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Abstract
Market making (MM) via Reinforcement Learn-
ing (RL) has attracted significant attention in finan-
cial trading. Most existing RL-based MM meth-
ods focus on optimizing single-price level strate-
gies which fail at frequent order cancellations and
loss of queue priority. By comparison, strategies
involving multiple price levels align better with ac-
tual trading scenarios. However, given the com-
plexity that multi-price level RL strategies involve a
comprehensive trading action space, the challenge
of effectively training RL persists. Inspired by
the effective workflow of professional human mar-
ket makers, we propose Imitative Market Maker
(IMM), a novel RL framework leveraging knowl-
edge from both suboptimal signal-based experts
and direct policy interactions. Our framework starts
with introducing effective state and action formu-
lations that well encode information about multi-
price level orders. Furthermore, IMM integrates
a representation learning unit capable of capturing
both short- and long-term market trends to miti-
gate adverse selection risk. Subsequently, IMM de-
signs an expert strategy based on predictive signals,
and trains the agent through the integration of RL
and imitation learning techniques to achieve effi-
cient learning. Extensive experimental results on
four real-world market datasets demonstrate the su-
periority of IMM against current RL-based market
making strategies.

1 Introduction
Market making (MM) is a process where a market maker con-
tinuously places both buy and sell orders on the limit order
book (LOB) of a given security with an aim of maximizing
the risk-adjusted returns. The complexity of MM dynamics
brings great challenges to market makers. During this pro-
cess, market makers encounter various risks including inven-
tory risk, adverse selection risk, and non-execution risk.

In contrast to traditional MM approaches [Avellaneda and
Stoikov, 2008; Guéant et al., 2012] which rely on mathemat-
ical models with strong assumptions, (deep) Reinforcement

Learning (RL) has emerged as a promising approach for de-
veloping MM strategies capable of adapting to changing mar-
ket dynamics. While there has been extensive research on the
application of RL for MM, the majority of studies have fo-
cused on optimizing single-price level strategies [Spooner et
al., 2018; Sadighian, 2019; Xu et al., 2022]. Moreover, most
RL-based methods utilize the fluctuated mid-price as a refer-
ence price for defining actions related to order prices. Unfor-
tunately, such single-price strategies with unstable reference
prices result in frequent and unnecessary order cancellations,
leading to the loss of order priority [Chung et al., 2022]. In
practice, traders prefer placing multi-price level orders in ad-
vance without frequent cancellations to reserve good queue
positions. This raises the necessity for a novel MM formu-
lation that accommodates order stacking and muli-price level
strategies with a stable reference price.

Besides the formulation challenge, addressing the effec-
tive training of profitable RL policies for MM becomes a
formidable task when dealing with multi-price level strate-
gies, which involve a large, fine-grained trading action space.
Learning from scratch proves to be particularly challenging
for RL algorithms in such complex environments. A promis-
ing way to solve this problem is to extract trading knowledge
from expert data and improve the exploration ability of RL
algorithms. Furthermore, to tackle the primary concern of
market makers in mitigating adverse selection risk and non-
execution risk, agents must possess the capability for both
long-term and short-term market condition predictions. This
enables the balancing of long-term risk caused by unfavorable
price movements and short-term execution probabilities.

With the above motivations, this paper proposes the Imita-
tive Market Maker (IMM), an RL framework that integrates
a state representation learning unit (SRLU) with an imita-
tive RL unit (IRLU), to solve the optimal MM problem us-
ing multi-price level policies. IMM first gathers both micro
and macro-level market information and predicts short-term
and long-term market trends based on this information. Later
on, it trades off between risks and profits based on risk ap-
petite. Finally, it makes trading decisions to decide how wide
and how asymmetrically w.r.t. the reference price it sets the
quotes.

Our primary contributions can be summarized as follows:

• We formulate the MM process as a MDP with effective



state, action, and reward definitions. This formulation
is well-suited for realistic MM scenarios, enabling the
implementation of multi-price level order stacking and
customized risk-profit trade-offs.

• We propose SRLU that incorporates multi-granularity
predictive signals as auxiliary variables, and employs a
temporal convolution and spatial attention (TCSA) net-
work to distill representations from noisy market data.

• We leverage IRLU to extract trading knowledge from
experts, facilitating effective exploration in the complex
trading environment.

• Extensive experiments on four real-world financial fu-
tures datasets demonstrate that IMM outperforms base-
line methods in relation to both risk-adjusted returns and
adverse selection ratios.

