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Abstract

Stackelberg security games (SSGs) have been de-
ployed in many real-world situations to optimally
allocate scarce resource to protect targets against
attackers. However, actual human attackers are
not perfectly rational and there are several behavior
models that attempt to predict subrational behav-
ior. Quantal response is among the most commonly
used such models and Quantal Stackelberg Equilib-
rium (QSE) describes the optimal strategy to com-
mit to when facing a subrational opponent. Non-
concavity makes computing QSE computationally
challenging and while there exist algorithms for
computing QSE for SSGs, they cannot be directly
used for solving an arbitrary game in the normal
form. We (1) present a transformation of the pri-
mal problem for computing QSE using a Dinkel-
bach’s method for any general-sum normal-form
game, (2) provide a gradient-based and a MILP-
based algorithm, give the convergence criteria, and
bound their error, and finally (3) we experimentally
demonstrate that using our novel transformation, a
QSE can be closely approximated several orders of
magnitude faster.

1 Introduction
Game-theoretic algorithms have been used for improving
physical security (see examples in [Tambe, 2011]), protect-
ing wildlife in natural parks [Fang et al., 2017], or beating
human professionals in poker [Moravčı́k et al., 2017; Brown
and Sandholm, 2018]. Following the standard game-theoretic
assumption of perfectly rational players is, however, not opti-
mal against human opponents and there are more effective
strategies against subrational opponents [Pita et al., 2008;
Delle Fave et al., 2014; Nguyen et al., 2016]. One of the most
commonly used subrational models (a model of bounded ra-
tionality) is Quantal Response (QR) assuming that players
choose better actions more often than worse actions instead of
choosing only the best action [McKelvey and Palfrey, 1995].
In practical applications, the goal is to find the best strategy
to deploy (i.e., to commit to) while assuming the other player
plays the best response to this commitment – i.e., to compute

a Stackelberg Equilibrium. QR is used as the response func-
tion in case of human players and the desired solution concept
is termed Quantal Stackelberg Equilibrium (QSE).

Stackelberg Security Games (SSGs) [Tambe, 2011] are
particularly useful game model with many deployed real-
world applications but with certain limitations. The problem
must be formulated in terms of allocating limited resources
to a set of targets. This is often impossible, e.g., in classical
games from economics (i.e., prisoner’s/traveler’s dilemma,
location game [Nudelman et al., 2004]). In order to solve
real-world problems beyond SSGs, we study optimal behav-
ior against a quantal response opponent in more general mod-
els of normal-form games. We consider a very general class
of response functions modelling both risk-averse and risk-
seeking opponents. An optimal strategy of the rational player
against such a subrational opponent is described by a leader-
follower solution concept: the QSE. The leader computes and
implements a fixed strategy and the follower responds to this
strategy based on the quantal response function.

The natural formulation of the optimization problem com-
puting QSE is non-concave. Moreover, we show that the
number of local minima may grow linearly with the num-
ber of actions even in a zero-sum game. Hence, simple gra-
dient ascent approaches are not likely to be effective. It is
difficult to further analyze the problem of computing QSE
directly, therefore, we derive a Dinkelbach-type formulation
of the problem and use it to identify sufficient conditions for
concavity of the problem. If the conditions are satisfied, the
optimal solution can be found by gradient ascent. Further-
more, we generalize the linear relaxation developed for SSGs
[Yang et al., 2012] to general normal-form game and use it to
formulate a mixed integer linear program (MILP) for approxi-
mately solving the problem. The approach of SSGs cannot be
applied directly, because it uses specific properties of SSGs.

In the experiments, we compare the convergence speed
of gradient ascent in direct formulation to approximated
Dinkelbach-type MILP formulation of QSE with various
quantal functions. We show that the Dinkelbach-type algo-
rithm is up to 25.5-times faster than one restart of gradient
ascent and it also provides solutions of higher quality. For
the most common quantal function (i.e., logit function) and
sufficiently large games, the gradient ascent couldn’t find a
solution of the same quality even when running 153-times
longer than the Dinkelbach-type algorithm.
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2 Background

Normal-form games model one-shot interactions between
players and can be visually represented as game matrices.
Formally, a two-player NFG is defined as a tuple G =
(N ,A, u): N = {l, f} is a set of players, the leader and
the follower. We use i to refer to one of the players, and
−i to refer to his opponent. A = (Al,Af ) denotes or-
dered sets of actions for each player. For each pair of actions
(al, af ), al ∈ Al, af ∈ Af , we define a utility function for
each player ui : Al × Af → R. In zero-sum setting, we
assume that u = uf , setting ul = −uf .

