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Toward Efficient City-Scale Patrol Planning Using
Decomposition and Grafting
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Abstract— Motivated by the increasing need of the real-world
patrolling, this paper studies a practical city-scale patrolling
(CSP) variant. In CSP, the police are scheduled to patrol city
regions, and the objective is not only to protect public security
but also to respond to incidents timely. We use an integer
program (IP) to formulate the CSP problem, with the objective
of maximizing the police visibility rate (PVR) to improve public
safety and the additional constraint of response time guarantee
to handle incidents timely. For such an NP-hard problem,
existing studies either cannot scale-up or do not provide a
bound from optimum. To fill the research gap, we propose a
decomposition and grafting approach. We first decompose the
original CSP into two weakly-coupled subproblems, minimizing
police problem (MinP) and maximizing PVR (MaxP) problem.
By exploiting the subproblem structures, a polynomial time
approximation algorithm is proposed for MinP, and a polynomial
time optimal algorithm is proposed for MaxP. We prove that
such a decomposition can provide the 1 − α approximation
ratio, where α is the percentage of the police used in MinP.
To further improve patrolling efficiency, a grafting mechanism
is proposed to integrate the two subproblems’ solutions. Finally,
we conduct extensive experiments on the real dataset of Foshan,
a modern Chinese city. The results demonstrate that compared
with benchmarks, our approach scales well to city-scale problem
instances with fine-grained periods, hundreds of regions, and
hundreds of police officers.

Index Terms— Patrol planning, city-scale, decomposition,
grafting, approximation algorithm.

I. INTRODUCTION

DURING the development of a modern city, police
patrolling plays an essential role in improving the public

safety and security of the city. Empirical studies have shown
that the presence of police can significantly improve people’s
feelings of safety (FoS) [1]. For example, Fig.1 shows the
association between police presence and people’s FoS. From
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Fig. 1. Empirical evidence of police presence on the improvement of
FoS [12].

Fig. 1, we can find that the presence of police, no matter
how many, can improve people’s FoS significantly [1]. On the
other hand, the emergency incidents such as criminal and
traffic accidents are time sensitive, and the response time of
the incidents (defined as the interval from the time when the
incident occurs to the arrival of a police officer) should be
within time guarantee [2], [3].

In general, the Municipal Public Security Bureau (MPSB)
wishes to schedule the police such that 1) when an incident
occurs, there should be police nearby that can respond to it
within a threshold time, and 2) when there are no incidents,
the police should patrol in disperse to improve the FoS of
the whole city. However, the MPSBs of many cities (e.g.,
the MPSB of Foshan, a typical modern city in China) still rely
on static patrolling plans that assign police officers to specific
regions. Since the police’s main task is to patrol the assigned
regions, they only patrol the assigned regions and seldom
communicate with each other for coordination. For example,
in Fig. 2a, the police always patrol several specific important
checkpoints (labeled by �), such as government departments,
shopping malls and schools. However, the incidents (labeled
by •) do not spread evenly and could not be fully covered
by these fixed checkpoints. Moreover, in the mobile environ-
ments, the volume flow of people (VFoP) varies with time,
e.g., schools are more crowded in the morning and afternoon,
while shopping malls are more crowded during the evening.
Fig. 2b shows the VFoP distributions at 16:00 and 20:00.
Thus, existing static checkpoints-oriented patrol planning is
inefficient to handle the VFoP dynamics and cannot respond
to incidents timely.

The patrolling problem has been studied in many domains.
For example, the police are routed to travel the network
of regions efficiently in the patrol routing domain [4]–[9],
the equilibrium patrolling strategy is designed in the security
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Fig. 2. Real World Data: (a) � indicates static checkpoints and • indicates
incident distributions; (b) the top indicates the VFoP at 16:00 and the bottom
indicates the VFoP at 20:00.

game domain [10]–[13], the scalable [14] and robust methods
[15], [16] are proposed in the multi-robot domain, and the
police are optimally allocated to regions [17]–[20] and dis-
patched to incidents [3], [21]–[23] in the emergency response
domain. While the topic has been extensively studied, we pro-
vide some new insights that may suggest to reassess practical
city police patrolling scenarios. For example, when the inci-
dents occur, there should be police nearby that can respond
within a threshold time, and when there are no incidents,
they should be police patrolling around the city to enhance
the police visibility rate (PVR) and improve public safety
[3], [17]. This practical requirement makes 1) existing exact
algorithms [8], [22]–[24] cannot apply to city-scale instances
with fine-grained periods, hundreds of regions and hundreds
of police officers, and 2) existing scalable algorithms [6], [7],
[14], [19], [25] cannot establish a bound from optimum in
terms of PVR. Moreover, the security game-based randomized
policy [26], [27] cannot satisfy the hard constraint of response
time guarantee.

To address the above issues, our first contribution is to pro-
pose an integer program (IP) to model the city-scale patrolling
(CSP) problem of maximizing PVR with the constraint of
incident response time guarantee. To solve such an NP-hard
problem efficiently, our second contribution is the decomposi-
tion and grafting method. The original CSP is decomposed into
two weakly-coupled subproblems. A polynomial time approx-
imation and a polynomial time optimal algorithm are proposed
for the decomposed subproblems respectively. The proposed
decomposition is proved to achieve 1−α approximation ratio
with respect to the optimum, where α is the percentage of
police used in MinP. To improve the PVR further, a grafting
mechanism is proposed to integrate the two subproblems’
solutions. Finally, we conduct extensive experiments on a real-
world patrolling dataset of Foshan, a modern city in China.
The experimental results show the advantages of the proposed
algorithm over other benchmarks on scalability and solution
quality.

