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Abstract
Many countries like Singapore are planning to in-
troduce Electric Vehicles (EVs) to replace tradi-
tional vehicles to reduce air pollution and improve
energy efficiency. The rapid development of EVs
calls for efficient deployment of charging station-
s both for the convenience of EVs and maintain-
ing the efficiency of the road network. Unfortu-
nately, existing work makes unrealistic assumption
on EV drivers’ charging behaviors and focus on
the limited mobility of EVs. This paper studies
the Charging Station PLacement (CSPL) problem,
and takes into consideration 1) EV drivers’ strate-
gic behaviors to minimize their charging cost, and
2) the mutual impact of EV drivers’ strategies on
the traffic conditions of the road network and ser-
vice quality of charging stations. We first formulate
the CSPL problem as a bilevel optimization prob-
lem, which is subsequently converted to a single-
level optimization problem by exploiting structures
of the EV charging game. Properties of CSPL prob-
lem are analyzed and an algorithm called OCEAN
is proposed to compute the optimal allocation of
charging stations. We further propose a heuristic
algorithm OCEAN-C to speed up OCEAN. Exper-
imental results show that the proposed algorithms
significantly outperform baseline methods.

1 Introduction
Due to the world’s shortage of fossil fuels and the serious en-
vironmental pollution from burning them, seeking alternative
energy has become a crucial topic of research. Transporta-
tion is one of the main consumers of energy and contribu-
tors to air pollution. Electric Vehicles (EVs) move pollution
away from urban areas and electricity can be efficiently trans-
formed from both traditional fossil fuels and promising re-
newable energies like solar energy and tidal energy. EVs, as
a replacement of traditional internal combustion engine ve-
hicles, provides an environment-friendly solution to modern
cities’ transportation. A rapid growth of EVs has been seen
in recent years along with the rising popularity of the no-
tion of smart cities [Schneider et al., 2008]. This calls for an
efficient deployment of relevant supporting facilities, among

which charging facility is of top priority. Although EVs can
be charged at home, it is time consuming and usually takes
6 to 8 hours, which is at least 12 times the time it takes at
charging stations with high voltage [Hess et al., 2012]. The
distribution of charging stations determines EV drivers’ ac-
cessibility to energy sources, and consequently affects the EV
flow and traffic conditions in the road network.

There are some existing works studying the CSPL prob-
lem. These studies optimize different objectives such as in-
vestment cost, maintenance cost [Liu et al., 2013], access
cost [Chen et al., 2013], construction cost [Lam et al., 2013;
2014], and coverage of charging stations [Frade et al., 2011;
Wang et al., 2010]. A framework based on hitting set prob-
lem is used in work of Funke et al. [Funke et al., 2014], which
aims to guarantee energy supply in any shortest path. He et
al. [He et al., 2013] used a multinomial logit model to com-
pute EVs’ charging choices and formulated the problem as a
single level optimization. None of these works capture the
interrelationship between EV drivers’ charging activities and
traffic congestion. Additionally, most existing works ignore
the selfish behaviors of EV drivers, which affect the traffic
condition and queuing time at charging stations and then re-
sults in different levels of EV drivers’ satisfaction.

This paper studies the Charging Station PLacement (C-
SPL) problem while considering the mutual impact between
allocation of charging stations and EV drivers’ charging ac-
tivities. Queuing time in charging stations is taken into
account since long queuing time has been shown to sig-
nificantly affect the adoption of EVs [Pierre et al., 2011;
Hidrue et al., 2011]. More importantly, inspired by the works
that model the interactions between driver activities and traf-
fic [Gan et al., 2013; 2015], the influence of charging activ-
ities on traffic condition, especially during peak hours when
traffic jams are more salient, is considered. Additionally, s-
ince EVs are driven by their owners without any centralized
control, it is essential to model how EVs’ movements are af-
fected by the distribution of charging stations.

