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Abstract
Efficient algorithms computing a Nash equilib-
rium have been successfully applied to large zero-
sum two-player extensive-form games (e.g., poker).
However, in multiplayer games, computing a Nash
equilibrium is generally hard, and the equilibria
are not exchangeable, which makes players face
the problem of selecting one of many different
Nash equilibria. In this paper, we focus on an al-
ternative solution concept in zero-sum multiplayer
extensive-form games called Team-Maxmin Equi-
librium (TME). It is a Nash equilibrium that max-
imizes each team member’s utility. As TME is
unique in general, it avoids the equilibrium selec-
tion problem. However, it is still difficult (FNP-
hard) to find a TME. Computing it can be formu-
lated as a non-convex program, but existing algo-
rithms are capable of solving this program for only
very small games. In this paper, we first refine the
complexity result for computing a TME by using a
correlation plan to show that a TME can be found
in polynomial time in a specific class of games ac-
cording to our boundary for complexity. Second,
we propose an efficient correlation-based algorithm
to solve the non-convex program for TME in games
not belonging to this class. The algorithm com-
bines two special correlation plans based on Mc-
Cormick envelopes for convex relaxation and von
Stengel-Forges polytope for correlated equilibria.
We show that restricting the feasible solution space
to von Stengel-Forges polytope will strictly reduce
the feasible solution space after convex relaxation
of nonlinear terms. Finally, experiments show that
our algorithm is about four orders of magnitude
faster than the prior state of the art and can solve
many previously unsolvable games.

1 Introduction
Designing efficient algorithms by which agents can make
decisions in complex, interactive environmnets is an impor-
tant part of AI [Russell and Norvig, 2016]. Much recent
work on the computational study of non-cooperative environ-
ments has focused on computing a Nash equilibrium [Nash,

1951] for large zero-sum two-player Extensive-Form Games
(EFGs) [Zinkevich et al., 2008; Zhang and Sandholm, 2020;
Brown and Sandholm, 2017]. In theory, a Nash equilib-
rium can be computed by a polynomial-time (in the size
of the game) algorithm in zero-sum two-player EFGs [von
Stengel, 1996; Shoham and Leyton-Brown, 2008]. In prac-
tice, the agents based on algorithms for computing a Nash
equilibrium in large zero-sum two-player EFGs have de-
feated top human players in the heads-up limit Texas hold’em
poker game [Bowling et al., 2015] and the heads-up no-
limit Texas hold’em poker game [Moravčı́k et al., 2017;
Brown and Sandholm, 2018]. Therefore, in both theory and
practice, the problem of computing a Nash equilibrium in
zero-sum two-player EFGs is well understood. However, this
problem is more complicated in zero-sum multiplayer games,
and there are relatively few results. Computing a Nash equi-
librium in these games is generally hard [Chen and Deng,
2005], and the strategies between different Nash equilibria
are not exchangeable, which impedes players from indepen-
dently selecting strategies to make them form a Nash equilib-
rium (i.e., having the equilibrium selection problem among
different Nash equilibria) [Brown and Sandholm, 2019].

In this paper, we focus on an alternative solution concept
in zero-sum multiplayer EFGs, Team-Maxmin Equilibrium
(TME) [von Stengel and Koller, 1997; Basilico et al., 2017;
Celli and Gatti, 2018; Zhang and An, 2020a], which is for the
situation where several players with the same utility function
form a team but take actions against an adversary indepen-
dently. TME has some nice properties: (i) a TME is a Nash
equilibrium that maximizes the utility of each team member
among all Nash equilibria, and (ii) TME always exists and is
unique and hence avoids the aforementioned equilibrium se-
lection problem. Moreover, TME can capture many strategic
interaction scenarios in the real world. For example, in poker
games, several players may form a team and play against the
target player, i.e., they have the same goal but take actions in-
dependently because communications are not allowed in gen-
eral poker games [Brown and Sandholm, 2019]. In Bridge,
two defenders, form a team but play cards independently due
to the rules. In the three-player card game DouDizhu (i.e.,
Fighting the Landlord) [Zha et al., 2021], two peasants form
a team to fight against the Landlord. Moreover, in security
games, different security departments independently protect
major ports such as the New York port [Jiang et al., 2013].



