A Proofs of Propositions and Theorems
A.1 Proof of Proposition 1

Proof. To prove this Proposition, it is sufficient to show that
Ua(x,f) > Uy(x',£) for all x' € X. Since (x,f) forms the
Nash (Stackelberg) equilibrium of the restricted NFIG with
restricted sets S’ and P’, we have:

Uvd(X7 f) > Ud(S/,f) vs' e S

Therefore, if S € S’, we have: Uy(x,f) > Uy(S, ). For any
mixed strategy x’ € X, we have:

Ua(x'.£) = > agUa(S' £) < Uag(S.£)

S'es
since S is the best response pure strategy against f and
ZS’ES rg =1
Thus, Uy(x,f) > Uy(x/,f) forall x’ € X. O

A.2 Proof of Theorem 2

Proof. We show the NP-hardness of the Column Generation
problem by reducing the set cover problem to it. The Set-
Cover problem: Given a set U, a collection Q of subsets
of U (that is, @ C 2Y), and an integer k. The question is
whether there is a cover C C Q of size k or less, that is,
Ugeca=U and [C] < k.

Given an instance (U, Q, k) of set cover problem, we re-
duce it to a ColG instance (G, P’,I,f) as follows: Except
the two unique source and sink nodes s,t, for each subset
g € Q, we assign a vertex v, in G and an inspection station
14 On vertex v, with inspection probability 7;, = 1. Now, for
each element u € U, we construct a path p,, € P’ as follows:
Dy, starts from s, passing through vertices v, such that u € g,
and end at t; The attacker flow f is defined on paths of P’
such that f,, = 1 forall p € P’. Obviously, this reduction can
be done in polynomial time. Next, we show that the set cover
problem instance (U, Q, k) has a cover C of size k or less if
and only if the Column Generation problem has a solution S
such that all the flow in f is intervened, i.e., U, (S, f) = 0.

The “if”’ direction: If S intervenes all the flow in f, which
means each path p, in P’ passes through some inspection
station 4, in .S, then the collection C = {g € Q : i, € S}isa
cover of size k or less.

The “only if”’ direction: If there exists a cover C of size k
or less for the set cover problem, the defender pure strategy
S = {v, : ¢ € C} intervenes all the paths p,, € P’ and hence
all the flow in f is blocked. U

A.3 Proof of Theorem 3

Proof. We provide a dynamic programming algorithm for
solving the ColG subproblem on tree-like graph G with
source node s in polynomial time. First, we transform G
into a tree G’ in following way: for sink node ¢, supposing
its incoming edges are (v1,t), ..., (v, t), we replace ¢t with
m new sinks 1, ..., t,, and replace incoming edges with m
new edges (v1,t1), ..., (Um, tm ). Figure 3 shows an example
of the tree G’ transformed from tree-like graph G. Let s be
the root of tree G’. Given a vertex v, let T, be the subtree
rooted at v, C,, be the set of child nodes of v, cf] be the i-th

Figure 3: Dynamic Programming for Tree-Like Graph.

child node of v, and T? be the subtree rooted at v with first j
branches.

Let S,(r,j) denote the optimal allocation of r resources
onT7, and S, (r) = S,(r,|C,|) be the optimal allocation of
r resources on 1. A key property here is that since all flows
passing through 77 come from the unique path from s to v
(G is a tree), the resource allocation outside 77/ will decrease
f, with the same proportion for all paths p from s to v € T7.
Thus, the optimal resource allocation S, (r, j) is independent
with allocation of resources on the complementary part G’ —
T7.

