
A Proofs of Propositions and Theorems
A.1 Proof of Proposition 1
Proof. To prove this Proposition, it is sufficient to show that
Ud(x, f) ≥ Ud(x

′, f) for all x′ ∈ X . Since 〈x, f〉 forms the
Nash (Stackelberg) equilibrium of the restricted NFIG with
restricted sets S ′ and P ′, we have:

Ud(x, f) ≥ Ud(S′, f) ∀S′ ∈ S ′

Therefore, if S ∈ S ′, we have: Ud(x, f) ≥ Ud(S, f). For any
mixed strategy x′ ∈ X , we have:

Ud(x
′, f) =

∑
S′∈S

xS′Ud(S
′, f) ≤ Ud(S, f)

since S is the best response pure strategy against f and∑
S′∈S xS′ = 1.
Thus, Ud(x, f) ≥ Ud(x′, f) for all x′ ∈ X .

A.2 Proof of Theorem 2
Proof. We show the NP-hardness of the Column Generation
problem by reducing the set cover problem to it. The Set-
Cover problem: Given a set U , a collection Q of subsets
of U (that is, Q ⊆ 2U ), and an integer k. The question is
whether there is a cover C ⊆ Q of size k or less, that is,⋃
q∈C q = U and |C| ≤ k.
Given an instance 〈U,Q, k〉 of set cover problem, we re-

duce it to a ColG instance 〈G,P ′, I, f〉 as follows: Except
the two unique source and sink nodes s, t, for each subset
q ∈ Q, we assign a vertex vq in G and an inspection station
iq on vertex vq with inspection probability τiq = 1. Now, for
each element u ∈ U , we construct a path pu ∈ P ′ as follows:
pu starts from s, passing through vertices vq such that u ∈ q,
and end at t; The attacker flow f is defined on paths of P ′
such that fp = 1 for all p ∈ P ′. Obviously, this reduction can
be done in polynomial time. Next, we show that the set cover
problem instance 〈U,Q, k〉 has a cover C of size k or less if
and only if the Column Generation problem has a solution S
such that all the flow in f is intervened, i.e., Ua(S, f) = 0.

The “if” direction: If S intervenes all the flow in f , which
means each path pu in P ′ passes through some inspection
station iq in S, then the collection C = {q ∈ Q : iq ∈ S} is a
cover of size k or less.

The “only if” direction: If there exists a cover C of size k
or less for the set cover problem, the defender pure strategy
S = {vq : q ∈ C} intervenes all the paths pu ∈ P ′ and hence
all the flow in f is blocked.

A.3 Proof of Theorem 3
Proof. We provide a dynamic programming algorithm for
solving the ColG subproblem on tree-like graph G with
source node s in polynomial time. First, we transform G
into a tree G′ in following way: for sink node t, supposing
its incoming edges are (v1, t), ..., (vm, t), we replace t with
m new sinks t1, ..., tm and replace incoming edges with m
new edges (v1, t1), ..., (vm, tm). Figure 3 shows an example
of the tree G′ transformed from tree-like graph G. Let s be
the root of tree G′. Given a vertex v, let Tv be the subtree
rooted at v, Cv be the set of child nodes of v, civ be the i-th
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Figure 3: Dynamic Programming for Tree-Like Graph.

child node of v, and T jv be the subtree rooted at v with first j
branches.

Let Sv(r, j) denote the optimal allocation of r resources
on T jv , and Sv(r) = Sv(r, |Cv|) be the optimal allocation of
r resources on Tv . A key property here is that since all flows
passing through T jv come from the unique path from s to v
(G′ is a tree), the resource allocation outside T jv will decrease
fp with the same proportion for all paths p from s to v ∈ T jv .
Thus, the optimal resource allocation Sv(r, j) is independent
with allocation of resources on the complementary part G′ −
T jv .

The above property leads to the following recursion:

Sv(r, j+1) = arg min
r′<r

min

{
U(Sv(r − r′, z)) + U(Sv′(r

′))

U(Sv(r − r′), z) + kv
′

v U(Sv′(r
′ − 1))

(10)
where U(Sv(r, j)) measures the amount of flow passing
through T jv with resource allocation Sv(r, j) on T jv and no re-
source put outside T jv , v′ = cj+1

v , i.e., the j+ 1-th child node
of v, and kv

′

v be the inspection probability of the checkpoint
on edge (v, v′). The idea of this recursion is that allocating
r resources on T j+1

v can be done in two possible ways: i)
putting r − r′ resources on T jv and the rest on Tv′ ; ii) putting
r − r′ resources on T jv , r′ − 1 resources on Tv′ , and one re-
source on (v, v′). The best way minimizing the amount of
flow passing through T jv gives Sv(r, j + 1). Here, we as-
sume that checkpoints are all on edges, which is reasonable
because in the tree graph, each node v has a unique parent n-
ode ṽ. Thus, we can always insert a new node v′ at the middle
of edge (ṽ, v) and move the checkpoint on v to the new edge
(v′, v), while keeping the game unchanged.

