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Abstract

Core-selecting combinatorial auctions (CAs) re-
strict the auction result in the core such that no
coalitions could improve their utilities by engaging
in collusion. The minimum-revenue-core (MRC)
rule is a widely used core-selecting payment rule to
maximize the total utilities of all bidders. However,
the MRC rule can suffer from severe unfairness
since it ignores individuals’ utilities. To address
this limitation, we propose to explore the leximin
principle to achieve fairness in core-selecting CAs
since the leximin principle prefers to maximize
the utility of the worst-off; the resulting bidder-
leximin-optimal (BLO) payment rule is then theo-
retically analyzed and an effective algorithm is fur-
ther provided to compute the BLO outcome. More-
over, we conduct extensive experiments to show
that our algorithm returns fairer utility distribu-
tions and is faster than existing algorithms of core-
selecting payment rules.

1 Introduction
Combinatorial auctions (CAs) have found applications in
many real-world auction problems, including procurement
auctions [Sandholm, 2007] and government spectrum auc-
tions [Cramton, 2013; Ausubel and Baranov, 2017; Leyton-
Brown et al., 2017]. CAs are attractive as they can produce
efficient outcomes even when bidders have complex prefer-
ences on bundles of heterogeneous goods. A combinatorial
auction mechanism often includes two components: 1) an al-
location rule to specify the bundle of items assigned to each
bidder; 2) a payment rule to specify the price a bidder should
pay for his bundle. Note that an allocation rule is normally
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obtained by solving the NP-hard winner determination prob-
lem [Rothkopf et al., 1998]. In this paper, we will focus on
the payment rules’ designs and implementations.

To address the truthfulness issue of bidding, where bidders
are unwilling to give their real valuations of items but report
false information to improve their utilities, the well-known
Vickrey-Clarke-Groves (VCG) payment rule [Vickrey, 1961;
Clarke, 1971; Groves, 1973] ensures that the optimal strat-
egy for each bidder is to bid their true valuations of the items.
However, the VCG payment rule still suffers from various
other issues that prohibit it from real-world adoption, e.g., ar-
bitrarily low revenue for the seller, which may cause collusion
between the seller and some bidders [Ausubel et al., 2006].

The drawbacks of the VCG payment rule have motivated
the development of core-selecting payment rules [Day and
Raghavan, 2007], which provide a principled way to ensure
that there are no opportunities for collusion between the seller
and bidders. The core is a set of all possible payment out-
comes where the utility of any coalition of bidders in the auc-
tion cannot be improved by engaging in collusion [Gillies,
1959]. However, the core can be exponentially large, and
thus, selecting a suitable payment outcome from the core is
a critical problem in core-selecting CAs. Many efforts have
been devoted to solving this problem by designing some prin-
ciples of selection [Day and Raghavan, 2007; Erdil and Klem-
perer, 2010; Day and Cramton, 2012; Lubin et al., 2015;
Bünz et al., 2018]. Among them, the minimum-revenue-
core (MRC) rule is particularly popular, where it achieves the
largest total incentive by selecting the core outcome that max-
imizes the total utilities of all bidders.

However, it is observed that the MRC rule may cause se-
vere unfairness, since some winners may be forced to sacri-
fice their utilities in the MRC rule. A detailed example to
illustrate this unfair phenomenon caused by the MRC rule
is provided in Example 1 of this paper, where, in the optimal
MRC payment outcome, a winner’s utility is 0 while he could
have obtained a positive utility. More importantly, this zero-
utility phenomenon is not rare since nearly 30% of winners
are forced to get a utility of zero on average in our data gener-



ated by CATS [Leyton-Brown et al., 2000], which simulates
bidding behavior in many realistic economic environments.

To address the limitation of the MRC rule, we propose
to explore the leximin principle to achieve fairness in core-
selecting CAs and propose a novel bidder-leximin-optimal
(BLO) payment rule that selects a core outcome based on the
leximin principle which prefers to maximize the utility of the
worst-off [Rawls, 2004]. Informally, the BLO rule maximizes
the minimum utility, the second minimum utility and so forth
among all the bidders, which achieves egalitarian fairness.
Furthermore, we analyze the BLO outcome theoretically and
provide an effective algorithm to compute it. We summarize
our contributions1 as follows:

1. We investigate the unfair phenomenon of the MRC rule
and propose the BLO rule to achieve fairness in the core-
selecting CAs.

2. We give a theoretical analysis of the BLO rule and
show that the BLO outcome is unique and Pareto op-
timal. Moreover, we offer that the worst-case relative
ratio between a bidder’s utility (resp. the total util-
ity of all bidders) in the BLO outcome and the maxi-
mum utility among all the core outcomes is 1

|W | (resp.
4

|W |+2+
|W | mod 2

|W |
), where |W | is the winner size.

