Appendix

A Proof for Lemma 1

Lemma 1. A coverage vector $\mathbf{c}(t)$ is locally optimal at t_0 if and only if it satisfies $\sum_{i \in I} c_i(t_0) = m$.

Proof. The 'if' direction is shown by Kiekintveld et al[Kiekintveld *et al.*, 2009]. For the 'only if' direction, assume that there exists a coverage vector $\mathbf{c}(t)$ which is locally optimal at t_0 but does not satisfy the equation, i.e., $\sum_{i \in I} c_i(t_0) < m$. Since $m \leq n$, and $\forall i \in \mathcal{T}, v_i(t) > 0$, we have $\forall i \in I, c_i(t_0) < 1$. Thus the defender can always decrease coverage on targets $j \in \mathcal{T} \setminus I$ and increase coverage on targets $i \in I$ to decrease the optimal attacker utility until $\sum_{i \in I} c_i(t_0) = m$. (During this process, the size of I may increase).

B Proof for Theorem 2

Theorem 2. COCO computes the optimal coverage vector.

Proof. We show that in the last iteration of a time period including time point t_0 , the set I is an attack set at t_0 . Thus Theorem 2 is proved given Lemma 1. Let $\mathbf{c}(t_0) = \langle c_i(t_0) \rangle$ represent the coverages computed in the last iteration and let I be the corresponding set of targets. The previous iterations (Lines 8, 10) ensure that $\forall j \in \mathcal{T} \setminus I, c_j(t_0) = 0$. We now show that $v_i(t_0)(1 - c_i(t_0)) > v_j(t_0)(\forall i \in I)$

We now show that $v_i(t_0)(1 - c_i(t_0)) > v_j(t_0)(\forall i \in I, \forall j \in T \setminus I)$. Target j is not in set I only if there exists an iteration in which Line 2 leads to a coverage vector $\mathbf{c}'(t_0) = \langle c'_i(t_0), \forall i \in I' \rangle$ with $c'_j(t_0) < 0$. Here I' is the attack set in this iteration. Since each iteration does not add targets into the attack set in the previous iteration, we have that I is a subset of I'. Line 2 ensures that

1.
$$\sum_{i \in I} c_i(t_0) = \sum_{i \in I'} c'_i(t_0) = m,$$

2.
$$v_{i_1}(t_0)(1 - c_{i_1}(t_0)) = v_{i_2}(t_0)(1 - c_{i_2}(t_0)), \forall i_1, i_2 \in I,$$

3.
$$v_{i_1}(t_0)(1 - c'_{i_1}(t_0)) = v_{i_2}(t_0)(1 - c'_{i_2}(t_0)), \forall i_1, i_2 \in I'$$

Given that $\forall i \in I, c_i(t_0) \ge 0$ and $c'_j(t_0) < 0$, we have that $\forall i \in I, c_i(t_0) < c'_i(t_0)$, thus $v_i(t_0)(1 - c_i(t_0)) > v_i(t_0)(1 - c'_i(t_0)) = v_j(t_0)(1 - c'_j(t_0)) > v_j(t_0)$. The last inequality is due to the fact that $c'_i(t_0) < 0$.

C Proof for Proposition 3

Proposition 3. For $t \in [\theta_k, \theta_{k+1}]$, $\mathbf{c}(t)$ can be implemented by sampling from pure strategies in which resources are only transferred from targets $u \in \Lambda$ to targets $v \in V$, and each resource is transferred for at most once..

Proof. Assume that **x** is a mixed defender strategy corresponding to coverage vector $\mathbf{c}(t)$. Given a time point t_0 , let ϕ represent the set of pure strategies in which a resource is transferred from a target $v \in V$ to other targets $i \in \mathcal{T}$ at t_0 ; let ψ represent the set of pure strategies in which a resource is transferred from a target $i \in \mathcal{T}$ to a target $u \in \Lambda$ at t_0 . We show that if in \mathbf{x} , $\exists S \in \phi$ or $S \in \psi$ with $x_S > 0$, then we can construct another mixed strategy \mathbf{x}' corresponding to $\mathbf{c}(t)$ based on \mathbf{x} , in which $\forall S \in \phi$ or $S \in \psi$, $x'_S = 0$. In

other words, the support pure strategies of \mathbf{x}' only transfer resources from targets $u \in \Lambda$ to targets $v \in V$ at t_0 .

