
Batch Allocation for Tasks with Overlapping
Skill Requirements in Crowdsourcing

Jiuchuan Jiang , Bo An, Yichuan Jiang , Senior Member, IEEE, Peng Shi, Zhan Bu , and Jie Cao

Abstract—Existing studies on crowdsourcing often adopt the retail-style allocation approach, in which tasks are allocated individually

and independently. However, such retail-style task allocation has the following problems: 1) each task is executed independently from

scratch, thus the execution of one task seldom utilize the results of other tasks and the requester must pay in full for the task; 2) many

workers only undertake a very small number of tasks contemporaneously, thus the workers’ skills and time may not be fully utilized. We

observe that many complex tasks in real-world crowdsourcing platforms have similar skill requirements and long deadlines. Based on

these real-world observations, this paper presents a novel batch allocation approach for tasks with overlapping skill requirements.

Requesters’ real payment can be discounted because the real execution cost of tasks can be reduced due to batch allocation and

execution, and each worker’s real earnings may increase because he/she can undertake more tasks contemporaneously. This batch

allocation optimization problem is proved to be NP-hard. Then, two types of heuristic approaches are designed: layered batch

allocation and core-based batch allocation. The former approach mainly utilizes the hierarchy pattern to form all possible batches,

which can achieve better performance but may require higher computational cost since all possible batches are formed and observed;

the latter approach selects core tasks to form batches, which can achieve suboptimal performance with lower complexity and

significantly reduce computational cost. With the theoretical analyses and experiments on a real-world Upwork dataset in which the

proposed approaches are compared with the previous benchmark retail-style allocation approach, we find that our approaches have

better performances in terms of total payment by requesters and average income of workers, as well as maintaining close successful

task completion probability and consuming less task allocation time.

Index Terms—Task allocation, crowdsourcing, batch formation, discounting, skill overlapping

Ç

1 INTRODUCTION

IN previous work on crowdsourcing, the task allocation is
categorized into two types [1]: for simple tasks that are

atomic computation operations, tasks are directly allocated
to proper individual workers [2]; for complex tasks involv-
ing many computational operations, tasks may either be
decomposed into micro-subtasks allocated to individual
workers [3], [4] or be directly allocated to a team of workers
through team formation [5], [6].

In existing studies, the allocations of different tasks are
independent from one another, regardless of whether the
tasks are simple or complex. In other words, previous task
allocation is similar to the retail business in markets, in

which tasks are allocated individually and independently.
Next, a real-world example of this approach is presented.

At the leading crowdsourcing website, www.upwork.com,
there are two web development tasks that are posted at the same
time: developing a B2C website and developing an O2O website.
With existing task allocation methods, the two similar tasks will
be dependently allocated to different workers. Obviously, such a
solution may not be sufficient, since the two tasks have many simi-
larities and may be mutually beneficial, e.g., many of the infra-
structures and basic components of B2C and O2O websites are
the same or similar. In fact, if the two tasks are allocated to the
same worker, significant development cost may be saved because
the development of two similar websites can be combined and
experiences that are learned from developing one website can be
applied when developing the other.

Retail-style task allocation cannot scale to large-scale con-
current tasks, because each task needs to be allocated inde-
pendently from scratch, which may involve repeatedly
solving for the optimal matching between tasks and workers.
In general, the problems with the retail-style task allocation
in traditional crowdsourcing can be summarized as follows:

1) Retail-style task allocation requires each requester to pay in
full for his/her task because each task will be allocated and
completed independently from scratch. In fact, it is com-
mon that many tasks within the same category at a
crowdsourcing website may be similar on required
skills. For example, we find that each skill is required
by at least 31.36 tasks on average at the Freelancer

� J. Jiang and B. An are with the School of Computer Science and Engineering,
Nanyang Technological University, Singapore 639798, Singapore.
E-mail: jiangjiuchuan@163.com, boan@ntu.edu.sg.

� Y. Jiang and P. Shi are with the School of Computer Science and
Engineering, Southeast University, Nanjing 211189, China and also
with the Co-innovation Center of Shandong Universities for Future
Intelligent Computing, Shandong Technology and Business University,
Yantai 264005, China. E-mail: {yjiang, pengshi}@seu.edu.cn.

� Z. Bu and J. Cao are with the College of Information Engineering, Nanjing
University of Finance and Economics, Nanjing 210003, China.
E-mail: buzhan@nuaa.edu.cn, caojie690929@163.com.

Manuscript received 2 Sept. 2017; revised 15 Dec. 2018; accepted 15 Jan.
2019. Date of publication 21 Jan. 2019; date of current version 8 July 2019.
(Corresponding author: Jiuchuan Jiang.)
Recommended for acceptance by B. Ravindran.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2019.2894146

1722 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

1045-9219� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8249-1725
https://orcid.org/0000-0002-8249-1725
https://orcid.org/0000-0002-8249-1725
https://orcid.org/0000-0002-8249-1725
https://orcid.org/0000-0002-8249-1725
https://orcid.org/0000-0002-7349-5249
https://orcid.org/0000-0002-7349-5249
https://orcid.org/0000-0002-7349-5249
https://orcid.org/0000-0002-7349-5249
https://orcid.org/0000-0002-7349-5249
https://orcid.org/0000-0002-7582-8203
https://orcid.org/0000-0002-7582-8203
https://orcid.org/0000-0002-7582-8203
https://orcid.org/0000-0002-7582-8203
https://orcid.org/0000-0002-7582-8203
https://orcid.org/0000-0002-9942-3243
https://orcid.org/0000-0002-9942-3243
https://orcid.org/0000-0002-9942-3243
https://orcid.org/0000-0002-9942-3243
https://orcid.org/0000-0002-9942-3243
www.upwork.com
mailto:
mailto:
mailto:
mailto:
mailto:

website and by at least 13.58 tasks on average at the
Upwork website. By analyzing 4950 tasks that were
randomly collected from the category of web and
mobile development at the Upwork website, we find
that 769 tasks involve WordPress, 731 tasks involve
PHP, and 683 tasks involve Website Development.
Therefore, it may be possible to integrate the skill-
overlapping tasks and allocate them in batches, which
can save allocation cost; then, the batched similar tasks
will be performed by the same workers, which can
allow the partial execution results of one task to be
reused by another similar task of the same workers.
This approach can reduce the execution cost of tasks
so that the system can discount the real payment that
is required from requesters.

2) Retail-style task allocation may not fully utilize workers’
skills because many workers undertake no more than
one task contemporaneously. For example, we find that
the period during which workers contemporane-
ously undertake no more than one task occupies
61.58 percent of the workers’ total duration at the
Upwork website and 80.16 percent at the Freelancer
website. In fact, one task often uses only a fraction
of a worker’s resources. On the other hand, many
crowdsourcing tasks have long deadlines; for ex-
ample, by randomly counting 7395 tasks from the
Upwork website, we find that the average comple-
tion time is 97.76 days. It is thus possible to allocate
more than one task to the same worker. Moreover,
when the system allocates a batch of tasks to a
worker, the system can discount the real payment
for each task so that the requesters pay less; when a
worker undertakes more tasks contemporaneously,
the worker can receive higher hourly payment com-
pared with the retail-style task allocation.

To address the above problems, this paper presents a
novel batch allocation approach for tasks with overlapping
skill requirements. Our approach is inspired by the concept
of wholesaling which denotes that batched goods are allo-
cated to individuals with the goal of lowering cost [7]. First,
we integrate similar tasks into a batch according to their
skill requirements; then, the integrated tasks will be allo-
cated in batch to workers. Batch allocation has the following
advantages: 1) batch allocation can save on task allocation
time, which allows the system to scale to accommodate
large-scale concurrent tasks; 2) the crowdsourcing systems
discount the real payment for batched tasks so the reques-
ters pay less; and 3) the workers can receive higher hourly
payment than with the previous retail-style task allocation.

If the assigned workers can satisfy all skill requirements
of the tasks in the batch, they will perform the tasks by
themselves. Otherwise, they will coordinate with other
workers in their social network to execute the tasks rather
than turning to the requesters, the reason is that the per-
sonal characteristics of workers are often invisible to the
requesters [23] and the requesters may not have enough
expertise to justify whether a worker has qualified profes-
sional skills to complete the tasks effectively.

The problem of achieving optimal batch allocation is NP-
hard. To solve such an NP-hard problem, at first we present
a layered heuristic approach, which utilizes the hierarchy

pattern to form all possible batches and then performs batch
allocation by considering the real situations of batches and
available workers. This approach can achieve good perfor-
mance but has high computational cost since all possible
batches must be formed and observed. Then, we propose
another core-based heuristic batch allocation approach,
which selects core tasks to form suboptimal batches with
lower computational cost.

Through theoretical analyses and experiments on a real-
world dataset from the Upworkwebsite, we find that our two
approaches achieve much better performances in terms of
total payment by requesters and average income of workers,
whilemaintaining close successful task completion probabili-
ties and consuming less task allocation time compared with
the previous benchmark retail-style allocation approach.

The remainder of this paper is organized as follows.
In Section 2, we compare our work with related work; in
Section 3, we present the motivation and problem descrip-
tion; in Section 4, we present the approach for layered batch
formation and allocation of tasks; in Section 5, we present
the approach for core-based batch formation and allocation
of tasks; in Section 6, we provide the experimental results;
finally, we conclude our paper in Section 7.

2 RELATED WORK

We now introduce the related work on retail-style allocation
of complex tasks in crowdsourcing, which includes two
types: decomposition and monolithic allocations.

2.1 Decomposition Allocation of Complex Tasks

Decomposition allocation of a complex task means that the
task will first be decomposed into a flow of simple sub-tasks
and then the decomposed sub-tasks will be allocated to
individual workers [3]. This approach is mainly used in the
following two situations: in crowdsourcing systems that are
oriented to micro-task markets, such as Amazon’s Mechani-
cal Turk, and when the workers are non-professional and
can only complete simple or micro-tasks.