The first contribution of this paper is a realistic CSPL mod-
el that considers EV drivers’ strategic behaviors to minimize
their charging cost. Besides, traffic condition and queuing
time in charging stations, which play a vital role in the EV
diffusion, are also considered in our model. The CSPL prob-
lem is formulated as a bilevel optimization problem, where
the upper-level objective is the social cost to be minimized by



Figure 1: Zonal Map of Singapore

the government who acts as market regulators to decide the
placement of charging stations; and the sub-level is a charging
game played by EV drivers, which falls into the class of con-
gestion games as we show in this paper. The second contribu-
tion of our work is that through exploiting the structure of the
charging game’s Nash Equilibrium, we successfully obtain
an equivalent single level optimization problem and propose
algorithm OCEAN to compute the optimal solution. Unfor-
tunately OCEAN cannot scale up due to the integer variables
and large searching space. Therefore, we propose an effective
heuristic algorithm OCEAN-C to speed up the computation
and solve realistic CSPL problems. The third contribution of
this paper is that we conduct extensive experiments based on
the Singapore scenario. Experimental results show that our
algorithms significantly outperform some baseline methods.

2 Charging Station Placement in Singapore
While Singapore enjoys a relatively good quality of air, it is
important to be mindful that land transport is one of the ma-
jor contributors to air pollution. In Singapore, land transport
contributes about 20% of the total carbon emission, and 75%
of air pollution is attributed to motorised traffic [LTA, 2014].
Singapore government is planning on introducing EVs to re-
place traditional vehicles. Since 2011, the authorities have
been studying the feasibility of EVs on Singapore roads. Ac-
cording to the electric-car manufacturer BYD Asia-Pacific,
Singapore has the “best potential” to implement EVs because
of its advanced power grid system [Woo, 2014].

To adopt EVs islandwide, the government needs to foot
the bill for constructing the necessary infrastructure. Howev-
er, simply considering the financial perspective is insufficient.
Without efficient planning of charging stations, the introduc-
tion of EVs can result in serious traffic congestion. Unlike
most urban metropolises in other countries, Singapore has a
very small territory of 718.3km2 (Figure 1), with a maxi-
mum east west and north south distance of 42 km and 23 km
respectively. Thus, the limited range of EVs (between 160
and 320 km [EVMileage, 2014]) is not an issue in Singa-
pore. However, Singapore has a large population, resulting in
a large population of vehicles. In 2014, the total number of
motor vehicles in Singapore has grown to more than 970, 000.
This implies that rather than limited range, the queuing time
of EVs is likely to have a much larger impact on traffic.

Minimizing traffic congestion is our first consideration

while planning the location of charging stations. EV drivers’
charging activities influence traffic congestion. In turn, EV
drivers make decisions to choose charging destinations con-
sidering traffic congestion. Besides this, we also study how
queuing time in charging stations affects EV drivers’ charg-
ing decisions; this is because long queuing time translates to
larger space requirements to accommodate queuing EVs and
also in frustrated EV drivers. By exploiting EV drivers’ self-
ish charging behaviors, we model the interactions among the
allocation of charging stations, EVs’ strategic charging activ-
ities, traffic congestion and queuing time in charging stations,
and propose OCEAN and OCEAN-C to efficiently compute
the optimal solution.

3 Charge Station Placement Problem
The goal of CSPL is to optimize the charging station place-
ment in a set of interconnected zones so that the social cost
(defined in Section 3.3) is minimized. In this section, we be-
gin with defining the topology of the studied area, and the
costs of EVs. Then we propose a congestion-game-based in-
terpretation of the CSPL problem, and formulate the CSPL
problem as a bilevel optimization program.

3.1 Zones
The region to be analyzed is divided into n zones N =
{1, 2, ..., n}. We use a matrix A = {aij}n×n to represent the
adjacency relationship between different zones, with aij = 1
(or aij = 0) representing zones i and j as adjacent (or not).
A pair of zones are adjacent if they share a geographical bor-
der and there is a road between them. A zone is defined to
be adjacent to itself, i.e., aii = 1. The distances between dif-
ferent pairs of zones are denoted as a matrix D = {dij}n×n,
where dij is the average length of trips of EV drivers that
reside in zone i and charge in zone j, estimated by the dis-
tance between the centers of the pair of zones. For all i ∈ N ,
dii is set as the radius of zone i. We divide Singapore into
a number of zones according to the conventional partitioning
method (Figure 1).