We first consider pure strategies $S \in \phi$ with $x_S > 0$. $\forall S \in \phi$, we have

$$\lim_{t \to t_0^-} q_v(S, t_0) = 1; \lim_{t \to t_0^+} q_v(S, t_0) = 0.$$
(20)

Since the coverage function of target v monotonically increases during (θ_k, θ_{k+1}) , we have

$$\begin{aligned} c'_{v}(t_{0}) &= \lim_{\Delta t \to 0} \frac{c_{v}(t_{0} + \Delta t) - c_{v}(t_{0} - \Delta t)}{2 \cdot \Delta t} \\ &= \lim_{\Delta t \to 0} \frac{\int_{S \in \mathcal{S}} x_{S} q_{v}(S, t_{0} + \Delta t) - \int_{S \in \mathcal{S}} x_{S} q_{v}(S, t_{0} - \Delta t)}{2 \cdot \Delta t} \\ &= \lim_{\Delta t \to 0} \frac{\int_{S \in \mathcal{S}/\phi} x_{S} f_{1} + \int_{S \in \phi} x_{S} \cdot 0 - \int_{S \in \mathcal{S}/\phi} x_{S} f_{2} - \int_{S \in \phi} x_{S} \cdot 1}{2 \cdot \Delta t} \\ &(f_{1} = q_{v}(S, t_{0} + \Delta t), f_{2} = q_{v}(S, t_{0} - \Delta t)) \\ &= \lim_{\Delta t \to 0} \frac{\int_{S \in \mathcal{S}/\phi} x_{S} f_{1} - \int_{S \in \mathcal{S}/\phi} x_{S} f_{2} - \int_{S \in \phi} x_{S}}{2 \cdot \Delta t} \\ &\geq 0. \end{aligned}$$

$$(21)$$

Thus we have $\int_{S \in S/\phi} x_S q_v(S, t_0 + \Delta t) - \int_{S \in S/\phi} x_S q_v(S, t_0 - \Delta t) > 0$. Given that $q_i(S, t)$ are piecewise constant functions with values in $\{0, 1\}$, there must exist pure strategies S with $x_S > 0$ in which

$$\lim_{t \to t_0^-} q_v(S, t_0) = 0; \lim_{t \to t_0^+} q_v(S, t_0) = 1.$$
(22)

Let φ be the set of all such strategies. In these strategies, a resource is transferred from some target $j \in \mathcal{T}$ to target v at time t_0 . For other strategies $S \notin \phi$ and $S \notin \varphi$, $q_v(S, t)$ is constant over $(t_0 - \Delta t, t_0 + \Delta t)$. Thus we have

$$c'_{v}(t_{0}) = \lim_{\Delta t \to 0} \frac{\int_{S \in \varphi} x_{S} - \int_{S \in \phi} x_{S}}{2 \cdot \Delta t} \ge 0.$$
 (23)

It indicates that

$$\int_{S\in\varphi} x_S - \int_{S\in\phi} x_S \ge 0.$$
 (24)

Since our goal is to construct a mixed strategy \mathbf{x}' corresponding to $\mathbf{c}(t)$ in which no pure strategies in ϕ or ψ is used, we begin with constructing a mixed strategy \mathbf{x}^1 in which no pure strategies in ϕ is used. First, choose a subset $\varphi' \subseteq \varphi$ such that

$$\int_{S\in\varphi'} y_S = \int_{S\in\phi} x_S,\tag{25}$$

$$0 \le y_S \le x_S, \forall S \in \varphi'. \tag{26}$$

Given Eq. 24, there must exist a set φ' which leads to a feasible solution to the above program. Let ϕ^i be a subset of ϕ in which a resource is transferred from target v to target i at time t_0 . Thus

$$\int_{S \in \phi} x_S = \sum_{i \in \mathcal{T}} \int_{S \in \phi^i} x_S.$$
(27)

Here are the steps of constructing x^1 .

- 1. $\forall S \in \phi$ with $x_S > 0$, convert S to S' by deleting the transfer made from target v at time t_0 . Set $x_{S'}^1 = x_S$.
- 2. $\forall i \in \mathcal{T}$, choose a subset $\varphi_i \subseteq \varphi'$ such that

$$\int_{S\in\varphi_i} z_S^{\varphi_i} = \int_{S\in\phi^i} x_S,\tag{28}$$

$$0 \le z_S^{\varphi_i} \le y_S, \forall S \in \varphi_i, \tag{29}$$

$$\sum_{i\in\mathcal{T}} z_S^{\varphi_i} = y_S, \forall S \in \varphi'.$$
(30)

Given Eqs. 25 and 27, there must exist a set φ_i which leads to a feasible solution to the above program. $\forall S \in \varphi_i$, convert S to S' by changing the destination of the transfer made at time t_0 from target v to target i. Set $x_{S'}^{S_i} = z_S^{\varphi_i}$.

