
Appendix for Neural Regret-Matching for Distributed Constraint Optimization
Problems

A Technical Proofs

In this section, we present the proofs of the proposed theorems.

A.1 Proof of Theorem 1

Proof. Adapted from [Tammelin et al., 2015]. Since R̄T
i (Xi, di) > 0,

(
max
di

R̄T
i (Xi, di)

)2

= max
di

R̄T
i (Xi, di)

2 ≤
∑
di

R̄T
i (Xi, di)

2

If Xi = XT
i , then

∑
di

R̄Ti (Xi, di)
2 =

∑
di

max
(
R̄T−1
i (Xi, di) + sTi − STi (di), δT

)2
≤
∑
di

(
R̄T−1
i (Xi, di) + sTi − STi (di)

)2
+ δ2T

= |Di|δ2T +
∑
di

R̄T−1
i (Xi, di)

2 + 2R̄T−1
i (Xi, di)

∑
d′i

πTi (d′i)S
T
i (d′i)− STi (di)

+

∑
d′i

πTi (d′i)S
T
i (d′i)− STi (di)

2

Since Li ≥ |St
i (di)− St

i (d
′
i)| for all di 6= d′i, we have

∑
di

R̄Ti (Xi, di)
2 ≤ |Di|δ2T + |Di|L2

i +
∑
di

R̄T−1
i (Xi, di)

2 + 2R̄T−1
i (Xi, di)

∑
d′i

R̄T−1
i (Xi, d

′
i)∑

d′′i
R̄T−1
i (Xi, d′′i)

STi (d′i)− STi (di)

= |Di|δ2T + |Di|L2

i +
∑
di

R̄T−1
i (Xi, di)

2 + 2

∑
di

R̄T−1
i (Xi, di)

∑
d′i

R̄T−1
i (Xi, d

′
i)∑

d′′i
R̄T−1
i (Xi, d′′i)

STi (d′i)

−
∑
di

R̄T−1
i (Xi, di)S

T
i (di)

= |Di|δ2T + |Di|L2

i +
∑
di

R̄T−1
i (Xi, di)

2 + 2

 ∑
di
R̄T−1
i (Xi, di)∑

d′′i
R̄T−1
i (Xi, d′′i)

∑
d′i

R̄T−1
i (Xi, d

′
i)S

T
i (d′i)

−
∑
di

R̄T−1
i (Xi, di)S

T
i (di)

= |Di|δ2T + |Di|L2

i +
∑
di

R̄T−1
i (Xi, di)

2 + 2

∑
d′i

R̄T−1
i (Xi, d

′
i)S

T
i (d′i)−

∑
di

R̄T−1
i (Xi, di)S

T
i (di)

= |Di|δ2T + |Di|L2

i +
∑
di

R̄T−1
i (Xi, di)

2

If Xi 6= XT
i , according to Eq.(6), we have ∑

di

R̄T
i (Xi, di)

2 =
∑
di

R̄T−1
i (Xi, di)

2

Therefore, (
max
di

R̄T
i (Xi, di)

)2

≤ |Di|δ2T + |Di|L2
i +

∑
di

R̄T−1
i (Xi, di)

2

By iterating over the above formula, we get
(
maxdi

R̄T
i (Xi, di)

)2 ≤ |Di|
(
TL2

i +
∑T

t=1 δ
2
t

)
and therefore

maxdi
R̄T

i (Xi, di) ≤
√
|Di|

(
TL2

i +
∑T

t=1 δ
2
t

)
,∀Xi.

A.2 Proof of Theorem 2

We first show that the total regret is bounded by the maximal regret of an individual variable. Then we show the total regret
grows sublinearly.

Let dT = (dT1 , . . . , d
T
n) be the joint assignment of round T , dT−i = dT \{dTi } be the set of assignments selected by variables

other than xi and F (dT) =
∑

fij∈F fij(d
T
i , d

T
j) be the sum of all constraints given joint assignment dT .

Definition 1. The 1-opt regret of a DCOP is

RT
1−opt = max

i∈I
max
di∈Di

T∑
t=1

 ∑
d′
i∈Di

F (dt−i, d
′
i)π

t
i(d
′
i)− F (dt−i, di)

 (1)

Lemma 1. RT
1−opt ≤ K maxiR

T
i , where RT

i = maxXi
maxdi

RT
i (Xi, di) is the maximal local regret of variable xi at round

T and K is a constant.