However, it is still very hard (FNP-hard [Celli and Gatti,
2018]) to compute a TME in EFGs. Computing a TME in
EFGs can be formulated as a non-convex program. The pre-
vious state-of-the-art algorithm for solving this program is
IARAMDT [Zhang and An, 2020a], which is based on a
global optimization technique — the Multiparametric Disag-
gregation Technique (MDT) [Kolodziej et al., 2013; Andrade
et al., 2019]. The MDT-based algorithms use a digit-wise dis-
cretization of continuous variables to approximate nonlinear
terms and then add a large number of constraints and integer
variables to the program. Our experiments show that MDT-
based algorithms are inefficient to compute a close approxi-
mation of a TME in large games because they add too many
constraints and integer variables to the program. To counter
this inefficiency, a correlated variant of TME [Basilico et al.,
2017; Zhang et al., 2021] where team players correlate their
strategies was proposed as an approximation of TME, be-
cause the team’s correlated strategy can be transformed into
a mixed strategy profile [Basilico et al., 2017]. Correlated
TME is relatively easier to compute, but the transformed pro-
file may not form a TME, resulting in an arbitrarily large loss
for the team both in theory and practice [Basilico et al., 2017;
Zhang and An, 2020a; Zhang and An, 2020b].

Contributions. Our contributions are threefold. First, we
refine the computational complexity of TME by proposing
to use a correlation plan to represent the team’s strategy to
show that a TME can be found in polynomial time in a spe-
cific class of EFGs according to our boundary for complexity.
Second, we propose an efficient correlation-based algorithm
to solve the non-convex program for a TME in other EFGs by
combining two special correlation plans based on the well-
known McCormick envelope [McCormick, 1976] for con-
vex relaxation and the well-known von Stengel-Forges Poly-
tope [Von Stengel and Forges, 2008] for correlated equilibria:
1) We explore the relation between the proposed correlation
plan and both special plans to show that our proposed cor-
relation plan cannot be replaced by them in these EFGs. 2)
We show that restricting the feasible solution space to von
Stengel-Forges Polytope will strictly reduce the feasible solu-
tion space after convex relaxation of nonlinear terms. Finally,
our experimental results show that our algorithm is about four
orders of magnitude faster than baselines and can solve many
previously unsolvable games.

2 Preliminaries
The Extensive-Form Game (EFG) [Shoham and Leyton-
Brown, 2008; Von Stengel and Forges, 2008; Farina and
Sandholm, 2020] is a standard model for games played on
game trees (e.g., game trees in Figure 1), which can cap-
ture simultaneous and sequential moves. The imperfect-
information EFG can also capture private information. An
EFG includes a set of players N = {1, . . . , n}, and n ≥ 3
for multiplayer games. Each node in the game tree belongs
to one player except for chance nodes that are used to model
stochastic events in the game (e.g., drawing cards in poker).

The edges leaving a node represent actions that the player
at that node can take, and each player i has a set of actionsAi.
Hi is a set of nonterminal nodes (i.e., nodes having outgoing

edges) for player i. ψi : Hi → 2Ai is the action function
assigning a set of possible actions to each nonterminal node
of player i. Nodes without outgoing edges are terminal nodes
(also called leaves) that represent the end states of a game,
and Z is a set of these terminal nodes. Each player i’s utility
function ui : Z → R assigns a utility to each leaf.

Information sets, partitions of nonterminal nodes, represent
private information. Specifically, player i’s collection Ii of
non-empty subsets of Hi is a partition of Hi: Each Ii ∈ Ii is
a set of nodes that player i cannot distinguish, given what they
have observed while playing the game. Formally, if hi, h′i ∈
Ii, then ψi(h1) = ψi(h2), i.e., the nodes in Ii have the same
set of actions. Let ψi(Ii) = ψi(hi) for any hi ∈ Ii denote the
set of available actions in Ii. Without loss of generality, we
assume that for each action ai ∈ Ai there is a unique Ii ∈ Ii
such that ai ∈ ψi(Ii).