The remainder of this paper is organized as follows.
In Section 2, we provide a brief review of the literature on
patrolling. In Section 3, we formulate the real-world CSP
problem with the objective of PVR minimization and the
constraint of incident response time guarantee. In Section 4,
we propose an efficient decomposition and grafting-based

approximation algorithm. In Section 5 we conduct a series
of simulation experiments on real-world datasets to validate
the proposed algorithm’s effectiveness in maximizing PVR.
Finally, we conclude our paper and discuss future work in
Section 6.

II. RELATED WORK

A. Police Resource Allocation

Curtin et al. [24] determine the optimal patrolling areas
by a Integer Program (IP) to maximize incident coverag.
Mukhopadhyay et al. [18], [19] study online police resource
allocation variants for incident coverage where incidents arrive
stochastically, depots are allocated in space, response vehicles
are allocated in depots, and vehicles are assigned to incidents.
In the Emergency Management Systems (EMSs) domain,
base stations are optimally placed and emergency response
resources are optimally allocated to these base stations [28].
EMSs work by first sampling a set of incident requests
from historical data [23] and allocating emergency resources
efficiently using operational research techniques, such as sub-
modular maximization of satisfied incidents [17], Lagrangian
relaxation [2], [25] and constraint programming [3]. Compared
with these static police resource allocation algorithms without
any PVR guarantee, we propose a mobile patrolling model
in which the police are routed to patrol city regions spatial-
temporally, rather than returning back to the base stations.
An efficient algorithm is proposed for this novel patrolling
variant that can establish a bound on PVR theoretically. For
the stochastic emergency vehicle (EV) redeployment problem,
Lei et al. [21] propose a two-stage traffic incident response
model. In the first stage, the EVs are allocated to locations
by the prior traffic incident information and in the second
stage, the vehicles are redeployed to tackle with the stochastic
service demands and returning time of EVs. They solve this
two-stage EV redeployment problem by using a two-level inte-
ger programming, which cannot scale to city-scale instances.
Park et al. [20] also propose an EV incident response model
by considering the additional management of the stochastic
occurrence of next incidents. These stochastic models cannot
satisfy the hard constraint of covering IRs studied in this paper
but can be useful to extend our work to stochastic model.

B. Patrol Routing

Let G = �V , E, W, P� model the network of areas, where
V denotes the hot-spot areas need to patrol, E denotes the
edges between hot-spots, W denotes the weight/cost/distance
of the edge, and P denotes the profit of visiting hot-spots. With
limited police resources, Chawathe [4] and Keskin et al. [6]
design patrolling routes to maximize the coverage of hot-spots,
i.e., maximizing the hot-spots covered/visited by the police.
Lau et al. [8] schedule police efficiently such that each hot-
spot is patrolled with specific frequency and the objective is to
minimize the patrolling cost. Given a patrolling budget (e.g.,
the maximum cost of a route), Feillet et al. [29] and Zeng et al.
[7] search for the route that visits the most beneficial hot-spots.
Since routing variants are always NP-hard [5], existing optimal
IP methods [8], [29] cannot scale to large instances with
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hundreds of hot-spot areas. Varakantham et al. [30] propose
a branch-and-bound-based local search algorithm to find the
optimal traveling path. Although there are other scalable
methods that also have performance guarantee, they assume
that the graph is densest [4] or the coverage function is
submodular [7] or the objective function can be decomposed as
the sum of multiple interdependent functions [31], or there is
no temporal constraint between two nodes [9]. Compared with
these work, this paper proposes a polynomial approximation
algorithm without these unrealistic assumptions.

C. Security Games

To protect airports [32], urban transit systems [33], wildlife
[34], [35], fair sites [36], [37], and important buildings [38],
a Stackelberg security game between defenders and attackers is
modeled, and the equilibrium patrolling strategy is computed
for the defender [39]–[41]. Zhang et al. [13], [27] propose
opportunistic security games where the criminal behavior is
correlated to patrolling strategies, and Brown et al. [26] use
the historical data to learn the traffic violation with/without
police presence. These pure patrolling strategies exponentially
increase with the number of police, and randomized policies
are widely used to maximize the expected patrolling
utility [42]. However, the randomized patrolling plan cannot
satisfy the hard constraint of response time guarantee studied
in this paper.

D. Multi-Robot Patrolling

The robot is scheduled to patrol a closed area to complete
tasks, such as visiting each point frequently [43] and delivering
goods. Multi-robots can be exploited to improve the patrolling
efficiency [44], however, the complex coordination policies
among robots make multi-robot patrolling intractable [15].
The centralized decomposition technique, which works by
decomposing the exponential joint states into independent
domains [44] and distributed multi-robot patrolling that works
by a greedy manner can provide scalable and fault-tolerable
patrolling strategies [14]. However, these heuristics do not
have any performance guarantee. For the adversarial multi-
robot patrolling problem, there is an adversary that can
penetrate through the closed area and the robots wish to
patrol randomly to maximize the probability of detecting
penetration [16]. However, these graph theory-based patrolling
methods cannot always find a solution for the bi-criteria
patrolling problem studied in this paper.

III. MODEL

A. Daily Patrolling

Let there be n police officers A = {a1, a2, . . . , an} that can
be used for daily patrolling.1 Each day, there are 3 patrolling
shifts, each of which lasts for 8 hours, e.g., the first shift ranges
from 00:00 to 08:00. Each shift is discretized into periods, each
period includes δ ∈ [0, 8] hour, and the parameter δ can be
tuned such that 8

δ is an integer. The daily patrolling includes

1In this paper, a police unit can not only represents a single police officer
but also represent a police team including a couple of police officers.

periods {1, 2, . . . , T = 24
δ }. To avoid overfatigue, each police

officer only serves one shift, e.g., if ai is assigned to serve the
first shift, he only patrols during periods {1, 2, . . . , 8

δ }.