3.2 The EV Model
In each zone i, there is an estimated number γi of resident
EVs who charge at charging stations instead of at home. Let
xi denote the number of chargers in zone i, and yi denote the
number of EVs that charge in zone i everyday. When an EV
needs to charge, the driver chooses to charge at an adjacent
zone that minimizes her cost for charging. The assumption
is realistic in the sense that each zone represents a relative-
ly large area and an EV may not be willing to drive too far
to charge. We will relax this assumption and allow EVs to
charge at nonadjacent zones in Section 5.2. We assume that
electricity prices are the same in stations, so that EVs con-
sider only the time cost, which is a combination of the travel
time and the queuing time.

Travel time. Travel time depends on the distance and traf-
fic condition (i.e., congestion level) on the road, which can
be denoted with Eq. 1, where λ is a constant and αij is the
congestion level of the road from zone i to zone j [Boarnet et
al., 1998].

fij = λdijαij , (1)



When there are more than one road directly leading from zone
i to zone j, we consider the average traffic condition, road
capacity and distance. Following transportation science re-
search [Banner and Orda, 2007; Bertini, 2006; Sweet, 2011;
Wang et al., 2013], the congestion level depends on the traffic
on the road, and is defined as Eq. 2, where α0

ij is the normal
traffic congestion caused by driving activities with any other
objectives except for charging which can be estimated by the
ratio of traffic flow on the road to the capacity of the road.

αij = α0
ij + kij

yij
τ
, (2)

kij
yij
τ represents the congestion caused by EVs’ charging ac-

tivities. The parameter kij is in inverse proportion to the road
capacity, yij represents the charging flow from zone i to zone
j, and 1

τ is the fraction of EVs that charge during peak hours.
Specifically, αii is the congestion level within zone i, which
is a function of the average congestion level of the main road-
s in zone i. Note that we particularly focus on studying the
peak hour period because the worst case traffic congestion
usually occurs during peak hours, while to some EVs the de-
mand for charging during peak hours is inevitable, e.g., EVs
may run out of electricity while their owners have to use them
immediately.

Queuing time. We consider charging activities’ influence
on traffic and charging stations’ queuing time during peak
hours, such that the worst case is optimized. Since we assume
that 1 in every τ EVs would charge at charging stations dur-
ing peak hours, the number of EVs that arrive in zone i during
peak hours is yi

τ . The estimated queuing time is defined to be
directly proportional to the number of EVs charging during
the peak hours. The queuing time is then

gi =
yi
µτxi

, (3)

where µ is the serving rate of chargers, i.e., the number of
EVs that a charger can serve within a unit period.

3.3 A Congestion-Game-Based Interpretation
According to the definitions in Section 3.2, the cost associated
with a road or a charging station is determined only by the
number of EVs using this facility when background traffic
and charger numbers in the zones are decided. We can thus
treat zones and roads as congestible elements, and formulate
the CSPL as a congestion game [Nisan et al., 2007] consisting
of the following components:

• Two sets of congestible elements are the zones N =
{1, ..., n} and the roads R = {〈i, j〉|i, j ∈ N , aij =
1}, where 〈i, j〉 represents a road leading from zone i to
adjacent zone j. The costs defined in Eqs. 1 and 3 are
respectively taken as delay functions for the congestible
elements i ∈ N and 〈i, j〉 ∈ R. We denote them as gi(·)
and fij(·), which take the numbers of EVs choosing the
elements as variables.