As customary in related works, we focus on perfect-recall
games where all players remember the information gained
earlier in the game, i.e., for each player i and each Ii ∈ Ii,
nodes in Ii have the same sequence of player i’s moves on
the paths from the root to these nodes. A sequence σi of
moves of player i, defined for each node h ∈ H ∪ Z of the
game tree, is the ordered set of actions of player i that lie on
the path from the root to h. We use seqi(Ii) to represent the
sequence of player i leading to Ii and use σi = seqi(Ii)ai
to denote that sequence σi’s last move is ai taken in in-
formation set Ii. In this case, we say σi belongs to Ii.
Σi = {seqi(Ii)ai | Ii ∈ Ii, ai ∈ ψi(Ii)} defines the set
of sequences of player i. ΣN ′ = ×i∈N ′⊆NΣi defines the
combinations of sequences of players in N ′, and σN ′(j) rep-
resents the sequence of player j in σN ′ ∈ ΣN ′ . We write
σ = σN and Σ = ΣN . Each node h ∈ H ∪ Z corre-
sponds to a joint sequences σN ∈ ΣN of players, denoted
as seqN (h), and seqN ′(h) is the joint sequence of players in
N ′ ⊆ N leading to node h. For example, in Figure 1(a),
seq{1,2}(D) = (a, c). We use ΣN ′(Ii) to denote the set of
joint sequences of players in N ′ reaching Ii. ϕ denotes the
empty sequence corresponding to the root. A realization plan
ri : Σi → [0, 1] is a function assigning a probability to each
sequence to be played, which satisfies:

ri(ϕ) = 1 (1a)
ri(σi) ≥ 0 ∀σi ∈ Σi (1b)∑
ai∈ψi(Ii)

ri(seqi(Ii)ai) = ri(seqi(Ii)) ∀Ii ∈ Ii (1c)

These constraints enforce the property of probability flow for
ri at each information set Ii. Let Ri be the set of all real-
ization plans, and RN ′ = ×i∈N ′⊆NRi define the space of
joint realization plans over N ′. A behavioral strategy βi of
player i defines a probability distribution over ψi(Ii) for each
information set Ii ∈ Ii. Every realization plan gives rise to
a behavioral strategy by setting: ∀ai ∈ ψi(Ii), βi(Ii, ai) =
ri(seqi(Ii)ai)
ri(seqi(Ii))

if ri(seqi(Ii)) > 0; otherwise βi(Ii, ai) could
be an arbitrary value in [0, 1]. A behavioral strategy defines a
realization plan as well, i.e., ri(σi) =

∏
(Ii,ai)∈σi

βi(Ii, ai),
where {(Ii, ai) ∈ σi} represents all information sets and ac-
tions along the path (sequence) σi of player i.
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Figure 1: Examples of EFGs with three players. In each example, uppercase letters (i.e., A,B, · · · ) represent nodes, lowercase letters
represent actions, Ii represents the information set of player i, numbers represents leaves, and players 1, 2 (and 3) form a team. For example,
in Figure (a), player 1 acts in information set I1 with node A and two actions a and b, player 2 acts in information set I2 with nodes B and
C and two actions c and d, and the adversary acts in the information set with nodes D–G.

Given player i and player j, Ii ⇌ Ij with Ii ∈ Ii and Ij ∈
Ij denotes that Ii and Ij are connected, i.e., there exist hi ∈
Ii and hj ∈ Ij such that the path from the root of the game
tree to hi passes through hj or vice versa. For example, I1 ⇌
I2 in Figure 1(a), but I ′1 and I2 are not connected in Figure
1(b). Two sequences are relevant if any of them is the empty
sequence or if both of them belong to connected information
sets. That is, given any σi = seqi(Ii)ai ∈ Σi and σj =
seqj(Ij)aj ∈ Σj , if either σi or σj is ϕ, or if Ii ⇌ Ij , then
σi and σj are relevant, denoted as σi ▷◁ σj . A joint sequence
σN ′ is relevant if any two sequences σN ′(i) and σN ′(j) in
σN ′ are relevant. The set of relevant joint sequences is Σ▷◁N ′

for N ′ ⊆ N . For example, in Figure 1(a), a ▷◁ c, and the
joint sequence σ{1,2} = (a, c) is relevant. Given any player i
and a subset of players N ′ (i /∈ N ′), we say that σN ′ ∈ ΣN ′

is relevant for Ii ∈ Ii, denoted as Ii ▷◁ σN ′ , if seqi(Ii) ▷◁
σN ′(j) for each j ∈ N ′, and there is at least one node hi ∈ Ii
such that the joint sequence seqN (hi) includes the sequences
of seqi(Ii) and σN ′ . For example, in Figure 1(a), the joint
sequence σ{1,2} = (a, c) of players 1 and 2 is relevant for
the adversary’s unique information set because seqN (D) =
(a, c, ϕ) includes σ{1,2} and ϕ for the adversary to reach this
information set.