2 Related Work
Traditional approaches for MM in the finance literature [Ami-
hud and Mendelson, 1980; Glosten and Milgrom, 1985; Avel-
laneda and Stoikov, 2008; Guéant et al., 2012] consider MM
as a stochastic optimal control problem that can be solved an-
alytically. For example, the Avellaneda–Stoikov (AS) model
[Avellaneda and Stoikov, 2008] assumes a drift-less diffusion
process for the mid-price evolution, then uses the Hamilton-
Jacobi-Bellman equations to derive closed-form approxima-
tions to the optimal quotes. On a related note, [Guéant et al.,
2012] consider a variant of the AS model with inventory lim-
its. However, such methods are typically predicated on a set
of strong assumptions, and employ multiple parameters that
need to be laboriously calibrated on historical data. It seems
promising to consider more advanced methods such as RL
that enable learning directly from data in a model-free fash-
ion.

Recent years have witnessed a strong popularity of (deep)
RL in the field of quantitative trading [Chan and Shelton,
2001; Cartea et al., 2015a; Patel, 2018; Zhong et al., 2020;
Fang et al., 2021; Niu et al., 2022; Sun et al., 2023]. The
majority of the RL-based MM approaches adopt a single-
price level strategy. Among those studies, several methods
proposed defining the action space in advance [Spooner et
al., 2018; Xu et al., 2022; Sadighian, 2019]. For instance,
the action space of [Spooner et al., 2018] is an octuple of
prespecified half-spread pairs. Several researchers utilized a
”half-spread” action space which chooses a continuous half-
spread on each side of the book [Glosten and Milgrom, 1985;
Jumadinova and Dasgupta, 2010; Cartea et al., 2015b; Lim
and Gorse, 2018; Guéant and Manziuk, 2019]. Unfortunately,
when actually implementing such a strategy, to change the
half spread on each side of the book, it is necessary to ac-
tively cancel orders at each time step and place new orders
at the new level. This results in frequent unnecessary order
cancellations, leading to queue position losing [Jerome et al.,
2022]. To overcome this limitation, ladder strategies, which
place a unit of volume at all prices in two price intervals, one
on each side of the book, have been adopted [Chakraborty
and Kearns, 2011; Abernethy and Kale, 2013]. The latest
work uses variants of this strategy to construct multi-price

level MM policies. The DRLOS [Chung et al., 2022] agent
decides whether to retain one unit of volume on each price
level and the beta policy [Jerome et al., 2022] allows for flex-
ibility in the distribution of order volumes. However, to pro-
vide more accurate trading decisions, a multi-price level strat-
egy involves a much more complex fine-grained action space
(multi-level price and quantity). Little attention has been paid
to inefficient exploration problems due to the complex ac-
tion space of multi-price strategies. While have shown great
promise, these approaches might be limited to achieving effi-
cient exploration, particularly in highly dynamic and complex
market environments.

3 Problem Formulation
In this section, we formulate the MM problem with multi-
price level strategies as a Markov Decision Process (MDP).
We start with introducing a stable reference price of LOB
and a novel state/action space. Subsequently, we illustrate
the transition dynamics of MM procedure that accommo-
dates multi-price level order stacking. Finally, we introduce
a mixed reward function to mitigate diverse risks.

3.1 A Stable Reference Price
In practical MM scenarios, market participants analyze many
quantities before sending orders, among which the most im-
portant one is the distance between their target price and
the ”reference market price” pref , typically the midprice
[Huang et al., 2013]. The LOB can be formulated as a 2K-
dimensional vector, where K denotes the number of available
limits on each side. Notably, pref serves as the LOB’s cen-
tral point, thereby determining the positions of the 2K limits
Q±i, where Q±i represents the limit at the distance i − 0.5
ticks to the right (+i) or left (−i) of pref . It is assumed that
buy limit orders are placed on the bid side, and sell ones on
the ask side. The queue length at Qi is denoted as li.

Most existing MM methods adopt the market midprice as
pref to encode the LOB. However, the specific price linked
with level i may experience frequent shifts due to the dynamic
fluctuations in the midprice. Whenever alterations occur in
pref , the corresponding li instantaneously transitions to the
value of one of its adjacent neighbors. This hinders the ex-
traction of valid micro-market information from LOB. The
necessity arises to define a stable reference price.

To this end, this paper formulates pref in the subsequent
manner: Firstly, we set up a reference price p̃ref that fol-
lows the midprice. Specifically, in instances where the market
spread is odd, p̃ref,t := mt =

askt+bidt

2 . When the spread is
even, p̃ref,t := mt ± price tick

2 , with the selection of the sign
based on proximity to the prior value. Afterward, at the be-
ginning of an episode, we set pref,0 = p̃ref,0. Then when the
midprice mt increases (or decreases), only if l−1,t = 0 (or
l1,t = 0), pref,t is updated to p̃ref,t. Consequently, changes
of pref are possibly caused by one of the three following
events: (1) The insertion of a buy/sell limit order within the
bid-ask spread while Q1/Q−1 is empty. (2) A cancellation of
the last limit order at one of the best prices. (3) A market or-
der that consumes the last limit order at one of the best offer
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Figure 1: Limit order book and the reference price. In this instance,
Q−1 is an empty limit.

queues. Note that within our framework, the LOB accom-
modates empty limits, as depicted in Figure 1. In this way,
we obtain a more stable pref 1, enabling effective encoding of
LOB and multi-price level orders.