Pure strategies Πi assign one action to play in the game.
A mixed strategy δi ∈ ∆i is a probability distribution over
Πi. Because the actions are ordered, δji denotes the prob-
ability of player i taking the jth action. For any pair of
strategies δl ∈ ∆l, δf ∈ ∆f ) we use ui(δl, δf ) for the ex-
pected outcome of the game for player i when players fol-
low strategies δl, δf . A best response of player i to the op-
ponent’s strategy δ−i is a strategy δBRi ∈ BRi(δ−i), where
ui(δ

BR
i , δ−i) ≥ ui(δ′i, δ−i) for all δ′i ∈ ∆i.

Solution Concepts in NFGs
We provide the formal definitions of Nash Equilibrium (NE)
and Quantal Stackelberg Equilibrium (QSE).

Definition 1. Given a normal-form game G = (N ,A, u), a
tuple of mixed strategies (δNl , δ

N
f ), δNl ∈ ∆l, δ

N
f ∈ ∆f is

a Nash Equilibrium if δNi is an optimal strategy of player i
against strategy δN−i. Formally:

δNi ∈ BR(δN−i) ∀i ∈ {l, f}. (1)

In NE, both players make decisions fully rationally. In this
work, we assume two possible diversions from this assump-
tion. Both are often observed in laboratory experiments with
human players [Camerer, 2011]. First, humans differ from
rational players in their approaches towards risk. When ex-
posed to uncertainty, humans might intentionally attempt to
avoid the gamble (risk aversion) or, in contrast, they may
seek higher risks (risk love). The approaches are modelled
via strictly increasing expected-utility function e. While the
function of risk-neutral players is the identity, risk-averse
players behave according to a concave and risk-seeking play-
ers according to a convex function. Humans also tend to
combine both approaches: loss-attentive functions are risk-
averse when the utility is non-positive and risk-seeking when
the utility is positive [Yechiam and Hochman, 2013]. Vice
versa, functions, which are risk-seeking when the utility is
non-positive and risk-averse when the utility is positive are
called loss-averse [Kahneman and Tversky, 2013].

Second, fully rational players always select the utility-
maximizing option. Relaxing this assumption leads to a “sta-
tistical version” of best response, which takes into account the
inevitable error-proneness of humans and allows the players
to make systematic errors [McFadden, 1976].

Definition 2. Let e be an expected-utility function. Function
QR : ∆l → ∆f is a quantal response function if it is mono-
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Figure 1: An example of a general-sum NFG (left matrix), the cri-
terion functions of its QSEs (dashed curve) and its zero-sum variant
(right matrix, dotted curve). Each row of the depicted matrices is
labeled by a strategy of the first player (the leader), while every col-
umn is labeled by a strategy of the second player (the follower). The
QSE maximizes the leader’s expected utility. The values of Nash
equilibria are depicted in corresponding bold straight lines.

tonically increasing in expected utility:

e(uf (δ, aif )) ≤ e(uf (δ, ajf ))⇒ QRi(δ) ≤ QRj(δ)

∀δ ∈ ∆l, a
i
f , a

j
f ∈ Af , (2)

whereQRi(δ) is the probability of playing action ai. Quantal
function QR is called canonical if

QRi(δ) =
[e ◦ q](uf (δ, aif ))∑
π∈Πf

[e ◦ q](uf (δ, π))
(3)

for all δ ∈ ∆l, a
i
f ∈ Af and some real-valued function q.

Note that whenever q is a strictly positive increasing func-
tion, the corresponding QR is a valid quantal response func-
tion. We call such functions q generators of canonical quantal
functions. Because of the conceptual differences between the
quantal and expected-utility functions (i.e., error proneness
vs. risk assessment), we keep both functions separated.
Definition 3. Given a normal-form gameG = (N ,A, u) and
a quantal response functionQR of the follower, a mixed strat-
egy δQS ∈ ∆l describes a Quantal Stackelberg Equilibrium
(QSE) if and only if

δQS = arg max
δ∈∆l

ul(δ,QR(δ)). (4)

In QSE, a leader is fully rational. He commits to an opti-
mal strategy given that a follower quantal-responds according
to given quantal and expected-utility functions. We refer to
Equation (4) as to the criterion function of QSE.
Example 1. Consider the matrix game shown on the left in
Figure 1. Let the follower behave according to a canonical
quantal function with generator q(x) = ex/2 and utility func-
tion e(x) = x (identity). Below the matrix is depicted a cri-
terion function of the game’s QSE (dashed) and a criterion
function of the game’s zero-sum variant’s QSE (dotted), in
which we set ul = −uf . In the general-sum game, the op-
timal strategy of the leader is to commit to playing action o

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

247



with probability 0.846. To achieve the QSE in the zero-sum
variant, the leader plays o with probability 0.887.

The example shows that in general, finding the QSE is a
non-linear non-concave problem. To design methods for effi-
cient computation of QSE, we analyze the properties of QSE
in more detail in the next section.