3. Finally, we propose an exact algorithm named WF-
CGS-CR to compute the BLO outcome. Our WF-
CGS-CR algorithm consists of the water-filling frame-
work, a constraint generation search subroutine, and a
constraint-reuse strategy. Given the oracle access for
winner determination, it is effective in time polynomial
in the number of winners. Extensive experiments show
that our algorithm returns fairer utility distributions and
is also faster than existing algorithms of core-selecting
payment rules.

2 Related Work
As a practical mechanism, core-selecting CAs and the MRC
rule were proposed in [Day and Raghavan, 2007] and used in
several scenarios, including selling wireless spectra [Cram-
ton, 2013] and online advertising [Goel et al., 2015]. Then
the quadratic rule [Day and Cramton, 2012] was proposed
to select the MRC point nearest to the VCG point in l2-
distance. They also study some other reference points like all-
zero points. Recently, some works design the core-selecting
payment rule by approximating Bayesian equilibrium of dif-
ferent core outcomes [Lubin et al., 2015; Bünz et al., 2018].

Except for the incentives, fairness is an essential metric in
the core-selecting mechanisms. [Lubin et al., 2015] studied
the fairness measured by the Gini coefficient and proposed a
fractional rule that selects a point fraction to the VCG point
performs best. However, their experiments show that relaxing
the MRC constraint does not change the equilibrium proper-
ties; and there are no systematic shifts in efficiency, fairness,
and aggregate incentives. There are many principles to define
fairness. In this paper, we adopt the leximin principle in the

1Note that we will refer all proofs to the appendix. Our appendix
and code are available at https://github.com/ha0cheng/Fair-BLO.

core-selecting CAs. The method is similar to the egalitarian
core proposed by Arin [Arin and Inarra, 2001], which selects
the utility distribution in the cooperative game via the leximin
principle [Rawls, 2004]. The difference is that the total utility
is not constant in core-selecting CAs.

As for the pricing algorithms, given access to the separa-
tion oracle of winner determination, one can use the Ellipsoid
algorithm [Grötschel et al., 1981] to optimize convex objec-
tives (e.g., bidders’ total utility) exactly over the core poly-
tope in polynomial time. However, this approach is rather
slow in practice, and Core Constraint Generation (CCG) al-
gorithm [Day and Raghavan, 2007] was proposed as an effec-
tive heuristic algorithm to solve such an optimization prob-
lem, which is commonly used in core-selecting CAs [Day and
Cramton, 2012; Cramton, 2013; Bünz et al., 2015].

However, it is hard to formulate a global objective for the
BLO rule, making it difficult to use the above algorithms di-
rectly. Then, Fast Core algorithm [Niazadeh et al., 2022] was
proposed to compute an approximate Pareto optimal outcome
in the rich advertisement, which can be used to compute an
approximate BLO core outcome. Instead of the approximate
algorithm, we focus on the exact algorithm. Moreover, the ex-
periments show that our exact algorithm is much faster than
Fast Core.

3 Preliminaries
Combinatorial auctions are specifically designed for domains
where bidders can have complex preferences over bundles of
heterogeneous items. Formally, let N = {1, . . . , n} be a set
of bidders and s be the seller. Let M = {a, b, c, . . .} be the
set of items with |M | = m. Each bidder i has a valuation
function vi : 2

M → R which specifies the bidder’s valuation
for every possible bundle of items S ∈ 2M . Unless stated
otherwise, bidders will only need to give their values for bun-
dles in which they are interested, and all other bundles will be
given values 0. Also, we assume that vi(∅) = 0 (∀i ∈ N).

A CA consists of two steps: step 1 computes an item allo-
cation outcome, and step 2 computes an item payment out-
come. An allocation rule specifies the bundle of items ai
assigned for each bidder i, where ai ∈ 2M and ai ∩ aj =
∅ (∀i ̸= j), and a payment rule specifies the price pi that the
bidder i should pay for his bundle ai. Obviously, pi must be
0 if ai is empty.

