
Appendix
A Proof for Lemma 1
Lemma 1. A coverage vector c(t) is locally optimal at t0 if
and only if it satisfies

∑
i∈I ci(t0) = m.

Proof. The ‘if’ direction is shown by Kiekintveld et al[Kiek-
intveld et al., 2009]. For the ‘only if’ direction, assume that
there exists a coverage vector c(t) which is locally optimal
at t0 but does not satisfy the equation, i.e.,

∑
i∈I ci(t0) <

m. Since m ≤ n, and ∀i ∈ T , vi(t) > 0, we have
∀i ∈ I, ci(t0) < 1. Thus the defender can always decrease
coverage on targets j ∈ T \ I and increase coverage on
targets i ∈ I to decrease the optimal attacker utility until∑
i∈I ci(t0) = m. (During this process, the size of I may

increase).

B Proof for Theorem 2
Theorem 2. COCO computes the optimal coverage vector.

Proof. We show that in the last iteration of a time period in-
cluding time point t0, the set I is an attack set at t0. Thus
Theorem 2 is proved given Lemma 1. Let c(t0) = 〈ci(t0)〉
represent the coverages computed in the last iteration and let
I be the corresponding set of targets. The previous iterations
(Lines 8, 10) ensure that ∀j ∈ T \ I, cj(t0) = 0.

We now show that vi(t0)(1 − ci(t0)) > vj(t0)(∀i ∈
I, ∀j ∈ T \ I). Target j is not in set I only if there ex-
ists an iteration in which Line 2 leads to a coverage vector
c′(t0) = 〈c′i(t0),∀i ∈ I ′〉 with c′j(t0) < 0. Here I ′ is the
attack set in this iteration. Since each iteration does not add
targets into the attack set in the previous iteration, we have
that I is a subset of I ′. Line 2 ensures that

1.
∑
i∈I ci(t0) =

∑
i∈I′ c

′
i(t0) = m,

2. vi1(t0)(1− ci1(t0)) = vi2(t0)(1−ci2(t0)),∀i1, i2 ∈ I ,

3. vi1(t0)(1− c′i1(t0)) = vi2(t0)(1−c′i2(t0)),∀i1, i2 ∈ I ′.
Given that ∀i ∈ I, ci(t0) ≥ 0 and c′j(t0) < 0, we have that
∀i ∈ I , ci(t0) < c′i(t0), thus vi(t0)(1− ci(t0)) > vi(t0)(1−
c′i(t0)) = vj(t0)(1− c′j(t0)) > vj(t0). The last inequality is
due to the fact that c′j(t0) < 0.

C Proof for Proposition 3
Proposition 3. For t ∈ [θk, θk+1], c(t) can be implemented
by sampling from pure strategies in which resources are only
transferred from targets u ∈ Λ to targets v ∈ V , and each
resource is transferred for at most once..

Proof. Assume that x is a mixed defender strategy corre-
sponding to coverage vector c(t). Given a time point t0, let
φ represent the set of pure strategies in which a resource is
transferred from a target v ∈ V to other targets i ∈ T at t0;
let ψ represent the set of pure strategies in which a resource
is transferred from a target i ∈ T to a target u ∈ Λ at t0.
We show that if in x, ∃S ∈ φ or S ∈ ψ with xS > 0, then
we can construct another mixed strategy x′ corresponding to
c(t) based on x, in which ∀S ∈ φ or S ∈ ψ, x′S = 0. In

other words, the support pure strategies of x′ only transfer
resources from targets u ∈ Λ to targets v ∈ V at t0.

We first consider pure strategies S ∈ φ with xS > 0. ∀S ∈
φ, we have

lim
t→t−0

qv(S, t0) = 1; lim
t→t+0

qv(S, t0) = 0. (20)

Since the coverage function of target v monotonically in-
creases during (θk, θk+1), we have

c′v(t0) = lim
∆t→0

cv(t0 + ∆t)− cv(t0 −∆t)

2 ·∆t

= lim
∆t→0

∫
S∈S xSqv(S, t0 + ∆t)−

∫
S∈S xSqv(S, t0 −∆t)

2 ·∆t

= lim
∆t→0

∫
S∈S/φ xSf1 +

∫
S∈φxS · 0−

∫
S∈S/φ xSf2 −

∫
S∈φ xS · 1

2 ·∆t
(f1 = qv(S, t0 + ∆t), f2 = qv(S, t0 −∆t))

= lim
∆t→0

∫
S∈S/φ xSf1 −

∫
S∈S/φ xSf2 −

∫
S∈φ xS

2 ·∆t
≥ 0.