Proof. Given joint assignment d, denote the sum of the constraints which are related to xi as Fi(di, dNi
) =

∑
xj∈Ni

fij(di, dj)

where dNi
⊆ d is the set of assignments to xi’s neighbors, and the sum of those which are not related to xi as F−i(d−i) =

F (d)− Fi(di, dNi). Note that

max
di

T∑
t=1

∑
d′i

F (dt−i, d
′
i)π

t
i(d
′
i)− F (dt−i, di)

 = max
di

T∑
t=1

∑
d′i

(
F−i(d

t
−i) + Fi(d

′
i, d

t
Ni

)
)
πti(d

′
i)

−
(
F−i(d

t
−i) + Fi(di, d

t
Ni

)
))

= max
di

T∑
t=1

∑
d′i

F−i(d
t
−i)π

t
i(d
′
i) +

∑
d′i

Fi(d
′
i, d

t
Ni

)πti(d
′
i)

−
(
F−i(d

t
−i) + Fi(di, d

t
Ni

)
))

= max
di

T∑
t=1

∑
d′i

Fi(d
′
i, d

t
Ni

)πti(d
′
i)− Fi(di, dtNi

)

= max

di

T∑
t=1

∑
d′i

 ∑
xj∈AP (xi)

fij(d
′
i, d

t
j) +

∑
xk∈AC(xi)

fij(d
′
i, d

t
k)

πti(d
′
i)

−

 ∑
xj∈AP (xi)

fij(di, d
t
j) +

∑
xk∈AC(xi)

fij(di, d
t
k)

= max

di

T∑
t=1

sti − Sti (di)

Assume that xi has received kTi ≤ Ki different contexts Xi,1, . . . , Xi,kT
i

in first T rounds, where Ki is the total number of
possible contexts of xi.

max
di

T∑
t=1

sti − Sti (di) = max
di

kTi∑
j=1

RTi (Xi,j , di)

≤
kTi∑
j=1

max
di

max
Xi

RTi (Xi, di) = kTi R
T
i ≤ KiR

T
i

Therefore,
RT

1−opt ≤ max
i
KiR

T
i = K max

i
RT

i

where K = maxiKi.

Lemma 2. Rounded regret are the upper bound on regret, i.e., R̄t
i(Xi, di) ≥ Rt

i(Xi, di),∀t,Xi, di.

Proof. For any t > 0, if Xi = Xt
i , then

R̄t
i(Xi, di)− R̄t−1

i (Xi, di) = max
(
R̄t−1

i (Xi, di) + sti − St
i (di), δt

)
− R̄t−1

i (Xi, di)

≥ R̄t−1
i (Xi, di) + sti − St

i (di)− R̄t−1
i (Xi, di)

= sti − St
i (di) = Rt

i(Xi, di)−Rt−1
i (Xi, di)

Otherwise,
R̄t

i(Xi, di)− R̄t−1
i (Xi, di) = Rt

i(Xi, di)−Rt−1
i (Xi, di) = 0

Note that R̄0
i (Xi, di) = R0

i (Xi, di) = 0. By induction, R̄t
i(Xi, di) ≥ Rt

i(Xi, di) holds for any t,Xi and di, which concludes
the lemma.

We now are ready to prove Theorem 2.

Proof of Theorem 2. According to Lemma 2, we have R̄T
i (Xi, di) ≥ RT

i (Xi, di),∀T,Xi, di. Therefore, to show the the

algorithm is no-regret, we only needs to show the maximal rounded regret R̄T
i = maxXi maxdi R̄

T
i (Xi, di) grows sublinearly.

lim
T→∞

R̄T
i

T
≤ lim

T→∞

√√√√ |Di|
(
TL2

i +
∑T

t=1 δ
2
t

)
T 2

= lim
T→∞

√
|Di|L2

i

T 2
+
|Di|

∑t
t=1 δ

2
t

T 2

≤ lim
T→∞

√
|Di|L2

i

T 2
+
|Di|δ2T
T

= lim
T→∞

√
|Di|L2

i

T 2
+
|Di|(

√
T)2

T

(
δT√
T

)2

Since limT→∞ δT /
√
T = 0, we have

lim
T→∞

R̄T
i

T
≤ lim

T→∞

√
|Di|L2

i

T 2
+ |Di|

(
δT√
T

)2

= 0

Therefore, RT
i grows sublinearly and according to Lemma 1 RT

1−opt also grows sublinearly, which concludes the theorem.

A.3 Proof of Theorem 3
We begin with showing the gap between the rounded regret and the Q-regret in RM+ [Tammelin et al., 2015] is no greater than
δt. Then we show the regret bound by proving the upper bound of Q-regret.

Lemma 3. For variable xi, R̄t
i(Xi, di) − Qt

i(Xi, di) ≤ δt for all Xi, di, t, where Qt
i(Xi, di) = (Qt−1

i (Xi, di) + I(Xi =
Xt

i)(s
t
i − St

i (di))
+ and Q0

i (Xi, di) = 0.

Proof. The lemma is trivial when t = 1 and Xi 6= X1
i , as R̄1

i (Xi, di) = Q1
i (Xi, di) = 0. Consider the case that t = 1 and

Xi = X1
i

R̄1
i (Xi, di)−Q1

i (Xi, di) = max(δ1, s
1
i − S1

i (di))−max(0, s1i − S1
i (di)) ≤ δ1

Thus, the lemma holds for the basis. Assume the lemma holds for the t − 1-th round, we are going to show the lemma holds
for the t-th round as well.