3.2 MDP Formulation
With such a stable reference price, IMM then effectively en-
codes market information and multi-price level orders.

State Space
To mitigate adverse selection risk, the state space necessitates
the inclusion of macro-level market information1. At time
step t, the IMM agent observes the state formulated by:

st = (smt , sst , s
p
t ), (1)

where smt denotes the market variables encoding the cur-
rent market status; sst denotes the signal variables, includ-
ing multi-granularity auxiliary predictive signals; spt de-
notes the private variables, including: the current inven-
tory zt, the queue position information and volume of the
agent’s orders that rests on the LOB, denoted by sqt =

(q−K
t ..., q−1

t , q1t , ..., q
K
t ) and svt = (v−K

t ..., v−1
t , v1t , ..., v

K
t )

respectively. Here qi and vi denote the queue position infor-
mation and volume at price level i respectively. Suppose there
are mi orders resting at level i placed at different time steps.
The queue position value of the j-th order at level i can be de-

fined as qi,jt =
lfront,j
i

lit
, where lfront,ji is the queue length in

front of this order. Thus the queue position value at price level
i can be defined as the volume weighted average of the queue

position values of the mi orders: qit =
∑mi

j=1
lfront,i,j
t

lit

vi,j
t

lit
.

Through covering the information of the current quotes in
states, the IMM learns to avoid frequent order cancellations
and replacements.

Action Space
Reserving good queue positions beyond best bid/ask levels
holds the advantage of controlling adverse selection and non-
execution risks. Therefore, practitioners tend to deploy order
stacking strategies that place limit orders at multiple price lev-
els in advance. IMM introduces an action encoding that ex-
presses the complex multi-price level strategies within a low-
dimensional space. At time step t, the action at is defined
as

at = (m∗
t , δ

∗
t ,ϕ

bid
t ,ϕask

t ), (2)
1See detailed explanations in the supplementary materials.

where m∗
t and δ∗t denote the desired quoted midprice w.r.t

pref and spread respectively. This implies that the agent’s tar-
get selling price is no lower than m∗

t + δ∗t /2, and the highest
buying price is m∗

t−δ∗t /2. ϕbid
t and ϕask

t represent parameter
vectors that govern the volume distribution of the multi-level
quotations. Several instances of diverse two-price level strate-
gies and more-price level strategies are illustrated in Figure 2
and supplementary materials. By adopting such an action for-
mulation, the agent gains the flexibility to determine both the
width and asymmetry of the quotes with respect to the refer-
ence price.

Transition Dynamics
We formulate MM as an episodic RL task. The MM pro-
cedure allows for multi-price level order stacking, as speci-
fied below: (1) Choose a random start time for the episode
and initialize the environment and the simulator. (2) Let the
agent choose the desired volumes and price levels at which
the agent would like to be positioned in the LOB. (3) Turn
these desired positions into orders, including canceling or-
ders from levels with too much volume and placing new limit
orders. (4) Match the orders in the market-replay simulator
according to the price-time priority. (5) Update the agent’s
cash and inventory of the traded asset and track profit and
loss. (6) Repeat steps (2-4) until the episode terminates. A
picture illustration can be found in Figure ?? in the supple-
mentary material.

Reward Function for Diverse Utilities
The decision process of the market makers is subject to sev-
eral trade-offs, including probability of execution and spread,
inventory risk, and compensation from the exchange. To meet
the diverse utilities of market makers, three factors are pro-
posed to be considered:

Profit and loss (PnL) is a natural choice for the problem
domain, comprising a realized PnL term (left part) and a
floating PnL term (right part), given by:

PnLt =

( ∑
i∈At

pai · vai −
∑
j∈Bt

pbj · vbj
)
+ (pt+1 − pt) · zt+1, (3)

where p denotes the market midprice; pa, va, pb, vb repre-
sent the price and volume of the filled ask (bid) orders re-
spectively; z signifies the current inventory, with z > 0 when
the agent holds a greater long position than short.