(The intuition behind the first two steps is that, if a resource is transferred from target $v \in V$ to target $i \in \mathcal{T}$ at time t_0 with a probability of p_1 while a resource is transferred from target $j \in \mathcal{T}$ to target $v \in V$ at time t_0 with a probability of p_2 , then we can get rid of the transfer made from target v by transferring a resource directly from target j to target i instead of target v with a probability of p_1 . This is implementable because $p_2 \geq p_1$ given Eq. 24).

- 3. For other pure strategies $S \in \mathcal{S} \setminus (\phi \cup \varphi')$, set $x_S^1 = x_S$.
- 4. Repeat steps 1-3 until no resource is transferred from targets $v \in V$ to other targets at t_0 .

After the steps, the probability that a target is protected at time t_0 given \mathbf{x}^1 is the same as it is given \mathbf{x} . Based on \mathbf{x}^1 , we can now construct the mixed strategy \mathbf{x}' corresponding to $\mathbf{c}(t)$ in which no pure strategies in ϕ or ψ is used. Note that no pure strategies in ϕ is used to implement \mathbf{x}^1 . We now consider strategies $S \in \psi$ with $x_S^1 > 0$. Given that $\forall u \in \Lambda, c_u(t)$ monotonically decreases during (θ_k, θ_{k+1}) , there must exist pure strategies S with $x_S^1 > 0$, in which a resource is transferred from target u to other targets. \mathbf{x}' can be constructed in similar steps as is shown above. Thus no pure strategies in ϕ or ψ is used to implement \mathbf{x}' , while \mathbf{x}' still corresponds to $\mathbf{c}(t)$.

Based on the above proof, a resource will not be transferred from target $v \in V$ to other targets during (θ_k, θ_{k+1}) . Thus a resource is transferred at most once in this time period. \Box

D Proof for Lemma 5

Lemma 5. If $|\Lambda| > 2$ and |V| > 2, there exists feasible Z((u, v), t) satisfying $\lim_{\Delta t \to 0} \frac{Z((u, v), t + \Delta t) - Z((u, v), t)}{\Delta t} > 0, \forall u, \forall v, \forall t \in [\theta_k, \theta_{k+1}].$

Proof. To prove Lemma 5 is to prove that if we change the ' \geq ' in Eq. 11 to '>', an LP consisting of Eqs. 8 - 11 has feasible solutions. We prove it by constructing an equivalent LP and showing that the constructed LP has feasible solutions. Given Eq. 12, for any time point $t \in [\theta_k, \theta_{k+1}]$, we can change the variables in Eqs. 8 - 11 from Z((u, v), t) to

 $z_{uv}^i(t)$. Thus we get the following LP'.

$$LP': \sum_{v \in V} z_{uv}^u(t) = 1, \forall u \in \Lambda$$
(31)

$$\sum_{u \in \Lambda} z_{uv}^v(t) = 1, \forall v \in V$$
(32)

$$\sum_{v \in V} z_{uv}^i(t) = 0, \forall i \in \mathcal{T} \setminus u, \forall u \in \Lambda$$
(33)

$$\sum_{v \in \Lambda} z_{uv}^i(t) = 0, \forall i \in \mathcal{T} \setminus v, \forall v \in V$$
(34)

Eqs. 10 and 11, change ' \geq ' in Eq. 11 to '>'. (35)

Based on Eq. 12, Eqs. 31 - 34 lead to Z((u, v), t) satisfying Eqs. 8 - 9. Eqs. 10 and 11 naturally have variables $z_{uv}^i(t)$ when we replace Z((u, v), t) with the right side of Eq. 12. Thus LP' is equivalent to Eqs. 8 - 11.

The number of variables in LP' is $nv = |\Lambda| \cdot |V| \cdot |\Lambda + V|$, while the number of functions in LP' is $nf = 2|\Lambda| + 2|V| + 2|\Lambda| * |V|$. If $|\Lambda| > 2$ and |V| > 2, then nv > nf, thus LP'has a feasible solution.

E Proof for Proposition 4

Proposition 4. There exist parameter functions which lead to a feasible expression of Z((u, v), t) satisfying that each $z_{uv}^i(t)$ is piecewise constant during $[\theta_k, \theta_{k+1}]$.