If Xi 6= Xt
i , then R̄t

i(Xi, di)−Qt
i(Xi, di) = R̄t−1

i (Xi, di)−Qt−1
i (Xi, di) ≤ δt−1 ≤ δt. Otherwise,

R̄ti(Xi, di)−Qti(Xi, di) = max(δt, R̄
t−1
i (Xi, di) + sti − Sti (di))−max(0, Qt−1

i (Xi, di) + sti − Sti (di))

If sti − St
i (di) ≤ −Q

t−1
i (Xi, di), then

R̄ti(Xi, di)−Qti(Xi, di) = max(δt, R̄
t−1
i (Xi, di) + sti − Sti (di))− 0

≤ max(δt, δt−1 +Qt−1
i (Xi, di) + sti − Sti (di))

≤ max(δt, δt−1) = δt

If sti − St
i (di) > −Q

t−1
i (Xi, di) and δt ≤ R̄t−1

i (Xi, di) + sti − St
i (di), then

R̄ti(Xi, di)−Qti(Xi, di) = R̄t−1
i (Xi, di) + sti − Sti (di)−

(
Qt−1
i (Xi, di) + sti − Sti (di)

)
= R̄t−1

i (Xi, di)−Qt−1
i (Xi, di) ≤ δt−1 ≤ δt

If sti − St
i (di) > −Q

t−1
i (Xi, di) and δt > R̄t−1

i (Xi, di) + sti − St
i (di), then

R̄ti(Xi, di)−Qti(Xi, di) = δt −
(
Qt−1
i (Xi, di) + sti − Sti (di)

)
Since Qt−1

i (Xi, di) + sti − St
i (di) > 0, R̄t

i(Xi, di)−Qt
i(Xi, di) < δt. Therefore, the lemma holds for all Xi, di, t.

We now are ready to prove Theorem 3.

Proof of Theorem 3. According to Morrill’s [Morrill, 2016] Theorem 3.0.10 and Theorem 3.0.12, the bound of Q-regrets if we
use R̂t

i(Xi, ·) to generate strategy in each round t is√√√√√Li
√
|Di|

LiT√|Di|+ 4

T∑
t=1

∑
d′i

|Qti(Xi, d′i)− R̂ti(Xi, d′i)|

Note that

T∑
t=1

∑
d′i

|Qti(Xi, d′i)− R̂ti(Xi, d′i)| =
T∑
t=1

∑
d′i

|R̂ti(Xi, d′i)− R̄ti(Xi, d′i) + R̄ti(Xi, d
′
i)−Qti(Xi, d′i)|

≤
T∑
t=1

∑
d′i

|R̂ti(Xi, d′i)− R̄ti(Xi, d′i)|+ |R̄ti(Xi, d′i)−Qti(Xi, d′i)|

≤
T∑
t=1

∑
d′i

|R̂ti(Xi, d′i)− R̄ti(Xi, d′i)|+ δt

=

T∑
t=1

|Di|δt +
∑
d′i

|R̂ti(Xi, d′i)− R̄ti(Xi, d′i)|

≤ T |Di|δT +

T∑
t=1

∑
d′i

|R̂ti(Xi, d′i)− R̄ti(Xi, d′i)|

Since
∑

d′
i
|R̂t

i(Xi, d
′
i)− R̄t

i(Xi, d
′
i)| ≤

√
|Di|

∑
d′
i

√
(R̂t

i(Xi, d′i)− R̄t
i(Xi, d′i))

2 and Rt
i(Xi, di) < Qt

i(Xi, di) (Lemma 1 of
[Tammelin et al., 2015]), the regret bound of neural-based sampling scheme is√√√√√Li|Di|