Truncated Inventory Penalty is used to mitigate inventory
risk. Considering that advanced market makers may choose
to hold a non-zero inventory to exploit clear trends while cap-
turing the spread, an enhanced approach involves applying an
additional inventory-dampening term solely to higher-risk in-
ventory levels:

IPt = −η|zt| · I(|zt| > C), (4)

A penalty for inventory holding is applied solely when the
inventory zt surpasses a constant C.

The Market Makers’ compensation from the exchange con-
stitutes a primary revenue stream for numerous market mak-
ers [Fernandez-Tapia, 2015]. Therefore, ensuring a substan-
tial volume of transactions to secure compensation holds sig-
nificant importance for a variety of MM companies. To this
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Figure 2: Illustration of action space. Consider a scenario where
an agent positions two-level orders on both sides of the LOB, ϕask

t

(the green number) determines the ratio of volume placed at the two
adjacent ask price levels (heights of the green bars).

end, a bonus term is incorporated to encourage transactions
of the agent:

Ct = β

( ∑
i∈At

pai · vai +
∑
j∈Bt

pbj · vbj
)
, (5)

Ultimately, by appropriately tuning the parameters η and β
based on personalized utilities, IMM ensures alignment with
the requirements of a broad spectrum of market makers, em-
ploying the combination of these three categories of rewards:

R(st,at, st+1) = PnLt + Ct + IPt. (6)

4 Imitative Market Maker (IMM)
This section introduces the proposed IMM Approach. As
illustrated in Figure 3, IMM consists of two components:
Section 4.1 elaborates on the SRLU that aims at forecasting
multi-granularity signals while extracting valuable represen-
tations from the noisy market data. Section 4.2 outlines the
MM policy learning approach, which incorporates the RL and
imitation learning objectives.

4.1 State Representation Learning Unit (SRLU)
Signal Generation
To leverage the labels containing future information, IMM
pretrains supervised learning (SL) models to generate both
short- and long-term trend signals. The choice of the SL
models is flexible. In this paper, we adopt LightGBM [Ke
et al., 2017], a highly robust ensemble model based on deci-
sion trees, to generate four multi-granularity trend signals de-
noted by (y20, y120, y240, y600), which are the labels of price
movement trend after 1/6, 1, 2, 5 minutes respectively. While
training the RL policy, the parameters of the pre-trained pre-
dictors are frozen, and the outputs constitute the auxiliary sig-
nal variables ss.

Attention-based Representation Learning
Deep RL algorithms usually suffer from the low data-
efficiency issue. Besides the auxiliary signal prediction, we
propose a temporal convolution and spatial attention (TCSA)
network to extract additional effective representations from
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Figure 3: The proposed IMM learning framework.

the noisy market data x. The structure of TCSA is depicted
in Figure 3.

IMM first utilizes a temporal convolution network (TCN)
[Yu and Koltun, 2015] block to extract the time-axis relations
in the data. Compared to recurrent neural networks, TCN has
several appealing properties including parallel computation
and longer effective memory. After conducting TCN opera-
tions on x ∈ RF×L along the time axis, we obtain an output
tensor denoted by Ĥ ∈ RF×L, where F is the dimension of
features, and L is the temporal dimension.

Afterward, IMM adopts an attention mechanism [Vaswani
et al., 2017] to handle the spatial relationships among differ-
ent features. Given the output vector of TCN, we calculate
the spatial attention weight as Ŝ = V · sigmoid

(
(ĤW1) ·

(ĤW2)
T + b

)
, where W1,W2 ∈ RL, and V ∈ RF×F are

parameters to learn, b ∈ RF×F is the bias vector. The matrix
Ŝ ∈ RF×F is then normalized by rows to represent the cor-
relation among features: Si,j =

exp(Ŝi,j)∑F
u=1 exp(Ŝi,u)

,∀1 ≤ i ≤ F.

We adopt the ResNet [He et al., 2016] structure to alleviate
the vanishing gradient problem in deep learning. The final
representation abstracted from x is denoted by H = S ×
Ĥ +x, and it is then translated to a vector with dim F ′ using
a fully connected layer: sm = sigmoid(W4 · ReLU(HW3 +
b3) + b4). The representation sm is concatenated with the
signal state ss and private state sp.

