]; 3) belief Propagation (BP)—to tackle the computational

intractability issue of EM, the dynamic iterative BP algorithm
can approximate the probability marginalization [48], [49];
and 4) ordinal ranking, where peers make ordinal ranks of
assignments, e.g., “assignment A is better than assignment B”
[50], [51]. However, traditional aggregation methods mainly
focus on finding aggregation rules to maximize the probability
that the aggregated grade correctly predicts the underlying
true value. Most of these works assume honest peers who
always grade diligently. One exception is a recent article
that studies both elicitation and aggregation [10]; however,
prior information about the true value of each assignment is
required.

III. MODEL

In a typical PGS, there are n (≥ 2) peers/students I and n
assignments J of these students. The true quality q j of each
assignment j is drawn from a set of possible categories Q.
For ease of analysis, we use the binary grade criterion Q =
{−1, 1}, which can be interpreted as categories bad (−1) and
good (1). Let G = (I, J, E) denote the bipartite grading graph
between peers and assignments [2]. That is, (i, j) ∈ E if peer i
grades assignment j , and (i, i) /∈ E guarantees that each peer
does not grade his own assignment. Let I ( j) denote peers
who grade assignment j , and J (i) denote assignments graded
by peer i . |I ( j)| = |J (i)| = l, where l is the load of peers.
Table I shows the notations used throughout this article.

Peers: Peers’ grades are denoted by Z = (zi j)i∈I, j∈J , where
zi j ∈ {−1, 1} if (i, j) ∈ E and zi j = 0 if (i, j) /∈ E .
Moreover, as required in many practical PGSs [32], peers
should also provide detailed comments on assignments. The
observed grade mainly depends on a peer’s reliability, which
denotes the probability of grading an assignment correctly.
A peer’s reliability is an increasing function of the effort level
that he puts in grading. Let ei j denote peer i ’s effort level on
assignment j . For simplicity, we consider binary effort level,
i.e., ei j ∈ {0, 1}. Putting in full effort ei j = 1 incurs cost
ci j(1) ∈ [0, 1], while putting in zero effort ei j = 0 incurs zero
cost ci j(0) = 0. To simplify notations, in the following, ci j(1)
is substituted by ci j . A peer who puts in zero effort grades
arbitrarily with reliability p0

i = P(zi j = q j |ei j = 0) = 0.5
(P means the probability), denoting a random estimate [27].
A peer who grades with full effort or diligently produces his
maximum reliability p1

i = P(zi j = q j |ei j = 1) > 0.5.
To motivate peers to grade diligently, the SC mechanism is

introduced. In SC, the instructor himself can check and grade
some assignments. Given a peer-assignment pair (i, j) ∈ E ,
if peer i is checked with grading assignment j diligently, i
will gain a reward ri j ∈ [0, 1]; otherwise, if i is checked with
putting zero effort on j , he will not receive any reward. On the
other hand, if j is not checked by the instructor, i will not
receive any reward [52]. Assume that assignment j will be
spot-checked with probability x j ∈ [0, 1], peer i ’s expected
utility ui j(ei j , x j) gained by putting in effort ei j ∈ {0, 1}
on j is1

ui j(ei j , x j) = ei j(x jri j − ci j). (1)

1Our results can be extended to involving peer i’s reliability p
ei j
i in his

utility function, i.e., ui j (ei j , x j ) = ei j (p
ei j
i x j ri j − ci j ).
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TABLE I

NOTATION OVERVIEW

Considering the external reward and intrinsic grading cost,
peer i ’s best strategy on grading assignment j is

e∗
i j = arg maxei j ∈{0,1} ui j(ei j, x j ). (2)

Instructor: The instructor estimates unchecked assignments’
quality by aggregating peers’ grades. We adopt the widely used
weighted majority voting (WMV) aggregation method [47],
which can guarantee accuracy performance. For an assign-
ment j , its estimated value q̃ j aggregated by WMV can be
computed by

q̃ j =

⎧⎪⎪⎨
⎪⎪⎩

1,
∑

i∈I ( j)

wi j zi j ≥ 0

−1,
∑

i∈I ( j)

wi j zi j < 0
(3)

where wi j = 2 pi j − 1 is the weight of peer i ’s grade on
assignment j and pi j ∈ {p0

i , p1
i } is the reliability of peer

i on grading assignment j . This design of WMV has two
desirable properties: 1) the weight is proportional to peers’
reliability and 2) if peer i grades arbitrarily with reliability
p0

i = 0.5, his weight becomes zero, indicating that the
arbitrary uninformative grade will be discarded in the final
aggregation.

Given an assignment j and its peers’ reliability profile
p j = (pi j)i∈I ( j), let Pe( j, p j) = P(q j �= q̃ j , p j ) denote j ’s
exact error rate (i.e., the probability of returning the incorrect
grade) under WMV, which can be computed by∑

S⊆I ( j)

(∏
i∈S(1 − pi j)

∏
i∈I ( j)\S pi j

)
1X (S, j)≥X (I ( j)\S, j).

The instructor considers all possible peer subsets S ⊆ I ( j)
who grade incorrectly and remaining peers I ( j) \ S who
grade correctly such that the aggregated grade is incorrect.
The function 1x≥y equals 1 if x > y, 0.5 if x = y, and 0 if
x < y. The function X (S, j) = ∑

i∈S(2 pi j − 1), denoting the
total weight of peers S. We further define j ’s exact accuracy
rate Pa( j, p j) = P(q j = q̃ j , p j ) = 1 − Pe( j, p j ).

Computing the exact error rate Pe( j, p j) requires consid-
ering 2l (l = |I ( j)|) peer combinations, which is intractable
for large-scale PGSs peer where each assignment is graded
by dozens of peers [22]. Moreover, the structure of Pe( j, p j )
is complex and hard to analyze. Alternatively, inspired by
error rate analysis of crowd labeling [53], we apply a simple
but meaningful upper bound error rate P

u
e ( j, p j ) of WMV to

approximate Pe( j, p j )

P
u
e ( j, p j) = e−0.5

∑
i∈I ( j )(2pi j −1)2

. (4)

Proposition 1: Given an assignment j and reliability profile
p j = {pi j}i∈I ( j), we have Pe( j, p j) ≤ P

u
e ( j, p j)

Refer to Appendix A for the proof. Next, we show that the
upper bound error rate decreases with peer reliability, which
is consistent with the exact error rate measure. We first define
relationship ‘�’ between two reliability profiles p j and p′

j :
p j � p′

j , iff ∃i ∈ I ( j) : pi j > p′
i j and ∀k ∈ I ( j)\i, pkj ≥ p′

k j .
Proposition 2: For an assignment j and two peer reliability

profiles p j and p′
j , where p j � p′

j , P
u
e ( j, p j) < P

u
e ( j, p′

j).

Proof: To prove P
u
e ( j, p j) = e−0.5

∑
i∈I ( j )(2pi j −1)2

decreases
with peer i ’s reliability pi j , we only need to prove that the
function f ( j, p j) = ∑

i∈I ( j)(2 pi j − 1)2 increases with pi j .
Deviating f ( j, p j) by pi j , we have ∂ f ( j, p j)/∂pi j = 4(2 pi j −
1) ≥ 0 as pi j ≥ 0.5. �

Instructor’s Objective: In practice, the instructor can only
check a limited number of assignments, denoted as the SC
budget K . Given such budget K , the instructor’s objective
is to optimize the SC policy x = (x j) j∈J of determining
each assignment j ’s checking probability x j , with the aim of
maximizing assignments’ average evaluation accuracy. We for-
mulate a bilevel optimization program for the OptSC problem
as follows:

maxx �(x) =
∑

j∈J

(
1−(1−x j )e

−0.5
∑

i∈I ( j )(2 p
ei j
i −1)2

)
n , (5)

s.t. ui j(ei j , x j) ≥ ui j(e
′
i j , x j) ∀ i ∈ I ( j), e′

i j ∈ {0, 1} (6)∑
j∈J x j ≤ K (7)

∀ j ∈ J, x j ∈ [0, 1]. (8)

In the upper level (5), for each assignment j ∈ J .

1) 1 − x j is the probability of not checking j .