Tran-Thanh et al. [3] proposed a crowdsourcing algo-
rithm to specify the number of micro-tasks to be allocated at
each phase of a workflow and dynamically allocate its bud-
get to each micro-task. Then, Tran-Thanh et al. [4] further
investigated the problem of multiple complex workflows,
and they proposed an algorithm to determine the number
of inter-dependent micro-tasks and the price to pay for each
task within each workflow.

Bernstein et al. [11] used Mechanical Turk to present a
word processing interface that can be used for proofreading
and editing documents, which decomposed a complex task
into three stages: Find, in which workers identify patches of
the requester’s task that need more attention; Fix, in which
other workers revise the patches that were identified in the
previous stage; and Verify, in which newly allocated work-
ers vote on the best answers from the Fix stage and perform
quality control on the revisions.

In comparison, this paper provides a contrary approach
that integrates some complex tasks with overlapping skill
requirements into batches instead of decomposing them,
which can reduce the computational cost and real payment
by requesters.

JIANG ETAL.: BATCH ALLOCATION FOR TASKS WITH OVERLAPPING SKILL REQUIREMENTS IN CROWDSOURCING 1723

2.2 Monolithic Allocation of Complex Tasks

Monolithic allocation means that each complex task will be
allocated as a whole to an individual worker or a team of
workers and does not require the requesters to decompose
complex tasks.

2.2.1 Individual Worker-Oriented Allocation

Currently, there are some crowdsourcing websites for com-
plex tasks, such as www.upwork.com. These complex tasks
are often allocated to professional workers [12], [13] by con-
sidering the following two factors: the matching degree
between the task’s required skills and the worker’s skills,
and the reputation (or experience) of the worker. Complex
tasks are often allocated non-redundantly (e.g., by ran-
domly counting 6271 tasks in Upwork website, we find that
79.3 percent of tasks are allocated non-redundantly). More-
over, on some crowdsourcing websites, such as Crowd-
works, the requesters may interview the candidate workers
using instant messaging software tools to determine
whether the workers can complete the tasks.

Many workers are connected by social networks [24];
therefore, Bozzon et al. [14] presented an approach to find
the most knowledgeable people in social networks to
address the task. Moreover, if a worker cannot complete the
allocated complex task by himself, he needs to forward the
complex task to another worker. Heidari and Kearns [15]
performed a study on designing efficient forwarding struc-
tures from a worker to another worker.

In comparison, our study in this paper not only allocates
an entire complex task to a worker but also integrates some
similar complex tasks, which can reduce requesters’ real
payment and make use of the time of workers better than
previous studies.

2.2.2 Team Formation-Based Allocation

Team formation is a new method for crowdsourcing com-
plex tasks, where individuals with different skills form a
team to complete tasks collaboratively [6], [16]. Liu et al. [17]
presented an efficient method for team formation in crowd-
sourcing, which are implemented by involving economic
incentives and guaranteeing profitability for requesters and
workers. They designed some incentive mechanisms for for-
ming a team that can complete the task and determine each
individual worker’s payment.

Currently, there are some self-organization approaches
for the team formation. Rokicki et al. [5] explored a self-
organization strategy for team formation in which the work-
ers make decisions for forming a team; each worker initially
forms a one-man team and becomes its administrator; work-
ers can decide by themselves which team they want to join.
Lykourentzou et al. [18] presented a self-organized team
formation strategy in which the hired workers can select the
teammates by themselves.

In summary, each team is tailored artificially for a special
task, which cannot fit for a batch of tasks. In comparison,
this paper focuses on integrating tasks instead of grouping
workers.

3 MOTIVATION AND PROBLEM DESCRIPTION

3.1 Motivation

We have analyzed some data from two leading complex-
task-oriented crowdsourcing websites, www.upwork.com
and www.freelancer.com, which include 1353 workers and
4950 tasks selected randomly from the Upwork website,
and 578 workers and 6968 tasks from the Freelancer web-
site. We summarize the following main characteristics:

� Overlapping skill requirements of different tasks. We con-
sider the typical category of complex tasks at the
Upwork website: web-mobile development. We
select the 20 skills that are most often required by
tasks in the category, which are shown on the x-axis
in Fig. 1a; the number of tasks requiring each type of
skill is represented by the y-axis. We find that each
of 20 most popular skills is required by 332 tasks on
average, while the total number of tasks is 4950 and
each task may require more than one skill.

Because the Freelancer website does not have cat-
egories of tasks, we consider all categories of tasks.
The statistical results are shown as Fig. 1b. We can
see that each of 20 most popular skills at the whole
website is required by 473 tasks on average, while
the total number of tasks is 6968 and each task may
require more than one skill.

Therefore, many real-world crowdsourcing tasks may
have overlapping skill requirements.

� Similarities of required skills among tasks. Let there be n
tasks. We use Stx to denote the set of skills required by

Fig. 1. The numbers of tasks requiring some given skills.

1724 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

www.upwork.com
www.upwork.com
www.freelancer.com

task tx. Then, the similarities among the n tasks can be
measured as the average pairwise Jaccard similarity:

Sim ¼ 1

n � ðn� 1Þ
X
x 6¼y

jStx \ Sty j
jStx [Sty j

: (1)

Fig. 2 shows the similarities of different categories
of tasks at the Upwork website, where some tasks
within each category are similar. In particular, the
tasks of customer-service, legal, and writing have
higher similarities. Although the tasks at the Free-
lancer website are not categorized clearly, we also find
that the software development tasks at the Freelancer
website have a similarity with an average value of
0.033. Therefore, the skill requirements of some complex
tasks within the same categorymay often be similar.

� The number of tasks undertaken by workers contempora-
neously. We count the number of tasks undertaken
by each worker during a given period; then, we cal-
culate the percentage of the time in which the worker
has undertaken a given number of tasks, shown as
Fig. 3. In Fig. 3, C denotes the number of tasks under-
taken contemporaneously, and the percentage indi-
cates the time occupancy. We find that the period in
which workers undertake no more than one task
occupies 61.58 percent of the workers’ total duration
at the Upwork website and 80.16 percent at the Free-
lancer website. Therefore, most workers undertake only a
very small number of tasks contemporaneously.

� The deadlines of tasks. Many crowdsourcing tasks have
long deadlines; for example, after counting 7395
tasks at the Upwork website, we find the average
duration is 97.76 days; and after counting 11614 tasks
at the Freelancer website, we find that the average
duration is 6.53 days. The crowdsourcing tasks often
have long deadlines because urgent tasks may not be
applicable to crowdsourcing websites, where work-
ers may have uncertain skill levels and be unreliable.

Summary. From the observations, it can be concluded that
there are four popular characteristics of current complex-
task-oriented websites: the skills required by tasks are often

overlapping; many complex tasks within the same category have
similarities; most workers undertake only a very small number of
tasks contemporaneously; and the deadlines of many tasks are long.
Therefore, these observations motivate our study on batch
allocation of tasks. In fact, it is well known that grouping sim-
ple tasks in larger batches is attractive to workers, since work-
ing on large batches of tasks avoids overhead of selecting
tasks to work on, as well as reading instructions and learning
how to perform the task [2]. In comparison, the novelty of this
paper is thatwe explore the batching of complex tasks.

With the batching of complex tasks, there are two obvious
advantages.One is that the total execution costs of tasks in a batch
by the same workers can be reduced by comparing with the case in
which each task is executed independently by different workers. The
reason is that the partial execution results of one task can be
reused (or with certain modifications) in another similar task
by the same workers. For example, if a worker undertakes
two similar tasks contemporaneously: developing a B2Cweb-
site and developing an O2O website, some of the infrastruc-
tures and basic components in developing the B2C website
can be reused with certain modification in the developing of
the O2O website; because the repetitive works can be saved,
the total execution costs of the two tasks can be reduced by
comparing to the case in which the two websites are devel-
oped from scratch. Another advantage is that the allocation time
can be saved because the tasks in the batch can be allocated in
whole by comparing the retail-style task allocation approach
inwhich each task is allocated non-redundantly and indepen-
dently to a professional worker, which is verified by the
experimental results in Fig. 6 in Section 6.5.2.

3.2 Problem Description

3.2.1 Discounting of Payment for Batch Allocation

Discounting is a general marketmechanism inwhich the pay-
ment can be discounted in exchange for cheaper or less satis-
factory service [19]. Discounting can be introduced to reduce
the real payment by requesters since a worker who accepts a
task batchmight produce delayed service as theworker needs
to handle themultiple tasks in the batch. Therefore, requesters
pay less by discounting their real payment due to the delayed
service that results from batch allocation. On the other hand,
as stated above, batch allocation can reduce the real execution
cost and improve the real earnings of the worker, so the
workerwill bewilling to accept the discounted payment.

Formally, the crowdsourcing system can discount a
requester’s real payment to an assigned worker wi for com-
pleting task t according to the number of batched tasks that
are queueing for wi; jBwi

j. Now, we can define the discount-
ing function as follows:

Fig. 2. The similarities of required skills of tasks in different categories at
the Upwork website.

Fig. 3. The numbers of tasks undertaken by workers during a given
period.

JIANG ETAL.: BATCH ALLOCATION FOR TASKS WITH OVERLAPPING SKILL REQUIREMENTS IN CROWDSOURCING 1725

Payðwi; tÞ ¼ cðjBwi
jÞ � bt; (2)

where bt is the original budget of task t and c is a discount-
ing function, 0 � c � 1, where the value of cðXÞ decreases
monotonically from 1 to 0 with the increase of X. In this
paper, c is defined as expðs � ð�jBwi

j þ 1ÞÞ, where s is a
given discounting factor.