(21)

Thus we have
∫
S∈S/φ xSqv(S, t0 + ∆t) −∫

S∈S/φ xSqv(S, t0 − ∆t) > 0. Given that qi(S, t) are
piecewise constant functions with values in {0, 1}, there
must exist pure strategies S with xS > 0 in which

lim
t→t−0

qv(S, t0) = 0; lim
t→t+0

qv(S, t0) = 1. (22)

Let ϕ be the set of all such strategies. In these strategies, a
resource is transferred from some target j ∈ T to target v at
time t0. For other strategies S /∈ φ and S /∈ ϕ, qv(S, t) is
constant over (t0 −∆t, t0 + ∆t). Thus we have

c′v(t0) = lim
∆t→0

∫
S∈ϕ xS −

∫
S∈φ xS

2 ·∆t
≥ 0. (23)

It indicates that ∫
S∈ϕ

xS −
∫
S∈φ

xS ≥ 0. (24)

Since our goal is to construct a mixed strategy x′ corre-
sponding to c(t) in which no pure strategies in φ or ψ is used,
we begin with constructing a mixed strategy x1 in which no
pure strategies in φ is used. First, choose a subset ϕ′ ⊆ ϕ
such that ∫

S∈ϕ′
yS =

∫
S∈φ

xS , (25)

0 ≤ yS ≤ xS ,∀S ∈ ϕ′. (26)

Given Eq. 24, there must exist a set ϕ′ which leads to a fea-
sible solution to the above program. Let φi be a subset of φ
in which a resource is transferred from target v to target i at
time t0. Thus ∫

S∈φ
xS =

∑
i∈T

∫
S∈φi

xS . (27)

Here are the steps of constructing x1.



1. ∀S ∈ φ with xS > 0, convert S to S′ by deleting the
transfer made from target v at time t0. Set x1

S′ = xS .

2. ∀i ∈ T , choose a subset ϕi ⊆ ϕ′ such that∫
S∈ϕi

zϕi

S =

∫
S∈φi

xS , (28)

0 ≤ zϕi

S ≤ yS ,∀S ∈ ϕi, (29)∑
i∈T

zϕi

S = yS ,∀S ∈ ϕ′. (30)

Given Eqs. 25 and 27, there must exist a set ϕi which
leads to a feasible solution to the above program. ∀S ∈
ϕi, convert S to S′ by changing the destination of the
transfer made at time t0 from target v to target i. Set
x1
S′ = zϕi

S .
(The intuition behind the first two steps is that, if a re-
source is transferred from target v ∈ V to target i ∈ T
at time t0 with a probability of p1 while a resource is
transferred from target j ∈ T to target v ∈ V at time t0
with a probability of p2, then we can get rid of the trans-
fer made from target v by transferring a resource directly
from target j to target i instead of target v with a prob-
ability of p1. This is implementable because p2 ≥ p1

given Eq. 24).

3. For other pure strategies S ∈ S \ (φ∪ϕ′), set x1
S = xS .

4. Repeat steps 1-3 until no resource is transferred from
targets v ∈ V to other targets at t0.

After the steps, the probability that a target is protected at
time t0 given x1 is the same as it is given x. Based on x1,
we can now construct the mixed strategy x′ corresponding to
c(t) in which no pure strategies in φ or ψ is used. Note that
no pure strategies in φ is used to implement x1. We now con-
sider strategies S ∈ ψ with x1

S > 0. Given that ∀u ∈ Λ, cu(t)
monotonically decreases during (θk, θk+1), there must exist
pure strategies S with x1

S > 0, in which a resource is trans-
ferred from target u to other targets. x′ can be constructed in
similar steps as is shown above. Thus no pure strategies in
φ or ψ is used to implement x′, while x′ still corresponds to
c(t).

Based on the above proof, a resource will not be transferred
from target v ∈ V to other targets during (θk, θk+1). Thus a
resource is transferred at most once in this time period.

D Proof for Lemma 5
Lemma 5. If |Λ| > 2 and |V | > 2, there exists feasi-
ble Z((u, v), t) satisfying lim∆t→0

Z((u,v),t+∆t)−Z((u,v),t)
∆t >

0,∀u,∀v,∀t ∈ [θk, θk+1].