2) e−0.5
∑

i∈I ( j )(2p
ei j
i −1)2

is j ’s upper bound error rate
P

u
e ( j, p j) if it is not checked, where p

ei j

i ∈ {p0
i , p1

i }
is peer i ’s reliability on j .

3) (1−x j)P
u
e ( j, p j ) and 1−(1−x j)P

u
e ( j, p j) are j ’s upper

bound error rate and lower bound accuracy rate under
x, respectively.

In the lower level (6), each peer i maximizes his utility ui j by
choosing the optimal strategy ei j on grading j . Given an SC
policy x, we define assignments’ total lower bound accuracy
rate, �n(x) = n · �(x).

Given an SC policy x, each peer’s best strategy can be
uniquely determined for his monotone utility function. Thus,
we can substitute P

u
e ( j, p j ) by P

u
e ( j, x). In the following, for

convenience, we substitute upper bound error rate and lower
bound accuracy rate by error rate and accuracy rate.
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IV. PROBLEM ANALYSIS

In Section IV-A, we show the NP-hardness of OptSC.
In Section IV-B, we present some useful notations and rules.
We provide a motivation example to show the weaknesses of
traditional random SC mechanisms [20] in Section IV-C.

A. Complexity Analysis

We show that OptSC is NP-hard by reducing an arbitrary
0-1 knapsack decision problem (KDP) to an OptSC.

Theorem 1: The OptSC is NP-hard.
Proof: Given a set of items I = {1, . . . , n}, each with

a cost ci ∈ Z
+ and a value vi ∈ Z

+, and the knapsack’s
capacity C ∈ Z

+, here, without loss of generality, we assume
that maxi∈I ci < C . A KDP asks that given K ∈ Z

+,
whether there exists a subset S ⊆ I so that

∑
i∈S ci ≤ C

and
∑

i∈S vi ≥ K . For any KDP = 〈I, C, K 〉, we construct
the corresponding OptSC as follows: for each item i ∈ I ,
we create an assignment j (i) and a peer i who grades j (i).
Each peer i ’s grading reliability is set as p0

i = 0.5 and

p1
i = 0.5

((
−2 ln

(
1 − vi/vmax

1 − ci/C

))0.5

+ 1

)
(9)

where vmax = maxi∈I vi/(1 − ci/C)/1 − e−0.5. Let SC budget
be 1 and the cost and reward of peer-assignment pair (i , j (i))
be ci and C , respectively. The construction can be done in
polynomial time. We can show that the constructed OptSC
has a SC policy with average accuracy rate K/vmax + 1/n
“iff” KDP = 〈I, C, K 〉 has a solution.

1) ‘If’ Direction: Assume that KDP has a solution S ⊆ I
so that

∑
i∈S ci ≤ C and

∑
i∈S vi ≥ K . Then, in OptSC,

the instructor can check each assignment j (i) ∈ J (S)
(J (S) = { j (i)|i ∈ S}) with probability ci/C and allocates
the remaining budget to others J (I \ S) uniformly. Let x
denote this policy, where ∀ j (i) ∈ J (S), x j (i) = ci/C and
∀ j (i ′) ∈ J (I\S), x j (i ′) = 1 − ∑

j (i)∈J (S) ci/C/|J (I \ S)|, and
we have �n(x) ≥ ∑

j (i)∈J (S)(1 − (1 − (ci/C))e−0.5(2p1
i −1)2

) +∑
j (i ′)∈J (I\S) x j (i ′). Substituting p1

i by (9), we have �n(x) ≥∑
j (i)∈J (S)(ci/C+(vi/vmax))+1−∑

j (i)∈J (S) ci/C ≥ K/vmax+
1. Thus, the average accuracy rate is �(x) = 1/n�n(x) ≥
K/vmax + 1/n.

2) ‘Only If’ Direction: Assume that there is a policy x for
OptSC with average accuracy rate �(x) ≥ K/vmax + 1/n.
Let J (S) = { j (i)|x j (i) ≥ ci/C} be the assignments that
are graded diligently. We show that, for KDP, the item set
S is a feasible solution that satisfies

∑
i∈S ci ≤ C and∑

i∈S vi ≥ K . First, note that in OptSC, the total budget
spent on assignments J (S) should be less than 1, so we
have

∑
j (i)∈J (S) ci/C ≤ ∑

j (i)∈J (S) x j (i) ≤ 1. Thus, in KDP,
we have

∑
i∈S ci ≤ C . Second, in OptSC, we define an

alternative policy x∗, where ∀ j (i) ∈ J (S), x∗
j (i) = ci/C , and

∀ j (i ′) ∈ J (I \ S), x∗
j (i ′) = 1 − ∑

j (i)∈J (S) ci/C/|J (I \ S)|.
According to error rate first (ERF) rule, we have
�(x∗) ≥ �(x) ≥ K/vmax + 1/n. Unfolding �(x∗) ≥
1/n

(∑
j (i)∈J (S)(ci/C + vi/vmax) + 1 − ∑

j (i)∈J (S) ci/C
)

=
1/n

(∑
j (i)∈J (S) vi/vmax + 1

)
≥ K/vmax + 1/n, Thus, for

KDP, we have
∑

i∈S vi ≥ K . �

Fig. 1. Toy peer grading example.

B. Useful Notations and Rules

1) Critical Checking Probability, θi j and η j : For an assign-
ment j with checking probability x j , peer i putting in full
effort ei j = 1 will gain utility ui j(1, x j) = x jri j − ci j and
putting in zero effort ei j = 0 will gain ui j(0, x j) = 0. To elicit
i to grade j diligently, the checking probability x j should
satisfy x j ≥ θi j = ci j/ri j such that ui j(1, x j) ≥ 0. Thus,
we first define θi j = ci j/ri j , the critical checking probability of
the assignment j with respect to peer i , above which i grades
j diligently and under which i grades j arbitrarily. We next
define η j = maxi∈I ( j) θi j , the critical checking probability of
j with respect to peers I ( j). A diligent peer-assignment pair
(i, j) denotes i grades j diligently.

2) Error Rate First Rule: Given a PGS G = (I, J, E) and
an SC policy x, let P

u
e ( j, x) denote the error rate of assignment

j under x. Now assume that there is extra tiny budget ε
that cannot elicit any nondiligent peer-assignment pair to be
diligent. It is optimal to maximize PGS’s evaluation accuracy
by allocating ε to the assignment j∗ that has the largest error
rate, i.e., j∗ = arg max j∈J P

u
e ( j, x). We verify this rule by

analyzing the structure of (5). Let x∗ = (x− j∗, x j∗ = x j∗ + ε)
and x′ = (x− j ′, x j ′ = x j ′ + ε) (x j∗ + ε <1, x j ′ + ε <1)
denote policies of allocating ε to j∗ and j ′( �= j∗), where
x− j is the checking probabilities of all assignments except
j under x. The total accuracy difference between x∗ and
x′ is �n(x∗) − �n(x′) = ∂�n(x)/∂x j∗ε − ∂�n(x)/∂x j ′ε =
ε(Pu

e ( j∗, x) − P
u
e ( j ′, x)) ≥ 0.

C. Inefficiency of Random SC Mechanism

We use an example to show the disadvantage of tra-
ditional random SC mechanism. In Fig. 1, there are four
peers I = {i1, i2, i3, i4} and four assignments J =
{ j1, j2, j3, j4}. Each assignment is allocated to two peers. Each
peer i is associated with a tuple 〈p0

i , p1
i 〉, indicating his zero

and full effort reliability, e.g., for peer i1, his zero effort
reliability is 0.5, and full effort reliability is 1. Each edge (i, j)
is associated with a value θi j = ci j/ri j , indicating the critical
checking probability of the peer-assignment pair (i, j), e.g.,
for peer-assignment pair (i1, j2), to elicit peer i1 to be diligent
on assignment j2, the critical checking probability of j2 is 0.4.
Now, assume that the instructor has SC budget K = 1, and
the exact and lower bound accuracy rates of the random and
optimal SC policies are computed as follows.