3 Properties of QSE in NFGs
In this section, we first study the relation of QSE to NE. Then
we show why gradient ascent methods often fail to compute a
global optimum. Note that because NFGs have a finite num-
ber of actions and all utilities are finite, there always exists a
strategy maximizing the QSE criterion function with a finite
value. Moreover, in zero-sum NFGs, the leader’s utility in
QSE is always greater or equal to his utility in NE.
Observation 1. Let G = (N ,A, u) be a zero-sum NFG, QR
be a quantal response function of the follower and δN , δQS
be the mixed strategies of the leader in NE and QSE, respec-
tively. Then ul(δN , BR(δN )) ≤ ul(δQS , QR(δQS)).

Proof. From the definition of quantal response function
uf (δ,BR(δ))) ≥ uf (δ,QR(δ)) for all δ ∈ ∆l. There-
fore, in zero-sum games it holds that ul(δ,BR(δ))) ≤
ul(δ,QR(δ)). From the definition of QSE ul(δ,QR(δ))) ≤
ul(δ

QS , QR(δQS)). Setting δ = δN yields the result.

The same observation does not hold for general-sum
games. As shown in Figure 1, the expected utility of the
leader in the general-sum game is −2.26. In NE, the leader
plays action o and the follower responds with B, resulting in
the expected utility of the leader −2.2, strictly higher than in
QSE. In other words, facing a subrational opponent does not
have to be an advantage in a general-sum game. From now
on, we will focus our analysis on canonical quantal functions.
Observation 2. Let G = (N ,A, u) be a normal-form game
and q be a generator of a quantal function with an expected-
utility function e. Then the leader’s strategy δQS of QSE in G
can be formulated as the following non-concave problem:

δQS = arg max
δ∈∆l

∑
π∈Πf

ul(δ, π)[e ◦ q](uf (δ, π)∑
π∈Πf

[e ◦ q](uf (δ, π)
. (5)

Non-concave maximization problems can be solved by gra-
dient ascent. The gradient ascents are an efficient class of al-
gorithms with a guarantee to approach a local maximum in
a polynomial number of steps in case the gradient of the cri-
terion function is Lipschitz-continuous [Boyd and Vanden-
berghe, 2004]. Unfortunately, the criterion function of QSE
can have a large number of such local optima.
Conjecture 3. For every n, |Af | = n, there exists a zero-
sum NFG G and a generator q of a canonical quantal func-
tion with an expected-utility function e, such that a criterion
function of QSE in G has at least n− 1 local maxima.

For every n, we define Gn = ((l, f), (Al,Anf ), uf ) and
set Al = {a1, a2}, Anf = {b1, b2, . . . , bn}. The utility func-
tion uf is defined as uf (a1, b1) = 0.5, uf (a1, bi) = −10i

for i ∈ [2, n] and uf (a2, bi) = 0 for all i ∈ [n], ul = −uf .
Let q(x) = ex and e(x) = x if x < 0 and e(x) = 0 for

Algorithm 1 Dinkelbach-Type Algorithm for QSE

1: UB ← maxπ∈Π ul(π), LB ← minπ∈Π ul(π)
2: δ∗ ← arg maxδ∈∆l

∑
π∈Πf

(ul(δ, π)− LB)[e ◦ q](uf (δ, π))

3: repeat
4: p← (UB − LB)/2
5: v ← maxδ∈∆l

∑
π∈Πf

(ul(δ, π)− p)[e ◦ q](uf (δ, π))

6: δp ← arg maxδ∈∆l

∑
π∈Πf

(ul(δ, π)− p)[e ◦ q](uf (δ, π))

7: if v < 0 then LB ← p, δ∗ ← δp else UB ← p end if
8: until UB − LB < ε
9: return δ∗

x ≥ 0. We were experimentally able to verify the conjec-
ture up to games with n = 100, then the optima became too
close to zero to verify their existence numerically. Applying
restarted gradient ascent for solving QSE is thus impractical
and can often lead to globally suboptimal local optima. More-
over, analysing the conditions when the criterion function of
formulation (5) is concave is difficult, as concavity is not pre-
served under division1.

4 Dinkelbach-Type Formulation of QSE
This section introduces a transformation of the QSE for-

mulation (5) into an equivalent optimization problem. This
new formulation allows us to devise the conditions for ap-
proximating QSE in polynomial time.

The transformation is called the Dinkelbach’s method for
solving nonlinear fractional programming problems [Dinkel-
bach, 1967] and we can adapt it for finding the QSE be-
cause formulation (5) is a fractional program. The key idea
of the Dinkelbach’s algorithm is to express a problem in
a form of maxx∈M f(x)/g(x), g(x) > 0 for some con-
vex set M and continuous, real-valued functions f and g as
an equivalent problem of finding a unique root of function
F (p) = maxx∈M{f(x) − pg(x)}, p ∈ R. It holds that
maxx∈M f(x)/g(x) = p∗ if and only if F (p∗) = 0. Because
F is a maximum of functions affine in p, it is convex. Finding
the root is hence straightforward (e.g., a binary search method
can be used for this purpose) and it can be done efficiently if
and only if we are able to effectively determinate the value of
function F for any p. Computing the maximum of the orig-
inal formulation of QSE (5) is hence equivalent to solving a
sequence of optimization subproblems