(4
√
|Di|δT + Li)T + 4

T∑
t=1

∑
d′
i

(R̂t
i(Xi, d′i)− R̄t

i(Xi, d′i))
2

B Related Work
Algorithms for DCOPs. According to their ability to guarantee optimality, DCOP algorithms are classified as either complete
or incomplete. While search-based complete algorithms [Gershman et al., 2009; Hirayama and Yokoo, 1997; Litov and Meisels,
2017; Modi et al., 2005; Netzer et al., 2012; Yeoh et al., 2010] explicitly exhaust the solution space by distributed backtrack
search, inference-based complete algorithms [Petcu and Faltings, 2005; Petcu and Faltings, 2007; Vinyals et al., 2011] perform
dynamic programming to backup utility tables. Some hybrid schemes [Atlas et al., 2008; Chen et al., 2019; Deng et al., 2019;
Kim and Lesser, 2014] attempt to combine the advantages of both search and inference. However, due to the NP-hardness of
solving a DCOP, complete algorithms incur exponential overheads and can only solve the problems with handful variables.
In contrast, incomplete algorithms trade the solution quality for smaller computational overhead. Local search algorithms
[Grinshpoun et al., 2019; Hoang et al., 2018; Maheswaran et al., 2004; Okamoto et al., 2016; Zhang et al., 2005; Zivan et al.,
2014] iteratively optimize the solution via local moves, but they suffer from poor local convergence. Belief propagation [Chen
et al., 2018; Cohen et al., 2020; Farinelli et al., 2008; Rogers et al., 2011; Zivan et al., 2017] is another class of incomplete
methods, where agents accumulate the global utility for each assignment according to the belief of their neighbors. Finally, the
state-of-the-art sampling-based techniques including DUCT [Ottens et al., 2017] and D-Gibbs [Nguyen et al., 2019] perform
sequential sampling on a pseudo tree, but cannot scale up due to poor sample efficiency and high memory consumption.
In contrast, our proposed neural-based sampling scheme can overcome the above limitations. The regret in our method is
accumulated according to the local problem of a variable, which avoids the poor sample efficiency incurred by exploring the
whole subproblem. Moreover, we compactly represent the regret tables by deep neural networks, which significantly improves
the scalability of the algorithm.
Regret-based methods for DCOPs. In [Chapman et al., 2011], Chapman et al. established the connection between DCOPs
and potential games and presented a local search adaptation of regret-matching for DCOPs. In the algorithm, each agent
accumulates regret based on the assignment of its neighbors and changes its assignment according to the regret values with
a fixed probability p in each round. WRM-I [Arslan et al., 2007; Chapman et al., 2011] is another regret-based local search
scheme that converges to a pure-strategy Nash equilibrium. Different from the previous context-free methods, our methods
perform sampling on a pseudo tree and store regret values for each context separately, which allows an agent to devise different
strategies for different contexts. Additionally, we show the negative regret values in vanilla regret-matching could result in poor
performance and propose a novel regret rounding scheme.

Regret values approximation. Regression Regret-Matching (RRM) [Morrill, 2016; Waugh et al., 2015] uses regression trees
to estimate the accumulated regret. However, since a regression tree cannot be trained incrementally, RRM requires to re-train
the model on all data as long as regret values are updated, which makes it very inefficient and scales up poorly. Deep CFR
[Brown et al., 2019] estimate the regret by training a deep neural network on instantaneous regret values, which is not applicable
to our case where instantaneous regret is not proportional to the total regret due to the non-linear regret rounding scheme.

C Pesudo Codes
Algorithm 1 presents the sketch of our proposed neural-based sampling scheme.

Algorithm 1: Neural-based sampling scheme for variable xi
Require: number of training steps h, rounding term δt and discounted factor γ
When Initialization:

1 call Algorithm 2 to determine the group Gi where xi belongs to
2 if xi is not a leaf then
3 initialize neural network Vi,θi such that Vi,θi(Xi, di) = 0, ∀Xi, di
4 Mi ← ∅, e0i ← 0, ē0i ← 0, ẽ0i ← 0

5 if xi is the root then t← 1, Xt
i ← ∅, Sample()

When received CONTEXT({Xt, G, ē}) from P (xi):
6 if Gi = G then ēt−1

i ← ē

7 Xt
i ← Xt[Sep(xi)], Sample()

When received BACKTRACK({xk = dtk}) from xk ∈ AC(xi):
8 Y ti ← Y ti ∪ {xk = dtk}
9 if xi has received all BACKTRACK from AC(xi) then

10 compute hindsight local costs Sti and the expected local cost sti
11 foreach di ∈ Di do
12 if 〈Xt

i , di〉 /∈Mi then Mi(X
t
i , di)← Vi,θi(X

t
i , di)

13 Mi(X
t
i , di)← max{δt,Mi(X

t
i , di) + sti − Sti (di)}

14 eti ← γet−1
i + (1− γ)

∑
di∈Di

|Mi(X
t
i , di)− Vi,θi(X

t
i , di)|

15 if xi is not the root then send BACKTRACK({xi = arg mindi S
t
i (di)}) to ∀xj ∈ AP (xi)

When received ACC ERROR(ẽ) from xk ∈ C(xi):
16 if |C(xi)| > 1 then ẽti ← eti , block until all ACC ERROR messages from C(xi) arrive
17 else ẽti ← ẽ+ eti
18 if random() < et−1

i /ēt−1
i then

19 for training step k = 1, . . . , h do
20 uniformly sample a batch B from Mi and train Vi,θi to minimize

Li(θi) = 1
|B|
∑
〈Xi,di〉∈B (Mi(Xi, di)− Vi,θi(Xi, di))

2

21 if xi is the first variable of Gi then
22 ēti ← ẽti
23 if xi is not the root then send ACC ERROR(0) to P (xi)

24 else t +←− 1, Sample()
25 else send ACC ERROR(ẽti) to P (xi)

Function Sample():
26 if xi is not a leaf then
27 ẽi ← 0, Y ti ← ∅, R̂t−1

i ← []
28 foreach di ∈ Di do
29 if 〈Xt

i , di〉 ∈Mi then R̂t−1
i (di)←Mi(X

t
i , di)

30 else R̂t−1
i (di)← Vi,θi(X

t
i , di)

31 compute the mixed strategy πti according to R̂t−1
i and perform sampling dti ∼ πti

32 send CONTEXT(Xt
i ∪ {xi = dti, Gi, ē

t−1
i }) to ∀xk ∈ C(xi)

33 else
34 send BACKTRACK({xi = arg mindi

∑
xj∈AP (xi)

fij(di, X
t
i (xj))}) to ∀xj ∈ AP (xi)

35 send ACC ERROR(0) to P (xi)

The algorithm begins with all non-leaf agents creating both neural networks and memory (line 2-4) and the root agent start
the message-driven process by sampling and propagating context (line 5). When perform sampling, a non-leaf agent retrieves
the estimated regret values from either the memory or bootstrapping from the neural network, depending on whether the current
context-assignment pair presents in the memory (line 27-30). Then it samples an assignment according to the derived mixed

strategy and propagates the augmented context to its children (line 30-31). Leaf agents, on the other hand, do not have any
subproblem and just communicate the best response via BACKTRACK messages (line 33-34).