Given a free worker wi, let there be a batch of tasks,
B ¼ ft1; t2; . . . ; tjBjg, allocated to wi; we assume that tx is
executed after tx�1 ð1 < x � jBjÞ and the original budget
for task tx ð1 � x � jBjÞ is btx . Then, the real payment that wi

can get from batch B is

Payðwi;BÞ ¼
X

x¼1;:::;jBj
ðcðxÞ � btxÞ: (3)

3.2.2 Optimization Objective

According to the above discounting function, the more tasks
that are allocated in batch to the same worker, the more sig-
nificantly the system can discount the requesters’ real pay-
ment for these tasks; the worker can also earn more hourly
wages. However, if too many tasks are allocated to the same
worker, some issues may arise: first, the assigned worker
and his/her collaborators may have difficulty satisfying
some of the skill requirements of the tasks; second, the pay-
ment will be heavily discounted and the real payment may
be too low to satisfy the worker’s reservation wage; third, if
too many tasks are waiting for the same worker, the real
completion time of some tasks may exceed their deadlines
(although the deadlines are long).

The optimization objective is to form proper batches and
to allocate the batches to the workers with the maximum
crowdsourcing values (which measure workers’ probabili-
ties of performing the tasks successfully and will be defined
afterwards) to minimize the real payments by requesters
under the following two constraints: the discounted pay-
ment for each task is not less than the reservation wage of
the assigned worker; and the completion time of each task
cannot exceed the deadline of that task.

Let T be a set of tasks. P is a possible batching scheme
for T, i.e., a combination scheme of the tasks in T ;P ¼
fBxj

S
Bx ¼ Tg, where Bx ðBx � T Þ denotes a batch that

includes a subset of T. We use V ðwi;BxÞ to denote the
crowdsourcing value of wi for Bx, i.e., the probability of wi

being assigned to the batch of tasks Bx, which can be
expressed later in Section 4.2. Our objective is to find a
batching scheme that can minimize the total real payment
by all requesters of tasks in T:

P� ¼ argmin
P

 X
Bx2
QPayðwj;BxÞ

!
; (4)

where
wj ¼ argmax

wi2W
ðV ðwj;BxÞÞ (5)

subject to :

8Bx 2 P ^ 8t 2 Bx ^ timeðwj; tÞ � dt
(6)

8Bx 2 P ^ 8t 2 Bx ^ Payðwj; tÞ � gwj
; (7)

where timeðwj; tÞ denotes the completion time of task t by
worker wj; dt denotes the deadline of t, and gwj

denotes the
reservation wage of wj. Equations (5), (6), and (7) denote
that batch Bx is allocated to a worker wj who has the highest
crowdsourcing value for Bx and satisfies the following two
constraints: 1) the completion time of each task in Bx by wj

should not exceed the deadline of that task; and 2) the real
payment by the requester of each task in Bx to wj should be
higher than the reservation wage of wj.

3.2.3 Property Analyses

Theorem 1. The batch allocation problem with the optimization
objective in Equations (4), (5), (6), (7) is NP-hard.

Proof. 3-dimensional matching(3DM) is a classical NP-
hard problem [30]. There are assumed 3 finite disjoint
sets, X, Y , and Z. All elements are defined as N ¼
X [Y [Z. Let L be a set of candidate triples, L ¼
fðx; y; zÞjx 2 X; y 2 Y; z 2 Zg. A 3-dimensional match-
ing, M, is a subset of L: for any two distinct triples,
ðx1; y1; z1Þ 2 M and ðx2; y2; z2Þ 2 M, we have x1 6¼ x2,
y1 6¼ y2 and z1 6¼ z2. Given a set N, a set of triples L and
an integer k, the decision problem of 3DM is to decide
whether there exists a 3-dimensional matching M � L
with jMj � k.

In an instance of our problem, there is a set of tasks,
T ¼ ft1; t2; . . . ; tng. We can obtain a collectionC ¼ fC1;
C2; . . . ; Cxg of 3-element subsets of T and a collection
A ¼ fA1; A2; . . . ; Ang of 1-element subsets of T. We
set a positive payment weight wc ¼ 1 for each Ci and
wa ¼ 2=3 for each Ai. The 3DM problem can be trans-
formed to our problem as follows: each triple of L corre-
sponds to Ci 2 C, and each element of N corresponds to
ti 2 T . Let J be a positive number. Then, we will show
that the 3DM problem has a 3-dimensional matching M,
with jMj � k, if and only if our problem has an exact cover
E for T with the sum of weights

P
i2E wi � J , where

J ¼ 2n=3 � k.

1) only if. If there exists an exact cover E for T, where
E ¼ A0 [C0 and A0 � A ^ C0 � C, the sum of the
weights of E is wa � jA0j þ wc � jC0j ¼ wa � ðjT j �
3jC0jÞ þ wc � jC0j ¼ 2n=3 � jC0j � J . Thus, jC0j �
2n=3� J . Each triple of M corresponds to Ci 2 C0,
and the size n of T and N that can be seen as a
constant for the specific problem. This indicates
that for the 3DM problem, there is a matching M
with jMj ¼ jC0j � k, k ¼ 2n=3 � J .

2) if. If there exists a 3-dimensional matching M in
the 3DM problem, jMj � k, it can be proved
that our problem has an exact cover E for T
with J ¼ 2n=3 � k. M corresponds to C0, and
other elements of T are covered by the subset of A.
Thus, the sum of the weights of E is 2=3 � ðjT j �
3jC0jÞ þ 1 � jC0j ¼ 2n=3 � jC0j � J .

The 3DM can be restricted to the instance of our prob-
lem in polynomial time, thus our problem is NP-hard. tu

The objective of minimizing the total real payment by
requesters in Equation (4) is compatible to another objective
of improving the real earnings of individual workers. To
reduce the real payment by requesters, we can make the

1726 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

batch larger, and the worker can earn more from a larger
batch than from a smaller batch.

Lemma 1. Let there be two batches, B1 and B2. It is assumed that
B1 � B2 and that all tasks in B2 - B1 are executed after the tasks
in B1. If the two batches are assigned to worker wi, we have:
Payðwi;B1Þ � Payðwi;B2Þ.

Proof. 8tx 2 B2) tx 2 B1 _ tx 2 ðB2 �B1Þ. Let �x denote
the start time of the execution of task tx. Then, 8tx 2
ðB2 �B1Þ ^ ty 2 B1) �x � �y. According to Equation (3),

Payðwi;B2Þ ¼
P

x¼1;...;jB1j ðcðxÞ � btxÞþ
P

x¼jB1jþ1;...;jB2j ðcðxÞ � btxÞ ¼
Payðwi;B1Þ þ

P
x¼jB1jþ1;...;jB2j ðcðxÞ � btxÞ. Therefore, Payðwi;

B1Þ � Payðwi;B2Þ. tu
Moreover, the batching for improving the worker’s util-

ity is submodular, which has the diminishing returns prop-
erty, as stated in the following lemma:

Lemma 2. Let there be two batches, B1 and B2. It is assumed
that B1 � B2. Now suppose there is another set of tasks, T’.
If the assigned worker is wi and the tasks in T’ are executed
after the tasks in B1 and B2, we have Payðwi; B1 [T 0Þ -
Payðwi;B1Þ � Payðwi;B2[T 0Þ � Payðwi;B2Þ.

Proof. Payðwi;B1 [T 0Þ ¼Px¼1;...;jB1j ðcðxÞ � btxÞ þ
P

x¼jB1jþ1;...;jB1jþjT 0j ðcðxÞ � btxÞ
and Payðwi;B1Þ ¼

P
x¼1;...;jB1j ðcðxÞ � btxÞ, thus Payðwi;B1 [T 0Þ �

Payðwi;B1Þ ¼
P

x¼jB1jþ1;...;jB1jþjT 0 j ðcðxÞ � btxÞ. Payðwi;B2 [T 0Þ ¼P
x¼1;...;jB2j ðcðxÞ � btxÞ þ

P
x¼jB2jþ1;...;jB2jþjT 0 j ðcðxÞ � btxÞ and

Payðwi;B2Þ ¼
P

x¼1;...;jB2j ðcðxÞ � btxÞ, thus Payðwi;B2 [T 0Þ �
Payðwi;B2Þ ¼

P
x¼jB2jþ1;...;jB2jþjT 0 j ðcðxÞ � btxÞ. jB1j � jB2j,

8i ¼ 1; . . . ; jT 0j) btjB1 jþi
¼ btjB2 jþi

, and according to the

discounting function, we have 8i ¼ 1; . . . ; jT 0j) cðjB1j þ
iÞbtjB1 jþi

� cðjB2j þ iÞbtjB2 jþi
. Therefore, we can obtain

Lemma 2. tu
According to Lemma 1, we should try to enlarge the

batch if the constraints in our allocation objective can be sat-
isfied; however, from Lemma 2, we can see that the mar-
ginal benefit will diminish as the batch size increases.

To solve the batch allocation problem, which is NP-
hard, this paper presents two heuristic approaches accord-
ing to the tasks’ required skills: the layered approach and
the core-based approach. The layered approach uses hier-
archical batching and can produce different layers of batch-
ing schemes; this approach can achieve good performance
in minimizing requesters’ total real payment, but may
incur high computational cost since all possible batches
must be formed and observed. In contrast, the core-based
approach first selects the core tasks that have minimum
skill differences with other tasks, and then the batches are
formed based on the core tasks. Although this approach
cannot achieve the optimal batching results, it can signifi-
cantly reduce the computational cost during batch forma-
tion and allocation.