Proof. If $|\Lambda| \leq 2$ or $|V| \leq 2$, based on Eqs. 8 and 9, Z((u, v), t) has a unique value at any $t \in [\theta_k, \theta_{k+1}]$ and each $z_{uv}^i(t)$ is constant over $[\theta_k, \theta_{k+1}]$. If $|\Lambda| > 2$ and |V| > 2, let Z((u, v), t) be an expression based on parameter functions $z_{uv}^i(t_0)$, which are solutions to LP' when $t = t_0$. We now show that such Z((u, v), t) satisfies Eqs. 8 - 11 not only at t_0 , but during a time period around t_0 . Note that Eqs. 31 - 34 ensures Z((u, v), t) to satisfy Eqs. 8 - 9 for all $t \in [\theta_k, \theta_{k+1}]$. In addition, given the form of coverage functions (Line 2 in Algorithm 1), Z((u, v), t) is a quotient of polynomial functions. The sign of $\frac{dZ((u,v),t)}{dt}$ does not change continuously. Given that $\frac{dZ((u,v),t)}{dt} > 0$ at t_0 and $Z((u,v),t_0) \ge 0$, we have that Z((u,v),t) > 0 in a time period after t_0 . Therefore, Z((u,v),t) based on constant parameter functions $z_{uv}^i(t_0)$ satisfies Eqs. 8 - 11 in a time period around t_0 , which indicates that piecewise constant parameter functions can lead to feasible expression of Z((u, v), t) for $t \in [\theta_k, \theta_{k+1}]$.

F Proof for Theorem 6

Theorem 6. Algorithm 2 computes a feasible expression of $Z((u, v), t), \forall t \in [\theta_k, \theta_{k+1}]$ after finite loops.

Proof. First, based on Line 3 and Line 9 in Algorithm 2, the resulted Z((u, v), t) is feasible, i.e., satisfying Eqs. 8 - 10, for all $t \in [\theta_k, \theta_{k+1}]$. Given that the constraint of Eq. 11 is set as strict '>', we have $t_m > t_0$ in each round. Thus the iteration terminates after finite loops.

G Proof for Lemma 9

Lemma 9. Assume that transfer time between any target pair d_{ij} is multiplier of δ . If \mathbf{x} is an equilibrium strategy of G_d , it is an equilibrium strategy of G_b .

Proof. Note that this does not apply directly from Lemma 8, since the strategy space of G_d is a subset of the strategy space of G_b . We prove it by showing that there must exist an equilibrium strategy of G_b that can be mapped to an equilibrium of G_d .

We first define the following map Φ that maps each pure strategy S in G_b to another pure strategy S': for each resource transfer in S, we adjust its starting time from t to $r\delta$, where $t \in (r\delta, (r+1)\delta)$ and $r \in \mathbb{N}$. Furthermore, we map a mixed strategy \mathbf{x} to another one \mathbf{x}' , such that if \mathbf{x} uses pure strategy S with probability x_S , then \mathbf{x}' uses S' with a probability of $x'_{S'} = \int_S x_S I(\Phi(S) = S')$, where $I(\Phi(S) = S')$ indicates whether S can be mapped to S' by Φ . Thus we obtain \mathbf{x}' where all resource transfers start at $r\delta$, $r \in \mathbb{N}$. Note that \mathbf{x}' is also a mixed strategy of G_d .

Next, we show that if x is an equilibrium strategy of G_b , \mathbf{x}' is an equilibrium strategy of G_b and G_d . Note that the defender will not be better off in G_d than G_b since her strategy space in G_d is a subset of that in G_b . Thus we only need to show that \mathbf{x}' is an equilibrium strategy of G_b , then it follows readily that \mathbf{x}' is also an equilibrium strategy of G_d .

Since **x** is the equilibrium strategy of G_b , we have $U_d^{G_b}(\mathbf{x}) \ge U_d^{G_b}(\mathbf{x}')$. We now show that $U_d^{G_b}(\mathbf{x}) \le U_d^{G_b}(\mathbf{x}')$, thus $U_d^{G_b}(\mathbf{x}) = U_d^{G_b}(\mathbf{x}')$, and \mathbf{x}' is the equilibrium strategy of G_b . Let $\mathbf{c} = \langle c_i(t) \rangle$ and $\mathbf{c}' = \langle c_i'(t) \rangle$ represent the coverage vectors corresponding to **x** and **x'** respectively. We show that, within time interval $[r\delta, (r+1)\delta), r \in \mathbb{N}$, the minimum coverage for a target in **c** is no larger than that for this target in **c'**. Since the players' payoffs are determined by minimum coverages in the time intervals (as the value functions are constant over each time interval), it follows readily that $U_d^{G_b}(\mathbf{x}) \le U_d^{G_b}(\mathbf{x}')$. Given **c** and **c'**, we have