When received all BACKTRACK messages from its children and pseudo children, an agent computes the hindsight local
costs and updates the regret values (line 9-13). A bootstrap happens if the regret value corresponding to an assignment under
current context does not appear in the memory (line 12). Finally, the agent communicates its best response to its all parents if
it is not the root (line 15).

To enforce prioritized training scheme in a fully decentralized manner, each agent i calls a grouping procedure (detailed in
Algorithm 2) to determine the group Gi it belongs to, and maintains current discounted error eti of agent i, partial error sum ẽti
and error sum ēti of group Gi (line 1, 4). Here, ẽti is the sum of discounted error of each agent ordered behind i in the group.
Therefore, if i is the first agent in the group, then ēti = ẽti. The error sum of a group is communicated via CONTEXT messages
from the first agent in the group to the last agent in the group (line 32, 6), which is accumulated progressively via ACC ERROR
messages. In more detail, a ACC ERROR message carries the partial error sum of a group. When receiving a ACC ERROR
message from a child, agent i computes ẽi by adding the partial error sum from child to its own discounted error (line 17). Then
the agent continues to propagate the partial error sum if it is not the first agent of the group (line 25). Otherwise, it assigns the
error sum of the group and perform the next round of sampling if it is the root (line 22-24). It is worth noting that since our
prioritized training scheme is confined to chains, an agent with more than one child must be the last one in a group. Therefore,
it does not need to consider the partial error sum from its children if it receives multiple ACC ERROR messages (line 16).
Finally, an agent trains its neural network with a probability proportional to its prediction error (line 18-20, 14).

Algorithm 2 presents the sketch of the grouping procedure.

Algorithm 2: Grouping procedure for variable xi
Require: difference budget b
When Initialization:

1 if xi is the root then
2 Gi ← create a new group ID, mark xi as the first variable of Gi
3 SendGrpInfo({Gi, {xi}, 1})

When received GROUP({G,DIM,n∗dim}) from P (xi):
4 if G = NIL then
5 Gi ← create a new group ID
6 mark xi as the first variable of Gi
7 SendGrpInfo({Gi, Sep(xi) ∪ {xi}, |Sep(xi)|+ 1})
8 else
9 DIM ′ ← DIM ∪ {xi} ∪ Sep(xi), n∗dim′ ← min{n∗dim, |Sep(xi)|+ 1}

10 if |DIM ′| − n∗dim′ > b then
11 Gi ← create a new group ID, mark xi as the first variable of Gi
12 SendGrpInfo({Gi, Sep(xi) ∪ {xi}, |Sep(xi)|+ 1})
13 else
14 Gi ← G, SendGrpInfo({Gi, DIM ′, n∗dim′})
15 Function SendGrpInfo({G,DIM,n∗dim}):
16 if |C(xi)| > 1 then send GROUP({NIL, ∅, 0}) to ∀xk ∈ C(xi).
17 else if |C(xi)| = 1 then send GROUP({G,DIM,n∗dim}) to xk ∈ C(xi).

The procedure begins with the root agent creating group ID, and propagating the related information to its children (line 1-3).
That is, if it has more than one child, then the group cannot be extended and a NIL group is communicated to its children (line
16). Otherwise it propagates the group IDG, running regret table dimensionsDIM and the minimum number of dimensions in
the group n∗dim to its child (line 17). When an agent received a GROUP message, it creates a new group if (1) the received group
ID isNIL (line 4-7), or (2) the difference budget is violated (line 10-12). Otherwise it extends the current group by augmenting
the running regret table dimensions (line 14). The procedure ends if every non-root agent receives a GROUP message.

D Additional Experimental Results
In this section, we present the additional experimental results. In our experiments, we developed a Python framework for
simulating message-passing algorithms and used it to implement all algorithms. For Neural-RRS, we use Pytorch [Paszke et
al., 2019] to implement deep neural networks.