Proof. To prove Lemma 5 is to prove that if we change the
‘≥’ in Eq. 11 to ‘>’, an LP consisting of Eqs. 8 - 11 has
feasible solutions. We prove it by constructing an equivalent
LP and showing that the constructed LP has feasible solu-
tions. Given Eq. 12, for any time point t ∈ [θk, θk+1], we
can change the variables in Eqs. 8 - 11 from Z((u, v), t) to

ziuv(t). Thus we get the following LP ′.

LP ′ :
∑
v∈V

zuuv(t) = 1,∀u ∈ Λ (31)∑
u∈Λ

zvuv(t) = 1,∀v ∈ V (32)∑
v∈V

ziuv(t) = 0,∀i ∈ T \ u,∀u ∈ Λ (33)∑
u∈Λ

ziuv(t) = 0,∀i ∈ T \ v,∀v ∈ V (34)

Eqs. 10 and 11, change ‘≥’ in Eq. 11 to ‘>’. (35)

Based on Eq. 12, Eqs. 31 - 34 lead to Z((u, v), t) satisfying
Eqs. 8 - 9. Eqs. 10 and 11 naturally have variables ziuv(t)
when we replace Z((u, v), t) with the right side of Eq. 12.
Thus LP ′ is equivalent to Eqs. 8 - 11.

The number of variables in LP ′ is nv = |Λ| · |V | · |Λ +V |,
while the number of functions in LP ′ is nf = 2|Λ|+ 2|V |+
2|Λ| ∗ |V |. If |Λ| > 2 and |V | > 2, then nv > nf , thus LP ′
has a feasible solution.

E Proof for Proposition 4
Proposition 4. There exist parameter functions which lead
to a feasible expression of Z((u, v), t) satisfying that each
ziuv(t) is piecewise constant during [θk, θk+1].

Proof. If |Λ| ≤ 2 or |V | ≤ 2, based on Eqs. 8 and 9,
Z((u, v), t) has a unique value at any t ∈ [θk, θk+1] and each
ziuv(t) is constant over [θk, θk+1]. If |Λ| > 2 and |V | > 2, let
Z((u, v), t) be an expression based on parameter functions
ziuv(t0), which are solutions to LP ′ when t = t0. We now
show that such Z((u, v), t) satisfies Eqs. 8 - 11 not only at t0,
but during a time period around t0. Note that Eqs. 31 - 34 en-
sures Z((u, v), t) to satisfy Eqs. 8 - 9 for all t ∈ [θk, θk+1]. In
addition, given the form of coverage functions (Line 2 in Al-
gorithm 1), Z((u, v), t) is a quotient of polynomial functions.
The sign of dZ((u,v),t)

dt does not change continuously. Given
that dZ((u,v),t)

dt > 0 at t0 and Z((u, v), t0) ≥ 0, we have
that Z((u, v), t) > 0 in a time period after t0. Therefore,
Z((u, v), t) based on constant parameter functions ziuv(t0)
satisfies Eqs. 8 - 11 in a time period around t0, which in-
dicates that piecewise constant parameter functions can lead
to feasible expression of Z((u, v), t) for t ∈ [θk, θk+1].

F Proof for Theorem 6
Theorem 6. Algorithm 2 computes a feasible expression of
Z((u, v), t),∀t ∈ [θk, θk+1] after finite loops.

Proof. First, based on Line 3 and Line 9 in Algorithm 2, the
resulted Z((u, v), t) is feasible, i.e., satisfying Eqs. 8 - 10,
for all t ∈ [θk, θk+1]. Given that the constraint of Eq. 11 is
set as strict ‘>’, we have tm > t0 in each round. Thus the
iteration terminates after finite loops.



G Proof for Lemma 9
Lemma 9. Assume that transfer time between any target pair
dij is multiplier of δ. If x is an equilibrium strategy of Gd, it
is an equilibrium strategy of Gb.

Proof. Note that this does not apply directly from Lemma 8,
since the strategy space ofGd is a subset of the strategy space
of Gb.We prove it by showing that there must exist an equi-
librium strategy of Gb that can be mapped to an equilibrium
of Gd.

We first define the following map Φ that maps each pure
strategy S inGb to another pure strategy S′: for each resource
transfer in S, we adjust its starting time from t to rδ, where
t ∈ (rδ, (r + 1)δ) and r ∈ N. Furthermore, we map a mixed
strategy x to another one x′, such that if x uses pure strategy
S with probability xS , then x′ uses S′ with a probability of
x′S′ =

∫
S xSI(Φ(S) = S′), where I(Φ(S) = S′) indicates

whether S can be mapped to S′ by Φ. Thus we obtain x′

where all resource transfers start at rδ, r∈N. Note that x′ is
also a mixed strategy of Gd.