1) Random SC Policy: Under this random policy, the proba-
bility of checking each assignment is randomly generated. For
instance, the random policy is xR = (0.25, 0.25, 0.25, 0.25),
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i.e., checking all assignments with uniform probability 0.25.
Under xR , peers i1, i2, i3, and i4 all grade arbitrarily on
assignments j1, j2, j3, and j4. The assignment j1’s exact
accuracy rate is Pa( j1, xR) = 1 − (1 − x R

1 )Pe( j1, xR) =
1 − (1 − 0.25) · (1 − 0.5) = 0.625. Similarly, the exact
accuracy rates of assignments j2, j3, and j4 are Pa( j2, xR) =
0.625, Pa( j3, xR) = 0.625, and Pa( j4, xR) = 0.625. The
average exact accuracy rate of all assignments is �e(xR) =∑

1≤k≤4 Pa( jk, xR)/4 =0.625. Similarly, the average lower
bound accuracy rate is

�l(xR)

= [
(1 − (1 − 0.25) · e−0.5·0) + (1 − (1 − 0.25) · e−0.5·0)
+(1 − (1 − 0.25) · e−0.5·0) + (1 − (1 − 0.25) · e−0.5·0)

]/
4

= 0.25.

2) Optimal SC Policy: The optimal checking policy is
xO = (0.2, 0.4, 0.4, 0). Then, peer i1 grades diligently on both
j2 but arbitrarily on j3; peer i2 grades arbitrarily on both j1
and j4; peer i3 grades arbitrarily on both j1 and j4; and peer
i4 grades diligently on j3 but arbitrarily on j2. The average
exact accuracy rate under the optimal solution xO is �e(xO) =
[(1 − (1 − 0.2) ·0.5)+ (1 − 0.6 · (1 − 1))+ (1 − 0.6 · (1 − 1))+
(1 − (1 − 0) · 0.5)]/4 = 0.775, and the average lower bound
accuracy rate is �l(xO) = [(1 − 0.8 · 1) + (1 − 0.6 · e−0.5·2) +
(1 − 0.6 · e−0.5·2) + (1 − 1 · 1)]/4 ≈ 0.44.

From the abovementioned example, we can see that: 1) the
random SC policy performs poorly on maximizing accuracy
rate and 2) although the lower bound accuracy rate might be far
from the exact accuracy rate, it is consistent with the accuracy
rate on SC policy, indicating that lower bound accuracy rate
is a satisfiable indicator to measure the exact accuracy rate.

V. EFFICIENT APPROXIMATION ALGORITHM

The key idea behind our algorithm is that we first formulate
a single-level relaxation to approximate the bilevel OptSC
(see Section V-A). The relaxed formulation: 1) guarantees
the limited solution loss of the original OptSC (see The-
orem 2) and 2) has an elegant structure that can be well
exploited (see Theorem 3). In Section V-B, we design an effi-
cient approximation algorithm for the relaxed problem, which
also offers performance guarantee for the original OptSC
(see Section V-C).

A. Relaxing OptSC

Given an SC policy x, let S(x) be the set of diligent
peer-assignment pairs (i, j) where peer i grades assignment
j diligently, i.e., S(x) = {(i, j)|x j ≥ θi j , (i, j) ∈ E}. Let
J (i,S(x)) = { j |∃(i, j) ∈ S(x)} be assignments in S(x) that
are graded diligently by peer i and I ( j,S(x)) = {i |∃(i, j) ∈
S(x)} be peers in S(x) who grade assignment j diligently.
We formulate a single-level peer-assignment-oriented relax-
ation OptSC_PA. This relaxation is a combinatorial optimiza-
tion problem of finding the optimal diligent peer-assignment
pair set S ⊆ E to maximize assignments’ accuracy rate �τ(S),

shown as follows:

maxS⊆E �τ(S) =
∑

j∈J

(
1−(1−x j )e

−0.5
∑

i∈I ( j ) (2 pi j −1)2
)

n (10)

s.t. x j = maxi∈I ( j,S) θi j (11)

pi j = p1
i ∀(i, j) ∈ S; pi j = p0

i ∀(i, j) /∈ S (12)∑
j∈J x j ≤ K . (13)

In (10), S ⊆ E is the set of selected peer-assignment pairs.
To elicit all peer-assignment pairs in S to be diligent, (11)
proposes a critical checking policy x j of checking each assign-
ment j with the maximal critical checking probability with
respect to peers I ( j,S). This critical checking policy guar-
antees that the original OptSC and the relaxation OptSC_PA
achieve nearly the same accuracy rate.

Theorem 2: Given K ≤ ∑
j∈J η j , let y = (y j) j∈J and

�opt be OptSC’s optimal SC policy and accuracy rate. Let
S and �τ

opt be OptSC_PA’s optimal peer-assignment pair set
and accuracy rate. We have �opt − �τ

opt ≤ 1 + n1/n, where n
is the number of peers and n1 is the number of assignments
that are checked by probability 1 in y.

Proof: Under y, we split all assignments J into three
disjoint groups, L, H, and F , where L = { j |y j =
maxi∈I ( j,S(y)) θi j} denotes assignments checked by the critical
checking probability, H = { j |y j > maxi∈I ( j,S(y)) θi j , y j �= 1}
denotes assignments neither checked by the critical checking
probability nor probability 1, and F = { j |y j = 1, y j /∈ L}
denotes assignments checked by probability 1, but not in L,
where |F | = n1.

Case 1 (n1 = 0): Let j∗ be the assignment in H that has the
largest error rate under y, i.e., P

u
e ( j∗, y) = max j∈H P

u
e ( j, y).

According to the ERF rule, we can improve y by transferring
some budget from other assignments j ∈ H to j∗ until the
transferred budget can elicit certain peer in I ( j∗)\ I ( j∗,S(y))
to be diligent on j∗. This budget transfer will not decrease
any assignment’s error rate. We proceed this budget transfer
process until one of the two scenarios happens: 1) all assign-
ments in H are checked by the critical checking probability
and 2) there is only one assignment in H that is not checked by
the critical checking probability. Let y′ be the final policy after
this budget transfer, and we have �(y′) ≥ �(y) in OptSC.

For scenario 1, we have �(y′) ≤ �τ(S) because S is the
optimal critical checking policy. Thus, �opt − �τ

opt = �(y) −
�τ(S) ≤ �(y′) − �τ (S)) ≤ 0 ≤ 1/n.

For scenario 2, let j∗ be the assignment that is not checked
by the critical checking probability under y′ and z j∗ = y ′

j∗ −
maxi∈I ( j∗,S(y′)) θi j∗ ≤ 1 be the redundant noncritical checking
budget on j∗. Removing z j∗ from j∗ and defining the corre-
sponding critical checking policy y′′ ≥ (y ′

− j∗, y j∗ ′′ = y ′
j∗−z j∗).

Because z j∗ is the redundant noncritical checking budget,
we have �(y′′) = �(y′) − z j∗/n in OptSC. Let �τ(S) =
�τ(S(K )) denote the optimal accuracy rate of OptSC_PA
with budget K . Then, we have �τ(S(K )) ≥ �τ(S(K − z j∗)).
With budget K − z j∗ , the policy y ′′ is a critical checking
policy, and S(K − z j∗) is the optimal critical checking policy.
Thus, we have �τ(S(K − z j∗)) ≥ �(y′′) ≥ �(y′) − z j∗/n ≥
�(y)−z j∗/n. Finally, we have �opt −�τ

opt = �(y)−�τ(S) ≤
�(y) − �τ(S(K − z j∗)) ≤ z j∗/n ≤ 1/n.
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Case 2 (n1 > 0): Besides j∗ = arg max j∈H P
u
e ( j, y), there

are other n1 assignments in F that have higher accuracy rates
in y for OptSC than those in S for OptSC_PA. Similar to
Case 1, we can further derive that �opt−�τ

opt ≤ 1 + n1/n. The
condition that the assignment j ∈ F checked by probability
1 in OptSC is harsh, where the error rate P

u
e ( j, y) of j under

full critical checking probability η j must be larger than all
assignments j ′ ∈ L that are checked by the partial critical
checking probability y j ′ ≤ η j . With budget K ≤ ∑

j η j ,
the scenario that an assignment is checked by probability
1 happens infrequently, and compared with n, n1 is very
small. �

Properties of OptSC_PA: We observe that in OptSC_PA,
the objective function �τ satisfies monotone and submodular
properties with respect to S. Let U be a nonempty finite set
and f be a function f : 2U → R, where 2U denotes the
power set of U . The function f is monotone if f (A) ≤ f (B)
for all A ⊆ B ⊆ U and submodular if f (A ∪ s) − f (A) ≥
f (B ∪ s) − f (B) for all A ⊆ B ⊆ U and s ∈ U\B. We first
define a couple of quantities that will be useful in Theorem 3.
Let P

u
e ( j, I ( j,S)) = e−0.5

∑
i∈I ( j,S)(2p1

i j −1)2
denote the error

rate of assignment j when peers I ( j,S) grade diligently
on j . For two disjoint sets I ( j,S1) and I ( j,S2), where
I ( j,S1) ∩ I ( j,S2) = ∅, we have P

u
e ( j, I ( j,S1) ∪ I ( j,S2)) =

P
u
e ( j, I ( j,S1)) · P

u
e ( j, I ( j,S2)).