max
δ∈∆l

∑
π∈Πf

(ul(δ, π)− p) [e ◦ q](uf (δ, π)), (6)

as described in Algorithm 1. We refer to Equation (6) as to
the Dinkelbach subproblem of the Dinkelbach formulation of
QSE. Algorithm 1 iteratively updates the upper bound (UB)
and lower bound (LB) on the value of QSE according to a
binary search method for finding a root of a function. Note
that because of Observation 1, we are able to set the initial
lower bound to the value of NE in case the game is zero-
sum. This binary-search approach generalizes the same tech-
nique already used for computing logit QSE in security games
[Yang et al., 2012]. The following proposition derives suffi-
cient conditions for Algorithm 1 to run in polynomial time.

1Generalized concavity (e.g., pseudoconvavity or quasiconcav-
ity) is preserved under division, but it imposes too strong assump-
tions on the game utilities to be used in practice.
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Proposition 4. Let G = (N ,A, u) be an NFG, q be a
twice differentiable generator of a canonical quantal func-
tion and e be a twice differentiable expected-utility func-
tion, such that the gradient of the Dinkelbach formulation is
Lipschitz-continuous. For each pure strategy π ∈ Πf , denote
uiπ = minπl∈Πl

ui(π, πl) and uiπ = maxπl∈Πl
ui(π, πl).

Moreover, let ui = minπ∈Πf
uiπ and ui = maxπ∈Πf

uiπ .
Then QSE is polynomially approximable if for all π ∈ Πf

and any x ∈ [ulπ, u
l
π], y ∈ [ufπ, u

f
π] and p ∈ [ul, ul]

(p− x)
(
q′′(e(y))e′

2
(y) + q′(e(y))e′′(y)

)
≥ 0

ul(π)Tuf (π) ≤ 0,
(7)

where for any function g, g′ denotes a derivative of g.

Proof. If the Dinkelbach subproblem is concave, the
gradient-ascent methods are guaranteed to reach a
global optimum. We hence analyse the conditions
when an equivalent minimization formulation is con-
vex, i.e., its Hessian matrix is positive semidefinite (PSD).
The Hessian matrix is of a form c · uf (π)uf (π)T −[
[e ◦ q](uf (π)T δ))

]′ (
ul(π)uf (π)T + uf (π)ul(π)T

)
, where

c =
(
p− ul(π)T δ

) (
q′(e(uf (π)T δ))e′′(uf (π)T δ) +

q′′(e(uf (π)T δ))e′
2
(uf (π)T δ)

)
and ul(π)T δ is the ex-

pected utility ul(δ, π) (and similarly for the follower). A
well-known fact from linear algebra states that for non-
zero n-dimensional real-valued vectors u, v, the matrix
uvT is positive semidefinite iff uT v ≥ 0. By this fact,
uf (π)uf (π)T is PSD. The matrix c · uf (π)uf (π)T is
then PSD if c ≥ 0. Because q, e are increasing func-
tions, matrices −ul(π)uf (π)T ,−uf (π)ul(π)T are PSD if
ul(π)Tuf (π) ≤ 0. Because the expected utility ui(π)T δ
always lies in the interval [uiπ, u

i
π] and p is upper (lower)

bounded by leader’s maximal (minimal) utility in the game,
by substituting for c we conclude that the Dinkelbach
formulation of QSE is concave if conditions (7) holds.

Note that with additional assumptions about functions q
and e (e.g., concavity or convexity), the condition stated in
Proposition 4 can be expressed just in the terms of maximal
and minimal utility in the game and is hence easier to check.

5 Solving the Dinkelbach Subproblem
In case a game and the quantal and expected-utility functions
do satisfy the condition stated in Proposition 4, the gradient-
ascent methods will converge to a globally optimal strategy
of the leader. In the opposite case, however, the guarantees
are lost. In this section, we introduce efficient linearization
methods with bounds on the solution quality to approximate
the global optimum through a piecewise-linear approxima-
tion (PWLA) of the Dinkelbach subproblem in any game.
The PWLA is subsequently turned into a mixed-integer linear
program (MILP) and solved using standard methods.