• The EVs residing in one zone are one type of players and
are identically treated, such that they have the same strat-
egy space and adopt the same strategy in the equilibri-
um. Specifically, each EV plays a mixed strategy, which

is a probability distribution over a set of pure strategies.
Each pure strategy for EVs in zone i is to choose zone
i or an adjacent zone j to charge and use correspond-
ing road from i to j. We use pi = {pij} to denote the
mixed strategy. Assume that EVs only charge in adja-
cent zones1, aij = 0 ⇒ pij = 0,∀i, j. Therefore, the
congestion of elements inR and N are respectively

yij = γipij , (4)

yj =
∑
i∈N

yij . (5)

Furthermore, let P = 〈pi〉 denote the strategy profile for
all players andAi = {j|aij = 1}. Considering charging
cost of each strategy under the mixed strategy profile and
the number of EVs that use it, the cost of each type i of
players is a function of P, defined as

Ci(P) =
∑
j∈Ai

γipij(gj(yj) + fij(yij)). (6)

3.4 Bilevel Optimization Formulation
In the above defined congestion game, EVs want to minimize
their charging cost. We adopt the Nash equilibrium as the
solution concept, in which all EVs are assumed to be aware
of the strategies of other EVs, and no EV has the incentive to
deviate to other mixed strategies. Formally, we have

pi ∈ arg min
p′

i

Ci(P−i,p
′
i),∀i ∈ N .

The government authority is able to induce different equilib-
ria through allocating charging stations in the zones (as the
number of chargers affects EVs’ cost in Eq. 3). Given a fixed
amount B of budget, the government’s goal is to decide the
optimal allocation of charging stations, so that the social cost
in equilibrium is minimized. Specifically, we consider the
overall benefits, and use the sum of costs of all EVs as the
social cost, thus

C(P) =
∑
i∈N

Ci(P). (7)

Our framework can be easily extended to optimize other so-
cial cost functions.

Let P−i denote the strategy profile of EVs except type i
EVs. Therefore, the CSPL problem is formulated as the fol-
lowing bilevel program.

P1: min
x,P

C(P), (8)

s.t. pi ∈ arg min
p′

i

Ci(P−i,p
′
i),∀i ∈ N , (9)∑

i∈N
xi ≤ B, xi ∈ N, (10)∑

j∈Ai

pij = 1,∀i ∈ N (11)

pij = 0,∀i ∈ N ,∀j /∈ Ai, (12)
pij ≥ 0,∀i, j ∈ N . (13)

1This can also be assumed as a set of en-route zones.



Note that we compute the best equilibrium with respect to
the social cost, in case there exist multiple equilibria lead-
ing to different social costs. In practice, the government may
incentivize EV drivers to choose the equilibrium with best so-
cial cost by providing small incentives (e.g., slightly decrease
the charging price at a station). Such ideas have been widely
used, such as tie-breaking in security games [Tambe et al.,
2014].

4 Solve the CSPL Problem
In this section, we present our methods for solving the CSPL
problem, which is a bilevel problem with a congestion game
as the sub-problem. The bilevel problem has an upper-lever
non-linear objective and multiple non-linear sub-level opti-
mization objectives, which makes it complex and intractable
with existing solvers. Therefore, we need to search for effi-
cient approaches to compute the mixed strategy Nash equi-
libria of the congestion game, as well as the optimal solution
for the bilevel CSPL problem. We begin with reformulating
the problem by analyzing conditions of strategy deviation.

4.1 Deviation of Strategies
Given a strategy profile P, when type i EVs change the
charging strategy, we denote the strategy change as an n-
dimensional vector ∆p = (∆1, ...,∆n), such that∑

j∈N
∆j = 0, (14)

−pij ≤ ∆j ≤ 1− pij ,∀j ∈ Ai. (15)

When type i players change their strategy from pi to pi
′ =

pi + ∆p, recall that yij denotes the charging flow from zone
i to zone j and yj denotes the number of EVs that charge in
zone j, we have y′ij = yij + γi∆j , y′j = yj + γi∆j , and the
change in type i EVs’ cost can be formulated as:

∆Ci(P,∆p) = Ci(P−i,pi
′)− Ci(P)

=
∑
j∈Ai

γi[pij(λdijkij
γi∆j

τ
+
γi∆j

µτxj
)

+∆j(λdijαij + λdijkij
γi∆j

τ
+

yj
µτxj

+
γi∆j

µτxj
)]

=
∑
j∈Ai

γi[(
pijγi
τ

(λdijkij +
1

µxj
) + λdijαij +

yj
µτxj

)∆j

+ (λdijkij
γi
τ

+
γi
µτxj

)∆2
j ]. (16)

For the ease of description, we rewrite it as

∆Ci(P,∆p) =
∑
j∈Ai

γi(ξij∆j + ηij∆
2
j ). (17)

In a Nash equilibrium, no player has the incentive to deviate,
we therefore can reformulate the CSPL problem in P1 as

P2: min
x,P

C(P), (18)

s.t. ∆Ci(P,∆p) ≥ 0,∀i ∈ N ,∀∆p, (19)
10–13.