Let πi denote the utility of an auction participant i ∈ N ∪
{s}. If i is the bidder, we assume that his utility is quasi-
linear, i.e., πi = vi(ai) − pi. If i is the seller s, his utility
is πs =

∑
i∈N pi, which is also known as the revenue. The

social welfare is the summation of all participants’ utility:

πs +
∑
i∈N

πi =
∑
i∈N

pi +
∑
i∈N

(vi(ai)− pi) =
∑
i∈N

vi(ai) (1)

One can observe that the social welfare does not depend
on the payment, and an allocation rule can be computed by
maximizing the social welfare as follows:

max
{ai|ai⊆M,i∈N,ai∩aj=∅,∀i ̸=j}

∑
i∈N

vi(ai) (2)

Note that the above optimization problem is also known as
the winner determination problem. Let w({vi(·)}i∈N ) be the

https://github.com/ha0cheng/Fair-BLO


maximum social welfare given the valuation function profile
{vi(·)}i∈N . Once we have a social welfare maximizing allo-
cation {ai|i ∈ N, ai ∩ aj = ∅,∀i ̸= j} by solving the winner
determination problem, in step 2, we need to decide the price
pi for each allocated item bundle ai(i ∈ N).

The simplest payment rule is the so-called pay-as-bid pay-
ment rule, where a winner i(ai ̸= ∅) pays the price pi =
vi(ai) for buying the item bundle ai. However, the pay-as-
bid payment rule suffers from the truthfulness issue, where
bidders are unwilling to report the true valuation functions but
strategically give false information instead. Therefore, in step
2, the famous VCG mechanism is proposed to offer bidders
incentives to ensure that bidding truthfully is the dominant
strategy. Unfortunately, VCG can lead to very low or even
zero revenue, which is unstable and may cause collusion be-
tween the seller and some bidders.

3.1 Core-selecting Payment Rules
The weaknesses of VCG payment rule have motivated the
development of core-selecting payment rules, which provide
a principled way to ensure that the revenue of the auction is
high enough such that there are no opportunities for collusion.

Formally, let S ⊆ N ∪ {s} denote a coalition of partici-
pants.Then, if s ̸∈ S, the social welfare of S must be 0 since
the auction cannot happen without the seller’s participation;
If s ∈ S, the social welfare of S can be computed as follows:

πs+
∑

i∈S\{s}

πi =
∑

i∈S\{s}

pi+
∑

i∈S\{s}

(vi(ai)−pi) =
∑

i∈S\{s}

vi(ai)

(3)
The coalition characteristic function, F : 2N∪{s} → R,

which indicates the optimal social welfare of each coalition
S is then defined as follows:

F(S) =
{
w({vi(·)}i∈S\{s}), if s ∈ S

0, if s /∈ S
(4)

The core is the set of all possible outcomes where the total
utility of any coalition cannot be improved by engaging in
collusion [Gillies, 1959]. The definition is given as follows:
Definition 1 (Core). The core of a CA is a set of outcomes
satisfying the following two conditions:

• Efficiency: ∑
i∈N∪{s}

πi = F(N ∪ {s}) (5)

• Coalitional rationality:∑
i∈S

πi ≥ F(S), ∀S ⊆ N ∪ {s} (6)

Note that the efficiency condition requires that the alloca-
tion outcome must be optimal, namely, the allocations are ob-
tained by solving the winner determination problem. It is pos-
sible that there is more than one optimal allocation, and we
break ties by selecting a random optimal allocation {a∗i }i∈N .
Denote by W the winner set, i.e., W = {i|a∗i ̸= ∅}. On
the other hand, the coalitional rationality condition guaran-
tees that the maximum social welfare that any coalition S

could get (i.e., RHS of the inequality) is not larger than what
the coalition can already get under the current outcome (i.e.,
LHS of the inequality). Finally, a core-selecting CA selects
a social welfare maximizing allocation and picks a payment
outcome in the core.

If coalition S does not include the seller, then F(S) = 0.
Thus the corresponding constraints of coalitional rationality
can be summarized as follows:

πi ≥ 0, ∀i ∈ N (7)

If s ∈ S, substitute Eq.5 into Eqs.6 and we can arrange the
constraints as follows:∑

i∈N\S

πi ≤ w(N)− w(S), ∀S ⊆ N (8)

where w(S) is the abbreviation of w({vi(·)}i∈S). Eqs.7 and
Eqs.8 form the complete core constraint set, which includes
2N + N constraints in total. We use the utility to analyze in
the following discussion and each bidder’s payment price is
mapped by pi = vi(a

∗
i )− πi.