Theorem 3: The objective function �τ defined in (10) is
monotone and submodular with respect to S.

Proof: Monotone Property: Given a set of diligent
peer-assignment pairs S and another peer-assignment pair
(i∗, j∗) /∈ S, let S∗ = S ∪ (i∗, j∗) and xS = (xS

j ) j∈J ,
xS∗ = (xS∗

j ) j∈J denote critical checking polices for S and S∗,
respectively. Then, we have I ( j∗,S∗) \ I ( j∗,S) = i∗;
∀ j ∈ J \ j∗, xS

j = xS∗
j and P

u
e ( j, I ( j,S)) =

P
u
e ( j, I ( j,S∗)); and xS∗

j∗ ≥ x S
j∗ . Finally, the difference

between �n(S∗) and �n(S) is �n(S∗) − �n(S) =
(1 − xS

j∗)Pu
e ( j∗, I ( j∗,S)) − (1 − xS∗

j∗ )Pu
e ( j∗, I ( j∗,S∗)) =

P
u
e ( j∗, I ( j∗,S))

(
(1 − x S

j∗) − (1 − xS∗
j∗ )Pu

e ( j∗, i∗)
)
. Since

P
u
e ( j∗, I ( j∗,S)) ≥ 0, we have �n(S∗) − �n(S) ∝

1 − x S
j∗ − (1 − xS∗

j∗ )Pu
e ( j∗, i∗) ≥ xS∗

j∗ − x S
j∗ ≥ 0. The operator

∝ means the positive relation.
Submodular Property: Let S1 and S2 denote two diligent

peer-assignment pair sets, where S1 ⊆ S2. For any diligent
peer-assignment grading (i∗, j∗) /∈ S2, S∗

1 = S1 ∪ (i∗, j∗) and
S∗

2 = S2 ∪ (i∗, j∗); then, we have

�n(S∗
1 ) − �n(S1) − (�n

(S∗
2

) − �n(S2))

= P
u
e ( j∗, I ( j∗,S1))

((
1 − x S1

j∗
) − (1 − x

S∗
1

j∗ )Pu
e ( j∗, i∗)

)
−P

u
e ( j∗, I ( j∗,S2))

((
1 − x S2

j∗
) − (1 − x

S∗
2

j∗ )Pu
e ( j∗, i∗)

)
= P

u
e ( j∗, I ( j∗,S1))

[(
1 − x S1

j∗
) − (

1 − x
S∗

1
j∗

)
P

u
e ( j∗, i∗)

−P
u
e

(
j∗, I ( j∗,S2 \ S1)

)
((

1 − x S2
j∗
) − (

1 − x
S∗

2
j∗

)
P

u
e ( j∗, i∗)

)]
∝

(
1 − x S1

j∗
) − (

1 − x
S∗

1
j∗

)
P

u
e ( j∗, i∗)

−P
u
e ( j∗, I ( j∗,S2 \ S1))

((
1 − x S2

j∗
) − (

1 − x
S∗

2
j∗

)
P

u
e ( j∗, i∗)

)

Algorithm 1 Peer-Assignment Pair-Based SC Algo-
rithm PASC (G, K )

Input : The PGS G = (I, J, E) and the SC budget K .
Output: The SC policy x ⊆ [0, 1]n.

1 Initialize x = (0) j∈J , � = E , K r = K , K ∗ = K ;
2 while � �= ∅ do

3 (i∗, j∗) = arg max(i, j)∈�
�τ (x− j ,x′

j =θi j )−�τ (x)

x′
j −x j

;

4 if θi∗ j∗ − x j∗ ≤ K r then
5 x j∗ = θi∗ j∗ , K r = K r − (θi∗ j∗ − x j∗);
6 � = � \ {(i, j∗) ∈ �|θi j∗ ≤ x j∗};
7 (i∗, j∗) = arg max(i, j)∈E �(0, . . . , x j = θi j , . . . , 0);
8 x∗ = (0, . . . , x j∗ = θi∗ j∗, . . . , 0), K ∗ = K ∗ − x j∗ ;
9 If �(x∗) > �(x), then K r = K ∗ and x = x∗;

10 while K r > 0 do
11 j∗ = arg max j∈J P

u
e ( j, x), δb = max{1 − x j∗, K r };

K r = K r − δb, x j∗ = x j∗ + δb;

12 Return the SC policy x = (x1, x2, . . . , xn).

≥
(

1 − x S1
j∗

)
−

(
1 − x

S∗
1

j∗

)
P

u
e ( j∗, i∗)

−
((

1 − x S2
j∗

)
−

(
1 − x

S∗
2

j∗

)
P

u
e ( j∗, i∗)

)
=

(
x S2

j∗ − x S1
j∗

)
− P

u
e ( j∗, i∗)

(
x

S∗
2

j∗ − x
S∗

1
j∗

)
≥

(
x S2

j∗ − x S1
j∗

)
−

(
x

S∗
2

j∗ − x
S∗

1
j∗

)
=

(
x

S∗
1

j∗ − x S1
j∗

)
−

(
x

S∗
2

j∗ − x S2
j∗

)
≥ 0.

�

B. Approximation Algorithm for OptSC_PA

Based on monotone and submodular properties of �τ ,
we propose PASC, a peer-assignment pair-based SC algorithm
(i.e., Algorithm 1). Algorithm 1 mainly consists of two stages.

1) Stage 1–Diligent Grading Elicitation: In Lines 2–6,
Algorithm 1 first finds one candidate SC policy by
greedily eliciting the peer-assignment pair (i∗, j∗) that
has the largest margin accuracy gain-cost ratio to be
diligent, that is

(i∗, j∗) = arg max(i, j)∈E
�τ (x− j ,x′

j =θi j )−�τ (x)

x′
j −x j

(14)

where x ′
j = θi j is the critical probability of eliciting dili-

gent grading of (i, j) and x ′
j −x j is the budget necessary

for this elicitation under the policy x. In Lines 7 and 8,
Algorithm 1 also finds another candidate policy x∗ that
only actives the optimal peer-assignment pair (i∗, j∗)
that has the largest accuracy rate gain. To elicit this
peer-assignment pair (i∗, j∗) to be diligent, a budget of
θi j should be allocated to the assignment j . In Line 9,
Algorithm 1 selects the policy from the two candidates
x and x∗ with larger accuracy rate.

2) Stage 2–Remaining Budget Allocation: In lines 10 and
11, if there is remaining budget K r = K − ∑

j x j > 0,
Algorithm 1 iteratively allocates K r to assignments that
have the largest error rates.
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C. Algorithm Property Analysis

Approximation Ratio Analysis: In this section, we provide
the approximation ratio �pasc/�opt of PASC, where �pasc and
�opt are accuracy rates returned by PASC and optimum (OPT)
of OptSC. Let n1 be the number of assignments that are
checked by probability 1 in OPT, which has been discussed
in Theorem 2.

Theorem 4: If K <
∑

j η j , �pasc/�opt ≥
K/2(K + n1 + 1)(1 − 1/e).

Proof: Let �τ
opt be the optimal solution of OptSC_PA.

For such a budgeted maximization problem with submod-
ular objective function and linear cost function, we have
�pasc/�

τ
opt ≥ 1/2(1 − (1/e)) [54]. Derived from Theorem 2

that �opt − �τ
opt ≤ n1 + 1/n, we have �opt/�

τ
opt ≤ 1 +

(n1 + 1/n · �τ
opt). We also have �τ

opt ≥ K/n by check-
ing K assignments. Thus, �pasc/�opt ≥ K/2(K + n1 + 1)
(1 − (1/e)). �

For K ≥ ∑
j η j , we first present a useful property of OPT.