D.1 Results on Simulated Runtime
Fig.8-9 present the simulated runtime [Sultanik et al., 2008] results of different algorithms on random DCOPs and structured
problems, respectively. It can be seen that all traditional methods terminate very quickly. That is no surprise since they
essentially perform table lookup, leading to lower overall simulated runtime. In contrast, our Neural-RRS incurs relatively

30 40 50 60 70
of agents

0

5

10

15

20

25

30

35
Si

m
ul

at
ed

 ti
m

e
(s

) LSRM
WRM-I
D-Gibbs
DSA
Max-sum_ADVP
MGM2
GDBA
Neural-RRS (b = 4)

(a) p1 = 0.25, |Di| = 10

0.1 0.2 0.3 0.4 0.5
Density

0

5

10

15

20

25

Si
m

ul
at

ed
 ti

m
e

(s
) LSRM

WRM-I
D-Gibbs
DSA
Max-sum_ADVP
MGM2
GDBA
Neural-RRS (b = 4)

(b) 50 agents, |Di| = 10

3 6 9 12 15
Domain size

0

5

10

15

20

25

30

Si
m

ul
at

ed
 ti

m
e

(s
)

LSRM
WRM-I
D-Gibbs
DSA
Max-sum_ADVP
MGM2
GDBA
Neural-RRS (b = 4)

(c) 50 agents, p1 = 0.25

Figure 8: Simulated runtime results on random DCOPs

2 4 6 8 10
m1

0

5

10

15

20

Si
m

ul
at

ed
 ti

m
e

(s
) LSRM

WRM-I
D-Gibbs
DSA
Max-sum_ADVP
MGM2
GDBA
Neural-RRS (b = 4)

(a) Scale-free network problems

6 7 8 9 10
Grid size

0

2

4

6

8

Si
m

ul
at

ed
 ti

m
e

(s
) LSRM

WRM-I
D-Gibbs
DSA
Max-sum_ADVP
MGM2
GDBA
Neural-RRS (b = 4)

(b) Sensor network problems

Figure 9: Simulated runtime results on structured problems

higher simulated runtime due to the online training procedure. However, as we have shown in Fig.3-4, Neural-RRS can find
significantly higher quality solutions than state-of-the-art methods, making it a powerful alternative for distributed constraint
reasoning. Therefore, our method is suitable for the scenarios where high-quality solutions are desired while the tolerance for
latency is relatively high. A possible scenario could be maritime navigation [Hirayama et al., 2019] where multiple vessels
coordinate their speed and direction to avoid collision. In such scenario, high-quality solutions are desired since we aim to
avoid collision, while the computation latency has minor influence since both direction and speed of a vessel cannot change
drastically.

D.2 Results on Total Information Exchanged
Fig.3-4 present the size of total information exchanged during the solving process of each algorithm on random and structured
problem, respectively. Generally, DSA, LSRM and WRMI have small communication overheads since they just communicate
values between neighbors. Max-sum ADVP, on the other hand, needs to communicate the belief vector of length |Di| over
the whole problem in each round. Therefore, it incurs the worst communication overhead among the compared algorithms in
most of test cases. MGM2 and GBDA require multiple communication cycles per rounds, which requires more communication
overheads than DSA. Finally, our algorithm incurs mild network traffic than Max-sum ADVP and D-Gibbs excepts on sensor
network problems.

D.3 Results on Different Hyper-parameters
Fig.5-6 present the results when vary the difference budget b and the number of training step h, respectively. It can be seen
that increasing the difference budget can drastically reduce the overall runtime at slightly loss of solution quality. We therefore
select b = 4 as it can produce high-quality solutions but requires significantly less runtime. Similarly, increasing the number
of training steps helps to improve solution quality, but the runtime also increases significantly. Hence, h = 2 could be a good
choice since it achieves similar performance with much lower runtime.

References
[Arslan et al., 2007] Gürdal Arslan, Jason R Marden, and Jeff S Shamma. Autonomous vehicle-target assignment: A game-

theoretical formulation. Journal of Dynamic Systems, Measurement and Control, 129(5):584–596, 2007.

30 40 50 60 70
of agents

0

20

40

60

80

100

120

To
ta

l i
nf

or
m

at
io

n
ex

ch
an

ge
d

(M
B)

LSRM
WRM-I
D-Gibbs
DSA
Max-sum_ADVP
MGM2
GDBA
Neural-RRS (b = 4)

(a) p1 = 0.25, |Di| = 10

0.1 0.2 0.3 0.4 0.5
Density

0

20

40

60

80

100

120

To
ta

l i
nf

or
m

at
io

n
ex

ch
an

ge
d

(M
B)

LSRM
WRM-I
D-Gibbs
DSA
Max-sum_ADVP
MGM2
GDBA
Neural-RRS (b = 4)

(b) 50 agents, |Di| = 10

3 6 9 12 15
Domain size

10

20

30

40

50

60

70

80

90

To
ta

l i
nf

or
m

at
io

n
ex

ch
an

ge
d

(M
B)

LSRM
WRM-I
D-Gibbs
DSA
Max-sum_ADVP
MGM2
GDBA
Neural-RRS (b = 4)

(c) 50 agents, p1 = 0.25

Figure 10: Size of total information exchanged on random DCOPs

2 4 6 8 10
m1

0

10

20

30

40

50

60

70

80

To
ta

l i
nf

or
m

at
io

n
ex

ch
an

ge
d

(M
B)

LSRM
WRM-I
D-Gibbs
DSA
Max-sum_ADVP
MGM2
GDBA
Neural-RRS (b = 4)