B. City Network

Let G = �V , D� denote the city network where V =
{v1, v2, . . . , vm} denotes m regions of the city. Each region
vi ∈ V is represented by its center’s coordinate (longi tude,
lati tude). D = {di j ∈ Z≥0}vi ,v j ∈V denotes the distance
between regions vi to v j , and the police will take di j periods
to move from vi to v j . This distance parameter satisfies
the triangle inequality, i.e., for any vi , v j and vk , we have
dik < di j + d jk.

C. Data-Driven Incident Requests (IRs) and Volume Flow of
People (VFoP) Sampling

We adopt a data-driven sampling model (introduced by [17])
to generate the set of IRs R = {r1, r2, . . . , rl } and the daily
VFoP Q j = {q1

j , q2
j , . . . , qT

j } of each region v j . Let R( j, k, t)
denote the distribution of the next arriving IR with type k
occurring at region v j during period t and Q( j, t) denote
the distribution of VFoP of v j at period t . The parameters
of the two stochastic distributions R( j, k, t) and Q( j, t) are
estimated from historical data. We sample incident requests R
and VFoP Q j from R( j, k, t) and Q( j, t) for Dsample days
(e.g., one week). The IRs are incremental and the VFoP qt

j is
averaged over Dsample instances.

D. Objective

The MPSB is mainly concerned with the objective of PVR
maximization under the hard constraint of IRs response time
guarantee.

• IRs response time guarantee. Let R = {r1, r2, . . . , rl}
denote the set of IRs, each rk ∈ R is denoted by a
tuple �vrk , τrk , θrk �, where vrk ∈ V is the region of occur-
rence, τrk is the time of occurrence, θrk is the maximal
tolerable response time (which is computed as the time
between τrk and the arrival time of the police officer). Let
Nrk = {v j |drk j ≤ θrk } denote the available regions where
the police can respond to rk with time guarantee, e.g.,
at period τrk , there must be police patrolling v j ∈ Nrk .2

For ease of expression, we call a request is covered if it
can be responded with time guarantee.

• PVR maximization. Let qt
j denote the VFoP of the

region v j at period t . Let zt
j ∈ {0, 1} denote whether there

is a police officer patrolling v j at period t (zt
j = 1) or not

(zt
j = 0). According to the empirical evidence presented

in Fig. 1 that the presence of one police officer is enough
to maximize people’s FoS, we can define the PVR of v j

at period t as φt
j = zt

j · qt
j .

2For the scenario that the police might not patrol at the center of the region
and might not respond to the IRs timely, we can partition the city into more
fine-grained local regions such that the longest distance between any two
regions satisfy the response time guarantee.
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E. Problem Formulation

The decision variables are defined as follows.

• xβ
i ∈ {0, 1}: set to 1 if ai serves the β ∈ {0, 1, 2} shift;

• yt
i j ∈ {0, 1}: set to 1 if ai patrols the region v j at period

t ;
• zt

j ∈ {0, 1}: set to 1 if there is a police officer patrolling
v j at t .

We use an Integer Program (IP) to formulate the city-scale
patrolling (CSP) problem of maximizing daily PVR, while
satisfying the constraint of IRs coverage.

max
∑

v j ∈V
∑

1≤t≤T zt
j · qt

j (1)

s.t.
∑

β=0,1,2
xβ

i = 1, ∀ai , (2)
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yt
i j + xβ

i −1<
t− 8

δ xβ
i · β

M
+1, ∀ai , v j , t, β,

yt
i j + xβ

i −1≤
8
δ (xβ

i · β + 1)−t

M
+1, ∀ai , v j , t, β,∑

v j ∈V
yt

i j ≤ 1, ∀ai , t,

(3)

t + d j j �+1−t � ≤ M(2−yt
i j −yt �

i j �), ∀ai , v j , v j � , t < t �,
(4)∑

ai∈A

∑
v j ∈Nrk

y
τrk
i j ≥1, ∀rk, (5)

zt
j ≤

∑
ai∈A

yt
i j , ∀v j , t . (6)

Eq.(1) is the objective of maximizing daily PVR, where qt
j

is the VFoP of v j at period t . Constraint (2) ensures that
each police officer only serves one shift. In constraint (3),
the top two constraints ensure that once ai is assigned to
serve the β shift, he must only patrol during this shift. For
example, if ai serves the second shift (i.e., x1

i = 1), the top
two constraints ensure that ∀v j , 0< t ≤ 8

δ , 16
δ < t ≤T , yt

i j = 0.
M ∈ R>0 is large enough to guarantee this constraint. The
bottom constraint ensures that at each period, each police
officer can only patrol one region. Constraint (4) ensures
patrolling consecutiveness, i.e., if police ai patrols regions v j

and v j � at period t and t �(> t) respectively, there must be
long enough periods between t � and t such that ai can move
from v j to v j � . The use of symbol “1” is to ensure that the
patrolling time period is correct. For example, assume a police
officer patrols vi at the beginning of time period t and moves
to patrol v j immediately at the end of time period t , he will
patrol region v j at the time period t + di j + 1. Constraint
(5) ensures that each request rk must be covered. Constraint
(6) computes whether there is a police officer patrolling v j at
period t .

Remarks: In this model, we assume that the police are
enough to cover the IRs, a natural question is how to address
the spare resource scenario where there are not enough police
to cover all IRs. One possible way is to reduce the samples
of IRs, for example, if the police are not enough to cover IRs
of the Dsample days, say one week, we can reduce Dsample

to one day such that the sampled IRs can be covered by the
insufficient police resources, and the patrolling plan is updated
once a day.

F. Complexity Analysis

We show that CSP problem is NP-hard by the reduction
from an arbitrary setcover decision (SCD) problem.

Theorem 1: The CSP problem is NP-hard.
For the reason of space limitation, all the proofs in this

paper are present in the appendix.