Limitations of PWLA in General NFGs
In SSGs, the formulation of the logit QSE has separable vari-
ables, i.e., the multivariate function can be written as a sum
of univariate functions. Therefore, the authors were able to

linearize it efficiently [Yang et al., 2012]. In contrast, the
Dinkelbach formulation in NFGs is not separable in general
and the probability simplex must be linearized into multivari-
ate polytopes. The most straightforward method is to split
the simplex into an exponential number of hypercubes of di-
mension |Al| using a fixed step size. To obtain a continu-
ous PWLA, each hypercube must be split into an exponential
number of triangulations. To escape the curse of dimension-
ality, instead of splitting a hypercube, we compute the PWLA
in the whole hypercube by linear least squares. The resulting
formulation is transformed to an MILP using the DLog con-
struction [Ibaraki, 1976; Vielma et al., 2010]. The DLog con-
struction was shown to be the fastest by [Vielma et al., 2010],
because of introducing only a logarithmic number of binary
variables in the number of polytopes. Since we construct one
polytope for every hypercube and the number of hypercubes
is exponential in |Al|, the final MILP is of a polynomial size
in |Al|.

We implemented PWLA and experimentally verified that
it won’t scale to games with more than 5 actions of the
leader. To improve its efficiency, it is necessary to find
a precise enough separable approximation of the Dinkel-
bach subproblem: maxδ∈∆l

d1
p(δ) − pd2

p(δ), where d1
p(δ) =∑

π∈Πf
ul(δ, π)[e ◦ q](uf (δ, π)), d2

p(δ) =
∑
π∈Πf

[e ◦
q](uf (δ, π)))). Each of d1

p, d
2
p is approximated as d1

p(δ) ≈∑|Al|
i=1 d̃

1
p,i(δ

i) and d2
p(δ) ≈

∑|Al|
i=1 d̃

2
p,i(δ

i), where d̃1
p,i, d̃

2
p,i

are (possibly) non-linear univariate functions.

Separation via Substitution
To introduce a method for finding the separable approxima-
tion, we split the whole class of general-sum games into two
disjoint classes: linearly dependent and linearly independent
games.

Definition 4. A normal-form game G is called linearly de-
pendent, if for each strategy π ∈ Πf there exists a constant
cπ ∈ R, such that for each action al ∈ Al it holds that
ul(al, π) = cπuf (al, π).

Note that all zero-sum games are linearly dependent since
we can set cπ = −1. For linearly dependent games, we can
introduce a new variable yπ for each pure strategy π ∈ Πf

with a linear substitution uf (δ, π) = yπ . The problem of
solving the Dinkelbach subproblem is hence expressed as

max
δ∈∆l

∑
π∈Πf

cπyπ[e ◦ q](yπ)− p[e ◦ q](yπ) (8)

yπ = uf (δ, π) =
∑|Al|

i=1
uf (ail, π)δi ∀π ∈ Πf . (9)

Both functions [e ◦ q](yπ) and yπ[e ◦ q](yπ) are easily lin-
earizable univariate functions. In case each yπ is divided uni-
formly intoK segments, the final standard MILP formulation
has (K − 1)× |Πf | binary variables [Yang et al., 2012]. The
following proposition claims that the error goes to zero as ε
goes to zero and K approaches infinity.

Proposition 5. Let δ∗ be a strategy computed by Algorithm
1 with precision ε and the subproblems solved via lineariza-
tion of (8) and (9) with K segments. Let δQS be a mixed
strategy of the leader in QSE. Then for the utility difference
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d = |ul(δ∗, QR(δ∗))− ul(δQS , QR(δQS))| it holds that

d ≤ ε+ |Af |
C1 + C2

4K2[e ◦ q](uf )
,

where C1 = ul(uf − uf )2 maxx∈[uf ,uf ] |[e ◦ q]′′(x)| and
C2 = (uf − uf )2 maxx∈[uf ,uf ],π∈Πf

|cπ|
∣∣[I · (e ◦ q)]′′ (x)

∣∣.
Proof. For any twice differentiable univariate function g, let
g be a uniform piece-wise linearization of g into K segments
on interval [a, b]. The maximum difference in values of g and
g is then [Yano et al., 2013]

|g(x)− g(x)| ≤ C (b− a)2

8K2
, (10)

where C = maxx∈[a,b] |g′′(x)|. The fractional criterion func-
tion (5) of the direct formulation of QSE can be expressed as
QSE(δ) = ul(δ,QR(δ)) = N(δ)/D(δ), where

N(δ) =
∑

π∈Πf

cπ[I · (e ◦ q)](zπ)

D(δ) =
∑

π∈Πf

[e ◦ q](zπ)

zπ = uf (δ, π) ∀π ∈ Πf ,

where I is the identity function. The linearized criterion func-
tion is then QSE(δ) = N(δ)/D(δ), where

N(δ) =
∑

π∈Πf

cπ[I · (e ◦ q)](zπ)

D(δ) =
∑

π∈Πf

[e ◦ q](zπ)

zπ = uf (δ, π) ∀π ∈ Πf .

