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Abstract

In many real-world scenarios, we need to select1

from a set of candidate policies before online de-2

ployment. Although existing off-policy evaluation3

(OPE) methods can be used to estimate the online4

performance, they suffer from high variance. For-5

tunately, we care only about the ranking of the can-6

didate policies, rather than their exact online re-7

wards. Based on this, we propose a novel frame-8

work PoRank for learning to rank policies. In prac-9

tice, learning to rank policies faces two main chal-10

lenges: 1) generalization over the huge policy space11

and 2) lack of supervision signals. To overcome the12

first challenge, PoRank uses a Policy Comparison13

Transformer (PCT) for learning cross-policy rep-14

resentations, which capture the core discrepancies15

between policies and generalizes well across the16

whole policy space. The second challenge arises17

because learning to rank requires online compar-18

isons of policies as ground-truth labels, whereas19

deploying policies online might be highly expen-20

sive. To overcome this, PoRank adopts a crowd-21

sourcing based learning-to-rank (LTR) framework,22

where a set of OPE algorithms are employed to23

provide weak comparison labels. Experimental re-24

sults show that PoRank not only outperforms base-25

lines when the ground-truth labels are provided, but26

also achieves competitive performance when the27

ground-truth labels are unavailable.28

1 Introduction29

1 In many real-world scenarios such as trading [Zhang et al.,30

2020], advertising [Cai et al., 2023], autonomous vehicles31

[Shi et al., 2021], and drug trials [Yang et al., 2023], the task32

often involves selecting the most promising policy from a set33

of candidates prior to online deployment. This selection is34

critical, as online evaluation of each policy can be costly and35

potentially risky. The conventional approach for policy selec-36

tion is to estimate the online performance of candidate poli-37

cies via Off-Policy Evaluation (OPE) [Paduraru, 2013]. OPE38

1† Corresponding author.