IV. AN EFFICIENT APPROXIMATION ALGORITHM

In this section, we present an approximation algorithm to
solve such an NP-hard CSP problem. The key idea behind
the proposed algorithm is that we decompose the original
CSP problem into two weakly-coupled subproblems: 1) the
minimum police subproblem (MinP): how to determine the
minimum number of police used to cover all IRs; and
2) the maximum PVR subproblem (MaxP): how to schedule
the remaining police to maximize PVR. We design polyno-
mial approximate and optimal algorithms for these two sub-
problems in Sections 4.1 and 4.2, respectively. In Section 4.3,
we provide the performance guarantee of this decomposition
technique for the original CSP. To further improve PVR,
we propose a grafting mechanism that integrates the two
subproblems’ solutions in Section 4.4.

A. Minimum Police Subproblem

1) Problem Formulation: We use an IP to formulate the
MinP Subproblem of determining the minimum number of
police necessary for covering all IRs, shown as follows.

min
∑

ai∈A wi (7)

s.t.

⎧⎪⎨
⎪⎩

xβ
i ≤ wi , ∀ai , β,

yt
i j ≤ wi , ∀ai , v j , t,

wi ∈ {0, 1}, ∀ai ,

Constraints (2) ∼ (5). (8)

The decision variable wi ∈ {0, 1} sets to 1 if the police ai is
selected. Other variables have the similar definitions defined
in the original CSP. Constraint (8) ensures that ai can patrol
and respond to IRs iff he is selected.

Complexity Analysis: By a reduction from the setcover
problem to the simplified MinP problem where there is only
one period, we can show that MinP is NP-hard. To improve the
scalability, we propose a polynomial approximation algorithm
that uses the lower bound O(ln l) police of the optimum.
The key idea behind the approximation algorithm is that we
iteratively select a police officer to cover IRs, and for each
selected police, we dispatch as many IRs to him as possible
in a greedy manner.

2) Dynamic Programming-Based Greedy Approach: Let
Rβ = {rk ∈ R| 8

δ β < τrk ≤ 8
δ (β + 1)} denote the IRs in the

βth shift. Assume that a police ai is dispatched to the β shift,
let R̃β denote the remaining IRs after the former police have
finished patrolling. Now, we need to optimize ai ’s patrolling
plan to cover as many IRs in R̃β as possible. To achieve this
goal, we design a dynamic programming (DP)-based patrolling
plan for ai . Let R̃β

i (t, v j ) = {ro ∈ R̃β |v j ∈Nro , τro = t} denote
the IRs near the region v j that ai can cover at period t . Let
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Algorithm 1 DP-Based Greedy Algorithm for MinP
Input : The IRs R.
Output: The police AMin P and their patrolling plans

PMin P .
1 Initialize i = 1, R̃β = Rβ and Rcover = R0;
2 while i ≤ n && Rcover 
= ∅ do
3 Initialize k∗ = −1 and β∗ = −1;
4 for 0 ≤ β ≤ 2 do
5 Using Eq.(9) to compute �

β
i (t∗, v j∗, R̃β);

6 if �
β
i (t∗, v j∗, R̃β) > k∗ then

7 k∗ = �
β
i (t∗, v j∗, R̃β) and β∗ = β;

8 Update R̃β∗ = R̃β∗\Rβ∗
i (t∗, v j∗, R̃β∗

) and

Rcover = Rβ∗
i (t∗, v j∗, R̃β∗

);
9 if Rcover 
= ∅ then

10 Update AMin P = AMin P ∪ {ai }, i = i + 1 and

PMin P = PMin P ∪ Pβ∗
i (t∗, v j∗, R̃β∗

).

�
β
i (t, v j , R̃β) denote the maximum IRs covered by ai if he

patrols the region v j at period t . We implement the following
DP recurrence for ai :

�
β
i (t, v j , R̃β) = |R̃β

i (t, v j )|
+ max

v j � :t+d j j �< 8
δ (β+1)

�
β
i (t + d j j � + 1, v j �, R̃β\R̃β

i (t, v j )).

(9)

In Eq.(9), after covering the IRs R̃β
i (t, v j ) by patrolling

v j at period t , ai always searches for the next optimal
accessible region v j � within the βth shift, i.e., t + d j j � <
8
δ (β + 1). We have the following initial conditions for
Eq.(9): ∀ai , v j , R̃β , �

β
i ( 8

δ (β + 1), v j , R̃β) = |R̃β
i ( 8

δ (β +
1), v j )|. Finally, ai ’s optimal patrolling plan is returned by
maxβ∈{0,1,2} �

β
i (t∗, v j∗, R̃β), where

�
β
i (t∗, v j∗, R̃β) = max

8
δ β<t≤ 8

δ (β+1),v j∈V
�

β
i (t, v j , R̃β). (10)

The corresponding patrolling plan is denoted by
Pβ

i (t∗, v j∗, R̃β) and the covered IRs are denoted by
Rβ

i (t∗, v j∗, R̃β).
We refer to such a DP-based algorithm as the greedy

algorithm and present it in Algorithm 1. For each police ai ,
if he is assigned to the βth shift, he always find the optimal
patrol plan �

β
i (t∗, v j∗, R̃β) (step 5). To optimize the patrol

efficiency, he is always assigned to the shift where he can
satisfy the maximal IRs (steps 4∼7). Algorithm 1 returns
the number of police AMin P used for covering IRs and their
patrolling plan PMin P .

Theorem 2: For a MinP with n police officers, m regions,
T periods and l IRs, Algorithm 1 runs in time O(nm2T 2) and
uses at most O(ln l) police of the optimum.

B. Maximum PVR Subproblem

After determining the police AMin P used for MinP problem,
we can schedule the remaining police AMax P = A \ AMin P

for PVR maximization, which can be formulated by the
following IP:

max
∑

v j ∈V
∑

1≤t≤T zt
j q

t
j

s.t. Constraints (2) ∼ (4), (6). (11)

The objective (11) and constraints (2)∼(4), (6) have been
defined in the original CSP problem, where the available
police officers A are replaced by AMax P . In the following,
we first show the suboptimality of the “greedy” approach of
successively determining the most beneficial plan.