With the above recursion, we can compute Sv(r, j) for ev-
ery nodes following direction from sink nodes to s with r
from 1 to the budget k and j from 1 to |Cv|. Thus, the algo-



rithm computes the optimal solution S∗ = Ss(k) for ColG in
O(k|V |2) runtime.

A.4 Proof of Proposition 4
Proof. To prove the convexity of Ua(S, f), it is enough to
prove that Φ(S, p) is convex. To do so, we provide an e-
quivalent representation of Φ(S, p) defined in the following
equation:

Φ(S, p) =
∏
i∈I

(1− τi)αpiSi ,

where αpi = 1 if path p passes through inspection station i
and αpi = 0 otherwise. The Hessian matrix of Φ(S, p) is
denoted by H, such that:

Hij =
∂2H

∂Si∂Sj
= αpiαpj ln(1− τi)ln(1− τj)Φ(S, p)

It is easy to verify that H can be represented as:

H = yyTΦ(S, p)

where yi = αpiln(1− τi). Therefore, H is positive semidef-
inite, and Ua(S, f) is convex function over S ∈ [0, 1]|I|.

A.5 Proof of Theorem 5
Proof. The defender utilities are always negative, therefore
an approximation guarantee in terms of utility is meaningless.
To facilitate analysis, we first define a non-negative function
h for each defender allocation S such that |S| ≤ k:

hf (S) = Ud(S, f)− Ud(∅, f) =
∑
p∈P

(1− Φ(S, p))fp

Note h denotes the marginal benefit of allocation S over the
non-defending defender strategy.

Given the adversarial flow f , we first prove that hf (S) is a
monotone submodular function, i.e., i) hf (S1) ≤ hf (S2), and
ii) hf (S1 ∪{i})−hf (S1) ≥ hf (S2 ∪{i})−hf (S2), for each
S1 ⊆ S2 ⊆ I , i ∈ I \ S2.

Monotone Remember Φ(S, p) represents the proportion of
adversary flow on path p not interdicted by the operated
inspection stations given S. Given S1 ⊆ S2, we have
Φ(S1, p) ≥ Φ(S2, p) for all p ∈ P . Thus, hf (S1) ≤
hf (S2).

Submodulariry For each S ⊆ I and i ∈ I \ S, we have:

hf (S∪{i})−hf (S) =
∑
p∈P

(Φ(S, p)−Φ(S∪{i}, p))fp

According to Eq.(2):

Φ(S, p) =
∏

i∈I:i∈p
(1− τi)Si

We have:

hf (S ∪ {i})− hf (S) =
∑

p∈P:i∈p
τi · Φ(S, p)fp

Since Φ(S1, p) ≥ Φ(S2, p) for each S ⊆ I and i ∈ I \S
and p ∈ P , we get: hf (S1 ∪ {i}) − hf (S1) ≥ hf (S2 ∪
{i})− hf (S2).

Therefore, hf (S) is a non-negative monotone submodular
function. According to [Nemhauser and Wolsey, 1978], the
greedy algorithm for submodular function maximization can
achieve a 1 − 1

e approximation ratio. Hence, Ud(S′, f) −
Ud(∅, f) ≥ (1− 1

e )(Ud(S
∗, f)− Ud(∅, f)).

A.6 Proof of Theorem 6
Proof. Let S′ be the greedy solution of Algorithm 2 against
attacker’s network flow f ′, and S∗ be the defender best re-
sponse pure strategy against f ′, i.e.,

S∗ = arg max
S∈S

Ud(S, f
′) (11)

According to Theorem 5, we have:

Ud(S
′, f ′)− Ud(∅, f ′) ≥ (1− 1

e
)(Ud(S

∗, f ′)− Ud(∅, f ′))

Since x′ is the defender best response strategy against f ′ in
the restricted NFIG defined on restricted defender pure strat-
egy space S ′, and S′ ∈ S ′ according to the convergence cri-
teria of CCG algorithm, we have:

Ud(x
′, f ′)− Ud(∅, f ′)

≥ Ud(S′, f ′)− Ud(∅, f ′)