4.2 Imitative Reinforcement Learning Unit(IRLU)
A Signal-Based Expert
To guide efficient exploration, we define a linear suboptimal
rule-based expert strategy named Linear in Trend and Inven-
tory with Inventory Constraints (LTIIC), which is commonly
used by human experts. Readers might employ other effective
expert strategies if available. LTIIC(a, b, c, d) corresponds
to a strategy where a market maker adjusts its quote prices
based on both its inventory level and trend prediction signals.
If −d ≤ zt ≤ d at time t, the ask and bid orders are placed
with prices: {

askqt = mt + a+ b · zt + c · ŷt,
bidqt = mt − a+ b · zt + c · ŷt,

(7)

where a, b, c and d are predetermined parameters, mt stands
for the midprice of the LOB, zt represents the inventory, and



RB FU CU AG

EPnL[103]↑ MAP[unit]↓ PnLMAP↑ EPnL[103]↑ MAP[unit]↓ PnLMAP↑ EPnL[103]↑ MAP[unit]↓ PnLMAP↑ EPnL[103]↑ MAP[unit]↓ PnLMAP↑
FOIC 3.23 ± 4.35 255 ± 111 14 ± 22 -7.79 ± 9.25 238 ± 135 -43 ± 56 -33.05 ± 27.63 206 ± 141 -161 ± 224 -48.39 ± 28.83 189 ± 154 -250 ± 335
LIIC 2.26 ± 3.32 123±32 20 ± 29 -6.89 ± 6.66 115± 30 -66 ± 69 -24.19 ± 14.83 150 ± 20 -164 ± 513 -38.9 ± 26.2 142 ± 45 -302 ± 243
LTIIC 9.16 ± 4.87 65 ± 6 139 ± 68 8.26 ± 2.64 52 ± 3 160 ± 50 -16.74 ± 15.81 112 ± 109 -190 ± 203 -32.57 ± 22.8 128 ± 22 -264 ± 166

RLSD 4.36 ± 1.64 38 ± 4 114 ± 38 7.31 ± 5.38 76 ± 29 90 ± 46 -19.7 ± 17 214 ± 109 -92 ± 298 -25.43 ± 23.83 107 ± 37 -237 ± 235
DRLOS 8.22 ± 3.70 51 ± 4 156 ± 61 11.03 ± 13.87 37 ± 3 30 ± 36 -18.9 ± 18.02 647 ± 2367 -99 ± 147 -28.39 ± 27.92 169 ± 154 -167 ± 135
IMM 16.46 ± 9.10 96± 13 165 ± 74 28.10 ± 10.27 102 ± 14 274 ± 89 -4.86 ± 10.17 111 ± 28 -43 ± 87 -14.5 ± 20.2 102 ± 14 -274 ± 89

Table 1: The comparison results of the proposed method and the benchmarks.

ŷt ∈ {−1, 0, 1} signifies a short-term predictive trend signal.
The insights of LTIIC strategy lie in that during a short-term
upward market trend, ask-side limit orders are more likely
to be executed than bid-side ones. A logical approach in-
volves implementing a narrow half-spread on the bid side and
a broader half-spread on the ask side, thus reducing the risk
exposure due to adverse selection. Simultaneously, the trader
adjusts parameter b to regulate the inventory level, while a
determines the quoted spread. In cases where zt >= d or
zt <= −d, only orders on the side opposite to the inventory
are posted.

Policy Learning
We utilized the actor-critic RL framework [Konda and Tsit-
siklis, 1999], where the critic evaluates the action taken by
the actor by computing the value function, and the actor (pol-
icy) is optimized to maximize the value output by the critic.
To improve the sample efficiency, we use the off-policy actor-
critic method TD3 [Fujimoto et al., 2018] as the base learner,
and the policy π : a = µθ(s) is updated with the deterministic
policy gradient [Silver et al., 2014]:

∇θJ(θ) = Es∼ρµ

[
∇θµθ(s)∇aQ

µ(s, a)
∣∣
a=µθ(s)

]
, (8)

where Qµ is a value function approximating the expected cu-
mulative reward of the policy µθ(s).

In Equation (8), D denotes the replay buffer collected by a
behavior policy, which is generated by adding some noise to
the learned policy π. Following the TD3 method [Fujimoto et
al., 2018], the value function Q is optimized in a twin delayed
manner with the data sampled from both the replay buffer D
and expert dataset DE .

Since the high-dimensional state space, the complex action
space, and the stochastic trading environment induce a hard
exploration problem, learning with a pure RL objective in
Equation (8) is extremely difficult. To promote policy learn-
ing in such a complex trading environment, we propose to
augment the RL method with the objective of imitating the
quoting behavior in an expert dataset DE as:
π =argmax

π
E(s,a)∼D

[
Q(s, π(s))

]
− E(s,â)∼DE

[
λ · (π(s)− â)2

]
,

(9)
where λ is a scaling coefficient that balances maximizing the
Q values and minimizing the behavior cloning (BC) loss. We
set λ to decrease with the growth of the training steps.

As the expert dataset contains reasonable suboptimal MM
behaviors, the agent benefits from imitation learning tech-
niques through abstracting advanced trading knowledge.
Thus the proposed method could achieve more efficient ex-
ploration and policy learning in the highly stochastic market
environment compared to the RL methods without imitation
learning.