1) Suboptimality of the Greedy Approach: The greedy idea
proposed in MinP subproblem might be extended to the MaxP
subproblem: using dynamic programming to patrol the most
beneficial path with the maximal PVR for each police officer.
However, we use an example to show the greedy approach is
suboptimal.

Example 1: In Fig.3(a), there are two periods t1 and t2
and three regions v1, v2 and v3. Assume that it is feasible to
move between v1 and v2, v2 and v3, i.e., t2 − t1 > d12 and
t2−t1 >d23. Each period-region vertex vt j is associated with
a value indicating its VFoP, e.g., for the vertex v11, the value
9 indicates that at period t1, there are 9 units of VFoP at
the region v1. Assume that there are two police officers a1
and a2. In Fig.3(b), under the greedy approach, the patrolling
plan of a1 is (t1, v1) → (t2, v2) that achieves the largest
PVR, the patrolling path of a2 then is (t1, v3) → (t2, v3),
i.e., at the t1 period, a1 (resp. a2) is patrolling v1 (resp. v3),
and at the t2 period, a1 (resp. a2) is patrolling v2 (resp.v3).
The greedy approach achieves 24 units of PVR. However,
the optimal patrolling plans are (t1, v1) → (t2, v1) for a1 and
(t1, v3) → (t2, v2) for a2, which achieves 27 units of PVR.

From the above example, we can see that the greedy
algorithm can cause an arbitrarily large loss of PVR. Next,
by collaborating with the network flow technique, we propose
an optimal approach.

2) Network Flow-Based Optimal Approach: This optimal
approach includes two stages: 1) given that the police officers
have been assigned to each shift, we first propose the network
flow-based patrolling in each shift, and analyse some desirable
properties, and 2) based on these properties, we provide an
efficient algorithm to assign the police to shifts.

Network Flow-Based Patrolling in One Shift: We first pro-
vide an interpretation of MaxP problem in terms of a flow
network, which can be denoted by a weighted directed graph
G f =(V f , E f ). Each period-region pair (t, v j ) is denoted by
a vertex vt j ∈ V f , and a feasible movement from one vertex
vt j to another vertex vt � j � (i.e., t �−t > d j j �) is represented by
a direct edge in E f from vt j to vt � j � . Given two connected
vertices vt i and vt � j , we model the ‘cost’ between them by
the negation of the VFoP of the latter vertex vt � j . A minimum
cost flow is a maximum flow, such that the sum of its edges’
weights is the minimum.

Given that there are K β police officers assigned to the βth
shift, we construct a flow network s−s�(β, K β) as follows.

• Create a source vertex s and a sink vertex s�;
• Create K β vertices {s1, s2, . . . , sK β }, and an edge from s

to each si with the capacity equals to 1 and zero cost;
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Fig. 3. An example of network flow-based patrolling.

Algorithm 2 Network Flow-Based Patrolling for MaxP

Input : The number of police K β , VFoP Q j and Dm×m .
Output: Patrolling plans Pβ

Max P(K β)
1 Build a flow network s−s�(β, K β);
2 Using minimum cost flow algorithm [45] to compute the

K β vertex-disjoint patrolling plan Pβ
Max P(K β).

• For each period-region pair (t, v j ), create an in period-
region vertex v in

t j and an out period-region vertex vout
t j ,

and an edge from v in
t j to vout

t j with the capacity equals to
1 and zero cost;

• Create an edge from each vertex si to each in period-
region vertex v in

t j with the capacity equals to 1 and the
cost equals to the negation VFoP of the region v j at
period t ;

• Create an edge from out period-region vertex vout
t j to other

in period-region vertex v in
t � j � if t � − t− > d j j �, with the

capacity set to 1 and the cost set to the negation VFoP
of the region v j � at period t;

• Create an edge from each out period-region vertex vout
t j

to the sink vertex s� with the capacity equals to 1 and
zero cost.

Fig.3(c) is the corresponding flow network of the example
shown in Fig.3(a). The optimal flow with the maximal PVR
is highlighted in red.

Given the constructed s−s� flow network, a polynomial-time
scaling minimum cost flow algorithm [45] can be implemented
for the flow computation. Each vertex either has the one unit
capacity in-degree or one unit capacity out-degree, thus each
flow starting from source vertex s to the target vertex s�
must be vertex-disjoint. In a flow network, two paths with
the common start and end vertices that have no other vertices
in common are vertex-disjoint paths. Each flow then can be
regarded as a police’s patrolling plan. Finally, the network
flow-based patrolling approach is proposed in Algorithm 2.

3) Properties of Algorithm 2: We analyse the polynomial
time, optimal and submodular properties of Algorithm 2.

a) Polynomial time: For a MaxP with m regions, T
periods and K police officers, there are 2mT+K vertices and

m2T 2 edges in the constructed flow network s−s�. By using the
polynomial scaling flow network algorithm [45], Algorithm 2
runs in O(m2T 2).

b) Optimality: We prove that in the constructed flow
network s − s�, if the optimal patrolling solution is Popt ,
Algorithm 2 will return a maximum flow whose negation has
the same value as Popt ’s. This implies that the algorithm
always returns an optimal patrolling solution. Let pi =
{(t1

i , vt1
i
), . . . , (tT

i , vt T
i
)} denote a police ai ’s patrolling plan,

where each period-region tuple (t, vt ) indicates that ai is
patrolling the region vt at period t .