Team-Maxmin Equilibrium (TME) [von Sten-
gel and Koller, 1997; Celli and Gatti, 2018;
Zhang and An, 2020a] captures scenarios where a
team of players T = {1, . . . , n − 1} play against
the adversary n with ui(z) = uj(z)(∀i, j ∈ T ) and
un(z) = −uT (z) = −∑

i∈T ui(z) for each terminal
node z, and team members take actions independently
in a zero-sum multiplayer EFG. Here, UT is the team’s
utility with UT (σ) =

∑
z∈Z′ uT (z)c(z) if a nonempty

subset of terminal nodes Z ′ ⊆ Z are reached by the joint
plan σ of all players with the chance c(z) determined by
chance nodes, and UT (σ) = 0 otherwise. A TME is a
Nash equilibrium maximizing each team member’s utility
and thus always exists and is unique in general [von Sten-
gel and Koller, 1997]. We denote the TME value as the
utility of the team under a TME. In an ϵ-TME, both the
adversary and the team cannot gain more than ϵ if any of
the players deviates from his strategy, and the difference
between the TME value and the ϵ-TME value is not larger
than ϵ. The team’s strategy profile in a TME is defined as
argmaxr1,...,rn−1

minrn
∑
σ=×i∈Nσi,σ∈ΣUT (σ)

∏n
i=1ri(σi)

and can be computed by a non-convex maxmin program

[Celli and Gatti, 2018], whose objective maximizes the
team’s utility at the root of the game tree and constraints
ensure that the adversary chooses the action minimizing the
team’s utility (i.e., maximizing the adversary’s utility) in
each information set of the game tree, similar to the case in
two-player games [Shoham and Leyton-Brown, 2008]:

max
r1,...,rn−1

v(In(ϕ)) (2a)

v(In(σn))−
∑

In∈In:seqn(In)=σn

v(In) (2b)

≤
∑

σT∈ΣT

UT (σT , σn)
∏
i∈T

ri(σT (i)) ∀σn ∈ Σn

Eqs.(1a)− (1c) ∀i ∈ T, (2c)

where In(σn) denotes the information set where player n
takes the last action in sequence σn except for In(ϕ) = ϕ
representing the root, free variable vector v : In → R where
v(In) is the team’s expected utility in information set In ex-
cept that v(ϕ) represents the team’s expected utility in this
EFG. By using the computed strategy profile of the team in a
TME, the adversary strategy in a TME can be computed by
a linear program through minimizing the team’s utility [von
Stengel and Koller, 1997; Zhang and An, 2020b]. For simpli-
fication, we say a TME is computed by Program (2).

3 Using Correlation Plan to Represent Joint
Plan

We now propose an efficient algorithm to compute a TME
using a correlation plan of the team to represent the combi-
nation of independent plans of team members. By using this
representation, we show that a TME can be computed by a
linear program with a polynomial number of variables.

In a TME, team members take actions independently,
which results in using the non-convex Program (2) to com-
pute the TME. In Eq.(2b), there is a multilinear term∏
i∈T ri(σT (i)). rT is a joint realization plan of team mem-

bers, i.e., the combination of independent realization plans of
team members. Motivated by the extensive-form correlation
plan in two-player games [Von Stengel and Forges, 2008], we
propose our multilinear correlation plan x : Σ▷◁T → [0, 1] to
represent the joint plan σT of the team such that:

x(σT ) =
∏
i∈T

ri(σT (i)) σT ∈ Σ▷◁T . (3)



We use X to denote the space of multilinear correlation plans
x. Given a correlation plan x, we can obtain a joint realization
plan for all team members as well. To do so, we first obtain
a behavior strategy from x. That is, for each team member i,
for each Ii ∈ Ii with seqi(Ii) = σi and each ai ∈ ψi(Ii),
and given any σT and σ′

T with σT (i) = σi, σ′
T (i) = σiai,

and σT (j) = σ′
T (j) for i ̸= j,

βi(Ii, ai) =

{
x(σ′

T )
x(σT ) =

ri(σiai)
ri(σi)

if x(σT ) > 0,
1

|ψi(Ii)| if x(σT ) = 0.
(4)

We can then obtain the corresponding equivalent realization
plan ri from this behavioral strategy βi obtained from x.
Therefore, the correlation plan space is equivalent to the joint
realization plan space: for each joint realization plan, there
is an equivalent correlation plan and vice versa. Similar to
Program (2), the team’s strategy in a TME can be defined as:

argmax
x∈X

min
rn∈R

∑
z∈Z

UT (seqN (z))x(seqT (z))rn(seqn(z)).