Denote δQS the optimal solution of maxδ∈∆l
QSE(δ). Then

we have

d =

∣∣∣∣N(δQS)

D(δQS)
− N(δ∗)

D(δ∗)

∣∣∣∣ ≤
∣∣∣∣∣N(δQS)

D(δQS)
− N(δQS)

D(δQS)

∣∣∣∣∣
+

∣∣∣∣∣N(δQS)

D(δQS)
− N(δ∗)

D(δ∗)

∣∣∣∣∣+

∣∣∣∣N(δ∗)

D(δ∗)
− N(δ∗)

D(δ∗)

∣∣∣∣ .
We bound each of these terms separately. For the first and
the last term we use the first part of Lemma 7 of [Yang et al.,
2012]. By this Lemma, for each δ ∈ ∆l, we have∣∣∣∣N(δ)

D(δ)
− N(δ)

D(δ)

∣∣∣∣ ≤ 1

D(δ)
(
N(δ)

D(δ)
dD + dN ), (11)

where dD =
∣∣D(δ)−D(δ)

∣∣ and dN =
∣∣N(δ)−N(δ)

∣∣.
From the linearization bound (10),

dD ≤ |Af |
(uf − uf )2

8K2
max

x∈[uf ,uf ]
|[e ◦ q]′′(x)| = C̃1

dN ≤ |Af |
(uf − uf )2

8K2
max

x∈[uf ,uf ]

π∈Πf

|cπ|
∣∣[I · (e ◦ q)]′′ (x)

∣∣ = C̃2.

BecauseD(δ) ≥ [e◦q](uf ) andQSE(δ) ≤ ul, together with
(11), we conclude that∣∣∣∣N(δ)

D(δ)
− N(δ)

D(δ)

∣∣∣∣ ≤ ulC̃1 + C̃2

[e ◦ q](uf )
. (12)

Because δQS and δQS are the maxima of QSE and QSE,

respectively, the difference in their values is also at most
(ulC̃2 + C̃1)/[e ◦ q](uf ). To see why this is true, for contra-
diction, assume that |QSE(x) − QSE(x)| ≤ c, but without
a loss of generality QSE(δQS)−QSE(δQS) > c. By com-
bining both inequalities we have QSE(δQS) > QSE(δQS),
δQS is hence not a maximum.

For bounding the second term we use the properties of the
Dinkelbach formulation. From Algorithm 1, for each δ ∈ ∆l,
we have N(δ)− UBD(δ) ≤ 0 and N(δ∗)− LBD(δ∗) ≥ 0.
Therefore, for the optimal strategy δQS it holds that LB ≤
N(δQS)/D(δQS) ≤ UB and hence∣∣∣∣∣N(δQS)

D(δQS)
− N(δ∗)

D(δ∗)

∣∣∣∣∣ ≤ UB − LB ≤ ε. (13)

By combining the bounds (12) and (13) we conclude that

d ≤ ε+ 2
ulC̃1 + C̃2

[e ◦ q](uf )
.

In NFGs which are linearly independent, we can take ad-
vantage of the fact that all quantal and expected-utility func-
tions are invertible because they are strictly monotone. Let
g−1 be an inverse of a function g. A substitution [e ◦
q](uf (δ, πl)) = yπ leads to an easily linearizable constraint

uf (δ, π) =
∑|Al|

i=1
uf (δ, πi)δi = [e ◦ q]−1(yπ). (14)

With an additional substitution ul(δ, π)) = zπ , the prob-
lem of solving the Dinkelbach subproblem is expressed as

max
δ∈∆l

∑
π∈Πf

zπyπ − pyπ (15)

[e ◦ q]−1(yπ) =
∑|Al|

i=1
uf (ail, π)δi ∀π ∈ Πf (16)

zπ =
∑|Al|

i=1
ul(a

i
l, π)δi ∀π ∈ Πf , (17)

where zπyπ are |Πf | bilinear terms2. For linearizing the bi-
linear terms, we can use either McCormick’s envelopes [Mc-
Cormick, 1976], which are fully linear, or the MDT method
[Kolodziej et al., 2013]. The size of the MILP formulation
for the McCormick’s envelopes is |Πf | real variables and
(K − 1) × |Πf | binary variables. Experimental evaluation
of the MDT method showed that while it provides close-to-
optimal solutions, the additional binary variables required by
the method significantly slow down the computation. We
hence focus more on the McCormick’s envelopes.
Proposition 6. Let δ∗ be a strategy computed by Algorithm
1 with precision ε, the subproblems solved via lineariza-
tion of (15) – (17) with K segments and bilinear terms re-
laxed using McCormick’s envelopes. Let δQS be a mixed
strategy of the leader in QSE. Then for the utility difference
d = |ul(δ∗, QR(δ∗))− ul(δQS , QR(δQS))| it holds that

d ≤ ε+ |Af |
C +M

4[e ◦ q](uf )
,

2Note that if we would use the same substitution as in the case
of linearly dependent games, the number of bilinear terms would be
K × |Πf |, i.e., K-times larger.
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where C = (ul + 1)h2 maxx∈[uf ,uf ] |[e ◦ q]′′(x)|, M =

(ul−ul)(uf−uf )/4 and h =
(
[e ◦ q](uf )− [e ◦ q](uf )

)
/K

maxx∈[[e◦q](uf ),[e◦q](uf )]

∣∣∣[[e ◦ q]−1
]′

(x)
∣∣∣.