3.2 Minimum-Revenue-Core Payment Rule
Core-selecting CAs are not guaranteed to be truthful [Go-
eree and Lien, 2016]. To maximize the incentives of truth-
ful bidding, the Minimum-Revenue-Core rule (MRC) is pro-
posed as a fundamental principle to select the core out-
comes [Day and Raghavan, 2007; Day and Milgrom, 2008;
Day and Cramton, 2012]. The MRC rule maximizes the total
utility of all bidders, which can be computed as follows:

max
{πi}i∈N∈U

∑
i∈N

πi (9)

where U is the core of the related CA.
Unfortunately, we observe that the MRC rule could suf-

fer from severe unfairness of utility distribution, where some
winners’ utilities are forced to be zero. This unfair phe-
nomenon largely dues to the fact that the MRC rule empha-
sizes the total utility and ignores individuals’ utilities. We
will illustrate this unfair utility distribution phenomenon in
the following example.
Example 1. Consider a CA with 5 bidders and 3 items. Let
N = {1, 2, 3, 4, 5} be the set of bidders and M = {a, b, c}
be the set of items. Table 1 gives the valuation functions of
all bidders. By solving the winner determination problem,
we have that the winners are bidders 1, 2, and 3, thus the
maximum social welfare is that w(N) = v1({a})+v2({b})+
v3({c}) = 6 according to Eq.1. Similarly, w({3, 4, 5}) = 4
and the corresponding constraint is π1 + π2 ≤ 6 − 4 = 2.
The other constraints are obtained similarly. After removing
the redundant constraints, the core of this example is shown
as follows:

Core =


π1 ≥ 0, π2 ≥ 0, π3 ≥ 0

π1 + π2 ≤ 2

π2 + π3 ≤ 2

(10)

According to the MRC rule, the unique utility distribution
is {2, 0, 2}. Bidder 2 must sacrifice all of his utility even



though he could have obtained a positive utility in other core
outcomes (e.g., {1, 1, 1}). In this case, bidder 2 would prefer
bidding untruthfully to get more utility. For example, he can
bid the value 1 for the item b, which leads to a utility of 1 in
the MRC rule.

Table 1: A CA with 5 bidders and 3 items. Winning bids are marked
with “*”. The last three columns are utilities computed from the
VCG, MRC, and our new BLO rule, respectively.

bids utilities
{a} {b} {c} {a,b} {b,c} VCG MRC BLO

Bidder 1 2* 2 2 1
Bidder 2 2* 2 0 1
Bidder 3 2* 2 2 1
Bidder 4 2 0 0 0
Bidder 5 2 0 0 0

Extending this example to the general case, we have the
following lemma:
Lemma 1. Assuming that bidders bid truthfully, in the worst
case, |W | − 2 winners may get zero utility in the MRC rule,
even though there exists some core outcome that assigns them
with positive utilities, where |W | is the winner size.

Moreover, we observe that the unfair phenomenon often
happens in a wide range of domains and datasets when using
the MRC rule. To address this issue, we will explore and
propose a novel payment rule to achieve fairness.

4 Bidder-Leximin-Optimal Payment Rule
We propose to adopt the leximin principle to achieve fairness
in core-selecting CAs, where the leximin principle prefers the
utility distribution with a larger utility for the worst-off.
Definition 2 (Leximin Dominance). Let x,y ∈ Rn be two
real vectors. x leximin dominates y if the following holds:

• There exists some integer 0 ≤ k ≤ n − 1 such that the
k-smallest elements of both vectors are equal, and the
(k+1)-smallest element of x is larger than the (k+1)-
smallest element of y.

We denote the leximin-dominant relation by “≻Lex”, and
then a Bidder-Leximin-Optimal (BLO) core outcome is de-
fined as follows:
Definition 3 (Bidder-Leximin-Optimal). Given a core U of a
CA, a utility outcome π ∈ U is bidder-leximin-optimal if and
only if it is not leximin dominated by any utility outcome π′

in the core, i.e.,
̸ ∃π′ ∈ U : π′ ≻Lex π (11)

The BLO payment rule follows the leximin principle to
give priority to those who are worst-off. It selects a core out-
come that is BLO rather than a core outcome that maximizes
the total utility of bidders. In order to illustrate the advantage
of the BLO payment rule over the MRC payment rule, we
consider the following example.
Example 2. Let us recall the CA problem in example 1. The
unique MRC utility outcome is π = {2, 0, 2} for the winners.
On the other hand, the BLO utility outcome is π′ = {1, 1, 1}
under the core constraints in Eqs.10. One can observe that
π′ is a fairer utility distribution than π.

4.1 Theoretical Analysis of the BLO Payment Rule
This section provides three theoretical results for the BLO
payment rule. First, the following theorem establishes that
the BLO outcome is unique and Pareto optimal.
Theorem 1. The BLO outcome always exists, and it is unique
and Pareto optimal, where no bidders can improve their util-
ities without harming other bidders’ utilities.

We then consider a lower bound of a bidder’s utility in the
BLO core outcome.
Theorem 2. Assuming that bidders bid truthfully, given the
BLO outcome {πBLO

i }i∈N , we have the following tight lower
bound:

πBLO
i ≥ 1

|W |
π∗
i

where π∗
i is the maximum utility for bidder i in the core.