4 LAYERED BATCH FORMATION AND ALLOCATION

OF TASKS

4.1 Layered-Batch Formation

With layered batching, we use the “bottom-up” pattern to
iteratively form the batches step by step. In the first layer,

each task forms an initial batch; the batching results in one
layer feed into the next-higher layer. Therefore, the higher
the layer is, the larger the batches in the layer are.

Let there be a set of tasks, T ¼ ft1; t2; . . . ; tng. Suppose
budget btx is provided by the requester for each task
tx; 1 � x � n, and the set of necessary skills required by tx is
Stx ¼ fsx1; sx2; . . . ; sxmg. In a batch of tasks, it is assumed
that the execution sequence is determined by the deadline
of the tasks, i.e., tx is executed before ty if dtx < dty . A batch
is a set of time-sorted tasks and is denoted by an ordered
tuple, e.g., ½t1; t2	 is a batch that includes t1 and t2, and t1 is
executed before t2.

Definition 1 (Candidate worker set of a batch). Let W
denote the set of all workers in the crowd and B denote a batch
of tasks. There is a subset Wc � W that is defined as the candi-
date worker set of B if and only if its elements satisfy the wage
and time constraints of all tasks in B : 8w 2 Wc, w’s reserva-
tion wage is not higher than the discounted payment of each
task, and w’s completion time of every task t 2 B; timeðw; tÞ,
does not exceed the deadline of t, dt:

w 2 Wc , 8t 2 B ^ gw � Payðw; tÞ ^ timeðw; tÞ � dt: (8)

Algorithm 1 Layered-Batch Formation for Tasks

/� T ¼ ft1; t2; . . . ; tng denotes a set of n tasks; W is the set of
workers in the crowd �/

1) i ¼ 1; c ¼ 0;Layeri ¼ fg;
2) LWSi ¼ fg; //Candidate worker set for batches of layer i
3) 8tj 2T : // Form the first layer
4) Batchi,j ¼ [tj];
5) BWSet i,j ¼ {}; // Candidate worker set of the batch
6) 8w 2W:
7) If w can satisfy Batchi,j:
8) BWSet i,j ¼ BWSet i,j [{w};
9) If BWSet i,j is not Empty:
10) Layeri ¼ Layeri [{Batchi,j};
11) LWSi ¼ LWSi [{BWSeti,j};
12) While (c ¼ ¼ 0) do:
13) i ¼ i þ 1; Layeri ¼ {}; LWSi ¼ {}; k ¼ 1;
14) 8 Batchi-1,j 2 Layeri-1:
15) 8 tx 2 T � {Batchi-1,j}:
16) Batchi,k ¼ Batchi-1,j þ [tx];//Add a task to the batch
17) BWSeti,k ¼ {};
18) 8 w 2 LWSi-1,j:
19) If w can satisfy Batchi,k:
20) BWSeti,k ¼ BWSeti,k [{w};
21) If BWSet is not Empty:
22) Layeri ¼ Layeri [{Batch i,k};
23) LWSi ¼ LWSi [{BWSet i,k};
24) k ¼ k þ 1;
25) If Layeri is Empty: c ¼ 1;
26) End.

The layered batch formation process is described as
Algorithm 1. In the bottom layer, each task forms a batch
initially, i.e., Layer1 ¼ f½t1	; ½t2	; . . . ; ½tn	g. If any worker satis-
fies the time and wage constraints of one batch (i.e., the con-
straints in Equations (6) and (7)), it can be added to the set
of candidate workers for the batch. Then, to form the higher
layer, we iteratively generate all possible batches by
appending one task to each batch of the lower layer; we

JIANG ETAL.: BATCH ALLOCATION FOR TASKS WITH OVERLAPPING SKILL REQUIREMENTS IN CROWDSOURCING 1727

omit the batch in the layer if no workers satisfy the batch’s
time and wage constraints. Apparently, at layer i, each batch
has i tasks, which are sorted according to their deadlines.

In Algorithm 1, ‘w can satisfy Batch’ means that the con-
straints of w’s reservation wage and all tasks’ deadlines are
satisfied. Although the complexity of Algorithm 1 is high,
Oð2nÞ, it is feasible to implement in practice. This is because
the size of a batch that can be undertaken by an individual
worker is limited according to the discounting mechanism;
meanwhile, the time and wage constraints can remove
some batches with no candidate workers.

Theorem 2. Let there be two batches B1 and B2 at Layeri. Now it
is assumed that B1 and B2 are merged into a new batch, B3, at
Layeri þ x (x > 0), which means B1 \ B2 ¼ f and B1 [B2 ¼
B3. We use Pay(w,B) to denote the real payment that worker
w can get from batch B. We have Pay(w,B1) þ Pay(w,B2) �
Pay(w, B3).

Proof sketch. All tasks in B1; B2, and B3, are sorted accord-
ing to their deadlines. Apparently, 8t 2 B1; B2, the order
of task t in B1 or B2 is always no more than the order of t
in B3. The discounting function monotonically decreases
as the task order increases. Thus, we have Theorem 2. tu
According to Theorem 2, the larger a batch is, the more

significantly the real payment by requesters will be dis-
counted. Therefore, Theorem 2 ensures that the layered
batch formation can approach our optimization objective of
minimizing the real payment by requesters.

Theorem 3. Suppose that when we use Algorithm 1 to perform
batch formation for T, there are two layers: Layeri, Layeriþ1.
Suppose we are given two batches Bi;j and Biþ1;k, which res-
pectively belong to Layeri and Layeriþ1, and assume Biþ1;k is
generated based on Bi;j:Wi;j and Wiþ1;k are respectively the
candidate worker sets of Bi;j and Biþ1;k. Then (1)Wiþ1;k � Wi;j;
(2) for a worker w, Payðw;Bi;jÞ < Payðw;Biþ1;kÞ; (3) if Wi,j

is empty, the generation of Layeriþ1 needs not to involve
appending one task from batch Bi;j.

Proof sketch.

1) We assume that there is an arbitrary candidate
worker wc who can satisfy Biþ1;k. Then, worker
wc, can solve all tasks of batch Biþ1;k under
the time and wage constraints. Moreover, Bi;j �
Biþ1;k is known and batch Biþ1;k’s first i tasks are
the same as the tasks in batch Bi;j. Therefore,
worker wc can also satisfy all tasks in batch Bi;j

under the constraints. Thus,Wiþ1;k � Wi;j.
2) Bi;j � Biþ1;k is known, so Biþ1;k’s first i tasks are

the same as the tasks in Bi;j. According to the
discounting function, we have Payðw;Bi;jÞ ¼
Payðw;Biþ1;k ½1; . . . ; i	Þ. Thus, we have Payðw;
Bi;jÞ < Payðw;Biþ1;k½1; ::; i	Þ þ Payðw;Biþ1;k½iþ 1	Þ ¼
Payðw;Biþ1;kÞ. For worker w;Biþ1;k can result in
higher earnings, compared with Bi;j.

3) From (1), if Wi;j is empty, Wiþ1;k is also empty and
the desired conclusion follows. tu

Theorem 3 ensures the correctness of Algorithm 1 and
guarantees that another aspect of our objective, improving
the real earnings of the worker, can be achieved.

4.2 Worker’s Crowdsourcing Value for a Batch
of Tasks

The probability for a worker to be assigned a batch of tasks
is influenced by the following four factors:

1) The coverage degree of the worker’s skills for the skills
required by the tasks in the batch. Let B be a batch. The
set of skills required by all tasks in batch B is
SB ¼ [8tx2B Stx , where Stx denotes the set of skills
required by task tx. For all sa 2 SB, we use the num-
ber of tasks in the batch that require sa as the weight
of sa in the batch, na. Now, we use a binary value to
indicate whether worker wi has the skill sa : bia ¼ 1 if
wi has skill sa; bia ¼ 0 if wi does not have skill sa.
Then, the skill coverage degree of wi for batch B will
consider each skill’s weight in the batch:

CSðwi;BÞ ¼
P

sa2SB bia � nað ÞP
sa2SB na

: (9)

2) The occupancy rate of the worker’s reservation wage on
the task’s real payment. Suppose the real payment that
the requester of task tx will pay to wi is Payðwi; txÞ,
which is calculated according to Equation (2). Let the
reservation wage of wi be gwi

. Then, the occupancy
rate of wi’s reservation wage on batch B’s payment is

Occðwi; BÞ ¼
X
txinB

gwi
=Payðwi; txÞ

� � !
=jftxjtx 2 Bgj:

(10)

If the assigned worker wi has a lower Occðwi;BÞ,
wi may have more potential to distribute more
utility to other workers who assist wi in executing
tasks in B.

3) The estimated completion time of the worker for tasks in
the batch. When a worker wants to bid for a batch of
tasks, he/she will estimate the completion time for
each task in the batch according to the current real
situation and his/her experiences. Moreover, the
estimated completion time of a worker for a task can
also be estimated by the system [28]. Let fðwi; txÞ be
the estimated completion time of worker wi for task
tx. The index can be calculated as follows:

Estðwi;BÞ ¼
X
txinB

fðwi; txÞ
 !

=jftxjtx 2 Bgj: (11)

4) The reputation of the worker. The reputation of the
worker is mainly determined by the worker’s past
experiences in completing tasks; if the worker
always successfully completed assigned tasks, his or
her reputation is higher, and vice versa. We use Rwi

to denote the reputation of worker wi.
People are often connected by social networks [25], [26],

[27]. Some recent studies [22], [23] have shown that workers
are also often connected through social networks. If a
worker cannot complete a batch of tasks by himself/herself,
he/she needs to seek the help of other workers through
his/her social networks. Therefore, we present the

1728 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

following definition of crowdsourcing value to measure the
probability of a worker being assigned a batch of tasks,
which considers four factors that involve both the worker
and other workers in his/her social network contexts:

Definition 2 (Crowdsourcing value of a worker for a
batch of tasks). The crowdsourcing value of a worker, wi, for
a batch of tasks B is

V ðwi;BÞ ¼ a1

b1 � CSðwi;BÞ þ b2 �Rwi

b3 �Occðwi;BÞ þ b4 � Estðwi;BÞ

!