Here Eq. 19 replaces Eq. 9 as a new criterion for Nash equi-
librium. However, the above reformulation still involves two
levels of optimization, as ∆p in Eq. 19 is continuous. To
further resolve the difficulty, we propose a simple deviation
approach, and reduce the program to a single level optimiza-
tion problem as described next.

4.2 Simple Deviation Approach
We define a special type of deviation called simple deviation.
As we will show below, one property of the CSPL problem
is that if any simple deviation cannot help reduce the player’s
cost, neither can any other (more complex) deviation. There-
fore, the equilibrium criterion can be simplified by focusing
on only simple deviations.

Definition 1 (simple deviation). A simple deviation of type
i player is a strategy change, where only the probabilities of
a pair of pure strategies are changed (one increases and the
other decreases by the same amount), while the probabilities
of all the other pure strategies remain unchanged. A simple
deviation is denoted as a tuple 〈l, h, δ〉 with δ > 0, which
corresponds to a deviation vector ∆p, such that ∆l = −δ,
∆h = δ, and ∆j = 0,∀j /∈ {l, h}.
Lemma 1. Given a strategy profile P with pil > 0, type
i player cannot reduce her cost through a simple deviation
from pure strategy l to h (i.e., reduce pil and increase pih), if
and only if ξih ≥ ξil.

Proof. Given a simple deviation 〈l, h, δ〉, the change in type
i player’s cost is

∆Ci(P,∆p) = γi(ηil + ηih)δ2 + γi(ξih − ξil)δ, (20)

which is a quadratic function of δ. Therefore, player i cannot
reduce her cost through a simple deviation from pure strategy
l to h, if and only if ∆Ci ≥ 0,∀δ ∈ [0, pil]. According to
Eq. 16, we have ηil + ηih > 0, so that ∆Ci ≥ 0 holds for all
δ ∈ [0, pil] if and only if ξih − ξil ≥ 0. This is because 1) if
ξih − ξil ≥ 0, ∆Ci ≥ 0 for all δ ≥ 0; 2) if ∆Ci ≥ 0 holds
for δ ∈ [0, pil], the derivative of ∆Ci at δ = 0 should be non-
negative (otherwise, ∆Ci < 0 in a right neighbourhood of 0
as ∆Ci is continuous with respect to δ), so that d∆Ci

dδ (0) =
ξih − ξil ≥ 0.

Lemma 2. If a player cannot reduce her cost by any simple
deviation, then she can neither reduce her cost by any strategy
deviation.

Proof. We first show that any strategy deviation of a player
can be decomposed into a set of simple deviations. Actually,
given a strategy deviation vector ∆p = (∆1, ...,∆n), we can
define two sets L = {i| i ∈ N ,∆i < 0} and H = {i| i ∈
N ,∆i > 0}, and then implement deviation ∆p by simply
deviating from each l ∈ L to each h ∈ H by an amount
δhl = |∆l| · ∆h∑

i∈H ∆i
.

Therefore, the cost change of player i can also be decom-
posed and it is always larger than the sum of cost changes



caused by the set of simple deviations defined above, i.e.,

∆Ci(P,∆p)/γi =
∑
j∈Ai

(ξij∆j + ηij∆
2
j )

=
∑
l∈L

(ξil(−
∑
h∈H

δhl) + ηil(−
∑
h∈H

δhl)
2)+∑

h∈H

(ξih(
∑
l∈L

δhl) + ηih(
∑
l∈L

δhl)
2)

≥
∑
l∈L

(ξil(−
∑
h∈H

δhl) + ηil(
∑
h∈H

δ2
hl))+∑

h∈H

(ξih(
∑
l∈L

δhl) + ηih(
∑
l∈L

δ2
hl))

=
∑
l∈L

∑
h∈H

(ηil + ηih)δ2
hl + (ξih − ξil)δhl

According to Lemma 1, when no simple deviation can reduce
the player’s cost, we have ξih ≥ ξil for all l ∈ L and h ∈
H, and it follows that the last expression is non-negative, so
∆Ci(P,∆p) ≥ 0. Since ∆p and i are arbitrary, thus no
player can reduce her cost by any strategy deviation.