The above lower bound shows that a bidder’s utility is al-
ways larger than zero in the BLO outcome, unless it is zero in
every core outcome’s utility distribution. Regarding the total
utility of the BLO outcome, it is clear that it cannot be bet-
ter than that of an MRC outcome, because the total utility of
an MRC outcome is maximum. The following result shows
the ratio between the BLO outcome and the MRC outcome in
terms of their total utility.
Theorem 3. Assuming that bidders bid truthfully, given the
BLO utility outcome {πBLO

i }i∈N , we have the following tight
lower bound:∑

i∈N

πBLO
i ≥ 4

|W |+ 2 + |W | mod 2
|W |

∑
i∈N

πMRC
i

where {πMRC
i }i∈N is an MRC outcome.

One can observe that the relative ratio is 1 if the size of
the winner set is 1 or 2, but the relative gap grows linearly
with the winner set size |W |. Besides, the BLO outcome has
a better guarantee than the general Pareto optimal outcome,
which has a tight relative ratio guarantee of 1

|W |−1
2.

5 An Exact Algorithm for the BLO Payment
Rule

In this section, we propose an exact algorithm, named WF-
CGS-CR, to compute the BLO payment outcome. The WF-
CGS-CR algorithm is a water-filling (WF) algorithm to in-
crease all active winners’ utilities uniformly in an interactive
manner until reaching the BLO outcome, and a constraint
generation search (CGS) subroutine is adopted to compute
the maximum utility increment at each water-filling iteration.
Moreover, we offer a constraint-reuse (CR) strategy to ac-
celerate the CGS by setting a better initialization with the his-
tory of constraints. We will elaborate on each component of
our WF-CGS-CR below.

Since core-selecting CAs involve solving the winner deter-
mination problem, existing works [Day and Raghavan, 2007;
Day and Cramton, 2012] often assume that there is a so-called
winner determination oracle to solve this problem automati-
cally. We will follow such an assumption in this paper and
introduce the concept as follows:

2More detail in the appendix.



Definition 4 (WD). Let WD be an oracle with this input-
output relation:
Input: submitted bid profile {bi(·)}i∈N , where bi : 2

M → R
is bidder i’s reported valuation function3.
Output: a winner set W and maximum social welfare
w({bi(·)}i∈N ) under the submitted bids.

In other words, we do not dig into the winner determination
solving but only regard it as a black-box interface. Any state-
of-the-art winner determination method can be used in this
way. Oracle complexity is defined as the query time to the
oracle in the worst case, which is the primary analysis aspect
for the algorithms in this paper.

5.1 Water-filling Algorithm
Water-filling algorithm was first proposed in [Niazadeh et al.,
2022] to compute an approximate Pareto optimal outcome.
Different from the original version, we develop the algorithm
for the exact BLO outcome.

Given a utility distribution in the core, we have two kinds
of winners: the active winner and the frozen winner. The
active winner has the potential to increase his utility, while the
frozen winner can not increase the utility further. Our water-
filling algorithm starts from the all-zero utility distribution
and the initial active winner set W (i.e., the original winner
set). Then, at the t-th iteration, it does the following:

• Run the search subroutine to return the maximum utility
increment ∆πt and the frozen winner set W t

f .

• Generate the next utility distribution by increasing each
active winner’s utility by ∆πt and generate the next ac-
tive winner set by removing W t

f from the current active
winner set W t

a.
The iteration stops when the active winner set becomes

empty, i.e., no one can increase his utility anymore. The
pseudo-code is shown in Alg.1.

A search subroutine is adopted to find the maximum utility
increment and the frozen winner set at each iteration. For-
mally, given that the current utility distribution {πt

i}i∈N is in
the core, the optimization problem for the search subroutine
can be formulated as follows:

max
{∆π|{πt

i+∆π}i∈Wt
a
∈U}

∆π (P0)

where {πt
i +∆π}i∈W t

a
means increasing the utilities of win-

ners in W t
a by ∆π while the other winners’ utilities remain

unchanged. After the utility increment, some winners’ util-
ities can not increase anymore, i.e., the frozen winner set at
this iteration. Then we have the following lemma:
Lemma 2. Given that the results computed by the search
subroutine are correct, the water-filling algorithm returns the
BLO outcome.

5.2 Constraint Generation Search Subroutine
A naive method to solve the problem (P0) is obtaining all the
core constraints, but it needs to query the winner determina-
tion oracle exponential times according to Eqs.8. To avoid

3We regard the bidders’ reported valuation functions as their true
valuation functions in the computation part.