Definition 1 (Disjoint Patrolling Plans): Two
patrolling plans pi = {(t1

i , vt1
i
), . . . , (tT

i , vt T
i
)} and

p j = {(t1
j , vt1

j
), . . . , (tT

j , vt T
j
)} are disjoint iff �tl

i = tk
j :

vt l
i

= vt k
j
. A patrolling solution P = {p1, p2, . . . , pK } is

disjoint iff ∀pi , p j ∈ P , pi and p j are disjoint.
Let Popt = {popt

1 , popt
2 , . . . , popt

K } denote the optimal
patrolling solution of the K police officers. Let 	Popt denote
the PVR of Popt and 	 f denote the PVR returned by the
Algorithm 2, we will prove that 	 f have the same value with
that of Popt .

Theorem 3: 	 f returns the same value with 	Popt .
c) Monotone and submodular properties: We provide

another desirable property of Algorithm 2 that is useful for
assigning police to shift in Section 4.2.4 and for approximation
ratio analysis of the CSP in Section 4.3. Let 	 f denote the
PVR returned by Algorithm 2, we show that the objective
function 	 f satisfies monotone and submodular properties
with respect to the set of police A. Let U be a non-empty
finite set and f be a function f : 2U → R, where 2U

denotes the power set of U . The function f is monotone
if f (A) ≤ f (B) for all A ⊆ B ⊆ U and submodular if
f (A ∪ s)− f (A) ≥ f (B ∪ s)− f (B) for all A ⊆ B ⊆ U
and s ∈ U\B.

Lemma 1: The function 	 f is monotone and submodular
with respect to the set of police officers A.

4) Assignment of Police to Shifts: We have above addressed
the MaxP problem where the police officers have been
assigned to the shifts. There are three shifts and we need to
optimally assign the police AMax P to shifts, so that the total
PVR is maximized. We propose an iterative polynomial time
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Algorithm 3 Assignment of Police to Shifts
Input : The police officers AMax P

Output: Police assignment to shifts K β, β = 0, 1, 2.
1 Assigning AMax P to the shifts randomly, denoted the

assignment by K 0, K 1 and K 2;
2 while TRUE do
3 βin=arg maxβ=0,1,2 G f (β, K β);
4 βout =arg minβ=0,1,2 L f (β, K β);
5 if G f (βin, K βin ) > L f (βout , K βout ) then
6 K βin =K βin + 1 and K βout =K βout − 1;

7 else
8 Return FALSE.

algorithm. Given a shift β and the number of police officers
K β assigned, let 	 f (β, K β) denote the optimal PVR returned
by Algorithm 2. Let G f (β, K β)=	 f (β, K β+1)−	 f (β, K β)
denote the gain of PVR by adding one police officer to the shift
β and L f (β, K β)=	 f (β, K β)−	 f (β, K β−1) denote the loss
of PVR by removing one police officer from the shift β. The
optimal police assignment to shifts is shown in Algorithm 3.
In step 1, the police AMax P are randomly assigned to shifts.
In Steps 3∼6, a police officer is iteratively moved from one
shift to another with the aim of improving PVR. Steps 3 and
4 search the shift (βin) that has the highest gain and the shift
(βout ) that has the lowest loss, respectively. If the gain is larger,
Step 5 moves from one police officer from shift βout to βin to
improve PVR. This iteration proceeds until there is no such
beneficial movement (Step 2).

We show the convergence of Algorithm 3 and how fast it
converges to the optimal solution.

Theorem 4: Algorithm 3 takes at most O(|AMax P |) itera-
tions to converge to the optimal solution, where each iteration
includes polynomial time computations of Algorithm 2.

C. Approximation Ratio of CSP

In this section, we provide the approximation ratio
	app/	opt of the proposed decomposition method, where
	app and 	opt are PVRs returned by the proposed decom-
position method and the optimum of CSP. Before presenting
the approximation ratio result, we first provide a useful lemma
derived from Algorithm 2.

Lemma 2: For the MaxP subproblem, given two police sets
Ah and Al , where |Ah| = h, |Al | = l(≤ h), we have that
	 f (Al) ≥ l

h 	 f (Ah). 	 f (Ai ) indicates the PVR returned by
Algorithm 2 with police Ai , where |Ai | = i .

Theorem 5: Let α = |AMinP |
|A| denote the ratio of police used

in MinP subproblem,
	app
	opt

≥ 1 − α.

D. Improving PVR by Grafting

In this section, to further improve PVR, we propose a graft-
ing mechanism that integrates the two subproblems’ patrolling
plans. The motivation of plan grafting is that during MinP
patrolling, there might be free periods between responding to

Algorithm 4 MinP-MaxP Patrolling Plan Grafting

1 Initialize PG
i = ∅,∀ai ∈ AMin P ;

2 for ai ∈ AMin P do

3 for p j j �
i ∈ Pi do

4 if p j j �
i is a feasible MinP subplan then

5 Using Eq.(12) to compute p j j �,G
i ;

6 PG
i = PG

i ∪ p j j �,G
i ;

7 Return grafting plan PMax P = PMax P
⋃

ai∈AMinP
PG

i .

two consecutive IR. For example, a police officer is scheduled
to patrol regions v j and v j � consecutively at period 5 and 20,
and these 20 − 5 = 15 free periods during MinP patrolling
can be exploited to graft the MaxP patrolling plans.

Given a police officer ai ∈ AMin P , let Pi = {p j j �
i }1≤t j<t j �≤T

denote his patrolling plan. Each subplan p j j �
i = �t j , v j , t j �, v j � �

indicates that at period t j , ai is patrolling v j and moves to
patrol v j � at period t j � . The grafting mechanism works by two

steps: 1) identifying the feasible MinP subplan p j j �
i that has

enough free periods between t j and t j � ; and 2) optimizing the

MaxP plan to graft on p j j �
i .

Definition 2 (Feasible MinP Subplans): Given a police ai

that is used for MinP and his patrolling plan Pi , his subplan
p j j �

i = �t j , v j , t j �, v j � � is feasible for grafting MaxP plans iff
∃vu ∈ V , t j +d ju+du j � <t j � .