Proposition 3: Given the budget K = K1 + K2, we have
xopt(K ) = xopt(K1) + xopt(K1 ⊕ K2), where xopt(K ) is the
optimal SC policy with budget K and xopt(K1 ⊕ K2) is the
optimal SC policy with budget K2 under existing optimal SC
policy xopt(K1).

Proof: Let x′
opt = xopt(K1)+xopt(K1⊕K2) and its solution

be OPT’. Let x∗
opt(K ) be the optimal policy with budget K

and its solution be OPT∗. We split assignments J into two
disjoint groups, H and L, where H = { j |x ′

opt( j) ≥ x∗
opt( j)}

and L = { j |x ′
opt( j) < x∗

opt( j)}. Then, for OPT’, in the second
stage with budget K2, we can transfer the excess budget x ′

j−x∗
j

of “high” assignments j ∈ H to these “low” assignments j ∈
L to obtain x∗

opt. The only reason that this transfer cannot
finish is that for certain “high” assignment j ∈ H, its checking
probability x ′

opt( j, K1) has already been higher than x∗
opt( j, K ).

However, this scenario is impossible. If it is optimal to allocate
larger checking probability x ′

opt( j, K1) to j within budget K1,
OPT∗ should also allocate at least such checking probability
x ′

opt( j, K1) to j within budget K . This is due to the monotone
property of error rate on SC checking probability proved in
Proposition 2. �

Theorem 5: If K ≥ ∑
j η j , �pasc/�opt ≥ K/K + n1 + 1.

Proof: We divide this setting into two subsettings: 1) K =∑
j η j and 2) K >

∑
j η j .

Setting 1 (K = ∑
j η j ): PASC can elicit all peers to be

diligent, and we have �τ
opt = �pasc. According to Theorem 4,

we have �τ
opt/�opt ≥ K/K + n1 + 1, which derives that

�pasc/�opt ≥ K/K + n1 + 1.
Setting 2 (K >

∑
j η j ): Splitting K into two parts K1 =∑

j η j and K2 = K − K1. Based on Proposition 3, we have
�opt = �opt(K1) + �opt(K1 ⊕ K2). Given the budget K1,
by Theorem 2, OPT can be divided into two cases.

Case 1 (n1 = 0): In the case that each assignment j ∈ J is
checked by the critical checking probability η j , with budget
K1, we have �pasc(K1) = �opt(K1) by eliciting all peer-
assignment pairs to be diligent. In the second stage with budget
K2, we have �pasc(K1 ⊕ K2) = �opt(K1 ⊕ K2) by the ERP
rule. Thus, we have �opt = �opt(K1) + �opt(K1 ⊕ K2) =
�pasc(K1) + �pasc(K1 ⊕ K2) = �pasc.

On the other hand, if one assignment j∗ that has the
largest error rate is not checked by the critical checking
probability, i.e., xopt( j∗) > η j∗ , any other assignment j ∈
J\{ j∗} is checked by the critical checking probability x j =
maxi∈I ( j,S(xopt)) θi j . We further consider three cases according
to the scale of the remaining budget K2 in the second stage.

1) K2 is tiny such that the assignment j∗ cannot be checked
by probability 1 in OPT. Then, we have that in OPT,
only the assignment j∗ has a larger checking probability
than that in PASC, i.e., xopt( j∗) > xpasc( j∗),∀ j �=
j∗, xopt( j) ≤ xpasc( j). For this case, we have �opt −
�pasc ≤ 1

n .
2) K2 is moderate that can make j∗ be checked by proba-

bility 1 in OPT but by less than probability 1 in PASC.
Here, we have that �pasc(K1 ⊕ K2) ≥ �opt(K1 ⊕ K2)
because PASC allocates the whole K2 to the assignment
j∗ that has the largest error. Thus, for this case, we have
�opt −�pasc = �opt(K1)+�opt(K1 ⊕K2)−(�pasc(K1)+
�pasc(K1 ⊕ K2)) ≤ 1/n.

3) K2 is large that can make j∗ be checked by probability
1 in PASC, and OPT is checking another assignment
j ′, where xopt( j ′) ≥ η j ′ . For this case, we have that in
OPT, only j ′ has a larger checking probability than that
in PASC, i.e., xopt(x ′

j) ≥ xpasc(x ′
j)∀ j �= j ′, xopt(x j) ≤

xpasc(x j), which derives �opt − �pasc ≤ 1/n.

Other cases with larger budget can be reduced to abovemen-
tioned three cases.

Case 2 (n1 > 0): Similar to the Case 1 analysis, we can
also derive that �opt − �pasc ≤ (1 + n1)/n.

Combining the abovementioned conclusion that �opt −
�pasc ≤ 1 + n1/n, �pasc/�opt ≥ K/K + n1 + 1 follows
readily from Theorem 4. �

Complexity Analysis of Algorithm 1: In this section, we pro-
vide the time complexity of Algorithm 1.

Proposition 4: The complexity of Algorithm 1 is O(|E |2 +
K · n), where |E | = l · n, indicating the number of edges in
PGS G = (I, J, E), |I | = |J | = n, l is the assignment load
of peers, and K is the SC budget.

Proof: In the first diligent grading elicitation stage (Steps
2–6), in each iteration (Steps 3–6), the most cost-effective
peer-assignment pair (i∗, j∗) with the most gain-cost ratio can
be selected in O(|E |). There are at most |E | iterations, so the
complexity of the first stage is O(|E |2). Next, in the remaining
budget allocation stage (Steps 10 and 11), in each iteration,
the assignment with the highest error rate can be selected
in O(n). There are at most K iterations, so the complexity
of the second stage is O(K · n). This leads to a total of
O(|E |2 + K · n) operations for Algorithm 1. �

VI. UNCERTAINTY ABOUT RELIABILITY AND COST

So far, we have addressed the optimal SC problem with
complete information where each peer i ’s reliability p1

i and
cost ci j are known. We extend it to the incomplete information
setting where p1

i and ci j are unknown. We mainly consider two
kinds of uncertain settings.

1) The interval uncertainty, where p1
i ∈ [p1,min

i , p1,max
i ] and

ci j ∈ [cmin
i j , cmax

i j ].
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2) Compete Uncertainty: The instructor does not know p1
i

and ci j , neither their intervals, but we assume that the
instructor knows the mechanism structural information,
such as peers are reward sensitive, and there are two
effort levels.

We extend the proposed PASC mechanism to address these
two kinds of uncertainties, respectively.

A. Interval Uncertainty

The instructor’s objective is to determine an SC policy,
x, that maximizes the accuracy rate �∗(x) over all of the
possibilities that each p1

i and ci j could be chosen from the
defined intervals, formulated as follows:

maxx �∗(x) (15)

s.t. �∗(x) = minp1,c

∑
j

(
1−(1−x j )e

−0.5
∑

i∈I ( j ) (2 p
ei j
i −1)2

)
n

p1,min
i ≤ p1

i ≤ p1,max
i , cmin

i j ≤ ci j ≤ cmax
i j ∀i ∈ I, j ∈ J

(6) − −(8).

We can convert this incomplete information problem (IP) to
the equivalent complete information problem (CP) defined
in (5) with p1

i = p1,min
i and ci j = cmax

i j .
Theorem 6: Let x∗ be the optimal SC policy of CP. Then,

x∗ is also the optimal SC policy of IP.
Proof: Assume that there is an alternative policy x′, where

�∗(x′) > �∗(x∗). For x′, we have the following.

1) �∗(x′) = ∑
j

(
1 − (1 − x ′

j)e
−0.5

∑
i∈I ( j )(2p

ei j
i −1)2

)
/n,

where p
ei j

i = p1,min
i if x ′

j ≥ ci j/ri j ; p
ei j

i = p0
i if x ′

j <
ci j

ri j
.

That means the minimal accuracy rate �∗ under x′ is that
each peer i has the minimum reliability p1

i = p1,min
i .