Proof. We follow a reasoning of proof of Proposition 5 up to
Equation (11). In linearly independent games, we linearize
the composition of inverse functions [e ◦ q]−1 in constraint
(16), instead of function [e ◦ q]. Therefore, to estimate the
differences |N(δ) − N(δ)| and |D(δ) − D(δ)|, we seek to
bound the linearization error

∣∣∣[e ◦ q](x)− [e ◦ q]−1
−1

(x)
∣∣∣.

Assume that [e ◦ q]−1 is uniformly linearized in points
x0, x1, . . . , xK−1, i.e., [e ◦ q]−1(xi) = [e ◦ q]−1(xi) =
yi, ∀i ∈ [K]. Every piece-wise linear function is invert-
ible. Since [e ◦ q](yi) = xi = [e ◦ q]−1

−1
(yi), function

[e ◦ q]−1
−1

is a linearization of function [e ◦ q]. Function
[e ◦ q]−1 in not identity in general. Hence, the linearization
is non-uniform. Since the distance between any xi, xi+1 is(
[e ◦ q](uf )− [e ◦ q](uf )

)
/K, the maximum difference in

values of any consecutive yi, yi+1 is bounded by

h =

(
eq − eq

)
K

max
x∈[eq,eq]

∣∣∣[[e ◦ q]−1
]′

(x)
∣∣∣ ,

where eq = [e ◦ q](uf ) and eq = [e ◦ q](uf ). Using
the bound on a maximum difference between [e ◦ q](x) and
[e ◦ q]−1

−1
(x) by [Yano et al., 2013], we have

dD ≤ |Af |
h2

8
max

x∈[uf ,uf ]
|[e ◦ q]′′(x)| . (18)

For bounding the difference |N(δ)−N(δ)|, we need to take
into account also the error arising from relaxing the bilinear
terms using McCormick’s envelopes. The McCormick’s en-
velope is a convex polytope defined by four linear inequalities
[McCormick, 1976]. Using simple algebra, it can be shown
that the difference between a bilinear term zπyπ in Equation
(15) and its approximation by McCormick’s envelope is at
most M , where

M =
(ul − ul)(uf − uf )

4
. (19)

Using the bound (19), the difference betweenN(δ) andN(δ)
can be bounded as

dN ≤ |Af |

(
h2

8
max

x∈[uf ,uf ]
|[e ◦ q]′′(x)|+M

)
. (20)

We proceed as in Proposition 5, using Equations (11), (13),
and a modified Equation (12), which uses bounds (18) and
(20). The result follows.

Note that because of the relaxation, the bound does not go
to zero with increasing K and decreasing ε. However, it can
be fairly small for games with a higher value of [e ◦ q](uf ).

Separation via Additive Approximations
Besides substitution, we considered computing separable
approximations also through generalized additive models
(GAMs) [Hastie, 2017]. GAMs can be used to approximately
solve the Dinkelbach subproblem in case the link function of

the model is an identity. We implemented two methods for
fitting GAMs in the subproblem: a spline method (d̃1

p and d̃2
p

are smoothing splines [Wahba, 1990]) and a deep neural net-
work method (d̃1

p and d̃2
p are constructed from activation func-

tions [Potts, 1999]). Our experimental evaluation showed that
piecewise-linear separable approximations of the Dinkelbach
subproblem lead to fast computation of a solution of the ap-
proximation (especially for linearly independent games), but
neither the spline method nor the neural networks provide ap-
proximations precise enough for the Dinkelbach method to
converge to an optimum.

6 Experiments
Finally, we demonstrate practical aspects of proposed algo-
rithms for computing QSE in NFGs. As a benchmark, we use
the original formulation solved by gradient ascent (GA). We
compare it to the Dinkelbach-type algorithm (DTA) – Algo-
rithm 1 with subproblems solved via substitutional PWLA.
All implementations were done in C++17. We used an im-
plementation of the SLSQP GA algorithm in the NLOPT
2.6.1 library for non-linear optimization. A single-threaded
IBM CPLEX 12.8 solver carried all MILP computations. The
experiments were performed on a 3.2GHz CPU with 16GB
RAM. Because the algorithm is domain independent, we used
Randomly Generated Games (RGGs) for evaluation.
Experimental Setting. We consider six different genera-
tors of canonical quantal functions (four convex functions:
e0.4x, e0.8x, e1.2x and −1050/(x + 20), and two concave
functions: lnx+ 12 and