Through the dual linear program of the inner problem over
rn, we can show that a TME can be computed by a linear
program with a polynomial number of variables.
Proposition 1. A correlation plan x is the team’s strategy in
a TME if and only if it is a solution of the following linear
program: (All proofs are in Supplementary Appendix 1)

max
x

v(In(ϕ)) (5a)

v(In(σn))−
∑

In∈In:seqn(In)=σn

v(In) (5b)

≤
∑

z∈Z,seqn(z)=σn

UT (seqN (z))x(seqT (z)) ∀σn ∈ Σn

x ∈ X . (5c)

Program (5) is a linear program whose number of variables
is polynomial in the game size. If we can use a polynomial-
sized set of linear constraints to represent X , then we can
have a polynomial-time algorithm to compute a TME. How-
ever, this is impossible in general cases unless P = NP because
computing a TME is FNP-hard [Celli and Gatti, 2018].

4 Correlation Plans with Polynomial-Sized
Set of Linear Constraints

The preceding section argued that finding a polynomial-sized
set of linear constraints to represent X in Program (5) would
lead to a polynomial-time algorithm to compute a TME. In
this section, we introduce two special correlation plans that
do have a such a polynomial-sized representation. Based on
the first special correlation plan, we obtain a boundary be-
tween polynomial and FNP instances of games with respect
to TME. That is, we provide the first positive result (i.e., a
polynomial-time algorithm) for complexity on computing a
TME in some games. Moreover, we develop an efficient al-
gorithm to compute a TME in other games by combining both
special correlation plans.

1https://github.com/Youzhi333/TMEEFG
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Figure 2: The relation between correlation plan spaces: (a) X ⊂ M
in any EFG; (b) X ⊂ Y in any EFG satisfying the non-unique-
path property; (c) X = Y in any EFG satisfying the unique-path
property; and (d) X ⊂ (M ∩ Y) ⊂ M in any EFG satisfying the
non-unique-path property.

4.1 A Boundary for Complexity
We now show a boundary between the existence and nonex-
istence of a polynomial-time algorithm to compute a TME
based on the von Stengel-Forges Polytope [Von Stengel and
Forges, 2008]2.

We propose a special von Stengel-Forges correlation plan
with a polynomial-sized set of linear constraints as y : Σ▷◁T →
[0, 1] that assigns a probability for each relevant joint se-
quence in multiplayer games. That is, the team’s correlation
plan satisfies:

y(σT ) ≥ 0 ∀σT ∈ Σ▷◁T (6a)
y(ϕT ) = 1 with ϕT (i) = ϕ, ∀i ∈ T (6b)∑
ai∈ψi(Ii)

y(σT\{i}, seqi(Ii)ai) = y(σT\{i}, seqi(Ii))

∀i ∈ T, Ii ∈ Ii, σT\{i} ∈ Σ▷◁T\{i}, s.t.Ii ▷◁ σT\{i} (6c)

These constraints will give y the property of the probability
flow at each information set: starting with probability 1 at the
root (Eq.(6b)), Eq.(6c) ensures that the incoming probability
is equal to the outgoing probability at each information set.
We denote the space of these plans as Y . We now explore the
relation between X and Y , and find that Y includes X in any
EFG.
Proposition 2. X ⊆ Y in any EFG.

We now show the boundary between X = Y and X ⊂ Y .
Note that ΣT (Ii) is the set of joint sequences of team mem-
bers reaching Ii, which are paths of the team from the root
to Ii. We first define the unique-path property of an infor-
mation set of a team member as: there is only one path for
the team from the root to this information set, or there is only
one action in this information set. Formally, Ii of team mem-
ber i is unique-path if |ΣT (Ii)| = 1 or |ψi(Ii)| = 1. Con-
versely, the non-unique-path property of an information set
of a team member is: there are at least two paths for the team
from the root to this information set, and this information set
has at least two actions. Formally, Ii of team member i is non-
unique-path if |ΣT (Ii)| ≥ 2 and |ψi(Ii)| ≥ 2. A game satis-
fies the unique-path property if each information set of each
team member satisfies the unique-path property, and a game