This conclusion can be derived in Proposition 2 that
each assignment j ’s error rate P

u
e ( j, x) decreases with

peer reliability.
2) ci j = cmax

i j , denoting i , has the maximum cost. Given an
SC policy x, each peers’ reliability decreases with his
cost, and assignments’ error rate decreases with peer
reliability. Thus, assignments’ error rate decreases with
peers’ cost.

Derived from Proposition 2 that � increases with peers’
reliability, we have that for two cost profiles c = (ci j)i∈I, j∈J

and c′ = (c′
i j)i∈I, j∈J , if c ≺ c′, �∗(x, c) ≥ �∗(x, c′). Since x∗

is the optimal SC policy in CP, we have �∗(x′) ≤ �∗(x∗),
which contradicts �∗(x′) > �∗(x∗). Thus, x∗ is the optimal
SC policy in both CP and IP. �

B. Complete Uncertainty

We extend the proposed PASC mechanism for the complete
uncertain scenarios without knowing peers’ reliability and
cost, neither their intervals. The extended method can be
called the exploration-exploitation SC mechanism. In terms
of the exploration, we use the first εB SC budget to explore
and elicit peers’ reliability and cost, where B is the total
budget. In terms of the exploitation, with the explored and
estimated reliability and cost, PASC is exploited to optimize
the evaluation accuracy using the remaining (1 − ε)B .

Algorithm 2 MAB-Based Reliability and Cost Exploration
(εPASC)

Input : The PGS G = (I, J, E) and arms
K = {1, 2, . . . , T }, and the exploration budget
B̃ = εB .

Output: Each peer i ’s estimated diligent reliability p1
i

and threshold checking probability θi .
1 while B̃ > 0 do
2 Select m assignments Jm = { j1, j2, . . . , jm} randomly

(with the truth grading) and allocate Jm to each peer i ;
3 for ∀ j ∈ Jm do
4 Select the arm k randomly for j and collect the

grading zi j of i on j ;
5 Set L(k) = L(k) + 1 and li(k) = li (k) + 1{zi j =q j };
6 B̃ = B̃ − m;

7 for ∀i ∈ I, k ∈ K do
8 p1

i (k) = li (k)
L(k)

;

9 for ∀i ∈ I do
10 Set maxr =0;
11 for ∀k ∈ K do
12 If p1

i (k) − p1
i (k − 1) > maxr then

maxr = p1
i (k) − p1

i (k − 1), p1
i = p1

i (k) and θi = k.

Multiarmed Bandit (MAB)-Based Reliability and Cost
Exploration: We model the threshold SC probability θi = ci/ri

of each peer i for exerting high effort as drawn from a
distribution with cumulative distribution function F(θi ) within
[0, 1], where ci is the cost for diligent grading, and ri is
the known reward given for diligent grading behavior. Given
the SC probability x , let pi(x) = P[zi j = q j ] denote the
probability of grading an assignment j correctly (where q j

is the truth grade of j and zi j is the grade returned by i ),
which can be computed as pi(x) = F(x)p1

i + (1 − F(x))p0
i

when F(θi) and p1
i are known. The main motivation behind

the MAB-based exploration phase is that we would like to try
different levels of SC probability x and search for the optimal
level x∗ that elicits the most evaluation accuracy with the least
SC probability. This SC level x∗ can be regarded as the peer
i ’s threshold SC probability θi , his cost can be estimated by
ci = riθi , and his reliability can be estimated by pi(x∗).

We would like to treat each checking probability level as
an “arm” (as in standard MAB context) to explore with.
Since we have a continuous space of checking level (0, 1],
we separate the support of checking probability (0, 1] into
T = {(0, 1/T ], (1/T, 2/T ], . . . , (T − 1/T, 1]} finite inter-
vals. Then, we treat each checking probability interval as
an arm. For each interval, we take its right endpoint as the
checking probability level to offer: xk = k/T . Our goal is to
select the best one of them with the maximized accuracy-
checking probability ratio. The detail of the MAB-based
reliability and cost exploration is shown in Algorithm 2.

In Algorithm 2, each round, we randomly select m gold-
standard assignments Jm (which have been graded by the
instructor) and allocate them to each peer i (step 2). In step 4,
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Algorithm 3 Fair Partition for Large-Scale PGSs (FP-
PGSs)
Input : The PGS G = (I, J, E) and reliability ranges R.
Output: Subgroups G = {g1, g2, . . . , gm}.

1 Initialize p(g j , rk) = 0,∀g j ∈ G, rk ∈ R;
2 for ∀i ∈ I do
3 Set k = argl{p1

i ∈ rl};
4 Set min = ∞ and q = −1;
5 for ∀g j ∈ G do
6 If p(g j, rk) < min, then min = p(g j, rk) and

gq = g j ;

7 Dispatch peer i to subgroup gq , and
p(gq, rk) = p(gq, rk) + 1.

we randomly choose an arm k for each assignment j ∈ Jm ,
i.e., j is checked with the probability xk . In step 5, let L(k)
denote the number of arms k chosen and li (k) denote the
correct grades of peer i under the arm k (where the function
1{zi j =q j } returns 1 if zi j = q j ; otherwise, return 0). After using
the exploration budget εB (step 6), the estimated reliabil-
ity under each arm k is estimated by p1

i (k) = li(k)/L(k)
in step 8. Finally, in step 12, we determine the threshold
checking probability θi as the arm that has the maximal
marginal evaluation accuracy improvement, i.e., θi = k∗,
where k∗ = arg maxk p1

i (k)− p1
i (k−1), where p1

i (0) = p0
i . The

corresponding estimated diligent reliability is p1
i = p1

i (k
∗).

VII. SCALABILITY ON LARGE-SCALE PGSS

WITH MILLIONS OF PEERS

To tackle the large-scale PGSs with millions of peers,
we propose a scalable method by partitioning these peers
into subgroups in a fair manner. Each subgroup can imple-
ment the proposed PASC effectively in parallel. In terms of
fairness, we mean that peers’ reliability distribution in each
subgroup is similar. The detail of this fair partition is shown
in Algorithm 3.

In Algorithm 3, for the input, we divide the reliability
[0.5, 1] into T discrete distributions R = {[0.50, 0.50 +
0.50 × (1/T )), [0.50 + 0.50 × (1/T ), 0.50 + 0.50 ×
(2/T )), . . . , [0.50 + 0.50 × (T − 1/T ), 1]}. The output is the
partitioned m subgroups G = {g1, g2, . . . , gm}. For each peer
i , let rk ∈ R denote the range that his diligent reliability
belongs to, i.e., p1

i ∈ rk (step 3). Let p(g j, rk) denote the
number of peers in subgroup g j whose reliability belongs to
rk (step 1). In steps 5 and 6, the subgroup gq with the minimal
number of peers whose reliability distributed in the range
rk is selected. To guarantee the fairness that each subgroup
has the similar reliability distribution, we always dispatch the
peer i to such a minimal subgroup gq (step 7). After the
partition of peers into m subgroups, each subgroup implements
the proposed PASC in parallel with the budget m/B . For
Algorithm 3, we can conclude the following.

1) For any range rk ∈ R, and any two subgroups gp and gq ,
the difference between p(gp, r) and p(gq, r) is at most
1, i.e., ∀gp, gq ∈ G, r ∈ R, | p(gp, r) − p(gq, r) |≤ 1.

2) For each peer i , it needs to take T computation time
to find his reliability range and m computation time
to find the minimal subgroup. Since there are n peers,
the time complexity of Algorithm 3 is O(n(T + m)) =
O(nm), where T ≥ m. Thus, the time complexity
of returning the SC solution of the extended PASC is
O(nm + (n/m)2) (n/mis the number of peers in each
subgroup), which reduces significantly compared with
original PASC’s O(n2) time complexity.

VIII. EXPERIMENTAL EVALUATION

We experimentally verify the evaluation accuracy and scal-
ability of the proposed algorithm on synthetic and real data
sets. All computations are performed on a 64-bit PC with a
dual-core 3.2-GHz CPU and 16-GB memory. All results are
averaged over 500 instances.