√
x+ 11) and three expected-utility

functions (one risk-neutral: x, one loss-attentive: x3/100 and
one loss-averse: 20/(1+e−x)−10). We construct games with
action spaces of sizes from 3, 000×50 up to 7, 500×50. The
tolerance parameter for the GA algorithm in NLOPT was set
to 10−6 (equivalent to the default CPLEX tolerance param-
eter) and ε = 2% of the leader’s utility range for the DTA’s
binary search. The linearization uses K = 5. For each com-
bination of game size× generator function× expected-utility
function, we constructed and solved 5 instances. The utilities
of the follower were generated uniformly randomly from in-
terval [−10, 10], while the constants cπ for linearly dependent
RGGs were generated from interval [−3, 3].
Runtimes. In Figure 2 we present the speedup results
achieved with the DTA in linearly dependent RGGs. The x-
axis shows the game size, while the y-axis varies the mean
speedup in the game. We measure the speedup as a ratio be-
tween runtime of the DTA and runtime of one restart of the
GA. Every point in the graph corresponds to the mean over
the sampled instances and also shows the achieved standard
error. The results show that with the increasing size of the
game, the speedup of the DTA also increases, being up to
25.5-times faster than one restart of GA for games with 7500
leader’s actions. It suggests that for even larger games, the
DTA should perform significantly better than the GA.
Solution Quality. The relative errors of computed solutions
are presented in Figure 3. The x-axis varies the game size.
The y-axis shows the mean ratio of the difference in the de-
fender’s expected utility computed using one restart of the
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Figure 2: The mean risk-neutral speedups (left), mean loss-attentive speedups (middle) and mean loss-averse speedups (right) in linearly
dependent Randomly Generated Games for different sizes of games. Every point shows also a standard error.
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Figure 3: The mean risk-neutral deviations (left), mean loss-attentive deviations (middle) and mean loss-averse deviations (right) in linearly
dependent Randomly Generated Games for different sizes of games. Every point shows also a standard error.

Risk-neutral restarts Loss-attentive restarts Loss-averse restarts
size ln sqrt hyp ln sqrt hyp ln sqrt hyp
3000 7.60 ± 3.68 5.40 ± 3.30 1.80 ± 0.71 1.00 ± 0.00 4.80 ± 3.39 1.00 ± 0.00 19.00 ± 1.15 6.25 ± 4.58 1.60 ± 0.35
4000 1.00 ± 0.00 6.25 ± 4.60 1.40 ± 0.35 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 5.75 ± 4.75 13.60 ± 7.31 1.00 ± 0.00
5000 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 4.00 ± 2.38 2.30 ± 1.53 1.20 ± 0.17

Table 1: The expected number of GA restarts needed to reach 1% deviation from the DTA solution. All exp functions required > 20 restarts.

GA and the DTA to the absolute difference between the max-
imal and minimal utility in the game. While the DTA is guar-
anteed to approximate a global solution, there is no guarantee
of a solution quality for the GA. The results show that the
GA never finds a better solution than the DTA (otherwise the
ratio would be negative). However, the GA’s solution qual-
ity is comparable to the DTA for concave functions and the
hyperbole. The quality degrades rapidly for the exponential
functions for all three expected-utility functions, especially
for higher coefficients. For the loss-averse function, the qual-
ity of the GA’s solution with exponential quantal function
with coefficient 1.2 is on average at least 42.5-times worse
than the solution of the DTA.

GA Restarts. The number of restarts of the GA required
to reach a deviation from the DTA’s solution less than 1%
is shown in Table 1. We restarted the GA 20 times and
counted the first restart when the deviation was sufficiently
small. None of the exponential functions was able to find a
good-enough solution within the 20 restarts. This suggests
that to obtain comparable results with the most commonly
used quantal function – the exponential function with a higher
coefficient – in games with at least 7000 actions of the leader,
the GA has to run at least 153× longer than the DTA. In
contrast, the concave functions and the hyperbole computed
nearly-optimal solutions within the first few restarts. This re-
sult is consistent with the deviations reported in Figure 3.

Due to space constraints, we do not report the results
achieved with linearly independent games and the GA solving
the Dinkelbach subproblem. Because of McCormick’s en-
velopes, the DTA achieved even faster speedups: up to 3030-

times faster than one restart of GA for exponential functions
and games with at least 7000 actions. However, due to the
relaxation, the quality of the solutions was often worse (but
no more than 12% for the exponential functions and 6% for
other quantal functions) than GA’s solutions. The GA running
on the Dinkelbach subproblem has the theoretical guarantees
(Proposition 4), but its runtimes are comparable to GA on the
direct formulation.

7 Conclusion
We introduced a Dinkelbach-type formulation of comput-
ing a boundedly-rational quantal Stackelberg equilibrium in
normal-form games. In contrast to the direct formulation, the
Dinkelbach formulation has both the theoretical advantages
(i.e., we can explicitly check how closely we approximate
the global optimum) as well as positive computational con-
sequences – the formulation offers up to 25.5-times speedup
when compared with the original formulation.
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[Moravčı́k et al., 2017] Matěj Moravčı́k, Martin Schmid,
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