requires only off-policy data, which means that we can esti- 39

mate the performance of a target policy using data generated 40

by other policies. 41

Although OPE is a promising direction, existing OPE 42

methods are still far from reliable in practice. For example, 43

standard Inverse Propensity Scoring (IPS) based estimators 44

such as importance sampling suffer from high variance due 45

to the product of importance weights [Hanna et al., 2019]. 46

Direct Methods (DM) requires extra estimators of environ- 47

mental dynamics or value functions, which are hard to learn 48

when the observation data is high-dimensional or insufficient. 49

Hybrid Methods (HM) such as doubly robust estimators com- 50

bine IPS and DM [Jiang and Li, 2016], yet it often comes with 51

additional hyperparameters that need to be carefully chosen. 52

Fortunately, in many real-world scenarios, we do not need 53

to estimate the exact online performance of candidate poli- 54

cies. Instead, we only care about which policy would perform 55

the best when deployed online. This inspires us to develop 56

a policy ranker focusing on predicting the ranking of target 57

policies regarding to their online performance. Learning such 58

a policy ranker is similar to learning item rankers in recom- 59

mender systems [Liu, 2009]. However, learning to rank poli- 60

cies faces two unique challenges. First, the policy space could 61

be extremely large, even in simple environments. Therefore, 62

a policy ranker with poor generalization ability would fail to 63

rank unseen policies. Second, unless deployed online, we 64

can hardly know the real performance of the policies, which 65

means that we are lack of ground-truth labels for training the 66

policy ranker. These challenges make it extremely hard to 67

train useful policy rankers in real-world tasks. 68

In this paper, we propose a novel and practical framework 69

called PoRank for learning to rank policies. PoRank com- 70

poses of a Policy Comparison Transformer (PCT) and a 71

learning-to-rank (LTR) module, where the PCT aims to learn 72

compact representations of policy pairs and the LTR mod- 73

ule focuses on predicting the order of input policies. Instead 74

of directly encoding the raw trajectories to policy represen- 75

tations (as is done in existing works), PCT encodes different 76

behaviors of two policies at the same sates to represent a pol- 77

icy pair. In such a way, PCT successfully extracts the most 78

useful features for policy ranking and significantly improves 79

the generalization over the policy space. The LTR module 80

is built upon the PCT. Conventionally, given two input poli- 81

cies, LTR requires a label to tell which policy performs bet- 82



ter. If we can easily obtain such labels, for example in the83

game environments, we can directly train the policy ranker84

using supervised learning. However, in many industrial sce-85

narios, obtaining such labels could be very expensive due to86

deployment cost. To resolve this, we propose a novel crowd-87

sourcing based LTR module, where a set of OPE methods are88

employed to estimate the policy comparison labels. Specifi-89

cally, these labels are constructed by comparing the estimated90

accumulated rewards of the target policies. In such a way, we91

can easily collect plenty of labels without deploying training92

policies online. In the experiments, we first demonstrate the93

advantage of the PCT architecture by comparing it with the94

state-of-the-art policy ranking network, where both networks95

are trained using ground-truth labels. Hence, we show that a96

simple crowdsourcing mechanism could compensate for the97

lack of ground-truth labels, which makes PoRank practical in98

many real-world scenarios.99

2 Related Works100

Off-Policy Evaluation/Selection/Ranking The goal of101

OPE is to precisely predict the online performance of target102

policies given trajectory data collected by some other behav-103

ior policies. Standard importance sampling approach suffers104

from exponential variance with respect to the time horizon [Li105

et al., 2015; Jiang and Li, 2016]. Recent works such as Fitted-106

Q evaluation [Hoang et al., 2019] and marginalized impor-107

tance sampling [Liu et al., 2018] achieve polynomial vari-108

ance, yet they rely on additional function approximators. Di-109

rect methods avoid the large variance by learning the dynamic110

model or Q-function, which could be biased especially when111

the data is insufficient. Some works study the offline policy112

selection problem, yet their methods require running from113

scratch for each candidate policy [Zhang and Jiang, 2021;114

Mengjiao et al., 2022]. By contrast, in offline policy ranking115

(OPR) problem we aim to develop a policy ranker that could116

directly rank policies. A recent work on OPR collects online117

performance of a set of policies and uses these labeled data to118

train the policy ranker [Jin et al., 2022]. However, collecting119

such data might be extremely expensive in practice.120

Learning from Crowds Crowdsourcing systems enable121

machine learners to collect labels of large datasets from122

crowds. One big issue with crowdsourcing is that the labels123

provided by crowds are often noisy [S. and Zhang, 2019]. To124

tackle this challenge, various probabilistic generative meth-125

ods are proposed for statistical inference [Yuchen et al., 2016;126

Tian and Zhu, 2015]. Another line of works use discrimina-127

tive models that find the most likely label for each instance128

[Jing et al., 2014; Jing et al., 2015]. A recently work called129

Crowd Layer (CL) first describes an algorithm for jointly130

learning the target model and the reliability of workers [Filipe131