A. Experiment on Synthetic Data Set

There are 10 000 peers and 10 000 assignments. For each
peer i , his diligent reliability follows the Gaussian distribution
N(μ, δ2), where μ = 0.75 and δ = 0.125. We allocate each
assignment j to l peers randomly. The cost ci j and reward ri j

follow the uniform distributions U(0, 1) and U(ci j , 1).
We compare our PASC algorithm with three algorithms.
1) Random, where budget K is allocated to n assignments

randomly, i.e., choose one assignment j and allocate a
random probability x j ≤ 1 to j .

2) Assignment-oriented SC algorithm (ASC), where the
most cost-effective assignment (with the critical SC
probability η j ) is selected and a budget of η j is allocated
to elicit diligent peer grading.

3) Assignment allocation first (AAF), where we first parti-
tion these 10 000 students into 2500 groups uniformly,
each group has the equal-sized four members. Each
assignment is randomly allocated to l

4 groups of these
2500 groups. After this assignment allocation, the uni-
form SC policy is exploited, where the budget is
allocated to the assignments uniformly.

Evaluation Accuracy: Table II shows the evaluation accu-
racy rate under various budgets K and loads l, from which
we observe that: 1) given any load and budget, PASC always
produces the largest accuracy rate; 2) given the light load
(i.e., l = 4) and any budget, the accuracy rate of PASC is fol-
lowed by ASC, AAF, and Random, while given the heavy load
(i.e., l > 4) and any budget, the accuracy rate of PASC is
followed by AAF, ASC, and Random; 3) given any budget,
accuracy rates of PASC, AAF, and Random increase with
load, while the accuracy rate of ASC decreases with load;
and 3) given a load, these algorithms’ accuracy rates increase
with the budget, and the increment becomes smaller with the
increase of budget.

Fig. 2(a) shows the convergence of evaluation accuracy rate
on a budget, from which we observe that when the budget K is
smaller than the critical budget Kc = ∑

j η j , PASC performs
much better than ASC, AAF, and Random. When K > Kc,
PASC and ASC produce the same accuracy rate and converge
to the optimal accuracy.
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TABLE II

EVALUATION ACCURACY ON SYNTHETIC DATA SET. EACH CELL IS STATISTICALLY SIGNIFICANT AT 95% CONFIDENCE LEVEL

Fig. 2. Properties of algorithms. (a) Convergence on budget. (b) Effect of load on ASC. (c) Running time. (a) Convergence on budget, load l = 8.
(b) Evaluation accuracy of ASC on load. (c) Running time on number of peers, l = 8.

Fig. 3. Robustness on uncertain reliability and cost. (a) Interval uncertainty on budget. (b) Interval uncertainty on load. (c) Evaluation accuracy on exploitation
rate ε.

TABLE III

EFFECT OF THE NUMBER OF SUBGROUPS ON LARGE-SCALE PGSS WITH RESPECT TO EVALUATION ACCURACY AND RUNNING TIME.
EACH CELL IS AVERAGED OVER 20 INSTANCES AND STATISTICALLY SIGNIFICANT AT 95% CONFIDENCE LEVEL

Running Time: Fig. 2(c) shows the running time (in seconds)
on the number of peers. We can find that: 1) the running time
increases with the number of peers and 2) for the large-scale
scenarios with 10 000 peers, our proposed algorithm PASC
needs to take nearly 90 s to return the solution, and ASC
takes about 20 s, while the random and AAF can return the

solution within 1 s. Compared with the advantage of PASC on
improving evaluation accuracy by 10% over other algorithms,
90 s are worth of waiting.

Robustness on Uncertainty of Reliability and Cost: The
instructor might have uncertain information on peers’ relia-
bility p1

i and cost ci j .
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1) For the interval uncertainty where p1
i ∈ [ p̃1

i − δp, p̃1
i +

δp] and ci j ∈ [c̃i j − δc, c̃1
i j + δc], p̃1

i and c̃i j are
observed values. δp and δc are noise parameters, where
δp = p̃1

i /10 and δc = c̃i j/10. We compare algorithm’s
worst case accuracy rate in uncertain settings defined
in (15). From Fig. 3(a) and (b), we observe that PASC
always produces the largest accuracy rate under the
interval uncertainty scenarios.

2) Fig. 3(c) shows the effect of exploration rate ε on
evaluation accuracy, where εPASC is the extended PASC
for reliability and cost exploration (i.e., Algorithm 2).
In Fig. 3(c), there are 10 000 peers whose truth reliability
follows the Gaussian distribution, the total budget used
for SC is 2000, and the load l = 8. From Fig. 3(c),
we can observe that compared with the Random and
AAF without knowing peers’ reliability and cost infor-
mation, using the first εB budget to explore these
information is beneficial to improve evaluation accuracy;
evaluation accuracy of εPASC decreases with ε. This can
be explained by the fact that the more the budget (i.e.,
larger ε) used for reliability and cost exploration, the less
the budget remained for exploitation in PASC. Moreover,
ε ≤ 0.1 might be a good option for the tradeoff between
reliability exploration and exploitation.

Scalability on Large-Scale PGSs With Millions of Peers:
Table III shows the evaluation accuracy and running time with
106 peers, where Group_PASC is the extended PASC in which
these millions of peers are first partitioned into subgroups
fairly. The total budget used for SC is B = 2 × 105, the load
l = 8, and the reliability range [0.5, 1] is divided into 50 dis-
crete ranges R = {(0.50, 0.51], (0.51, 0.52], . . . , (0.99, 1]}.
For such m subgroups, each subgroup has B/m budget. From
Table III, we can find that partitioning these millions of
peers into subgroups and each subgroup implements PASC
in parallel can significantly reduce running time but loses the
limited evaluation accuracy. For example, by partitioning these
peers into 103 subgroups, the SC solution can be returned by
Group_PASC within several seconds, while there is only 0.1%
percentage loss of evaluation accuracy compared with PASC.
The more the subgroups partitioned, the lower the evaluation
accuracy, e.g., the evaluation accuracy of 105 subgroups is
less the evaluation accuracy of 103 subgroups. This can
be explained by the fact that more fine-grained partitions
(i.e., m is larger) will cause the budget B/m allocated to each
subgroup more fragmented and inefficiently.

Discussion: We show that PASC, AAF, and Random per-
form better with the increase of load. This is because, for
PASC, AAF, and Random, larger load indicates that assign-
ments have a higher possibility to be graded by peers with
higher reliability. However, for ASC, when each assignment j
has a large load, more critical checking budget η j is required,
but such an incremental budget cannot proportionally improve
accuracy due to the submodular property. Fig. 2(b) shows the
evaluation accuracy of ASC on load. In Appendix B, we also
test the evaluation accuracy when peers reliability follows
the uniform distribution U(0.75,0.125), in which we observe
similar results as that in the Gaussian distribution.

For the scenarios when K > Kc, PASC and ASC produce
the same accuracy rate and converge to the optimal accuracy.
This is because when K > Kc, all peers can be elicited to be
diligent in both PASC and ASC. In terms of the large-scale
scenarios with millions of peers, to make PASC practical with
respect to running time, one potential method is to partition
these millions of peers into smaller subgroups first (e.g., each
group includes thousands of peers). The group should be
fairly partitioned such that the reliability distribution of peers
is similar.

B. Experiment on Real Data Set

Data Set: TREC2 is a collection of topic-document rel-
evance judgments labeled by workers on AMT. This data
sets data structure is similar to PGS’s, where each worker
(i.e., peer) is asked to judge whether a topic document (i.e.,
assignment) is relevant (i.e., good) or not (i.e., bad). Each
assignment has a true answer. This data set contains 9161 judg-
ments collected from 763 workers.

Results: We first use ltra training tasks to calibrate worker
reliability. For each worker i who judges lcor

i correct labels
among ltra tasks, his reliability is estimated as p1

i = lcor
i / ltra.

We model worker’s cost and reward in a similar way with
that in Section VIII-A. We compute the workers’ average
reliability of 0.82 and variance of 0.17. Under the SC
mechanism, a worker–task pair (i, j) that is elicited to be
diligent, we directly use i ’s label in the data set as i ’s
judgment; otherwise, i reports a random judgment on j .
Finally, we use the WMV to aggregate the estimated judg-
ment. Fig. 4(a) depicts the reliability distribution of these
763 peers in the real-data set, which can be fit by a Gaussian
distribution.