(a) Scale-free network problems

6×6 7×7 8×8 9×9 10×10
Grid size

0

10

20

30

40

50

To
ta

l i
nf

or
m

at
io

n
ex

ch
an

ge
d

(M
B)

LSRM
WRM-I
D-Gibbs
DSA
Max-sum_ADVP
MGM2
GDBA
Neural-RRS (b = 4)

(b) Sensor network problems

Figure 11: Size of total information exchanged on structured problems

30 40 50 60 70
of agents

22

24

26

28

30

32

No
rm

al
ize

d
co

st

Neural-RRS (b=1)
Neural-RRS (b=2)
Neural-RRS (b=3)
Neural-RRS (b=4)
Neural-RRS (b=5)

(a) Solution quality when varying difference budget b

30 40 50 60 70
of agents

200

300

400

500

600

700

800

900

1000

Ru
nt

im
e

(s
)

Neural-RRS (b=1)
Neural-RRS (b=2)
Neural-RRS (b=3)
Neural-RRS (b=4)
Neural-RRS (b=5)

(b) Runtime when varying difference budget b

Figure 12: Results on random DCOPs when varying difference budget b

30 40 50 60 70
of agents

22

24

26

28

30

32

No
rm

al
ize

d
co

st

Neural-RRS (h=2)
Neural-RRS (h=3)
Neural-RRS (h=4)
Neural-RRS (h=5)

(a) Performance when varying the number of training steps h

30 40 50 60 70
of agents

200

300

400

500

600

700

800

900

1000

Ru
nt

im
e

(s
)

Neural-RRS (h=2)
Neural-RRS (h=3)
Neural-RRS (h=4)
Neural-RRS (h=5)

(a) Runtime when varying the number of training steps h

Figure 13: Results on random DCOPs when varying the number of training steps h

[Atlas et al., 2008] James Atlas, Matt Warner, and Keith Decker. A memory bounded hybrid approach to distributed constraint
optimization. In Proceedings of 10th International Workshop on Distributed Constraint Reasoning, pages 37–51, 2008.

[Brown et al., 2019] Noam Brown, Adam Lerer, Sam Gross, and Tuomas Sandholm. Deep counterfactual regret minimization.
In ICML, pages 793–802, 2019.

[Chapman et al., 2011] Archie C. Chapman, Alex Rogers, Nicholas R. Jennings, and David S. Leslie. A unifying framework
for iterative approximate best-response algorithms for distributed constraint optimization problems. Knowledge Eng. Review,
26(4):411–444, 2011.

[Chen et al., 2018] Ziyu Chen, Yanchen Deng, Tengfei Wu, and Zhongshi He. A class of iterative refined Max-sum algorithms
via non-consecutive value propagation strategies. Autonomous Agents and Multi-Agent Systems, 32(6):822–860, 2018.

[Chen et al., 2019] Dingding Chen, Yanchen Deng, Ziyu Chen, Wenxin Zhang, and Zhongshi He. HS-CAI: A hybrid DCOP
algorithm via combining search with context-based inference. CoRR, abs/1911.12716, 2019.

[Cohen et al., 2020] Liel Cohen, Rotem Galiki, and Roie Zivan. Governing convergence of Max-sum on DCOPs through
damping and splitting. Artificial Intelligence, 279:103212, 2020.

[Deng et al., 2019] Yanchen Deng, Ziyu Chen, Dingding Chen, Xingqiong Jiang, and Qiang Li. PT-ISABB: A hybrid tree-
based complete algorithm to solve asymmetric distributed constraint optimization problems. In AAMAS, pages 1506–1514,
2019.

[Farinelli et al., 2008] Alessandro Farinelli, Alex Rogers, Adrian Petcu, and Nicholas R Jennings. Decentralised coordination
of low-power embedded devices using the Max-sum algorithm. In AAMAS, pages 639–646, 2008.

[Gershman et al., 2009] Amir Gershman, Amnon Meisels, and Roie Zivan. Asynchronous forward bounding for distributed
COPs. Journal of Artificial Intelligence Research, 34:61–88, 2009.

[Grinshpoun et al., 2019] Tal Grinshpoun, Tamir Tassa, Vadim Levit, and Roie Zivan. Privacy preserving region optimal
algorithms for symmetric and asymmetric DCOPs. Artificial Intelligence, 266:27–50, 2019.

[Hirayama and Yokoo, 1997] Katsutoshi Hirayama and Makoto Yokoo. Distributed partial constraint satisfaction problem. In
CP, pages 222–236, 1997.

[Hirayama et al., 2019] K Hirayama, K Miyake, T Shiotani, and T Okimoto. DSSA+: Distributed collision avoidance algo-
rithm in an environment where both course and speed changes are allowed. International Journal on Marine Navigation and
Safety of Sea Transportation, 13(1):117–123, 2019.

[Hoang et al., 2018] Khoi D Hoang, Ferdinando Fioretto, William Yeoh, Enrico Pontelli, and Roie Zivan. A large neighboring
search schema for multi-agent optimization. In CP, pages 688–706, 2018.