The above property leads to the following recursion:

/! !/
Sy(r,j+1) = arg minmin{ U(Su(r —17,2)) + U(Sw (1))
r'<r

(10)
where U(S,(r,j)) measures the amount of flow passing
through T with resource allocation S, (r, 5) on T and no re-
source put outside 77, v’ = ¢/, i.e., the j + 1-th child node
of v, and kg/ be the inspection probability of the checkpoint
on edge (v,v’). The idea of this recursion is that allocating
r resources on 77! can be done in two possible ways: i)
putting » — 7’ resources on 7}/ and the rest on T,; ii) putting
r — r’ resources on Tg , " — 1 resources on T, and one re-
source on (v,v’). The best way minimizing the amount of
flow passing through 77 gives S,(r,j + 1). Here, we as-
sume that checkpoints are all on edges, which is reasonable
because in the tree graph, each node v has a unique parent n-
ode ¥. Thus, we can always insert a new node v’ at the middle
of edge (9, v) and move the checkpoint on v to the new edge
(v',v), while keeping the game unchanged.

With the above recursion, we can compute S, (r, j) for ev-
ery nodes following direction from sink nodes to s with r
from 1 to the budget k and j from 1 to |C,|. Thus, the algo-

U(Sy(r—7'),2) + kU U(Sy (' — 1))



rithm computes the optimal solution S* = S; (k) for ColG in
O(k|V|?) runtime.
0

A.4 Proof of Proposition 4

Proof. To prove the convexity of U, (S5, f), it is enough to
prove that ®(S,p) is convex. To do so, we provide an e-
quivalent representation of ®(S,p) defined in the following
equation:
¢(Sap) = H(l - Ti)amSla
i€l

where oy,; = 1 if path p passes through inspection station %
and a,,; = 0 otherwise. The Hessian matrix of ®(S,p) is
denoted by H, such that:

0’H
Hij =
05,08,
It is easy to verify that H can be represented as:
H=yy"®(S,p)
where y; = ap;In(1 — 7;). Therefore, H is positive semidef-

inite, and U, (S, f) is convex function over S € [0,1]/. O

A.5 Proof of Theorem 5

Proof. The defender utilities are always negative, therefore
an approximation guarantee in terms of utility is meaningless.
To facilitate analysis, we first define a non-negative function
h for each defender allocation S such that |S| < k:

he(S) = Ua(S,£) = Ua(0,£) = > (1= 0(S,p) f,

pEP

= apiap;ln(l —7)in(l — 7;)2(S, p)

Note h denotes the marginal benefit of allocation S over the

non-defending defender strategy.

Given the adversarial flow f, we first prove that he(S) is a
monotone submodular function, i.e., i) h¢(S1) < he(S2), and
i) he(S1U{i}) — he(S1) > he(S2U{i}) — he(S2), for each
S1CS CIiel\S,.

Monotone Remember ®(.S,p) represents the proportion of
adversary flow on path p not interdicted by the operated
inspection stations given .S. Given S; C S5, we have
®(S1,p) > D(Ss,p) for all p € P. Thus, he(S1) <
he(S2).

Submodulariry Foreach S C I'andi € I\ S, we have:
he(SU{i}) = he(S) = Y _(2(S,p) — (SU{i},p)fy

peEP
According to Eq.(2):
q)(S?p) = H (]— - Ti)S1
iel:iep
We have:
he(SU{i}) —he(S) = Y 7-2(S.p)fy
peEP:ED

Since ®(S1,p) > ®(Ss,p) foreach S C Tandi € I\ S
and p € P, we get: he(S1 U {i}) — he(S1) > he(Sz U
{i}) = he(S2).

Therefore, he(S) is a non-negative monotone submodular
function. According to [Nemhauser and Wolsey, 1978], the
greedy algorithm for submodular function maximization can
achieve a 1 — 1 approximation ratio. Hence, Uq(S’,f) —

Ua(0,£) > (1 — 1) (Ua(5*,£) — Uq(0,£)). O

€

A.6 Proof of Theorem 6

Proof. Let S’ be the greedy solution of Algorithm 2 against
attacker’s network flow f’, and S* be the defender best re-
sponse pure strategy against f’, i.e.,

* /
S* = arg?ggUd(S,f) 11
According to Theorem 5, we have:
1
Ua(S' ') = Ua(0,£") > (1 - g)(Ud(S*’f’) — Ua(0,1))