and Pereira, 2018]. CL proposes a simple yet efficient crowd132

layer that can train deep neural networks end-to-end directly133

from the noisy labels. In our work, we treat existing OPE134

methods as workers and adopt CL to process multiple labels135

due to its simplicity and effectiveness.136

Policy Representations Compact but informative repre-137

sentations of policies not only benefit the policy learning pro-138

cess [Tang et al., 2022], but also help with the policy trans-139

fer among different tasks [Isac et al., 2019; G. et al., 2017]. 140

A straightforward idea is to represent a policy by its net- 141

work parameters, yet this leads to a very sparse represen- 142

tation space. Network Fingerprint [Harb et al., 2020] pro- 143

poses a differentiable representation that uses the concate- 144

nation of the vectors of actions outputted by the policy net- 145

work on a set of probing states. Some recent works try to 146

encode policy parameters as well as state-action pair data 147

into a low-dimensional embedding space [Tang et al., 2022; 148

Jin et al., 2022]. However, existing works focus on single 149

policy representations, which fail to capture the relative dis- 150

crepancies between different policies. 151

3 Problem Statement 152

Markov Decision Process We consider the underlying en- 153

vironment as a Markov decision process (MDP) and define 154

an MDP as a finite–horizon tuple M = (S,A, T ,P,R, γ). 155

Here, S is the state space, and A is the action space. T is the 156

length of time horizon. P and R are the transition function 157

and the reward function, respectively. P(st+1|st, at) repre- 158

sents the probability of transitioning from state st to state 159

st+1 ∈ S when the agent takes action at ∈ A under state 160

st ∈ S and R(st, at) represents the immediate reward the 161

agent receives. The expected return of a policy π can be com- 162

puted by EP

[∑T
t=1

[
γtR(st, π(st)

]]
, where γ ∈ (0, 1] is 163

the discount factor. 164

Ranking Policies without Online Deployment The 165

goal of OPE is to estimate the expected return of a policy 166

π without deploying it online, given an offline dataset 167

D =
{
τk

}N

k=1
, where τk =

(
s0, a0, r0, · · · , sT , aT , rT

)k
168

are trajectories generated by some behavior policies. OPE is 169

usually used for model selection: We are required to select 170

the most promising policy from a candidate set of available 171

policies before actual deployment. Take recommender 172

systems as example, we can easily obtain a set of candidate 173

policies by adjusting the training data or the hyperparameters 174

of the model. However, we often need to select very few 175

policies from the candidates for online test, since a bad policy 176

would harm the user experience. Therefore, we care more 177

about the ranking of the candidate policies, instead of their 178

exact expected reward. We formally define the off-policy 179

ranking problem as follows. 180

181

Definition 1 (Offline Policy Ranking, OPR). Given a set of 182

trajectory data D =
{
τk

}N

k=1
generated by some behavior 183

policies and a set of target policies Π =
{
πi
}M

i=1
, the OPR 184

problem is to seek a ranking of the target policies that aligns 185

with their online expected accumulated rewards. 186

Intuitively, OPR is a simpler problem than OPE because we 187

do not care about the exact online performace of the candidate 188

polcies. While OPE as well as off-policy selection (OPS) can 189

also be used to rank candidate policies, they often need to 190

inputrun an estimation procedure from scratch for each can- 191

didate policy, thus leading to poor efficiency. In this work, 192

we aim to learn an universal policy ranker that could directly 193

return the ranking results for any input candidate policies. 194



4 Approach195

In this section, we will elaborate our PoRank framework. Po-196

Rank borrows the idea from learning-to-rank literature and197

explicitly solves two unique challenges in ranking policies.198

Firstly, given the vastness of the policy space, we need an199

effective policy representation scheme so that the ranking200

module can accurately comprehend and compare different201

policies. Secondly, although we can easily generate many202

policies for training, we can hardly know their actual on-203

line performance, therefore we are lack of ground-truth labels204

for training the ranker. Overall, PoRank consists of a Pol-205

icy Comparison Transformer (PCT) and a Learning-to-Rank206

(LTR) module, as shown in Figure 2(a). We will introduce207

each of them in the following subsections.208

4.1 Learning Cross-policy Representations209

Cross-policy Representation A policy can be considered210

as a conditional distribution over actions given the state.211

Therefore, a policy can be naturally represented by a set of212

state-action pairs where the actions are sampled from the pol-213

icy. However, such a naive policy representation could be214

inefficient since the number of state-action pairs can be ex-215

tremely large. Previous works address this issue by extract-216

ing high-level features from the state-action pairs using deep217

neural networks [Jin et al., 2022]. Although these representa-218

tions reflect the features of single policies, they fail to capture219

the discrepancies of different policies at some crucial states.220

To this end, we aim to learn cross-policy representations by221

comparing two policies’ decisions at the same set of states.222

Formally, given a set of states {s1, ..., sK} and two policies223

πi, πj , we can construct the following sequence of state-224

action pairs by taking actions at these states:225

ξi≻j =
{
(s1, a

i
1), (s1, a

j
1), · · · , (sK , aiK), (sK , ajK)