Proposition 3. A strategy profile P forms a Nash equilibrium
if and only if ξih ≥ ξil,∀i ∈ N ,∀l, h ∈ Ai, pil > 0.

Proof. The proof follows directly from Lemmas 1, 2 and
the converse direction of Lemma 2, i.e., ξil ≤ ξih,∀i ∈
N ,∀l, h ∈ Ai, pij > 0 ⇔ no player can reduce her cost
through a simple deviation ⇔ no player can reduce her cost
through any deviation ⇔ Nash equilibrium. Note that the
converse direction of Lemma 2 holds because simple devia-
tion is a special case of general deviation.

According to Proposition 3, we propose a substitute ap-
proach OCEAN (Optimizing eleCtric vEhicle chArging sta-
tioN placement) to compute the optimal solution of CSPL
problem P2. The key idea of OCEAN is that we replace the
infinite number of constraints specified by Eq. 19 with a finite
number of constraints based on Proposition 3. OCEAN can
be formulated as follows.

P3: min
x,P

C(P), (21)

s.t. ξih ≥ ξil,∀i ∈ N ,∀l, h ∈ Ai, pil > 0, (22)
10–13.

The above program is a single-level non-linear optimization
problem and can be handled by a standard non-linear opti-
mization solver.

4.3 Speeding Up OCEAN
OCEAN has a large number of non-linear constraints, as well
as mixed integer variables, which make it unscalable. There-
fore, we propose a heuristic algorithm OCEAN-C (OCEAN
with Continuous variables) in Algorithm 1 to compute the op-
timal solution in two steps. Firstly, we relax x to be continu-
ous variables and solve the optimal solution x∗ of P3. Since
the number of chargers in x∗ are not integers, we round x∗ to
x̂, and compute the optimal solution of CSPL problem with
x set as x̂, the result of which is the output of OCEAN-C.

With x determined, the single level CSPL problem’s runtime
sharply decreases.

Algorithm 1: OCEAN-C
1 Relax x to be continuous;
2 Solve optimal solution x∗ of P3;
3 x̂← rounded x∗;
4 Compute the optimal solution Obj of P3 with x set as x̂;
5 return Obj, x̂;

5 Experimental Evaluation
In this section, we run experiments on the real data set from
Singapore to evaluate our approach. To compare multiple
methods, all experiments were run on the same data set using
a 3.4GHz Intel processor with 16GB of RAM, employing
KNITRO (version 8.0.0) for nonlinear programs. The results
were averaged over 20 trials.

5.1 Data Set and Baseline Methods
According to the statistics in the official websites of Singa-
pore Land Transport Authority (LTA) and Singapore Depart-
ment of Statistics (DOS), the population of all motor vehicles
in Singapore is 969, 910 in year 2012. We divide Singapore
into 23 zones according to the conventional partition method
as shown in Figure 1 and the accessible graphical and resi-
dential distribution data. We then assume the number of ve-
hicles proportional to the number of residents in each zone.
The proportion of EVs among vehicles is set to 5% and the
proportion of EVs that charge in charging station rather than
at home is 10%. The distance between adjacent zones is es-
timated using the distance measure tool in Google Maps; the
normal congestion α0

ij during peak hours is estimated by the
ratio of travel time during peak hours and the distance be-
tween zones i and j. We assume that each road between two
zones has the same capacity, i.e., kij = 0.01 for all pairs i
and j. Serving rate of chargers is set as µ = 6 and the propor-
tion of EVs that charge during peak hours is set as 1

τ = 1
10 .