2In two-player EFGs either without chance nodes [Von Sten-
gel and Forges, 2008] or with public chance nodes [Farina and
Sandholm, 2020], the von Stengel-Forges Polytope gives rise to a
polynomial-time algorithm for correlated equilibrium. However,
these results cannot be extended to TME because (as we show
later) using the von Stengel-Forges Polytope does not lead to a
polynomial-time algorithm for TME even in games without chance
nodes, e.g., the game in Figure 1(a) or 1(b).

https://github.com/Youzhi333/TMEEFG


satisfies the non-unique-path property if at least one infor-
mation set of any team member satisfies the non-unique-path
property. For example, the EFG in Figure 1(a) satisfies the
non-unique-path property because ΣT (I2) = {(a, ϕ), (b, ϕ)}
and ψ2(I2) = {c, d}; and the game in 1(b) satisfies the non-
unique-path property because of the non-unique-path prop-
erty of I ′2. However, the EFG in Figure 1(c) satisfies the
unique-path property because ΣT (I1) = {(ϕ, ϕ)}, ΣT (I2) =
{(c, ϕ)} = ΣT (I

′′

2 ), ΣT (I
′
2) = {(d, ϕ)} = ΣT (I

′′′

2 ), and so
on. These properties define the boundary between X ⊂ Y
and X = Y shown in Figure 2(b) and 2(c).
Proposition 3. In any EFG satisfying the non-unique-path
property, X is a strict subset of Y , i.e., X ⊂ Y .

We now provide a positive result for some EFGs.
Proposition 4. In any EFG satisfying the unique-path prop-
erty, X = Y .

Note that the assumption of the unique-path property can
be easily verified in any EFG in linear time in the size of the
game by checking each information set. The above results
define the boundary between the existence and nonexistence
of a polynomial-time algorithm for TME. That is, we have
the following positive complexity result.
Theorem 1. In any EFG satisfying the unique-path property,
a TME can be computed in polynomial time.

The EFGs satisfying the unique-path property can model
many scenarios. For example, in poker, including any games
using cards, a team of players may share card information
with each other (at least, according to some movies such as 21
(https://en.wikipedia.org/wiki/21 (2008 film)). More specif-
ically, in an online variant of DouDizhu [Zha et al., 2021],
friends can see the information of cards held by friends on
the screen to fight against the adversary. Other examples in-
clude some variants of real-world security games [Wang et
al., 2019; Zhang et al., 2019], where defenders have real-time
location information about other players, e.g., through GPS.
Such information enables the player to consider how other de-
fenders try to interdict the adversary (e.g. the poacher in the
forest or the criminal in the city) on the path. In these games,
the unique-path property holds, and team members may use
a polynomial-time Program (5) to compute a TME strategy
by replacing X with Y and then transform it into independent
realization plans for team members using Eq.(4).

We understand that the EFGs satisfying the unique-path
property are relatively rare, and the EFGs satisfying the non-
unique-path property are common. Therefore, we still need
efficient algorithms to compute a TME in general EFGs.
However, the significance of a boundary between the exis-
tence and nonexistence of a polynomial-time algorithm is: 1)
it helps us understand the complexity of computing a TME
better, i.e., knowing which case is easy and which case is
hard; and 2) it helps us develop an efficient algorithm to com-
pute a TME for general EFGs and understand the reason why
the algorithm works, which is discussed in Section 4.2.

4.2 Solving General EFGs
By Proposition 3, there are some EFGs where we cannot use
Y to replace X , i.e., we still need to use a global optimization

solver to solve the nonlinear program for a TME. To make
the nonlinear program efficiently solvable, we propose our
correlation-based algorithm by combining Y and a special
correlation plan space implicitly used as the feasible solu-
tion space in the global optimization solver. We then theoret-
ically show the efficiency of our correlation-based algorithm
by proving that this combination will strictly reduce the fea-
sible solution space in these EFGs.