}
, (1)

where ai ∼ πi(·|s), and aj ∼ πj(·|s). We denote by226

χi≻j = g(ξi≻j) ∈ Rn the cross-policy representation where227

g is a function that maps ξi≻j to an n-dimensional representa-228

tion space. Figure 2(a) shows the computation of cross-policy229

representations. By contrast, Figure 2(b) shows the compu-230

tation of single-policy representations, which is adopted in231

[Jin et al., 2022]. Intuitively, cross-policy representations fo-232

cus on encoding the discrepancies between policies, while233

single-policy representations only encode features of single234

policies. Thus, cross-policy representations are more effec-235

tive for downstream learning-to-rank tasks.236

Policy Comparison Transformer (PCT) Transformers are237

proved to be effective for learning dependencies between dif-238

ferent positions in sequences. Prior works has employed239

transformers to extract features from trajectory sequences240

[Lili et al., 2021; Michael et al., 2021]. However, existing241

transformer architectures fail to capture the differences of two242

policies’ decisions. In our work, we propose the PCT archi-243

tecture to learn cross-policy representations. Unlike previous244

works where the positional encodings indicate the positions245

of state-action pairs in a trajectory, PCT uses positional en-246

coding to distinguish the relative order of two policies. In247

this way, the learned cross-policy representation χi≻j can be 248

directly used to predict whether πi performs better than πj . 249

Figure 1 shows the construction of input tokens. We first 250

sample K states from D and then use a linear encoder f to 251

map the K state-action pairs into 2K tokens: 252

xi
k = f(sk, a

i
k), xj

k = f(sk, a
j
k), k = 1, ...,K (2)

where i and j represent the indexes of two policies. In order 253

to represent the relative order of πi and πj , we introduce two 254

one-hot positional encodings e+ = [1, 0] and e− = [0, 1], 255

where e+ indicates the policy ranked higher and e− indicates 256

the policy ranked lower. We also use an aggregation token e0, 257

which is a learnable vector for aggregating the information 258

from the other 2K tokens [Zhu et al., 2021]. The final inputs 259

that indicate πi ranked higher than πj can be represented as: 260

zi≻j =
[
e0, x

i
1 + e+, x

j
1 + e−, · · ·xi

K + e+, x
j
K + e−

]
(3)

This construction of inputs has two advantages. First, the 261

two policies share the same set of states, thus their discrepan- 262

cies are naturally represented by the different actions taken at 263

these states. Second, we can easily get a mirrored representa- 264

tion zj≻i by simply exchange the positional encoding eα and 265

eβ used in zi≻j . 266

We adopt a widely used transformer architecture as our en- 267

coder [Dosovitskiy et al., 2021]. It contains L alternating lay- 268

ers of multi-head self-attention (MSA) and multi-layer percep- 269

tion (MLP) blocks. Layernorm (LN) and residual connections 270

are applied to the outputs of each block. For brevity, we re- 271

write the inputs in Equation 3 as z(0). And the computations 272

at each block can be represented as: 273

ẑl = MSA(LN(z(l−1))) + z(l−1) l = 1, · · · , L
zl = MLP(LN(ẑ(l−1))) + ẑl−1 l = 1, · · · , L

χi≻j = LN(zL).