This feasible condition ensures that there must be enough
periods between t j and t j � such that ai can patrol from v j to
vu and return back to v j � before t j � .

Optimize the Grafting Plan of MaxP: For each feasible
MinP subplan p j j �

i = �t j , v j , t j � , v j � �, we wish to schedule ai

to patrol between periods t j and t j � optimally to maximize

PVR. Let 
i (t, vu, p j j �
i ) denote the PVR of the optimal

grafting plan if ai is patrolling vu at period t (t j < t < t j �).
We propose the following DP-based plan grafting:


i (t, vu , p j j �
i )

= max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

maxvω∈V \vu :t+duω+1+dω j �<t j � (1−zt
u)q

t
u

+
i (t+duω+1, vω, p j j �
i ), if t+1+du j � < t j � ;


i (t+1, vu, p j j �
i )+(1−zt

u)q
t
u, if t+1+du j � < t j � ;


i (t j �, v j �, p j j �
i )+(1−zt

u)q
t
u, if t+1+du j � = t j � .

(12)

The first two terms have the same definitions with Eq.(9),
where zt

u ∈ {0, 1} indicates that whether there is police
patrolling at the region vu at the period t (zt

u = 1), or not
(zt

u = 0). The third term means that if it is infeasible to
return back to v j � before t j � after one more period patrolling
at vu , ai should return back to v j � immediately. Finally, let

p j j �,G
i denote the optimal MaxP plan grafted on MinP subplan

p j j �
i and 
i (t j , v j , p j j �

i ) denote the PVR of p j j �,G
i . Based on

Eq.(12), we propose the MinP-MaxP plan grafting mechanism
in Algorithm 4.
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TABLE I

RUNTIME AND PVR ON THE NUMBER OF POLICE. N/A = RUNTIME EXCEEDED 500 SECONDS. TO MAKE THE TABLE CLEAR, WE OMIT THE STATISTICAL
ERRORS, AND EACH CELL IS STATISTICALLY SIGNIFICANT AT 95% CONFIDENCE LEVEL

Proposition 1: For a CSP with n police officers, m regions
and T periods, the running time of Algorithm 4 is O(nm2T 3).

V. EXPERIMENTAL EVALUATION

Experiment Setup: We conduct simulation experiments on
a real-world dataset of Foshan, a modern city in China. The
city is divided into grids, consisting of 20 × 15 regions, and
each day is discredized into 3 shifts, each includes 16 periods,
each period sustains 0.5 hour (i.e.,δ = 0.5).3 The distance
between any two adjacent regions is set to 1 period. The
dataset contains approximately 24,000 IRs of the year 2017,
including criminal, public security, dispute and other kinds
IRs. Threshold response time varies with the request type,
e.g., for criminal and public security requests, there must be
police patrolling at the location of the IRs, and for dispute
and other kinds of requests, the response time is restricted
within 1 period. Each IR contains the time, location and
type information. For each request type, the IR arrival of
each region follows an independent and identical Poisson
distribution. We generate request samples over one week.
Moreover, we use Baidu Map (https://map.baidu.com/) to
generate the average VFoP of each region each period over
one week, and for convenience, the VFoP is scaled in the
range [0, 1]. We verify the scalability and solution quality of
the proposed algorithm on these simulations. All computations
are performed on a 64-bit PC with a dual-core 3.60 GHz CPU
and 16 GB memory. All results are averaged over 40 instances.
Each record is statistically significant at 95% confidence level,
and for clarity, we omit the statistical error bars on the figures.

A. Tests of the Performance in the Small-Scale Scenarios

Comparing Algorithms: Let Dp-Nf denote our proposed
algorithm that decomposes the CSP into the MinP and MaxP
two sub-problems, and solves them by the dynamic program-
ming and network flow techniques, respectively. We compare
Dp-Nf with five benchmarks:

• Cpl, which solves the CSP by the optimal solver CPLEX
(version 12.6);

• Cpl-Cpl, which decomposes the CSP into MinP and
MaxP, and solves both of them by the CPLEX [3];

3In the appendix, we also test conduct the experiments with varying δ.

• Dp-Cpl, which decomposes the CSP into MinP and
MaxP, and solves the former by the dynamic program-
ming and the latter by the CPLEX;

• Greedy Local Search (GLS), which decomposes the CSP
into MinP and MaxP: in the MinP, each police patrols
the regions greedily by moving to the nearby regions
that can cover the maximum IRs and in the MaxP, each
police searches for the nearby regions with the maximum
VFoP [9], [17], [19];

• Abstraction and Division (AD), which divides the city
into 25 sub-divisions (each with 4×3 scale). The police
are allocated to sub-divisions proportionally to their
IRs. For each sub-division, three periods are abstracted
in one period, and the original CSP is solved by the
Cpl [15], [27].

The performance is measured by the solution quality in terms
of PVR and the runtime in seconds.

Results: Table I compares the runtime and PVR of algo-
rithms under various numbers of police. In Table I, we observe
that with the runtime cap of 500 seconds, the Cpl cannot scale-
up to the instances with 8 police, and Cpl-Cpl and Dp-Cpl can
not scale-up to the instances with 18 police. Dp-Nf, AD, and
GLS can return the solutions within one second for various
instance scales. The Cpl-Cpl and Dp-Cpl take almost the same
runtime, indicating that the MaxP subproblem is the bottleneck
for computation. On the other hand, in terms of PVR, we can
observe that 1) in the worst case where there are 6 police,
DP-Nf can achieve above 85% PVR relative to the optimal
solution Cpl, and 2) Dp-Nf achieves more PVR than AD and
GLS in small-scale scenarios.