We now present the special correlation plan based on the
well-known McCormick envelopes [McCormick, 1976] for
convex relaxation of nonlinear programs. The McCormick
envelope is usually used as a basic technique to solve a bi-
linear program in state-of-the-art non-convex optimization
solvers, e.g. Gurobi [Gurobi, 2020]. The McCormick cor-
relation plan m : Σ▷◁T → [0, 1] has a polynomial-sized set
of linear constraints and assigns a probability for each rele-
vant joint sequence. The team’s plan satisfies the following a
polynomial-sized set of linear constraints with T = {1, 2}:

m(σT ) ≥ 0 ∀σT ∈ Σ▷◁T (7a)
m(σT ) ≥ r1(σT (1)) + r2(σT (2))− 1 ∀σT ∈ Σ▷◁T (7b)
m(σT ) ≤ r1(σT (1)) ∀σT ∈ Σ▷◁T (7c)
m(σT ) ≤ r2(σT (2)) ∀σT ∈ Σ▷◁T (7d)
Eqs.(1a)− (1c) ∀i ∈ T. (7e)

That is, the McCormick correlation plan is bounded accord-
ing to the realization plan, and Eqs.(7a)-(7d) represent in-
equalities r1(σ1)r2(σ2) ≥ 0, (1 − r1(σ1))(1 − r2(σ2)) ≥
0, r1(σ1)(1 − r2(σ2)) ≥ 0, and r1(σ1)(1 − r2(σ2)) ≥ 0,
respectively, where r1(σ1)r2(σ2) is replaced by m(σ1, σ2).
We denote this McCormick correlation plan space as M.
For multilinear programs, the recursive McCormick relax-
ation recursively transforms each multilinear term into bilin-
ear terms3. Therefore, we only present the McCormick cor-
relation plan for two players as it is easy to extend to the mul-
tiplayer setting by recursive McCormick relaxation. We now
show that M strictly includes X , as illustrated in Figure 2(a).
Proposition 5. X ⊂ M in any EFG.

Therefore, M is strictly larger than X , and we cannot
use Eq.(7) as the constraints of X , i.e., we cannot have a
polynomial-time algorithm for computing a TME in any EFG
based on the McCormick correlation plan. However, when
we use a global optimization solver, e.g., Gurobi, to solve a
nonlinear program, the solver implicitly restricts the feasible
solution space after convex relaxation to M and then searches
for the optimal solution. We now propose our correlation-
based algorithm for computing a TME to explicitly restrict
the feasible solution space to Y and use nonlinear constraints
to represent X in Program (5):

max
rT

v(In(ϕ)) (8a)

Eqs.(3), (5b), (6) (8b)
Eqs.(1a)− (1c) ∀i ∈ T. (8c)

That is, Program (8) is a nonlinear program because of con-
straints (1a)-(1c) and (3) that represent the correlation plan

3E.g., the term m1 = r1(σ1)r2(σ2)r3(σ3) is transformed into
two bilinear terms m1 = m2r3(σ3) and m2 = r1(σ1)r2(σ2).

https://en.wikipedia.org/wiki/21_(2008_film


EFG 3K4 3K6 3K8 3K10 3K12 3K13 4K5 4K6∗ 3L2-3∗ 3L3-2∗

Size |B| 132 330 616 990 1452 1716 2200 4170 572 1707
|Σi| 33 49 65 81 97 105 81 97 209 457

Algorithm
CNLP 0.1s 0.3s 37s 47s 273s 1.5h 146s 1303s 20s 141s
NLP >10h >10h >10h >10h >10h >10h >10h >10h >10h >10h

IARAMDT 0.2s 4.3h >10h >10h >10h >10h >10h >10h >10h >10h
MDT >10h >10h >10h >10h >10h >10h >10h >10h >10h >10h

Table 1: The runtime for algorithms in different games: |B| represents the number of nonlinear terms, |Σi| represents the number of sequences
of each player in a game, and ‘>10h’ indicates that an algorithm did not reach the given optimization gap within 10 hours. No algorithms
can reach the gap 0.0001 within 10h in games with ∗ (i.e., 4K6, 3L2-3, and 3L3-2), where the runtime for the gap 0.3 is reported.