The linear coefficient λ is fixed at 0.2. Unless otherwise men-
tioned, the above parameters are fixed in all our experiments.
Since OCEAN has scalability issues, we combine some small
zones to generate data of different n (ranging from 6 to 10)
to compare the performance of runtime and solution quality
between OCEAN and OCEAN-C.

We compare our approach with three baseline methods:

• Baseline 1, CSCD assigns charging stations in consider-
ation of charging demand in each zone. The number of
charging stations in each zone is set proportional to the
number of EVs in each zone, i.e., xi ∝ γi.
• Baseline 2, CSTC, is a dynamic method that assigns

charging stations based on the traffic conditions. Here
xi is set in inverse proportion to the weighted sum of
normal congestion of the zone and all the roads that lead
to the zone: xi ∝

∑
j∈Ai

1/(α0
jidji).

• Baseline 3, CSAV assigns charging stations averagely.
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Figure 2: Compare OCEAN-C with OCEAN and baselines

The baseline methods first allocate charging stations to each
zone, then compute the equilibrium charging strategies ac-
cording to program in P3 with determined x.

5.2 Performance Evaluation
OCEAN-C VS. OCEAN We compare the performance of
OCEAN and OCEAN-C regarding to runtime and social cost
with different n (ranging from 6 to 10) generated from com-
bining some zones. Budget is set as 300. Figures 2a and
2b show that when n increases, i.e., the number of variables
and constraints increases, OCEAN-C’s runtime is shorter and
also increases slower than OCEAN. Meanwhile, OCEAN-C
results in the same optimal social cost and solutions as O-
CEAN, thus OCEAN-C is an efficient substitution.
OCEAN-C VS. Baseline Methods The optimal social cost
of OCEAN-C in comparison with baselines are shown in Fig-
ure 2c. When n = 23 and budget increases, the social cost
also decreases accordingly, but OCEAN-C yields the lowest
social cost. We also compare their performances when the
number of EVs in the region decreases/increases by different
proportions. As Figure 2e shows, the social cost of all the
approaches increase proportionally regarding the total charg-
ing demand (i.e., the number of EVs) and OCEAN-C always
performs best.
Robustness Evaluation We also test the robustness of
OCEAN-C considering that some EV drivers may use non-
equilibrium charging strategy (due to lack of knowledge).
We assume that their charging strategies vary by 10%, i.e.,
pij ± 10%. Figures 2d and 2f depict the social cost of
OCEAN-C and the baseline methods when n = 23 with
varying budget and charging demand. It shows that OCEAN-
C outperforms the baseline methods considering EV drivers’

decision deviation.
EVs Charge in Remote Zones Previously, we assumed that
EVs charge in adjacent zones. Here we relax this assump-
tion by allowing EVs in zone i to charge at two-stop remote
zones, which are neighbors of zone i’s adjacent zones. Af-
ter relaxation, the charging strategy and social cost change
slightly (less than 0.001 while the original social cost is more
than 4000). Thus we conclude that our assumption of charing
at adjacent zones is reasonable.
Road Capacity Improvement When the government author-
ity wants to invest to improve the road capacity to lower the
social cost, our approach can provide meaningful suggestion.
Assume that the investment of improving capacity of road
〈i, j〉 results in both normal congestion α0

ij and parameter kij
decreasing by 20%. Taking zone 8 as an example, based on
the data set of Singapore with n = 23 and budget 300, we
get the result as in Table 1 (row “−” representing the result
before investment), which indicates that the social cost can be
decreased in different levels when investing on different road-
s, and the respective charging strategy p8,j . Thus to invest on
the roads inside zone 8 is the best choice. Meanwhile, invest-
ment on roads 〈8, 2〉 and 〈8, 7〉 is meaningless since these two
roads are too far and not used by EVs in zone 8 for charging.

j C p8,2 p8,7 p8,8 p8,9

− 4332.73 0 0 0.5842 0.4158
2 4332.73 0 0 0.5842 0.4158
7 4332.73 0 0 0.5842 0.4158
8 4301.25 0 0 0.7081 0.2919
9 4328.68 0 0 0.4416 0.5584

Table 1: Social cost C and charging strategy p8,j when ca-
pacity of road 〈8, j〉 is improved.