Fig. 4a shows the Dp-Nf’s PVR relative to the optimum
Cpl with varying the parameter α (i.e., the percent of police
used in the MinP) in small-scale instances. Being consistent
with the theoretical approximation ratio 1-α, Dp-Nf performs
worse with the increase of α. On one hand, when α is small,
i.e., α = 0.5, our proposed algorithm can achieve above 90%
PVR relative to the optimum Cpl. On the other hand, in the
worst case where α = 0.9, i.e., 90% of police officers are used
to serve the IRs and the remained 10% of police officers are
used for PVR maximizing, Dp-Nf can still produce about 70%
PVR relative to the optimum Cpl. This can conclude that for
the instance where there are hundreds of police officers and
only a small percent of police officers are used to serve IRs,
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Fig. 4. (a) PVR relative to optimum on α. (b) Robustness on PVR estimation uncertainty. (c) The advantage of grafting on samples.

TABLE II

THE PVR ON LARGE SCALE CSPS. EACH CELL IS STATISTICALLY SIGNIFICANT AT 95% CONFIDENCE LEVEL

our proposed algorithm can achieve a high percent of PVR
relative to the optimal solution.

B. Tests of the Performance in the Large-Scale Scenarios

In the large scale instances, Cpl, Cpl-Cpl and Dp-Cpl cannot
scale-up, we only validate the PVR performance of Dp-Nf with
that of AD and GLS.

Results: Table II shows the PVR under various numbers of
police under the normal scenario (i.e., the city area is divided
into 20×15 regions) and the fine-grained scenario (i.e., the city
area is divided into 40×30 regions). We first generate IRs and
VFoP in the fine-grained scenario. For each 2 × 2 regions in
the fine-grained scenario, we integrate them as a single region
in the normal scenario. For such an integrated region, its IRs
are the union of IRs of its sub-regions in the fine-grained
scenario and the VFoP is the sum of VFoP associated with its
sub-regions in the fine-grained scenario. The algorithm Dp-
Nf (AD and GLS respectively) in the fine-grained scenario
is denoted by Dp-Nf (Fine-Grained)(AD(Fine-Grained) and
GLS(Fine-Grained) respectively). From Table II, we observe
that 1) Dp-Nf produces the highest PVR, which is followed
by AD and GLS. 2) AD produces much larger PVR than
GLS. The potential reason that Dp-Nf is prior than AD is
that the police officer are restricted to specific regions, which
can degrade the PVR if he can patrol further to other regions.
On the other hand, the potential reason that AD performs better
than GLS is that each police is only allowed to serve one shift,
and in the optimal solution, the police will not patrol along
a long path. This kind of patrolling policy can ensure AD
not lose too much PVR by only patrolling at his 4×3 sub-
division. 3) In the fine-grained scenario, the police will lose
some PVR. This can be explained by the fact that in the fine-

grained scenario, each region has the smaller VFoP than that
in the normal scenario.

C. Robustness

In the real-world, the estimation of VFoP value may not be
perfect. Therefore, we analyze the performance of our Dp-Nr
under the existence of noise of VFoP. Let qt

j be the estimated
VFoP derived from the historically data, t

j is the real value,
which is drawn uniformly within q̃ t

j ∈ qt
j ·[1−η, 1+η]. We use

the estimated VFoP qt
j to allocate police officers, and use q̃ t

j
to compute real VFoP. We compare total VFoP of GLS, AD
and Dp-Nr under the uncertainty degree η = 0.2. The results
are shown in Fig. 4b, from which we observe that Dp-Nr can
always produce the largest VFoP. This observation shows the
strong robustness of our proposed algorithm.

D. The Advantage of Grafting

Let Dp-Nf-Gr denote the algorithm that integrates the
grafting mechanism with Dp-Nf. Fig. 4c shows the advantage
of Dp-Nf-Gr with varying sampling days Dsample. When
Dsample becomes larger, the advantage of Dp-Nf-Gr over Dp-
Nf on improving PVR becomes more significant. This can be
explained by the fact that when Dsample is large, say 7 days,
there are many police officers needed in MinP for covering
IRs, and there will be more feasible MinP sub-plans. By grat-
ing the MaxP patrolling solution, the Dp-Nf-Gr can well
exploit these free periods of the sub-plans to improve PVR.

E. Case Study

In this section, we provide an intuitive example about how
our algorithm behaves on the real-world map. This case study
includes 5 police officers, and a few number of IRs such that
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Fig. 5. Qualitative comparisons of police patrolling path.

these 5 police officers can cover. Fig. 5 shows the patrolling
path of these 5 police officers, from which we notice that 1)
the police officers can coordinate well with each other to patrol
different regions; 2) each police officer always patrols around
the regions where there are IRs, and 3) when there are no inci-
dents, the police can patrol around further to improve the city
PVR. For example, for the most right police officer, after han-
dling the IR at the East International Machinery Square, she
moves to patrol the Pingzhou Park where there is a large VFoP.

VI. CONCLUSION AND FUTURE WORK

This paper studies the city-scale patrolling (CSP) problem
with fine-grained periods, hundreds of regions, and hundreds
of police officers. The NP-hardness complexity of CSP is ana-
lyzed. A decomposition technique is proposed to approximate
CSP. A grating mechanism is proposed to further improve
patrolling efficiency. Experimental results on a real dataset
shows that the proposed algorithm scales well to the city-
scale problem instances and achieves higher PVR than other
benchmark algorithms.

For the future work, we find it is an interesting topic to study
the stochastic patrol planning problem where the arrival of IRs,
volume flow of population and traveling time are uncertain.
We would like to integrate the offline learning and online
planning for such stochastic variant. On the offline learning,
we use the historical data (e.g., IRs occurrence and travel time
among regions) to model city patrol scenarios. On the online
planning, we can schedule the police officers to patrol regions
based on the real-time traffic condition and the offline long-
term estimated model.
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