Algorithm 1 Water-filling algorithm for finding the exact
BLO outcome
Input: bid profile {bi(·)}i∈N .
Output: the BLO outcome.

1: Step t← 1
2: W,w(N)←WD({bi(·)}i∈N )
3: Initialize the utility distribution {πt

i}i∈N as all-zero
4: Initialize the active winner set W t

a as W
5: while W t

a is not empty do
6: Run the search subroutine to return the maximum

utility increment ∆πt and the frozen winner set W t
f

7: Generate the next utility distribution:

πt+1
i =

{
πt
i +∆πt, if i ∈W t

a

πt
i , otherwise

8: Generate the next active winner set:

W t+1
a = W t

a\W t
f

9: Step t← t+ 1

10: return {πt
i}i∈N

this, in this section, we first formulate the problem (P0) to an
equivalent mathematical format and then solve it through the
constraint generation search.

Optimization Problem Formulation
In the original format (P0), the restriction condition is to en-
sure the utility distribution is still in the core, in other words,
satisfying all the core constraints. According to Eqs.8, the
constraints can be written as:∑

i∈N\S

πt
i + |W t

a \ S|∆π ≤ w(N)− w(S), ∀S ⊆ N (12)

If W t
a ⊆ S, then |W t

a \S| = 0, and the corresponding con-
straints can be ignored. Thus, we can arrange the remaining
constraints as follows:

∆π ≤
w(N)− w(S)−

∑
i∈N\S πt

i

|W t
a\S|

(13)

where S ⊆ N and W t
a ̸⊆ S. Every such constraint provides

an upper bound for ∆π. Denote by ∆πS the upper bound cor-
responding to S, i.e., RHS in Eq.13. Thus, finding the max-
imum utility increment satisfying all the core constraints is
equivalent to finding the minimum upper bound above. Prob-
lem (P0) is equivalent to the following optimization problem:

min
{S|S⊆N,W t

a ̸⊆S}

w(N)− w(S)−
∑

i∈N\S πt
i

|W t
a\S|

(P1)

Let S∗ be one of the optimal coalitions for problem (P1),
thus ∆πt = ∆πS∗

. After the increment, the corresponding
core constraint of S∗ would be tight for the new utility distri-
bution {πt+1

i }i∈N , thus we have∑
i∈N\S∗

πt+1
i = w(N)− w(S∗) (14)



According to Eq.14, bidders belonging to N\S∗ cannot in-
crease their utilities without violating this constraint, i.e., they
are frozen. Therefore, the frozen winner set W t

f is W t
a\S∗ at

this iteration. Problem (P1) is actually a nesting optimization
problem with a fractional format since w(S) is corresponding
to the winner determination problem. Thus it is intractable to
solve directly, and we propose to use the constraint generation
method that only considers the most useful constraints.

Constraint Generation Search
Generally speaking, CGS starts from an upper bound of the
utility increment, then reduces the upper bound iteratively
through generated constraints until it is the minimum.

Formally, CGS initializes the upper bound ∆π̄ as ∞ and
the frozen winner set as W t

a. It checks whether this upper
bound is the minimum by the following equation:

w(N)−
∑
i∈N

π̃i = wB (15)

where {π̃i}i∈N is the utility distribution by setting the util-
ity increment as ∆π̄ and wB is the maximum social welfare
under the truncated bid profile {max(bi(·) − π̃i, 0)}i∈N . If
Eq.15 is satisfied, the current upper bound ∆π̄ is the mini-
mum, and CGS will return the result. Otherwise, a smaller
upper bound is computed by

∆π̄ = ∆π̄ −
wB − (w(N)−

∑
i∈N π̃i)

|W̄f |
(16)

The corresponding frozen winner set is updated by

W̄f = W t
a\B (17)

where B is the winner set under the truncated bid profile
{max(bi(·) − π̃i, 0)}i∈N . If the new frozen winner set sat-
isfies |W̄f | = 1, then this upper bound is the minimum. Oth-
erwise, CGS will start a new iteration with the smaller upper
bound. The oracle complexity of CGS is given as follows:
Lemma 3. Constraint generation search requires at most
|W t

a| queries to the oracle WD to solve the optimization
problem (P1).

Assume that the iteration number of the water-filling algo-
rithm is T . Naturally, since W = W 1

a ⊃ ... ⊃ WT
a = ∅,

the query time of the CGS subroutine in the water-filling al-
gorithm is at most |W |+ (|W | − 1) + ...+ 1 = |W |(|W |+1)

2 .

5.3 Constraint-reuse Strategy
To avoid CGS starting from the naive upper bound ∞, we
propose the constraint-reuse strategy to set a better initializa-
tion through the history of constraints.