Next, we show that if x is an equilibrium strategy of Gb,
x′ is an equilibrium strategy of Gb and Gd. Note that the de-
fender will not be better off in Gd than Gb since her strategy
space in Gd is a subset of that in Gb. Thus we only need to
show that x′ is an equilibrium strategy of Gb, then it follows
readily that x′ is also an equilibrium strategy of Gd.

Since x is the equilibrium strategy of Gb, we have
UGb

d (x) ≥ UGb

d (x′). We now show that UGb

d (x) ≤ UGb

d (x′),
thus UGb

d (x) = UGb

d (x′), and x′ is the equilibrium strategy
of Gb. Let c = 〈ci(t)〉 and c′ = 〈c′i(t)〉 represent the cover-
age vectors corresponding to x and x′ respectively. We show
that, within time interval [rδ, (r + 1)δ), r ∈ N, the minimum
coverage for a target in c is no larger than that for this tar-
get in c′. Since the players’ payoffs are determined by min-
imum coverages in the time intervals (as the value functions
are constant over each time interval), it follows readily that
UGb

d (x) ≤ UGb

d (x′). Given c and c′, we have

min
t∈[rδ,(r+1)δ)

ci(t)

= min
t∈[rδ,(r+1)δ)

∫
S

xS · qi(S, t)

= min
t∈[rδ,(r+1)δ)

(
ci(rδ) +

∫
S

xS ·
(
qi(S, t)− qi(S, rδ)

))
= min
t∈[rδ,(r+1)δ)

(
ci(rδ) +

∫
S: a transfer to i ends in (rδ, t] by S

xS −∫
S: a transfer away from i starts in (rδ, t] by S

xS

)
≤ min
t∈[rδ,(r+1)δ)

(
ci(rδ) +

∫
S: a transfer to i ends in (rδ, (r+1)δ) by S

xS

−
∫
S: a transfer away from i starts in (rδ, t] by S

xS

)

= min
t∈[rδ,(r+1)δ)

(
c′i(rδ)−

∫
S: a transfer away from i starts in (rδ, t] by S

xS

)
= min
t∈[rδ,(r+1)δ)

c′i(t)

The last two equalities hold since all transfers ending (respec-
tively, starting) in (rδ, (r+1)δ) in x ends (respectively, starts)
at rδ in x′.

H Proof for Theorem 10
Theorem 10. Let x′ be an equilibrium strategy of Gd and x
be an equilibrium strategy of G, we have

UGd (x′)− UGd (x) ≥ −ε,

whereUGd (x′) is the defender utility inG if the defender plays
x′ and the attacker responds the best, while UGd (x) is the
optimal defender utility in G.

Proof. This is because

UGd (x′)− UGd (x)

= [UGd (x′)− UGb

d (x′)] + [UGb

d (x′)− UGb

d (x)]+

[UGb

d (x)− UGd (x)]

≥ [UGd (x′)− UGb

d (x′)] + [UGb

d (x)− UGd (x)]

≥ − |UGd (x′)− UGb

d (x′)| − |UGd (x)− UGb

d (x)|

where the first inequality is due to UGb

d (x′) − UGb

d (x) ≥ 0
since x′ is a better strategy than x for Gd, hence Gb (Lemma
8). Given that x′ is the equilibrium strategy of Gd, the cor-
responding coverage functions are piecewise constant in any
time interval [tk−1, tk],∀k = 1, . . . , |ζ|. Thus the players’
payoffs are determined by the maximum value of the value
functions of targets. Given that the value of value functions
in Gb in a time interval is equal to the maximum value of the
corresponding value functions in G in this time interval (Eq.
14), we have UGd (x′) = UGb

d (x′). Since vi(t) differs from
v′i(t) by at most ε for any i, t, we have UGd (x)−UGb

d (x) ≤ ε.
Therefore,

UGd (x′)− UGd (x) ≥ 0− ε = −ε. (36)

I Proof for Theorem 11
Theorem 11. A mixed strategy of Gd is an m-unit fractional
flow, and vise versa

Proof. It is straightforward that a mixed strategy of Gd is an
m-unit fractional flow. The other direction is due to the fol-
lowing conclusion in graph theory: in a directed graph with
integer capacities, the vertices of the polytope of m-unit frac-
tional flows are precisely all the m-unit integer flows. There-
fore, any m-unit fractional flow can be decomposed as a con-
vex combination (thus a distribution) over 0− 1 integer flows
(i.e., pure strategies) in our case.