6 Conclusion
The key contributions of this paper include: (1) a realistic
model for the CSPL problem in cities like Singapore con-
sidering the interactions among charging station placement,
EV drivers’ charging activities, traffic congestion and queu-
ing time: (2) an equivalent single level CSPL optimization
problem of the bilevel CSPL optimization problem obtained
through exploiting the structure of the charging game; (3) an
effective heuristic approach that can speed up the mixed in-
teger CSPL problem with a large amount of non-linear con-
straints; (4) experiments results based on real data from Sin-
gapore, which show that our approach solves an effective al-
location of charging stations and outperforms baselines.
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timal deployment of charging stations for electric vehicu-
lar networks. In Proceedings of the 1st workshop on Urban
networking(UrbaNe), pages 1–6, 2012.

[Hidrue et al., 2011] M. K. Hidrue, G. R. Parsons, W. Kemp-
ton, and M. P. Gardner. Willingness to pay for electric
vehicles and their attributes. Resource and Energy Eco-
nomics, 33(3):686–705, 2011.

[Lam et al., 2013] A. Lam, Y. Leung, and X. Chu. Electric
vehicle charging station placement. In Proceedings of the
4th IEEE International Conference on Smart Grid Com-
munications(SmartGridComm), pages 510–515, 2013.

[Lam et al., 2014] A. Lam, Y. Leung, and X. Chu. Elec-
tric vehicle charging station placement: Formulation, com-
plexity, and solutions. arXiv, 2(1310.6925):1–10, 2014.

[Liu et al., 2013] Z. Liu, F. Wen, and G. Ledwich. Opti-
mal planning of electric-vehicle charging stations in dis-
tribution systems. IEEE Transactions on Power Delivery,
28(1):102–110, 2013.

[LTA, 2014] Smart mobility 2030 - Singapore ITS strategic
plan. Technical report, Land Transport Authority and In-
telligent Transport Society Singapore, 2014.

[Nisan et al., 2007] Noam Nisan, Tim Roughgarden, Eva
Tardos, and Vijay V Vazirani. Algorithmic game theory.
Cambridge University Press, 2007.

[Pierre et al., 2011] M. Pierre, C. Jemelin, and N. Louvet.
Driving an electric vehicle. A sociological analysis on pi-
oneer users. Energy Efficiency, 4(4):511–522, 2011.

[Schneider et al., 2008] K. Schneider, C. Gerkensmeyer,
M. Kintner-Meyer, and R. Fletcher. Impact assessment
of plug-in hybrid vehicles on pacific northwest distribu-
tion systems. In Proceedings of IEEE Power and Energy
Society General Meeting (PES), pages 1–6, 2008.

[Sweet, 2011] Matthias Sweet. Does traffic congestion slow
the economy? Journal of Planning Literature, 26(4):391–
404, 2011.

[Tambe et al., 2014] Milind Tambe, Albert Xin Jiang,
Bo An, and Manish Jain. Computational game theory for
security: Progress and challenges. In AAAI Spring Sym-
posium on Spring Symposium on Applied Computational
Game Theory, March 2014.

[EVMileage, 2014] EVMileage. All-Electric Vehicles
EVs. http://www.fueleconomy.gov/feg/
evtech.shtml, Nov. 2014.

[Wang et al., 2010] H. Wang, Q. Huang, C. Zhang, and A. X-
ia. A novel approach for the layout of electric vehicle
charging station. In Proceedings of International Confer-
ence on Apperceiving Computing and Intelligence Analy-
sis (ICACIA), pages 64–70, 2010.

[Wang et al., 2013] Chao Wang, Mohammed Quddus, and
Stephen Ison. A spatio-temporal analysis of the im-
pact of congestion on traffic safety on major roads in the
UK. Transportmetrica A: Transport Science, 9(2):124–
148, 2013.

[Woo, 2014] S. B. Woo. LTA to develop a
road map for electric vehicles. http:
//www.todayonline.com/singapore/
lta-develop-road-map-electric-vehicles,
March 2014.