[Kim and Lesser, 2014] Yoonheui Kim and Victor Lesser. DJAO: A communication-constrained DCOP algorithm that com-
bines features of ADOPT and Action-GDL. In AAAI, pages 2680–2687, 2014.

[Litov and Meisels, 2017] Omer Litov and Amnon Meisels. Forward bounding on pseudo-trees for DCOPs and ADCOPs.
Artificial Intelligence, 252:83–99, 2017.

[Maheswaran et al., 2004] Rajiv T Maheswaran, Jonathan P Pearce, and Milind Tambe. Distributed algorithms for DCOP: A
graphical-game-based approach. In ISCA PDCS, pages 432–439, 2004.

[Modi et al., 2005] Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo. Adopt: Asynchronous distributed
constraint optimization with quality guarantees. Artificial Intelligence, 161(1-2):149–180, 2005.

[Morrill, 2016] Dustin Morrill. Using regret estimation to solve games compactly. Master’s thesis, University of Alberta, 2016.
[Netzer et al., 2012] Arnon Netzer, Alon Grubshtein, and Amnon Meisels. Concurrent forward bounding for distributed con-

straint optimization problems. Artificial Intelligence, 193:186–216, 2012.
[Nguyen et al., 2019] Duc Thien Nguyen, William Yeoh, Hoong Chuin Lau, and Roie Zivan. Distributed Gibbs: A linear-space

sampling-based DCOP algorithm. Journal of Artificial Intelligence Research, 64:705–748, 2019.
[Okamoto et al., 2016] Steven Okamoto, Roie Zivan, and Aviv Nahon. Distributed breakout: Beyond satisfaction. In IJCAI,

pages 447–453, 2016.
[Ottens et al., 2017] Brammert Ottens, Christos Dimitrakakis, and Boi Faltings. DUCT: An upper confidence bound approach

to distributed constraint optimization problems. ACM Transactions on Intelligent Systems and Technology, 8(5):69:1–69:27,
2017.

[Paszke et al., 2019] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:
An imperative style, high-performance deep learning library. In NeurIPS, pages 8024–8035, 2019.

[Petcu and Faltings, 2005] Adrian Petcu and Boi Faltings. A scalable method for multiagent constraint optimization. In IJCAI,
pages 266–271, 2005.

[Petcu and Faltings, 2007] Adrian Petcu and Boi Faltings. MB-DPOP: A new memory-bounded algorithm for distributed
optimization. In IJCAI, pages 1452–1457, 2007.

[Rogers et al., 2011] Alex Rogers, Alessandro Farinelli, Ruben Stranders, and Nicholas R Jennings. Bounded approximate
decentralised coordination via the max-sum algorithm. Artificial Intelligence, 175(2):730–759, 2011.

[Sultanik et al., 2008] Evan A Sultanik, Robert N Lass, and William C Regli. DCOPolis: A framework for simulating and
deploying distributed constraint reasoning algorithms. In AAMAS, pages 1667–1668, 2008.

[Tammelin et al., 2015] Oskari Tammelin, Neil Burch, Michael Johanson, and Michael Bowling. Solving heads-up limit Texas
hold’em. In IJCAI, pages 645–652, 2015.

[Vinyals et al., 2011] Meritxell Vinyals, Juan A Rodriguez-Aguilar, and Jesús Cerquides. Constructing a unifying theory of
dynamic programming DCOP algorithms via the generalized distributive law. Autonomous Agents and Multi-Agent Systems,
22(3):439–464, 2011.

[Waugh et al., 2015] Kevin Waugh, Dustin Morrill, James Andrew Bagnell, and Michael H. Bowling. Solving games with
functional regret estimation. In AAAI, pages 2138–2145, 2015.

[Yeoh et al., 2010] William Yeoh, Ariel Felner, and Sven Koenig. BnB-ADOPT: An asynchronous branch-and-bound DCOP
algorithm. Journal of Artificial Intelligence Research, 38:85–133, 2010.

[Zhang et al., 2005] Weixiong Zhang, Guandong Wang, Zhao Xing, and Lars Wittenburg. Distributed stochastic search and
distributed breakout: Properties, comparison and applications to constraint optimization problems in sensor networks. Arti-
ficial Intelligence, 161(1-2):55–87, 2005.

[Zivan et al., 2014] Roie Zivan, Steven Okamoto, and Hilla Peled. Explorative anytime local search for distributed constraint
optimization. Artificial Intelligence, 212:1–26, 2014.

[Zivan et al., 2017] Roie Zivan, Tomer Parash, Liel Cohen, Hilla Peled, and Steven Okamoto. Balancing exploration and
exploitation in incomplete min/max-sum inference for distributed constraint optimization. Autonomous Agents and Multi-
Agent Systems, 31(5):1165–1207, 2017.

	Technical Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Related Work
	Pesudo Codes
	Additional Experimental Results
	Results on Simulated Runtime
	Results on Total Information Exchanged
	Results on Different Hyper-parameters