þ a2

P
wj2ðW�fwigÞ

b1�CSðwj;BÞþb2�Rwj

b3�Occðwj;BÞþb4�Estðwj;BÞ =dij
� �
jW � fwigj :

(12)

where W denotes the crowd of workers in the social network
context, which includes wi, and dij denotes the distance
between wi and wj in the social network. The distance can be
defined as the length of the shortest path between the two work-
ers in the social network. a1 þ a2 ¼ 1; b1 þ b2 þ b3 þ b4 ¼ 1.

Definition 2 shows that the probability of a worker to be
assigned a task is determined not only by the worker him-
self/herself but also by his/her contextual workers in the
social network. If a worker has higher values for the four fac-
tors, he/she has a higher probability to be assigned the task.
However, a worker may also have a higher probability to be
assigned the task even he/she has lower values but his/her
contextual workers have higher values for the four factors.

4.3 Allocation Algorithm

To achieve the optimization objective, we should first allo-
cate the batches at the highest layer. If the system can find
an appropriate worker for a batch and satisfy the constraints

in Equations (4), (5), (6), (7), the batch will be assigned to the
worker. Therefore, assigned workers should be selected
from the candidate worker set of the batch. If a batch at a
layer can be allocated successfully, it is not necessary to con-
sider the batches at the same or lower layers that have any
common tasks with that batch, which can avoid the redun-
dant allocation of common tasks between two batches. This
process is repeated until all tasks have been allocated suc-
cessfully or all workers have been considered.

Let the number of layers obtained by Algorithm 1 be l
and the set of available workers be W. To avoid the crowd-
ing of too many batches of tasks on certain workers, it is
assumed that each worker can only undertake one batch in
an allocation. The overall payment for batch Bij is denoted
as Payðw;BijÞ. The task allocation algorithm is shown as
Algorithm 2. Since Algorithm 1 ensures that the sizes of
batches at a higher layer are larger than those at a lower
layer and the sizes of batches within one layer are the same,
we greedily allocate batches from upper layers to lower
layers. The complexity of Algorithm 2 is OðnmÞ, where n is
the number of tasks and m is the number of workers.

Algorithm 2 Batch Layer-Oriented Task Allocation

1) i ¼ �; c1 ¼ 0;
2) While (ði > 0Þ and ðc1 ¼¼ 0Þ) do:
3) c2 ¼ 0;
4) While ðc2 ¼¼ 0Þ do:
5) min budget ¼ þ1;Wc ¼ fg;
6) 8Bij 2 Layeri: // Find minimum-payment batch
7) Ifmin budget > Payðw;BijÞ:
8) min budget ¼ Payðw;BijÞ;
9) Batch ¼ Bij;BWSet ¼ LWSi;j;
10) Wtemp ¼ W \ BWSet;
11) IfWtemp is not Empty: // Allocating Batch
12) w� ¼ argmaxw2WtempðV ðw;BatchÞÞ;
13) assign Batch to w�;W ¼ W � fw�g;
14) For k ¼ 1 to i:
15) 8Bkx 2 Layerk:
16) If Bkx \ Batch ! ¼ f:
17) Layerk ¼ Layerk � fBkxg;
18) Else:
19) Layeri ¼ Layeri � fBatchg;
20) LWSi ¼ LWSi � fBWSetg;
21) If Layeri is Empty: c2 ¼ 1
22) i ¼ i� 1;
23) If i > 0:
24) If Layeri orW is Empty: c1 ¼ 1;
25) End.

Example 1. Fig. 4 shows an example, where there are four
tasks {t1, t2, t3, t4}. Let the deadlines of the four tasks be
d1 � d2 � d3 � d4. First, we can carry out batch formation
according to Algorithm 1, which is shown as (a). The dot-
ted framework represents the batch with no candidate
workers who can satisfy both the time and reservation
wage constraints of the batch. If batches B22, B25 and B26

have no candidate workers, they and their descendant
batches need not be considered. We assume there are no
candidate workers who can satisfy the batch of four tasks,
so the batch formation process ends at layer 3. Then, we
can perform batch allocation according to Algorithm 2,

Fig. 4. An example of layered batch formation and task allocation.

JIANG ETAL.: BATCH ALLOCATION FOR TASKS WITH OVERLAPPING SKILL REQUIREMENTS IN CROWDSOURCING 1729

which is shown as (b). The allocation process starts from
batch B31 or B32, depending on which batch is associated
with lower payment, because B31 and B32 are both at the
top layer and their sizes are the same. The dotted line rep-
resents the batch that need not be considered later and the
solid line denotes a possible allocation sequence.

5 CORE-BASED BATCH FORMATION AND

ALLOCATION OF TASKS

The complexity of the above layered batch formation
algorithm is Oð2nÞ, which may incur heavy computa-
tional cost when n (the number of tasks) is large. More-
over, the layered batch formation process may produce
many useless batches. Therefore, we present a new sub-
optimal approach that can significantly reduce the com-
putational cost.

Let there be two tasks, tx and ty. The sets of necessary
skills required by tx and ty are Stx ¼ fsx1; sx2; . . . ; sxmg and
Sty ¼ fsy1; sy2; . . . ; syng, respectively. Then, the distance
between tasks tx and ty is

dxy ¼ 1� jStx \ Sty j
jStx [Sty j

: (13)

The main steps of the core-based batch formation and
allocation approach are as follows:

1) Given a set of tasks T, we define the core task in T to
be the one that has the minimum sum of distances to
other tasks in T:

tc ¼ argmin
tx2T

 X
ty2ðT�ftxgÞ

dxy

!
: (14)

2) At first, tc forms the initial batch; other tasks will be
considered for integration into the batch with the
core of tc. In each round, the task of the batch with
the minimum distance to tc; tx, is selected to be
added into the batch. Then, the system checks
whether there are candidate workers who can satisfy
the two constraints in Equations (4), (5), (6) (7). If
candidate workers cannot be found, another task
with the second minimum distance is considered.
This batch formation process for tc is repeated until
dci is 1, i.e., no task has overlapping skills with tc.

3) We can use batchðtcÞ to denote the batch that is
formed with core task tc. After the batch is formed, a
worker w� is assigned the batch:

w� ¼ argmax
wi2Wc

ðV ðwi; batchðtcÞÞ: (15)

4) T ¼ T � batchðtcÞ, we will repeat the above processes
1-3 for the remaining tasks T. The stopping criterion
of the whole core-based batch formation and alloca-
tion is that no new core tasks or workers can be
found.

With the core-based approach, the order of the execution
of tasks in a batch is determined by their distances to tc, i.e.,
the smaller the skill distance of the task to tc, the earlier the
task can be executed. This idea is practical because in the

execution of one task, the existing execution results of simi-
lar finished tasks can be easily utilized. The core-based
approach is shown as Algorithm 3.

The worst-case complexity of Algorithm 3 is OðnmÞ,
where n is the number of tasks and m is the number of
workers. Therefore, the core-based approach can signifi-
cantly reduce the computational cost compared to the lay-
ered approach, whose complexity is Oð2nÞ þOðnmÞ.

Algorithm 3 Core-Based Batch Formation and Alloca-
tion. /� T ¼ ft1; t2; . . . ; tng denotes a set of n tasks; W is
the set of workers in the crowd �/

1) c1 ¼ 0;
2) While (c1 ¼¼ 0) do:
3) tc ¼ argmintx2T ð

P
ty2ðT�ftxgÞ dxyÞ; /�Select core task tc

�/

4) Wtemp ¼ W ; c2 ¼ 1;Wt ¼ fg;Batch ¼ fg;
5) 8w 2 Wtemp:
6) If (time(w,tc) � dtc) and (gw � Payðw; tcÞ):
7) ftimew ¼ timeðw; tcÞ;Wt ¼ Wt [{w};}
8) IfWt 6¼ f:
9) fBatch ¼ ftcg; c2 ¼ 0;Wtemp ¼ Wt;Ttemp ¼ T ; g
10) While ðc2 ¼¼ 0Þ do:
11) tb ¼ argminty2Ttemp^dcy 6¼0ðdcyÞ;
12) If tb can be found:
13) Wt ¼ fg;
14) 8w 2 Wtemp:
15) If (timeðw; tbÞ þ timew� dtb)

^(gw � Payðw; tbÞ):
16) Wt ¼ Wt [fwg;
17) timew ¼ timew þ timeðw; tbÞ;
18) IfWt 6¼ f:
19) fWtemp ¼ Wt;Batch ¼ Batch [ftbg;}
20) else: Ttemp ¼ Ttemp � {tb};
21) Else: c2 ¼ 1;
22) If batch 6¼ f:
23) w� ¼ argmax8wi2WtempðV ðwi;BatchÞÞ;
24) assign Batch to w�;W ¼W � {w�};T ¼ T � batch;
25) If T ¼ ¼ f orW ¼ ¼ f: c1 ¼ 1;
26) End.

Theorem 4. In the process of batch formation with core task tc,
we assume there are two batches, Bi and Bj, where Bi � Bj. Wi

and Wj are the sets of candidate workers (who can satisfy the
wage and time constraints of the batch) of Bi and Bj, respec-
tively. Then, (1) Wj �Wi and (2) Payðw; BiÞ � Payðw;BjÞ.