Formally, we store the binary tuple (WS
f ,∆πS) in the

stored constraint set C, where WS
f is the frozen winner set

if S is an optimal coalition, i.e., WS
f = W t

a \S. Then in each
CGS subroutine, we first update each binary tuple C based
on the new utility distribution and active winner set. The re-
currence formula is given as follows:

ẂS
f = WS

f ∩W t
a

∆π́S =
|WS

f |
|ẂS

f |
(∆πS −∆πt−1)

(18)

Algorithm 2 Constraint generation search with the
constraint-reuse strategy
Input: bid profile {bi(·)}i∈N , maximum social welfare
w(N), current utility distribution {πt

i}i∈N , active winner set
W t

a, last utility increment ∆πt−1, constraint set C.
Output: the maximum utility increment ∆πt and the frozen
winner set W t

f .
/*Constraint-reuse Strategy*/

1: Initialize ∆π̄ ←∞; W̄f ←W t
a

2: for (WS
f ,∆πS) in C do

3: C← C \ {(WS
f ,∆πS)}

4: if WS
f ∩W t

a ̸= ∅ then

5: ẂS
f ←WS

f ∩W t
a; ∆π́S =

|WS
f |

|ẂS
f | (∆πS−∆πt−1)

6: if ∆π́S < ∆π̄ then ∆π̄ ← ∆π́S ; W̄f ← ẂS
f

7: C← C ∪ {(ẂS
f ,∆π́S)}

/*Constraint Generation Search*/
8: while True do
9: Generate the utility distribution by upper bound ∆π̄:

π̃i =

{
πt
i +∆π̄, if i ∈W t

a

πt
i , otherwise

10: B,wB ←WD({max(bi(·)− π̃i, 0)}i∈N )
11: if w(N)−

∑
i∈N π̃i = wB then break

12: ∆π̄ ← ∆π̄ − wB−(w(N)−
∑

i∈N π̃i)

|W̄f |
; W̄f ←W t

a\B
13: C← C ∪ {(W̄f ,∆π̄)}
14: if |W̄f | = 1 then break
15: return ∆π̄,W̄f

Above all, we have introduced the three components of the
WF-CGS-CR algorithm and the runtime guarantee is shown
as follows:
Theorem 4. The WF-CGS-CR algorithm requires at most
|W |(|W |+1)

2 +1 queries to oracleWD and an additional time
complexity O(|W |5) to obtain the BLO outcome, where |W |
is the winner size.

By adopting this formula, we transfer each binary tuple
(WS

f ,∆πS) to a new binary tuple (ẂS
f ,∆π́S) before CGS.

Eventually, the minimum upper bound in the constraint set
is computed and serves as the initial upper bound for CGS.
Besides, each new binary tuple is stored in the constraint
set if ẂS

f is not empty. The complete pseudo-code for the
CGS subroutine is shown in Alg.2. Note that this strategy
would increase some extra computation complexity that is
minor since the winner determination oracle is the main time-
consuming part.

6 Experiments
In the experiments, we use the CATS (Combinatorial Auc-
tion Test Suite) [Leyton-Brown et al., 2000] as the CA in-
stance generator. Same as [Bünz et al., 2015], we choose
six representative CATS distributions: Arbitrary, Decay(L4),



Algorithm Arbitrary Decay(L4) Matching Paths Regions Scheduling
VCG 12.49 (4.52) 1.83 (0.87) 0.75 (0.03) 2.50 (0.18) 2.35 (0.45) 0.83 (0.36)
MRC 22.09 (10.30) 4.84 (2.35) 2.12 (0.62) 5.70 (1.54) 4.42 (1.40) 2.37 (1.93)
MRC-VCG 23.32 (10.86) 4.84 (2.21) 2.23 (0.63) 5.86 (1.51) 4.76 (1.48) 2.90 (2.49)
MRC-Zero 23.48 (10.91) 5.17 (2.74) 2.23 (0.64) 5.90 (1.55) 4.87 (1.47) 2.99 (2.79)
Fast Core 33.26 (15.24) 6.80 (3.19) 7.67 (1.00) 21.46 (3.07) 7.23 (2.54) 11.48 (8.9)
WF-CGS 9.67 (4.85) 3.57 (1.83) 2.98 (0.42) 10.37 (1.56) 2.37 (1.13) 2.36 (0.97)
WF-CGS-CR 7.15 (3.64) 1.81 (0.93) 1.22 (0.18) 3.25 (0.36) 1.55 (0.54) 1.58 (1.17)

Table 3: Results for the run time. Average run times (in seconds) over 50 CA instances are provided, with standard error in the parentheses.
Each CA instance is generated by CATS, with 64 goods and 1000 bids. The lowest average run time in each column is marked in bold.