Since x’ is the defender best response strategy against f’ in
the restricted NFIG defined on restricted defender pure strat-
egy space §’, and S’ € &’ according to the convergence cri-
teria of CCG algorithm, we have:

Ua(x', ") = Ua(0,£)
> Ua(S', ) — Ua(0, £') (12)
> (1= )(Ua(S,€) ~ Ua(0.£))
According to Eq.(11), we have:
Ua(x*,f') = > a5Ua(S,£') < Ua(S*,£)
Ses

Since f* is the attacker best response flow against x* in the
original NFIG, we have:

Ua(x™, %) < Ua(x™, ') < Ua(S*£)  (13)
Finally, substitute Eq.(12) with Eq.(13):
Ua(x', £) — Ua(0, ')
> (1 é)(Ud(X*,f*) — U0, )
O

A.7 Proof of Proposition 7

Proof. Supposing the optimal solution of Core LP(S',P’) is
(x,u), then the current equilibrium flow f over P’, which is
the dual solution with respect to inequality (6¢) on paths in

P!, satisfies
Uus(x,f) = Z Celle
eclE
based on the dual theory [Bertsimas and Tsitsiklis, 1997]. If
the ConG generates an s-¢ path p with maximal reduced cost
such that R(p) < 0, we have

R(p') < R(p) <0 vp' eP

In other words, (x,u) is also the optimal solution of
CoreLP(S',P) as it satisfies inequality (6¢) with respect to
all p € P. Notice that CoreLP(S’, P) computes the attacker



So )

Figure 4: Example of Compact Representation.

best response flow f* against defender mixed strategy x over
pure strategy set S’ also satisfying

Uu(x,f*) = Z Celle
ecE
according to the dual theory. Thus, U, (x,f) = U,(x,£*),
and the current equilibrium flow f is an attacker best response
pure strategy against x. U

B Infeasibility of Compact Representation for
the Attacker Strategy

We demonstrate the infeasibility of compact representation
for the attacker’s flow with a simple example shown in Fig-
ure 4 with 2 sources and two sinks. With compact represen-
tation, the flow f is defined over edges E such that f. de-
notes the amount of flow passing through edge e. In this ex-
ample, f. = 10 for all edges. Now, suppose the defender
allocates two resources on edges (s1,v) and (v, t1) with in-
spection probabilities 1. In this case, we cannot compute the
exact amount the flow interdicted by the defender. It can be
10 units passing through s; — v — t5 and 10 units passing
through sy — v — t1, and the attacker utility is O in this case;
It may also be 10 units passing through s; — v — ¢; and 10
units passing through ss — v —t9, and the attacker utility is 10
now. The reason for this kind of infeasibility comes from the
fact that each compact representation can be realized by nu-
merous possible flows defined over paths, and they can have
different utilities against a given resource allocation. Thus,
the network flow in our NFIG is defined over paths.

C Southern Border Patrol Networks

We conduct experiments on two sectors in Southern Border
Patrol [GAO, 2005]: i) San Diego sector with 29 nodes and
degree of 2.89, two source nodes (San Ysidro and Tecate
POEs), one sink node (Los Angeles), and 12 checkpoints
(Figure 5); ii) Laredo sector with 20 nodes and degree of 3,
one source node (Laredo POE), one sink node (San Antonio),
and 6 checkpoints (Figure 6). The roads can be classified into
four levels: Interstate, U.S. Hwy, State Hwy, and Hwy. The
capacity of a road is randomly drawn from: [0, 35] (Inter-
state), [0, 30] (U.S. Hwy), [0, 25] (State Hwy), and [0, 20]
(Hwy). k£ = 6 for San Diego sector and £ = 3 for Laredo
sector.
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Figure 5: San Diego Sector (circles are tactical checkpoints).
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Figure 6: Laredo Sector (circles are tactical checkpoints).