Proof sketch. (1) We can use reductio ad absurdum to
prove this theorem. Assume there is a candidate worker
w’2Wj and w’ =2 Wi. Then, w’ can solve all tasks of batch Bj

under the time and wage constraints, but not those of
batch Bi. However, Bi� Bj implies that Bj’s first i tasks are
the same as those of Bi. Thus, worker w’ can also solve the
tasks in Bi. This is a contradiction; thus, Wj � Wi.
(2) Bi � Bj is known, so batch Bj’s first i tasks are the
same as those of batch Bi. According to the discounting
function, Payðw; BiÞ � Payðw;BjÞ. tu
Theorem 4 ensures the correctness of our core-cased

batch formation and allocation algorithm and that our algo-
rithm tends to select larger batches, which implies that it
can approach the optimization objective in Equation (4).

1730 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

6 EXPERIMENTS

We now conduct experiments for our approaches on a
real dataset and realistic settings by comparing with
the previous benchmark approach: retail-style task allo-
cation. Moreover, we compare the results of our app-
roaches to those of the exhaustive batch allocation
algorithm, which exhaustively enumerates all possible
batch assignments.

6.1 Metric for Task Execution

In general, the successful execution of a task is affected by
the following four factors: 1) the possibility that the task’s
required skills are satisfied; 2) whether the task is finished
before the deadline; 3) whether the assigned worker is satis-
fied with the payment; and 4) the assigned worker’s reputa-
tion for reliable execution of the task. Let there be a worker
wi assigned to task t. The probability of successful execution
of t by wi, pi,t, can be defined as follows:

pi;t ¼ si;t � ðRwi
=RmaxÞ � ðtimeðwi; tÞ � dtÞ � ðPayðwi; tÞ � gwi

Þ;
(16)

where

si;t ¼
Ym
k¼1

e�Dk�t: (17)

If the completion time of t, time(wi, t), is later than dt
or the assigned worker’s reservation wage gwi

is not sat-
isfied by the real payment Pay(wi, t), pi,t is 0. si,t indicates
the possibility of wi obtaining the required skills through
himself/herself and his/her social network. The proba-
bility of wi getting sk from a worker in wi’s social net-
work is inversely proportional to the distance between
wi and the worker; we use Dk to denote the minimum
distance of wi to a worker with sk in the social network;
if the assigned worker has sk, Dk ¼ 0. m is the total num-
ber of skills required by the task. t represents the decay
factor. Rwi

is the reputation of wi and Rmax is the upper
bound of the reputation.

6.2 Benchmark Approach

On many current leading complex task-oriented crowd-
sourcing websites, such as Upwork.com, Freelancer.com,
and Zbj.com, each task is often allocated non-redundantly
and independently to a professional worker without decom-
position, which is retail-style task allocation approach. Gener-
ally, the following three factors are considered: 1) the skill
coverage degree of the candidate worker for the task; 2) the
reputation of the candidate worker; and 3) the reservation
wage of the candidate worker.

Our batch allocation approaches consider the assigned
worker’s social network contexts; for fair comparison, we
extend the traditional retail-style allocation approach by
considering the social network contexts of candidate work-
ers. Suppose there is a crowd of workers W. Let t be a task
and let the set of necessary skills to complete t be St. dij
denotes the distance between worker wi and another worker
wj in the social network. We define the crowdsourcing
value, V ðwi; tÞ, as the probability of wi being assigned t,
which is shown as follows:

V ðwi; tÞ ¼ a1 � b1 � jSt \ Swi
j þ b2 �Rwi

b3 � gwi

þ a2 �
P

wj2ðW�fwigÞ
b1�jðSt�Swi Þ\Swj jþb2�Rwj

b3�gwj
�dij

� �
jW � fwigj :

(18)

where a1 and a2 denote the relative contributions of wi and
wi’s contextual workers to V ðwi; tÞ, and b1;b2, and b3 denote
the relative importance of the three factors. V ðwi; tÞ is differ-
ent from V(wi,B) in Equation (12), because V(wi,t) is the
crowdsourcing value for an individual task but V ðwi;BÞ is
the one for a batch of tasks. The tasks are allocated one by
one in increasing order of deadline. Each task is greedily
assigned to the worker with the maximum crowdsourcing
value that satisfies the time and wage constraints.

6.3 Dataset and Settings

Now many representative studies on crowdsourcing of
complex tasks are validated by simulation experiments [12],
[13], [20], since the online experiments on complex tasks
may produce very high unaffordable payments. The simu-
lation experimental results with real data and realistic set-
tings are generally accepted in this area. Therefore, we
make simulation experiments by using real data set from
Upwork.com and making realistic settings by referring real-
world crowdsourcing processes from Upwork.com.

We collect the data of workers and tasks from Upwork.
com. Worker data include the skills, historical tasks, reputa-
tions of 4409 workers. The data that are extracted for each
worker contain more than one task completion record. The
average income for historical tasks of a worker is assumed to
be the worker’s expected wage. Tasks are selected from the
“web-mobile-software-development” category at Upwork.
com, which include 4096 tasks’ budgets, required skills, and
publishing time. To ensure the generality of our experimental
results, we delete the data for extreme cases as follows: the
workers whose wages are less than $200 or more than $700
are excluded; the tasks whose budgets are greater than $1400
or less than $400 are excluded; and tasks that require rare
skills (for which number of workers is no more than 2) are
excluded. Finally, there are 864 workers and 354 tasks in the
dataset that is used for our experiments. By considering the
general deadlines of tasks at the website, the deadline of each
task dt is a random value in [67, 127]; thus, the mean value is
close to 97.7. The estimated task completion time of a worker
is a randomnumber in the range [dt=2; dt].

In fact, the three types of structures (random network,
scale-free network, and small-world network) are very typi-
cal in real social networks [9], [10], [29], thus we use them in
the experiments to conduct a simulated social network envi-
ronment. Then, we will test the universality of our approa-
ches in varying social network structures.

We now describe how these networks are constructed.

� Random Network. By referring to [29], the random
network is generated by randomly adding connec-
tions between workers, which results in the network
average degree being equal to 6.

JIANG ETAL.: BATCH ALLOCATION FOR TASKS WITH OVERLAPPING SKILL REQUIREMENTS IN CROWDSOURCING 1731

� Scale-Free Network. By referring to [9], the scale-free
network starts with m0 ¼ 12 workers which are all
connected. At each step, we add a new worker and
connect this new worker to three workers already
existing in the network with a probability. The prob-
ability that a new worker v connects an existing
worker u is proportional to the degree of u. Finally,
the final network average degree is about 6.

� Small-World Network. By referring to [10], this net-
work starts from a regular ring lattice in which each
worker connects with 6 nearest neighbors, and this
worker has a probability of p ¼ 0:2 of rewiring each
connection to another worker. Finally, the final net-
work average degree is 6.

In summary, the properties of the three types of social
network structures among workers in experiments are
shown in Table 1.

6.4 Performance Indices

According to the optimization objective of this paper, we
define below four indices to evaluate the performances of
our approaches, layered batch allocation (Layer) and core-based
batch allocation (Core), in comparison with the previous
benchmark approach, retail-style allocation (Retail):

^ Task Completion Proportion: According to Equation (16),
we assume the probability of successfully completing
task x is px and there are a total of m tasks. The com-
pletion proportion of all tasks is defined as

Pm
x¼1 px=m.

^ Total Payment by Requesters: We define this index as
the sum of all requesters’ real payments to evaluate
our optimization objective of minimizing the reques-
ters’ total real payment.

^ Average Income of Workers: We define this index as the
average of all assigned workers’ real earnings within
a given duration to evaluate another aspect of our
optimization objective: improving the real hourly
wages of workers.

^ Task Allocation Time (Running Time of Algorithm): This
index is used to measure the computational effi-
ciency of the task allocation approaches. The running
time of our approaches includes the batch formation
and allocation processes.

6.5 Experimental Results

Our experiments are implemented in Python 2.7 and tested
on an Intel(R) Core(TM) CPU i7-4770 3.4 GHz and 16 G
memory. There are four main factors that may influence the
results: 1) discounting factor s for the discounting function
in Equation (2) (which is set ranging from s ¼ 0.3 to s ¼ 0.7
in the experiments); 2) decay factor t in Equation (17),
which influences the decay rate of the probability to get
skills as a function of social distance; 3) structures of social
networks, which can be used to test the universality of our
approaches in varying networks; and 4) number of tasks,
which may influence the performance. The experiments test
the impacts of these four factors on the performance indices.

6.5.1 Tests on Task Completion Proportion

Now we test the performances on Task Completion Propor-
tion of the three approaches.

Fig. 5a shows the results on Task Completion Proportion of
the three approaches under different social network struc-
tures. The decay factor is set to a fixed value; t ¼ 0.03. Obvi-
ously, the discounting factor has no influence on the retail-
style allocation approach. In the same network structure, the
three allocation approaches have similar Task Completion
Proportion performances, and core-based batch allocation is
slightly better than layered batch allocation; the reason is that
layered batch allocation greedily selects batches with lower
budgets in the process of batch allocation. For the three types
of social networks, Task Completion Proportion performance
under Random Networks is better than that under Small-
World Networks; this is because Task Completion Proportion
is related to the social distance from a worker with the

TABLE 1
The Properties of the Three Social Network Structures

Network\
Properties

Diameter Average
Shortest

Path Length

Clustering
Coefficient

Average
Degree

Random 7.02 4.00 0.01 6
Scale-free 5.91 3.29 0.12 6.01
Small World 8.51 4.98 0.63 6

Fig. 5. Tests on the performances of task completion proportion.

1732 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

required skill according to Equation (17), and the average dis-
tance between two workers in a random network is slightly
smaller than that in a small-world network. Moreover, in the
three networks, the scale-free network’s average distance is
the smallest, which causes it to have the highest Task Comple-
tion Proportion performance.