5 Experiments
5.1 Experimental Setup
We conduct experiments on four datasets comprised of his-
torical data of the spot month contracts of the FU , RB, CU ,
and AG futures from the Shanghai Futures Exchange2. The
data consists of the 5-depth LOB and aggregated trade infor-
mation associated with a 500-millisecond real-time financial
period. We use the data from July 2021 to March 2022 (126
trading days) for training with 20% as the validation set, and
test model performance on April 2022 ∼ July 2022 (60 trad-
ing days). In each episode, the agent adjusts its 2-level bids
and asks every 500 millisecond, with a fixed total volume of
N = 20 units on each side. The episode length is set to 1.5
trading hours, with T = 10800 steps.

Benchmarks
We compare IMM with three rule-based benchmarks and two
state-of-the-art RL-based approaches:

1. FOIC represents a Fixed Offset with Inventory
Constraints strategy introduced by [Gašperov and
Kostanjčar, 2021]. FOIC(d) refers to the strategy that
posts bid (ask) orders at the current best bid (ask) while
adhering to the inventory constraint d.

2. LIIC. A Linear in Inventory with Inventory Constraints
strategy [Gašperov and Kostanjčar, 2021] corresponds
to the strategy where a market maker adjusts its quote
prices based on its inventory level. The quotes of LIIC
can be formulated as LTIIC(a, b, c = 0, d) using Equa-
tion (7).

3. LTIIC is the expert adopted in IMM.
4. RLDS refers to a RL-based single-price level strategy

proposed by [Spooner et al., 2018].
5. DRLOS refers to a state-of-the-art RL-based multi-

price level strategy proposed in [Chung et al., 2022].
The agent decides whether to retain one unit of volume
on each price level, not allowing for volume distribution
across all price levels.

Evaluation Metrics
We adopt four financial metrics to assess the performance of
an MM strategy:

• Episodic PnL is a natural choice to evaluate the prof-
itability of a MM agent, since there is no notion of start-
ing capital in MM procedure: EPnLT =

∑T
t=1 PnLt.

2Here RB, FU , CU , and AG refers to the Steel Rebar, Fuel Oil,
Copper, and Silver Futures Contracts respectively.



• Mean Absolute Position (MAP) accounts for the inven-
tory risk, defined as: MAPT =

∑T
t=1 |zt|∑T

t=1 1·I(|zt|>0)
.

• Return Per Trade (RPT) evaluates the agent’s capa-
bility of capturing the spread. It is normalized across
different markets by the average market spread δm .

RPTT =

(∑
i∈AT

pai ∗ na
i∑

i∈AT
na
i

−
∑

j∈BT
pbj ∗ nb

j∑
j∈BT

nb
j

)/
δm.

• PnL-to-MAP Ratio (PnLMAP) simultaneously con-
siders the profitability and the incurred inventory risk of
a market making strategy: PnLMAPT = EPnLT

MAPT
.

5.2 Comparison Results with Baselines
For a fair comparison, we tune the hyper-parameters of these
methods for the maximum PnLMAPT value on the validation
dataset. The comparison results of IMM and the benchmarks
on the four test datasets are given in Table 1 and supplemen-
tary materials. These comparison results indicate that the pro-
posed approach significantly outperforms the benchmarks in
terms of both profitability and risk management.

As demonstrated in Table 1, on the RB dataset, the pro-
posed method attains the highest terminal wealth as well as
risk-adjusted return, albeit with a slightly elevated MAP in
comparison to the expert and the two RL-based methods. Be-
sides, the two multi-price level RL-based agents DRLOS and
IMM outperform the single-price level method RLDS , in-
dicating the superiority of the mult-price level strategy. On
the FU dataset, IMM not only achieves the highest terminal
wealth but also demonstrates the most favorable return-to-risk
performance and spread-capturing ability, while maintaining
the second-lowest inventory level. The RL-based strategies
achieve commendable performance compared to the rule-
based strategies which fail to make profits in most trading
days. Moreover, it is observed that IMM acquires a competi-
tive MM strategy, which attains stable dividends with profits
(the pink line) while sustaining the inventory at a tolerable
low level (the compact blue region) in a violate market, as
illustrated in the left part of Figure 4. The inventory fluctu-
ates around zero, which is a desirable behavior. Remarkably,
since IMM does not force the agent to place opposite-side or-
ders to clear its inventory, it is quite an appealing result to see
IMM accomplish automatic inventory control based on state-
derived information. Even in the challenging MM tasks on
CU and AG markets which show lower market liquidity, the
proposed method significantly outperforms the benchmarks
in terms of terminal wealth and risk-adjusted return.