Matching, Paths, Regions, and Scheduling. For each distri-
bution, we generate 50 CA instances with 64 goods and 1000
bids. All the experiments were run on a high-performance
computer with a 3.10GHz Intel core and 16GB of RAM. Be-
sides, the winner determination problem is transformed into a
format of integer programming, solved by the solver CPLEX
20.1.0 [Manual, 1987]. The following payment rules are im-
plemented for the comparison:

• VCG: the VCG payment rule, where each winner’s util-
ity is πV CG

i = w(N)− w(N \ {i}).
• MRC: the MRC payment rule that selects one core out-

come with the maximum total utility of bidders [Day and
Raghavan, 2007].

• MRC-VCG: a quadratic payment rule that selects the
MRC point nearest to the VCG point in l2-distance [Day
and Cramton, 2012].

• MRC-Zero: a quadratic payment rule that selects the
MRC point nearest to the all-zero point in l2-distance
[Day and Cramton, 2012].

• Fast Core: the approximate BLO payment rule imple-
mented through the water-filling algorithm with the bi-
nary search [Niazadeh et al., 2022].

We use the state-of-the-art Core Constraint Generation
(CCG) algorithm to compute all the MRC outcomes above
[Day and Raghavan, 2007]. Unfortunately, it has no theoret-
ical guarantee for the query time; in other words, its oracle
complexity may be exponential. Instead, the oracle complex-
ity of Fast Core is O(|W | log |W |

ϵ ), where ϵ is the parameter
representing the approximate gap. Same as [Niazadeh et al.,
2022], ϵ is set as 0.01 in our experiments.

6.1 Experimental Results
The auction results are shown in Table 2. We can see
that core-selecting payment rules enhance the seller’s rev-
enue compared to the VCG payment rule. Among the core-
selecting payment rules, the BLO rule achieves a fairer util-
ity distribution with a tiny reduction of the total utility (i.e.,
from 173.65 to 147.17). Moreover, the MRC rules produce
an unfair utility distribution, with nearly 30% winners ob-
taining zero utility, which impairs the incentives for bidders.
Instead, the BLO rule has only 1.69% zero-utility winners
on average, thus providing a guarantee for the worst-off. Fast
Core achieves approximate fairness, but there are still 12.71%
zero-utility winners.

Payment rule Revenue Total utility Min ↑ Std↓ Zero ratio↓
VCG 11661.54 513.04 5.03 13.63 1.69%
MRC-VCG 12000.93 173.65 0.01 10.36 31.63%
MRC-Zero 12000.93 173.65 0.05 9.54 28.57%
Fast Core 12046.95 127.63 0.83 5.94 12.71%
BLO 12027.41 147.17 1.18 6.77 1.69%

Table 2: Results for the auction. The measurements include the rev-
enue, the total utility, the minimum utility (Min), the standard devi-
ation (Std), and the percentage of the zero-utility winners among all
winners (Zero ratio). All results are averages over 300 CA instances,
with 50 instances for each distribution. Note that ↑ indicates larger
values are better, and ↓ indicates smaller values are better in terms
of fairness.

The average run time results are shown in Table 3, where
WF-CGS represents our algorithm without the constraint-
reuse strategy. Note that we include the run time for com-
puting VCG prices for the MRC rules since it serves as the
initial point in the CCG algorithm [Day and Raghavan, 2007].
As we can see, the WF-CGS-CR algorithm performs the best
among all the core-selecting algorithms, which is even close
to the VCG algorithm. Moreover, the constraint-reuse strat-
egy is effective in our experiments, especially in the distribu-
tion of Paths.

7 Conclusion

In this paper, we propose the BLO payment rule to address
the unfair issue with the MRC rule. The BLO payment rule
adopts the leximin principle to select the core outcome, prior-
itizing the worst-off bidders. Furthermore, we theoretically
analyze the BLO rule and propose the WF-CGS-CR algo-
rithm to compute the exact BLO outcome. Our algorithm
has the quadratic oracle complexity and achieves the best run
time in the experiments, even close to VCG.

Compared with the MRC rule, the BLO rule has the fol-
lowing advantages: (1) the BLO outcome is unique, avoid-
ing the problem of core outcome selection; (2) the BLO out-
come achieves leximin fairness and thus avoids the unfair
phenomenon caused by the MRC rule; (3) given the winner
determination oracle access, the BLO outcome is computed
effectively in time polynomial in the winner size. Therefore,
the BLO rule could serve as an alternative payment rule for
the core-selecting CAs.
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