Fig. 4(b) shows the evaluation accuracy in real data set (in
real data set, the task allocation has been determined; thus,
AAF is unnecessary), from which we observe that: 1) PASC
performs the best on improving evaluation accuracy and 2) for
PASC and ASC, before the critical budget point (K ≤ 5×103),
their increment rates drop (i.e., the gradient increases) with the
budget, while exceeding the critical budget, their increment
rates goes up again.

Discussion: In the real data set, peers have high average reli-
ability accuracy (∼0.82). Even with the limited budget, these
highly reliable peers can be elicited to be diligent, leading to a
high base accuracy. When the budget becomes moderate, such
an incremental budget can only improve limited accuracy due
to the submodular property and the high base accuracy. Finally,
when the budget becomes so large that it exceeds the critical
budget, all peers will be diligent. The remaining budget will
be allocated to the assignment that has the largest error rate,
thereby improving the increment rate again. Although the fit
Gaussian distribution of peers reliability might not have the
same average and variance with the statistical results (e.g.,
for this real data set, the fit Gaussian distribution might be
N (0.86, 0.14)), it is practical of modeling peers’ reliability to
follow a Gaussian distribution.

2https://sites.google.com/site/treccrowd/
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Fig. 4. Results on real data set. (a) Reliability distribution of peers in the real data set. (b) Evaluation accuracy in real data set with respect to the budget.

IX. CONCLUSION

This article studies the problem OptSC of optimal SC
assignments to maximize assignments evaluation accuracy
in general PGSs. The NP-hardness complexity of OptSC is
analyzed. A combinational optimization problem OptSC_PA is
proposed to approximate OptSC. The monotone and submod-
ular properties of OptSC_PA are exploited, and an efficient
SC approximation algorithm is proposed. Experimental results
show that in both syntectic and real data sets, the proposed
algorithm achieves higher evaluation accuracy than other
benchmark algorithms.

There are mainly three limitations of the proposed approach:
1) for the scenarios where there are no prior knowledge
peers’ reliability and cost, the proposed SC mechanism would
not have any desirable theoretical guarantee on estimation
accuracy; 2) for the large-scale applications where there are
millions of peers, it will take intolerable running time to return
the solution; and 3) peers can be bounded rationality that has
only partial knowledge about their utilities and, not always,
are capable of effectively optimizing their utilities. These
limitations can lead to several interesting topics for future
work. First, the assumptions of knowing peers’ reliability, cost,
and peers’ perfect rationality can be relaxed. Novel online
learning-based SC mechanisms by learning peers’ reliability,
cost, and rationality level should be developed. Second, par-
titioning millions of peers into small-scale subgroups (e.g.,
each group includes thousands of peers) might a potential
option for large-scale applications, and how to group these
peers fairly should be cleverly designed. Third, the diligent
peer can be modeled as the instructor and for the scenarios
where is not enough budgets, utilizing the peer-assignment
allocation network by comparing diligent peers’ assignments
with other unknown peers might a good option to improve
evaluation accuracy.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: Define γi j = wi j zi j , where wi j = 2 pi j − 1 is the
weight of peer i ’s grade on assignment j and pi j ∈ {p0

i , p1
i }.

Let ξ+
j = E

+(
∑

i∈I ( j) wi j zi j) = ∑
i∈I ( j) wi jE(zi j |q j = 1) =∑

i∈I ( j) wi j(1 · pi j + (−1) · (1 − pi j)) = ∑
i∈I ( j) wi j(2 pi j − 1)

denote the expected value aggregated by WMV when the true
value of j is 1. Similarly, let ξ−

j = ∑
i∈I ( j) wi jE(zi j |q j =

−1) = − ∑
i∈I ( j) wi j(2 pi j−1) denote the expected value if the

true value of j is −1. Let β+
j = P(

∑
i∈I ( j) wi j zi j ≥ 0|q j = 1)

denote the expected accuracy rate of WMV if the true value
of j is 1. This accuracy rate satisfies

β+
j = P

(∑
i∈I ( j) wi j zi j ≥ 0|q j = 1

)
= P

(∑
i∈I ( j) wi j zi j − E

+
[∑

i∈I ( j) wi j zi j

]
≥ −ξ+

j

)

≥ 1 − e

−2(ξ+
j )2∑

i∈I ( j)(wi j − (−wi j))
2

= 1 − e

−(ξ+
j )2

2

∑
i∈I ( j) w

2
i j . (16)

The inequality is derived from the Hoeffding inequality

P

(∑
i∈I ( j) wi j zi j − E

+
[∑

i∈I ( j) wi j zi j

]
≥ −ξ+

j

)
= 1 − P

(∑
i∈I ( j) wi j zi j − E

+
[∑

i∈I ( j) wi j zi j

]
< −ξ+

j

)

≥ 1 − e
−2(ξ+

j )2∑
i∈I ( j )(bi −ai )

2

where the value wi j zi j distributes in the range [ai, bi ] =
[−wi j, wi j ] uniformly [55].3 Similarly, we can derive that the
expected accuracy rate of WMV if the true value of j is
−1 satisfies

β−
j = P

(∑
i∈I ( j) wi j zi j < 0|q j = −1

)
= P

+
(∑

i∈I ( j) wi j zi j − E
−
[∑

i∈I ( j) wi j zi j

]
< −ξ−

j

)

≥ 1 − e

−(ξ−
j )2

2

∑
i∈I ( j) w

2
i j . (17)

3To make the Hoeffding inequality hold, the value of ξ+
j ≥ 0, and in the

later, we will set the weight wi j to ensure that this nonnegative condition
holds.
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TABLE IV

EVALUATION ACCURACY ON SYNTHETIC DATA SET WHERE PEERS’ RELIABILITY FOLLOWS THE UNIFORM DISTRIBUTION U(0.75, 0.125). EACH CELL
IS STATISTICALLY SIGNIFICANT AT 95% CONFIDENCE LEVEL

Finally, we have the expected accuracy rate of WMV on j ,
and β j satisfies

β j = P(q̃ j = q j)

= P(q j = 1, q̃ j = 1) + P(q j = −1, q̃ j = −1)

= P(q j = 1)P
(∑

i∈I ( j) wi j zi j ≥ 0
)

+P(q j = −1)P
(∑

i∈I ( j) wi j zi j < 0
)

= P(q j = 1)β+
j + P(q j = −1)β−

j .

(18)

Substituting β+
j by inequality (16) and β−

j by inequality (17),
we have

β j ≥ P(q j = 1)

⎛
⎜⎝1 − e

−(ξ+
j )2

2

∑
i∈I ( j) w

2
i j

⎞
⎟⎠

+P(q j = −1)

⎛
⎜⎝1 − e

−(ξ−
j )2

2

∑
i∈I ( j) w

2
i j

⎞
⎟⎠

= 1 − e

−(
∑

i∈I ( j ) wi j (2 pi j −1))
2

2

∑
i∈I ( j) w2

i j . (19)

The last equality holds because (ξ+
j )2 = (ξ−

j )2 =
(
∑

i∈I ( j) wi j(2 pi j −1))2. Thus, the expected error rate P(q j �=
q̃ j) of each assignment j by the WMV aggregation method
satisfies

Pe( j) = P(q j �= q̃ j) ≤ e
−(

∑
i∈I ( j ) wi j (2 pi j −1))2

2
∑

i∈I ( j ) w2
i j . (20)

Substituting wi j by 2 pi j − 1, we have

Pe( j) = P(q j �= q̃ j) ≤ e
−∑

i∈I ( j )(2 pi j −1)2

2 . (21)

Equation (21) concludes this proposition. �

APPENDIX B
TEST OF EVALUATION ACCURACY WITH UNIFORM PEERS

RELIABILITY DISTRIBUTION

From Table IV, we can find the similar observation with
the Gaussian distribution, where: 1) PASC has the largest
accuracy rate, which is followed by AAF, ASC, and Random;
2) accuracy rates of PASC, AAF, and Random increase with
load, while the accuracy rate of ASC decreases with load; and
3) algorithms’ accuracy rates increase with the budget, and
the increment becomes smaller with the increase of budget.
The potential reason that AAF always performs better than

the ASC in the uniform scenario is that the uniform reliability
distribution of peers might be more suitable for the uniform
budget allocation mechanism that is incorporated in the AAF.
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