5.3 Model Component Ablation Study
To investigate the effectiveness of the model component, we
compare the proposed IMM with its five variations summa-
rized in Table 2, and the results are listed in Table 3. In Table
2, the notions ”QuotesInfo”, ”Signals”, ”TCSA”, ”RL”, and
”IL” refer to whether to include ”quote state sqt and svt ”, ”sig-
nal state sst”, ”TCSA network”, ”RL objective E(s,a)∼D[...]
in Eq.5”, and ”IL objective E(s,â)∼DE

[...] in Eq.5” in the
model. In Table 3, ”SR” refers to the Sharpe Ratio calculated
as E(EPnLT )

σ(EpnLT ) .
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Figure 4: Performance of IMM and IMM−PnL on FU on Jun. 14th,
2022.
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Figure 5: 1-minute Cases. IMM performs well in both up and down-
trend markets.

Effectiveness of the State Representations
To examine the efficacy of the proposed state representa-
tions, we analyze the performance of three IMMSL(·) mod-
els. Based on Table 3, it is evident that introducing multi-
granularity signals as auxiliary observations holds signif-
icant importance in enhancing the MM strategy’s perfor-
mance. Figure 5 visualizes the behavior of IMM during two
1-minute periods with different trends on FU test dataset. As
demonstrated in Figure 5(a), benefiting from the auxiliary sig-
nals, the IMM agent anticipates an ascending price trend and
proactively maintains a long position prior to the onset of a
short-term bullish trend (steps 0-40). With the trend termi-
nates (step 70-120), the agent gradually reduces its inven-
tory through placing orders with narrow ask-side half-spread
and broad bide-side one w.r.t the market midprice. Similarly,
the IMM agent demonstrates proficient behavior in downside
markets as shown in 5(b). Combined with the adverse select
ratio depicted in Figure 6, it can be concluded that IMM has
learned to mitigate adverse selection risk.

For a deeper investigation into the role of auxiliary signals
in improving performance, we calculated the adverse selec-
tion ratio as adv ratio = # adverse fills

# fills in last interval . Here adverse fills
refer to limit bid (ask) orders which are executed shortly be-
fore a downward (upward) movement of the best bid (ask)
price. As if the best bid price had gone down, it might have
been better to wait for the next bid price level [Chung et al.,
2022]. Based on Figure 6(a), we can deduce that the multi-
granularity predictive signals play a vital role in mitigating
adverse selections. That might because they provide effec-
tive information about market conditions, which enables a
more flexible trade-off between spread-capturing and trend-



Models QuotesInfo Signals TCSA RL IL

IMMSL(m) O O X O O
IMMSL(s) O X O O X
IMMSL(q) X O O O O
IMMBC(0) O O O O X
IMMBC(1) O O O X O

Table 2: Five variations of the proposed IMM.

EPnL[103]↑ MAP[unit]↓ PnLMAP↑ SR↑
IMMSL(m) 10.57 ± 8.63 74 ± 41 142 ± 39 1.22
IMMSL(s) 7.83 ± 3.64 49 ± 5 159 ± 46 2.15
IMMSL(q) 10.20 ± 9.72 74 ± 47 104 ± 56 1.05
IMMBC(0) 14.67 ± 5.11 85 ± 5 172 ± 57 2.87
IMMBC(1) 8.22 ± 3.70 51 ± 4 156 ± 61 2.22
IMM 28.097 ± 10.27 103 ± 15 274 ± 89 2.80

Table 3: Comparison results of ablation study on FU dataset.

chasing. Moreover, Figure 6(b) demonstrates that the infor-
mation regarding multi-price level orders additionally con-
tributes to enhancing the fill count by minimizing frequent
cancellations and preserving queue positions.

Effectiveness of the IRLU
The comparison results between IMMBC(·) and IMM pro-
vide empirical evidence of the importance of extracting ad-
ditional knowledge from the expert and conducting efficient
exploration, particularly for challenging financial tasks. Be-
sides, IMM outperforms the expert LTIIC strategy a lot. As
the RL agent faces challenges in identifying a viable trad-
ing approach and sustaining it over multiple steps during the
initial training phase. Training while pursuing the imitation
learning objective facilitates the agent in obtaining favorable
rewards and drawing valuable lessons from these experiences.

Effects of Different Reward Functions
To investigate whether the proposed reward function meets
different utilities, we train IMM that with three different re-
wards: The IMMPNL method trains IMM using the PnL
reward (η, β = 0); The IMMPNL+C method trains IMM
with the combination of the PNL and compensation reward
(η = 0, β > 0); and The IMMPNL+IP method trains
IMM with the combination of the PNL and truncated inven-
tory penalty reward (η > 0, β = 0). We select the hyper-
parameters that result in the maximum PnLMAP value on
the validation dataset for these models. The hyperparameters
resulting in the maximum PnLMAP value on the validation
dataset are chosen for these models. The results on the FU
dataset are outlined in Table 4. Here, the metric #T signifies
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Figure 6: The daily adverse selection ratios and normalized number
of fills.

the number of fills normalized by the episode length.