≥ (1− 1

e
)(Ud(S

∗, f ′)− Ud(∅, f ′))
(12)

According to Eq.(11), we have:

Ud(x
∗, f ′) =

∑
S∈S

x∗SUd(S, f
′) ≤ Ud(S∗, f ′)

Since f∗ is the attacker best response flow against x∗ in the
original NFIG, we have:

Ud(x
∗, f∗) ≤ Ud(x∗, f ′) ≤ Ud(S∗, f ′) (13)

Finally, substitute Eq.(12) with Eq.(13):

Ud(x
′, f ′)− Ud(∅, f ′)

≥ (1− 1

e
)(Ud(x

∗, f∗)− Ud(∅, f ′))

A.7 Proof of Proposition 7
Proof. Supposing the optimal solution ofCoreLP (S ′,P ′) is
(x,u), then the current equilibrium flow f over P ′, which is
the dual solution with respect to inequality (6c) on paths in
P ′, satisfies

Ua(x, f) =
∑
e∈E

ceue

based on the dual theory [Bertsimas and Tsitsiklis, 1997]. If
the ConG generates an s-t path p with maximal reduced cost
such that R(p) ≤ 0, we have

R(p′) ≤ R(p) ≤ 0 ∀p′ ∈ P

In other words, (x,u) is also the optimal solution of
CoreLP (S ′,P) as it satisfies inequality (6c) with respect to
all p ∈ P . Notice that CoreLP (S ′,P) computes the attacker
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Figure 4: Example of Compact Representation.

best response flow f∗ against defender mixed strategy x over
pure strategy set S ′ also satisfying

Ua(x, f∗) =
∑
e∈E

ceue

according to the dual theory. Thus, Ua(x, f) = Ua(x, f∗),
and the current equilibrium flow f is an attacker best response
pure strategy against x.

B Infeasibility of Compact Representation for
the Attacker Strategy

We demonstrate the infeasibility of compact representation
for the attacker’s flow with a simple example shown in Fig-
ure 4 with 2 sources and two sinks. With compact represen-
tation, the flow f is defined over edges E such that fe de-
notes the amount of flow passing through edge e. In this ex-
ample, fe = 10 for all edges. Now, suppose the defender
allocates two resources on edges (s1, v) and (v, t1) with in-
spection probabilities 1. In this case, we cannot compute the
exact amount the flow interdicted by the defender. It can be
10 units passing through s1 − v − t2 and 10 units passing
through s2 − v − t1, and the attacker utility is 0 in this case;
It may also be 10 units passing through s1 − v − t1 and 10
units passing through s2−v−t2, and the attacker utility is 10
now. The reason for this kind of infeasibility comes from the
fact that each compact representation can be realized by nu-
merous possible flows defined over paths, and they can have
different utilities against a given resource allocation. Thus,
the network flow in our NFIG is defined over paths.

C Southern Border Patrol Networks
We conduct experiments on two sectors in Southern Border
Patrol [GAO, 2005]: i) San Diego sector with 29 nodes and
degree of 2.89, two source nodes (San Ysidro and Tecate
POEs), one sink node (Los Angeles), and 12 checkpoints
(Figure 5); ii) Laredo sector with 20 nodes and degree of 3,
one source node (Laredo POE), one sink node (San Antonio),
and 6 checkpoints (Figure 6). The roads can be classified into
four levels: Interstate, U.S. Hwy, State Hwy, and Hwy. The
capacity of a road is randomly drawn from: [0, 35] (Inter-
state), [0, 30] (U.S. Hwy), [0, 25] (State Hwy), and [0, 20]
(Hwy). k = 6 for San Diego sector and k = 3 for Laredo
sector.

 

Appendix II: San Diego Sector Profile 
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well as some of the approximate locations used for tactical checkpoints, 
not all of which operate simultaneously. 

Figure 10: Road Infrastructure and Checkpoints in the San Diego Sector 
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Figure 5: San Diego Sector (circles are tactical checkpoints).

 

Appendix IV: Laredo Sector Profile 
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Figure 17: Road Infrastructure and Checkpoints in the Laredo Sector 

Note: The location shown on highway 83 is a proposed checkpoint; therefore, there are five current 
permanent checkpoints. 

 
According to the Border Patrol, traffic checkpoint operations are generally 
supported by local ranchers, who permit the Border Patrol to enter their 
fenced property.  The ranchers also permit the Border Patrol to place 
sensors at locations that could be favored by smugglers, according to 
Border Patrol officials. 
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Figure 6: Laredo Sector (circles are tactical checkpoints).