1
10

1
102

1
103

1
104

1
10

1
102

1
103

1
104

1 0.3s 0.3s 0.3s 0.3s 8s 25s 35s 37s
2 10h 10h 10h 10h 10h 10h 10h 10h
3 15s 68s 1.4h 4.3h 10h 10h 10h 10h
4 10h 10h 10h 10h 10h 10h 10h 10h

Table 2: The runtime to reach the gap from 0.1 to 0.0001 in 3K6
and 3K8: Rows 1-4 represent CNLP, NLP, IARAMDT, and MDT,
respectively, and 10h represents >10h.

space X . In addition, we restrict the feasible solution space to
Y through Eq.(6) (the variable y is changed to x when Eq.(6)
is inserted into Program (8)) in addition to the implicit feasi-
ble solution space M. Our experiments show that these con-
straints will make our program efficiently solvable. We now
theoretically show why restricting the feasible solution space
to Y can achieve this good result by showing that this step
will strictly reduce the space of M, i.e., the implicit feasible
solution space after convex relaxation of nonlinear terms, as
shown in Figure 2(d).

Proposition 6. In any EFG satisfying the non-unique-path
property, X ⊂ (M∩Y) ⊂ M.

X ⊂ (M∩Y) ⊂ M means that: 1) we cannot simply use
(M ∩ Y) to replace X in Program (5) to compute a TME,
i.e., Program (8) with nonlinear constraints to represent X
is necessary; and 2) restricting the feasible solution space to
Y will strictly reduce the space of M, i.e., the feasible so-
lution space after convex relaxation of nonlinear terms. By
Propositions 4 and 5, X = (M∩ Y), i.e., Program (8) after
the convex relaxation is still a polynomial-time algorithm to
solve EFGs satisfying the unique-path property. Therefore,
Program (8) is efficient to solve general EFGs for TMEs.

5 Experimental Evaluation
We now evaluate the correlation-based Program (8) proposed
above. All experiments ran on a machine with an 8-core
2.3GHz CPU and 16GB of RAM. All programs were solved
by Gurobi 9.1.4 We used the default optimization gap in
Gurobi, i.e., |U−u|

|u| = 0.0001, where U is the upper bound,
and u is the lower bound of the objective function produced
by the solver while searching for the optimal solution, unless
stated otherwise. Codes are available at Footnote 1.

4For games with multilinear terms, we use the recursive method
mentioned in Section 4.2 to transform them into bilinear terms.

We tested our algorithm on benchmark multiplayer poker
games [Zhang et al., 2021]: Kuhn poker and Leduc poker,
which satisfy the non-unique-path property. We use nKc to
represent an n-player Kuhn game with c different cards and
nLk-c to represent an n-player Leduc game with k ranks and
c cards for each rank. Generally, the team is formed by play-
ers 1 to n − 1. We use CNLP to represent our correlation-
based algorithm (i.e., Program (8)). We evaluate our CNLP
against three baselines: 1) NLP: we use Gurobi to solve the
nonlinear Program (2) as a baseline; 2) IARAMDT: the prior
state-of-the-art algorithm for computing a TME [Zhang and
An, 2020a] based on MDT; and 3) MDT: the original MDT
algorithm for global optimization [Andrade et al., 2019;
Kolodziej et al., 2013]. Note that NLP is equivalent to solving
Program (8) within M that is implicitly used in Gurobi.

Table 1 shows the runtime to compute a TME in differ-
ent games, while Table 2 provides additional details about
the convergence in games 3K6 and 3K8 (similar results were
achieved in other games shown in Table 1 as well). Results in
Tables 1 and 2 verify that: 1) Our algorithm CNLP dramati-
cally outperforms the baselines. 2) Our algorithm CNLP still
significantly outperforms the baselines even when the opti-
mization gap is relaxed, as shown in Table 2. 3) Our algo-
rithm CNLP could be four or five orders faster than the prior
state-of-the-art algorithm IARAMDT (see the result for 3K6
in Table 1). 4) Our algorithm CNLP can solve many games
(e.g., games 3K8-3K13) that IARAMDT cannot solve. 5) Our
algorithm CNLP dramatically outperforms NLP, which high-
lights the importance of restricting the feasible solution space
to Y . 6) IARAMDT dramatically outperforms MDT, which
is consistent with previous results [Zhang and An, 2020a].

6 Conclusions
In this paper, we focus on computing a TME in zero-sum
multiplayer EFGs. We first propose to use a correlation plan
to represent the team’s strategy to show that a TME can be
found in polynomial time in specific EFGs according to our
boundary for complexity. Second, we propose an efficient
correlation-based algorithm for TME in other EFGs by com-
bining two special correlation plans for smaller feasible solu-
tion space after relaxation. Finally, experimental results show
that our algorithm significantly outperforms baselines.
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