Fig. 5b shows the effects of the decay factor. With
the growth of the decay factor (from t ¼ 0.01 to t ¼ 0.05, while
s ¼ 0.3), the Task Completion Proportion performances of
all approaches decrease drastically. The Task Completion
Proportion performance under random networks is slightly
higher than that under small-world networks. Moreover, the
scale-free network’s smallest average distance causes it to
have the highest Task Completion Proportion performance.

6.5.2 Tests on Total Payment By Requesters, Average

Income of Workers, and Task Allocation Time

This series of experiments tests the performances on Total
Payment by Requesters, Average Income of Workers, and
Task Allocation Time of Algorithm of the three approaches
under different discounting factors and social networks.
Because the decay factor in Equation (17) only influences
the stage of task execution and these three performance

indices are determined in the stage of task allocation, it is
not necessary to test the effects of the decay factor on these
three performance indices. Therefore, the decay factor can
be set to 0.03.

Fig. 6 shows the effects of the discounting factor on the
three performance indices. We can see that our two
approaches achieve lower Total Payments by Requesters
and higher Average Incomes of Workers while using less
allocation time than the retail-style allocation approach.
Comparing with core-based batch allocation, layered batch
allocation performs better on Total Payment by Requesters
and Average Income of Workers, but it needs to consume
more allocation time. In our approaches, the values of Total
Payment by Requesters and Average Income of Workers
decrease with the increase of the discounting factor. With
the increase of the discounting factor, the runtime of our
layered batch allocation declines slightly; the reason is that
a higher discounting factor means a lower payment for the
task, which may reduce the size of the candidate worker set
in layered batch allocation, which speeds up the algorithm.
The effects of the network structures are not significant; this
is because these three performance indices are related to
task allocation, whereas social network structures have
more influence on task execution.

Fig. 6. Tests on the performances in terms of total payment by requesters, average income of workers, and task allocation time.

JIANG ETAL.: BATCH ALLOCATION FOR TASKS WITH OVERLAPPING SKILL REQUIREMENTS IN CROWDSOURCING 1733

6.5.3 Tests on the Scalability to the Number of Tasks

After randomly counting the numbers of varying categories of
tasks at Upwork newly published within one day, we find
that they are all within several hundreds, e.g., 500 (web,
mobile & software development), 70 (IT & Networking), 60
(Data Science & Analytics), 70 (Engineering & Architecture),
410 (Design & Creative), 250 (Writing), 50 (Translation). Our
batching scheme makes batching for the tasks within the
same category for oneday (since the batching of tasks crossing
multiple days may exceed the timeliness of tasks), thus we
onlymade experiments based on hundreds of tasks.

Now we examine the performances of three approaches
under different numbers of tasks; the results are shown as

Fig. 7. Without loss of generality, we set t ¼ 0:03 and
s ¼ 0:5. We can see that the number of tasks has no signifi-
cant influence on Task Completion Proportion. On Total
Payment by Requesters, the advantage of our approaches
becomes more obvious with the increase of the number of
tasks. The performances on Average Income of Workers of
the three approaches increase with the increase of the num-
ber of tasks. Comparing with the retail-style task allocation,
our two batch allocation approaches both have better scal-
ability performances in terms of runtime.

In addition, when number of tasks is small, the number
of possible batches is limited, and the greedy batch alloca-
tion of the layered approach may spend less time than the

Fig. 7. The scalability to the number of tasks in terms of the four performance indices.

1734 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

core-based batch allocation; with the increase of the number
of tasks, the core-based batch allocation may spend less
time due to its lower complexity.

6.5.4 Comparison with the Exhaustive Batch

Allocation Algorithm

We design an exhaustive algorithm based on recursion to
enumerate all possible batch assignments, as described
in the Appendix, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2018.2894146. The exhaustive algorithm has
very high computational complexity, O(n!), thus it can only
be used for small number of tasks; however, it can be used
as a benchmark for comparison. Because our main optimi-
zation objective is to minimize the total real payment by
requesters, here we only compare the performance index of
Total Payment by Requesters.

First, we randomly select a certain number of tasks from
the set of all tasks and only retain workers who have skills
related to the tasks. Then, we compare the performances of
our two approaches with that of the exhaustive algorithm.
We set t ¼ 0:03 and s ¼ 0.5. We calculate the ratios of our
approaches’ results to those of the exhaustive algorithm,
shown in the Appendix available in the online supplemen-
tal material. The Total Payments by Requesters of our
approaches are approximately 1.6 times that of exhaustive
algorithm for a small number of tasks.

In summary, according to a comparison with the retail-
style task allocation approach, our two approaches both
achieve better performances in terms of Total Payment by
Requesters and Average Income of Workers, while main-
taining close Task Completion Proportion and consuming
less task allocation time; moreover, our approaches are uni-
versal for varying social networks. Between our two app-
roaches, the core-based approach incurs lower time cost
and produces suboptimal results. Although our approach-
es’ Total Payments by Requesters are 1.6 times that of the
exhaustive algorithm, our approaches can scale to the large
number of tasks, whereas the exhaustive algorithm can only
be applied when the number of tasks is very small.

Certainly, because our experiments are conducted in a
simulation environment with real data and realistic settings,
there are some limitations with the current results, shown as
follows.

� This paper assumes that the reusing is possible
among the tasks by the same worker; moreover, this
paper only considers the reusing costs without pre-
senting a detailed reusing model. The limitation of
such assumption is that it does not address the vari-
ety, dynamics, and complexity of reusing in real
systems. In fact, reusing is very different in varying
domains, for example, reusing in software domain is
a very complex issue that is influenced by the soft-
ware characteristics, the developers, and the applica-
tion environments. Therefore, in the future we will
explore the influence of varying reusing models on
the effects of our batch allocation approach. More-
over, we will integrate the batch allocation approach
with the software reusing technology to explore real
applications in software domain.

� This paper assumes that the social networks are reli-
able during task allocation and execution, i.e., work-
ers can reliably rely on their social network’s skillset
to complete the assigned tasks. However, due to the
uncertainty and openness of social networks, the
contextual workers may sometimes behave unreli-
ably. Thus the reputation and trust mechanisms will
be introduced for addressing unreliable workers in
social networks.

7 CONCLUSION

The popular retail-style task allocation cannot scale to large
numbers of concurrent tasks due to the large computational
cost, because each task needs to be allocated and executed
independently from scratch. Moreover, many workers’ skills
and time may not be fully utilized since they often undertake
a very small number of tasks contemporaneously.

To address these drawbacks, this paper presents a batch
allocation method with the objective of reducing the reques-
ters’ total real payment as well as improving each worker’
earnings. First this paper proves that the optimal batch alloca-
tion is NP-hard; then, this paper presents two approaches:
layered batch allocation, which can achieve better perfor-
mance but may incur higher computational cost, and core-
based batch allocation, which may achieve suboptimal per-
formance but can significantly reduce the computational cost.

This paper performs theoretical analyses and extensive
experiments on real data to prove the effectiveness and
advantages of the proposed approaches. First, the optimiza-
tion objective of our approaches of reducing the requesters’
total real payment and improving workers’ real earnings is
validated by comparison with the benchmark retail-style
task allocation. Then, it is demonstrated that our approaches
can achieve higher successful task completion probability
and consume less task allocation time by comparison with
the retail-style task allocation.

In the future, we will mainly explore the adaption of
the batch allocation mechanism to dynamic crowdsourc-
ing environments in which workers may join or depart
dynamically and the strategies and skills of workers are
dynamic. Moreover, we will make large scale real online
experiments through cooperating with popular crowd-
sourcing platforms.

ACKNOWLEDGMENTS

The work was supported in part by the National Natu-
ral Science Foundation of China (61472079, 61806053,
61807008), and the Natural Science Foundation of Jiangsu
Province of China (BK20171363, BK20180356, BK20180369).

REFERENCES

[1] N. Luz, N. Silva, and P. Novais, “A survey of task-oriented
crowdsourcing,” Artif. Intell. Rev., vol. 44, no. 2. pp. 187–213, 2015.

[2] D. E. Difallah, et al., “The dynamics of micro-task crowdsourcing:
The case of amazon MTurk,” in Proc. 24th Int. Conf. World Wide
Web, May 18-22, 2015, pp. 238–247.

[3] L. Tran-Thanh, T. D. Huynh, A. Rosenfeld, S. Ramchurn, and
N. R. Jennings, “BudgetFix: Budget limited crowdsourcing for
interdependent task allocation with quality guarantees,” in Proc.
13th Int. Conf. Auton. Agents Multiagent Syst., May 5-9, 2014,
pp. 477–484.

JIANG ETAL.: BATCH ALLOCATION FOR TASKS WITH OVERLAPPING SKILL REQUIREMENTS IN CROWDSOURCING 1735

http://doi.ieeecomputersociety.org/10.1109/TPDS.2018.2894146
http://doi.ieeecomputersociety.org/10.1109/TPDS.2018.2894146

[4] L. Tran-Thanh, T. D. Huynh, A. Rosenfeld, S. D. Ramchurn, and
N. R. Jennings, “Crowdsourcing complex workflows under bud-
get constraints,” in Proc. 29th AAAI Conf. Artif. Intell., Jan 25–30,
2015, pp. 1298–1304.

[5] M. Rokicki, et al., “Groupsourcing: Team competition designs
for crowdsourcing,” in Proc. 24th Int. Conf. World Wide Web,
May 18–22, 2015, pp. 906–915.

[6] W. Wang, J. Jiang, B. An, and Y. Jiang, “Towards efficient team
formation for crowdsourcing in noncooperative social networks,”
IEEE Trans. Cybern., 47, no. 2, pp. 4208–4222, Dec. 2017.

[7] J. van Dalen, J. Koerts, and A. R. Turik, “The measurement of
labour productivity in wholesaling,” Int. J. Res. Marketing, vol. 7,
no. 1, pp. 21–34, 1990.