$$\begin{split} & \min_{t \in [r\delta, (r+1)\delta)} c_i(t) \\ &= \min_{t \in [r\delta, (r+1)\delta)} \int_S x_S \cdot q_i(S, t) \\ &= \min_{t \in [r\delta, (r+1)\delta)} \left(c_i(r\delta) + \int_S x_S \cdot \left(q_i(S, t) - q_i(S, r\delta) \right) \right) \\ &= \min_{t \in [r\delta, (r+1)\delta)} \left(c_i(r\delta) + \int_{S: \text{ a transfer to } i \text{ ends in } (r\delta, t] \text{ by } S} x_S - \int_{S: \text{ a transfer away from } i \text{ starts in } (r\delta, t] \text{ by } S} x_S \right) \\ &\leq \min_{t \in [r\delta, (r+1)\delta)} \left(c_i(r\delta) + \int_{S: \text{ a transfer to } i \text{ ends in } (r\delta, (r+1)\delta) \text{ by } S} x_S - \int_{S: \text{ a transfer away from } i \text{ starts in } (r\delta, t] \text{ by } S} x_S \right) \end{split}$$

$$= \min_{t \in [r\delta, (r+1)\delta)} \left(c'_i(r\delta) - \int_{S: \text{ a transfer away from } i \text{ starts in } (r\delta, t] \text{ by } S} x_S \right)$$
$$= \min_{t \in [r\delta, (r+1)\delta)} c'_i(t)$$

The last two equalities hold since all transfers ending (respectively, starting) in $(r\delta, (r+1)\delta)$ in **x** ends (respectively, starts) at $r\delta$ in **x**'.

H Proof for Theorem 10

Theorem 10. Let \mathbf{x}' be an equilibrium strategy of G_d and \mathbf{x} be an equilibrium strategy of G, we have

$$U_d^G(\mathbf{x}') - U_d^G(\mathbf{x}) \ge -\epsilon,$$

where $U_d^G(\mathbf{x}')$ is the defender utility in G if the defender plays \mathbf{x}' and the attacker responds the best, while $U_d^G(\mathbf{x})$ is the optimal defender utility in G.

$$\begin{split} & U_d^G(\mathbf{x}') - U_d^G(\mathbf{x}) \\ &= [U_d^G(\mathbf{x}') - U_d^{G_b}(\mathbf{x}')] + [U_d^{G_b}(\mathbf{x}') - U_d^{G_b}(\mathbf{x})] + \\ & [U_d^{G_b}(\mathbf{x}) - U_d^G(\mathbf{x})] \\ &\ge [U_d^G(\mathbf{x}') - U_d^{G_b}(\mathbf{x}')] + [U_d^{G_b}(\mathbf{x}) - U_d^G(\mathbf{x})] \\ &\ge - |U_d^G(\mathbf{x}') - U_d^{G_b}(\mathbf{x}')| - |U_d^G(\mathbf{x}) - U_d^{G_b}(\mathbf{x})| \end{split}$$

where the first inequality is due to $U_d^{G_b}(\mathbf{x}') - U_d^{G_b}(\mathbf{x}) \ge 0$ since \mathbf{x}' is a better strategy than \mathbf{x} for G_d , hence G_b (Lemma 8). Given that \mathbf{x}' is the equilibrium strategy of G_d , the corresponding coverage functions are piecewise constant in any time interval $[t_{k-1}, t_k], \forall k = 1, \ldots, |\zeta|$. Thus the players' payoffs are determined by the maximum value of the value functions of targets. Given that the value of value functions in G_b in a time interval is equal to the maximum value of the corresponding value functions in G in this time interval (Eq. 14), we have $U_d^G(\mathbf{x}') = U_d^{G_b}(\mathbf{x}')$. Since $v_i(t)$ differs from $v_i'(t)$ by at most ϵ for any i, t, we have $U_d^G(\mathbf{x}) - U_d^{G_b}(\mathbf{x}) \le \epsilon$. Therefore,

$$U_d^G(\mathbf{x}') - U_d^G(\mathbf{x}) \ge 0 - \epsilon = -\epsilon.$$
(36)

I Proof for Theorem 11

Theorem 11. A mixed strategy of G_d is an *m*-unit fractional flow, and vise versa

Proof. It is straightforward that a mixed strategy of G_d is an m-unit fractional flow. The other direction is due to the following conclusion in graph theory: in a directed graph with integer capacities, the vertices of the polytope of m-unit fractional flows are precisely all the m-unit integer flows. Therefore, any m-unit fractional flow can be decomposed as a convex combination (thus a distribution) over 0-1 integer flows (i.e., pure strategies) in our case.