EPnL[103]↑ MAP[unit]↓ PnLMAP↑ #T

IMMPnL 58.76 ± 94.43 2156 ± 655 31 ± 48 4.43 ± 0.94
IMMPnL+C 42.86 ± 123.04 2041 ± 465 27 ± 68 4.85 ± 1.09
IMMPnL+IP 73.07 ± 53.83 756 ± 289 90 ± 46 4.42 ± 0.96
IMM 28.097 ± 10.27 103 ± 15 274 ± 89 5.15 ± 1.19

Table 4: IMM variations trained with different rewards on FU.

The experimental results validate the effectiveness of dif-
ferent reward formulations. As shown in Table 4, the
IMMPNL strategy tends to have the most substantial inven-
tory risk exposure. We depict an example of the intra-day per-
formance of the IMMPNL policy in the right part of Figure 4.
The performance varies from day to day. We observe that the
IMMPNL agent learns to chase trends through maintaining a
large inventory (> 1000). This results in poor out-of-sample
performance with large variance. Therefore, the truncated in-
ventory penalty term proves crucial in curbing blind trend-
chasing tendencies.

The IMMPnL+C strategy also grapples with elevated in-
ventory risk, yet it achieves a greater number of transac-
tions #T compared to IMMPnL. The IMMPnL+IP strategy
achieves the largest average terminal wealth and the return per
trade metric while having the lowest #T, which is unfavorable
for risk-averse market makers. attains the highest average ter-
minal wealth and the return per trade metric, but concurrently
records the lowest #T, a circumstance that may be less advan-
tageous for risk-averse market makers. The strategy trained
with the proposed reward significantly improved the return-
to-risk performance with the lowest MAPs, as well as a larger
#T, compared to the IMMPnL+IP strategies. Despite having
the lowest average terminal wealth, the proposed IMM strat-
egy acts very stably and might be the most favorable policy
among these four policies for a risk-averse market maker. Be-
sides, note that the proposed strategy has the largest #T, so it
could receive more compensation from the exchange.

6 Conclusion

In this paper, we propose IMM, a novel RL-based approach
aimed at efficiently learning multi-price-level MM policies.
IMM first introduces efficient state and action representa-
tions. Subsequently, it pre-trains an SL-based prediction
model to generate multiple trend signals as effective auxiliary
observations. Furthermore, IMM utilizes a TCSA network to
handle the temporal and spatial relationships in noisy finan-
cial data. Through abstracting trading knowledge from a sub-
optimal expert, while interacting with the environment, IMM
explores the state and action spaces efficiently. Experiments
on four futures markets demonstrate that IMM outperforms
the benchmarks, and further ablation studies verify the effec-
tiveness of the components in the proposed method. Since it
is important for market makers to preempt order priorities in
inactive markets, we would like to take the order cancellation
into account and investigate the automatic MM strategies for
less liquid markets in the future.



Acknowledgements
The authors would like to thank the anonymous reviewers for
their valuable comments and helpful suggestions. This work
is supported by the National Natural Science Foundation of
China (Grant No. 62306088 and Grant No.62161146004) and
Songjiang Lab (Grant No.SL20230309).

Contribution Statement
Author 1 (First Author): Conceptualization, Methodology,
Software, Investigation, Formal Analysis, Writing (Original
Draft); Author 2 (First Author): Data Curation, Methodol-
ogy, Software, Visualization, Writing (Original Draft); Au-
thor 3 & 4: Data Curation, Conceptualization, Investiga-
tion, Validation; Author 5: Validation, Writing (Review &
Editing); Author 6 (Corresponding Author): Methodology,
Funding Acquisition, Resources, Supervision, Writing (Re-
view & Editing); Author 7 (Corresponding Author): Data
Curation, Resources, Supervision, Writing (Review & Edit-
ing).

References
[Abernethy and Kale, 2013] Jacob D. Abernethy and Satyen

Kale. Adaptive market making via online learning. In
NIPS, 2013.

[Amihud and Mendelson, 1980] Yakov Amihud and Haim
Mendelson. Dealership market: Market-making with in-
ventory. Journal of Financial Economics, 8:31–53, 1980.

[Avellaneda and Stoikov, 2008] Marco Avellaneda and
Sasha Stoikov. High frequency trading in a limit order
book. Quantitative Finance, 8:217–224, 04 2008.
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