[8] D. Grosu and A. T. Chronopoulos, “Algorithm mechanism design
for load balancing in distributed systems,” IEEE Trans. Syst. Man
Cybern.-Part B: Cybern., vol. 34, no. 1, pp. 77–84, Feb. 2004.

[9] A. L. Barab�asi and R. Albert, “Emergence of scaling in random
networks,” Sci., vol. 286, no. 5439, pp. 509–512, 1999.

[10] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’ networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[11] M. S. Bernstein, G. Little, R. C.Miller, B. Hartmann,M. S. Ackerman,
D. R. Karger, D. Crowell, and K. Panovich, “Soylent: A word pro-
cessor with a crowd inside,” Commun. ACM, vol. 58, no. 8,
pp. 313–322, 2015.

[12] A. Anagnostopoulos, L. Becchetti, A. Fazzone, I. Mele, and
M. Riondato, “The importance of being expert: Efficient max-find-
ing in crowdsourcing,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, May 31-Jun. 4, 2015, pp. 983–998.

[13] L. Tran-Thanh, S. Stein, A. Rogers, and N. R. Jennings, “Efficient
crowdsourcing of unknown experts using multi-armed bandits,”
Artif. Intell., vol. 214, pp. 89–111, 2014.

[14] A. Bozzon, M. Brambilla, S. Ceri, M. Silvestri, and G. Vesci,
“Choosing the right crowd: Expert finding in social networks,” in
Proc. 16th Int. Conf. Extending Database Technol., Mar. 18-22, 2013,
pp. 637–648.

[15] H. Heidari and M. Kearns, “Depth-workload tradeoffs for work-
force organization,” in Proc. 1st AAAI Conf. Hum. Comput. Crowd-
sourcing, Nov. 6-9, 2013, pp. 60–68.

[16] M. Kargar, A. An, and M. Zihayat, “Efficient bi-objective team for-
mation in social networks,” in Proc. Eur. Conf. Mach. Learn. Principles
Practice Knowl. Discovery Databases, Sep. 24-28, 2012, pp. 483–498.

[17] Q. Liu, T. Luo, R. Tang, and S. Bressan, “An efficient and truthful
pricing mechanism for team formation in crowdsourcing markets,”
in Proc. IEEE Int. Conf. Commun., Jun. 8-12, 2015, pp. 567–572.

[18] I. Lykourentzou, R. E. Kraut, S. Wang, and S. P. Dow, “Team dat-
ing: A self-organized team formation strategy for collaborative
crowdsourcing,” in Proc. ACM CHI Conf. Hum. Factors Comput.
Syst., May 07-12, 2016, pp. 1243–1249.

[19] P. K. Kopalle, C. F. Mela, and L. Marsh, “The dynamic effect of
discounting on sales: Empirical analysis and normative pricing
implications,”Marketing Sci., vol. 18, no. 3, pp. 317–332, 1999.

[20] D. Yang, G. Xue, X. Fang, and J. Tang, “Incentive mechanisms for
crowdsensing: Crowdsourcing with smartphones,” IEEE/ACM
Trans. Netw., vol. 24, no. 3, pp. 1732–1744, Jun. 2016.

[21] L. Green and J. Myerson, “A discounting framework for choice
with delayed and probabilistic rewards,” Psychological Bulletin,
vol. 130, no. 5, pp. 769–792, 2004.

[22] M. Yin and M. L. Gray, “The communication network within the
crowd,” in Proc. 25th Int. World Wide Web Conf., Apr. 11-15, 2016,
pp. 1293–1303.

[23] M. L. Gray and S. Suri, “The crowd is a collaborative network,” in
Proc. 19th ACM Conf. Comput.-Supported Cooperative Work Soc. Com-
put., Feb. 27- Mar. 02, 2016, pp. 134–147.

[24] X. Zhang, Z. Yang, C.Wu,W. Sun, Y. Liu, and K. Xing, “Robust tra-
jectory estimation for crowdsourcing-based mobile applications,”
IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 7, pp. 1876–1885,
Jul. 2014.

[25] H. Chen, H. Jin, and S. Wu, “Minimizing inter-server communica-
tions by exploiting self-similarity in online social networks,” IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 4, pp. 1116–1130, 2016.

[26] E. Franchi, A. Poggi, and M. Tomaiuolo, “Social media for online
collaboration in firms and organizations,” Int. J. Inf. Syst. Model.
Des., vol. 7, no. 1, pp. 18–31, 2016.

[27] J. Jiang, B. An, Y. Jiang, and D. Lin. [Online]. “Context-aware
reliable crowdsourcing in social networks,” IEEE Trans. Syst.
Man Cybern.: Syst., https://ieeexplore.ieee.org/document/
8226780, doi: 10.1109/TSMC.2017.2777447.

[28] J. Wang, S. Faridani, and P. G. Ipeirotis, “Estimating the comple-
tion time of crowdsourced tasks using survival analysis models,”
in Proc. Workshop Crowdsourcing Search Data Mining, Feb. 9,
pp. 31–34, 2011.

[29] W. Wang and Y. Jiang, “Multiagent-based allocation of complex
tasks in social networks,” IEEE Trans. Emerging Topics Comput.,
vol. 3, no. 4, pp. 571–584, Dec. 2015.

[30] R. M. Karp, “Reducibility among combinatorial problems,” Com-
plexity of Computer Computations. New York, NY, USA: Springer,
1972, pp. 85–103.

Jiuchuan Jiang received the ME degree in com-
puter science from the Nanjing University of Aero-
nautics and Astronautics, in 2009. He is now with
the School of Computer Science and Engineer-
ing, Nanyang Technological University,
Singapore. His main research interests include
crowdsourcing, multiagent systems, and social
networks. He has published several scientific
articles in refereed journals and conference
proceedings, such as the IEEE Transactions
on Parallel and Distributed Systems, the IEEE

Transactions on Systems, Man, and Cybernetics: Systems, the ACM
Transactions on Autonomous and Adaptive Systems, and the Interna-
tional Conference on Autonomous Agents and Multiagent Systems
(AAMAS).

Bo An received the PhD degree in computer
science from the University of Massachusetts,
Amherst. He is an associate professor with the
School of Computer Science and Engineering,
Nanyang Technological University, Singapore.
His current research interests include artificial
intelligence, multiagent systems, game theory,
and optimization. His research results have been
successfully applied to many domains includ-
ing infrastructure security and e-commerce. He
has published more than 90 referred papers

at AAMAS, IJCAI, AAAI, ICAPS, KDD, JAAMAS, AIJ and ACM/IEEE
Transactions. He was the recipient of the 2010 IFAAMAS Victor Lesser
Distinguished Dissertation Award, an Operational Excellence Award
from the Commander, First Coast Guard District of the United States,
the 2012 INFORMS Daniel H. Wagner Prize for Excellence in Opera-
tions Research Practice, and 2018 Nanyang Research Award (Young
Investigator). His publications won the Best Innovative Application Paper
Award at AAMAS’12 and the Innovative Application Award at IAAI’16.
He was invited to give Early Career Spotlight talk at IJCAI’17. He led
the team HogRider which won the 2017 Microsoft Collaborative AI
Challenge. He was named to IEEE Intelligent Systems’ “AI’s 10 to
Watch” list for 2018. He was invited to be an Advisory Committee mem-
ber of IJCAI’18. He is a member of the editorial board of JAIR and
the Associate Editor of Journal of Autonomous Agents and Multi-Agent
Systems and IEEE Intelligent Systems. He was elected to the board of
directors of IFAAMAS.

Yichuan Jiang (SM’13) received the PhD degree
in computer science from Fudan University,
Shanghai, China, in 2005. He is currently a full
professor with the School of Computer Science
and Engineering, Southeast University, Nanjing,
China. His main research interests include multi-
agent systems, crowdsourcing, and social net-
works. He has published more than 90 scientific
articles in refereed journals and conference pro-
ceedings, such as the IEEE Transactions on Par-
allel and Distributed Systems, IEEE Journal on

Selected Areas in Communications, IEEE Transactions on Systems,
Man, and Cybernetics: Systems, IEEE Transactions on Cybernetics, the
ACM Transactions on Autonomous and Adaptive Systems, the Journal
of Autonomous Agents and Multi-Agent Systems, IJCAI, AAMAS, and
AAAI. He won the best paper award from PRIMA06 and best student
paper awards twice from ICTAI13 and ICTAI14. He is a senior member
of the IEEE.

1736 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

https://ieeexplore.ieee.org/document/8226780
https://ieeexplore.ieee.org/document/8226780
http://dx.doi.org/10.1109/TSMC.2017.2777447

Peng Shi received the ME degree in computer
science from Southeast University, Nanjing,
China, in 2018. His current research interests
include crowdsourcing and multiagent systems.
He has published several papers in refereed jour-
nals and conference proceedings, such as the
knowledge-based Systems, and the International
Conference on Autonomous Agents and Multi-
agent Systems (AAMAS).

Zhan Bu received the PhD degree in computer
science from the Nanjing University of Aeronau-
tics and Astronautics, Nanjing, China, in 2014.
He is currently an associate professor with the
College of Information Engineering, Nanjing Uni-
versity of Finance and Economics, Nanjing,
China. His current research interests include
social networks, and multiagent systems.

Jie Cao received the PhD degree from Southeast
University, Nanjing, China, in 2002. He is cur-
rently a professor and the dean of the College of
Information Engineering, Nanjing University of
Finance and Economics, Nanjing, China. His cur-
rent research interests include business intelli-
gence, and social networks.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

JIANG ETAL.: BATCH ALLOCATION FOR TASKS WITH OVERLAPPING SKILL REQUIREMENTS IN CROWDSOURCING 1737

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