(4)

The final cross-policy representation χi≻j is the correspond- 274

ing outputs of the aggregation token e0 taken from zL. Note 275

that χi≻j changes to χj≻i when we exchange the positional 276

encodings e+ and e−, but they are permutation invariant to 277

the order of inputted state-action pairs. 278

4.2 Learning to Rank Policies 279

In this section, we will introduce how to train the PCT in two 280

cases regarding to the existence of ground-truth ranking la- 281

bels of policies. First, we show that the policy ranking prob- 282

lem can be reduced to a binary classification problem since 283

our cross-policy representations can be directly used to pre- 284

dict the ranking of two policies. Second, we will introduce a 285

learning paradigm where multiple OPE methods are modeled 286

as label providers. We will also show how to train the PCT 287

leveraging the inaccurate labels provided by the workers. 288

Reducing OPR to Binary Classification We first consider 289

the case when there is a training set Π = {(πi, Ri)}Ti=1 con- 290

sisting of T deployed policies πi as well as their real expected 291

accumulated rewards Ri. In this case, we can directly con- 292

struct binary labels by comparing the performance of the two 293
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policies. We use an indicator 1Ri>Rj to represent the label294

of a pair of policies (πi, πj). The PCT can be trained by min-295

imizing the following binary cross entropy loss:296

Lsup =− E
πi,πj∼Π

[(
1Ri>Rj

)
· log

(
ŷi≻j

)
+
(
1Ri≤Rj

)
· log

(
1− ŷi≻j

)]
,

(5)

where ŷi≻j = sigmoid(ϕ(χi≻j)) represents the predicted297

probability that πi performs better than πj . ϕ is a function298

that projects χi≻j to a real number. The final ranking of test299

policies is based on their scores computed by:300

scorei =
1

N

∑
j ̸=i

ŷi≻j , i = 1, ..., N, (6)

which can be interpreted as the expected probability that πi301

performs better than other test policies [Rodrigo et al., 2019].302

Figure 3 shows the framework of the Learning-to-rank303

module. In the presence of ground-truth label yi>j , the LTR304

module is simplified to Situation 1. Otherwise, we will rely305

on OPE workers to provide supervision signals. Situation 2306

will be illustrated bellow.307

Learning from OPE Workers Supervised training is effi-308

cient when the dataset Π = {(πi, Ri)}Ti=1 contains enough309

policies. Unfortunately, collecting such training data can be310

extremely expensive in many real applications. Meanwhile,311

we note that although existing OPE methods are not robust312

enough, they actually provide candidate solutions to the OPR313

problem. To this end, we borrow ideas from crowdsourc-314

ing domain as an alternative way to approach the OPR prob-315

lem. Specifically, suppose that there exists a set of OPE al-316

gorithms estimating the policy performance, we can employ317

them as crowd workers to generate possibly inaccurate labels 318

and make use of these labels to train our models. The intu- 319

ition is that the inaccurate labels generated by OPE workers 320

are implicitly conditioned on the ground-truth performance 321

of policies. If we can take advantage of these labels and learn 322

their relationships with the ground-truth labels, our prediction 323

ŷi≻j would be more close to the ground-truth labels. 324

In the framework of PoRank, we adopt Crowd Layer (CL, 325

[Filipe and Pereira, 2018]) as our backend for learning from 326

crowd labels. CL is able to automatically distinguish the good 327

from the unreliable workers and capture their individual bi- 328

ases in many other domains, such as image annotation [Guan 329

et al., 2018; Li et al., 2022] and music genre classification 330

[Rodrigues et al., 2013]. In addition, CL is naturally com- 331

patible with deep learning approaches since it simply adds a 332

crowd layer to the deep neural networks and can be trained in 333

an end-to-end way. As shown in Figure 2, we add CL to the 334

top of our predicted probability ŷi≻j . During training, CL ad- 335

justs the gradients coming from these noisy labels according 336

to its reliability by scaling them and adjusting their bias. The 337

adjusted gradients are then backpropagated to PCT according 338

to the chain rule. 339

Formally, assume that there are W workers of OPE meth- 340

ods. For each worker wm, its estimation about the expected 341

return of πi is denoted as Ri
m. The goal of CL is to train a 342

mapping function ŷmi≻j = ζm(ŷi≻j) to predict the noisy bi- 343

nary label generated by worker wm: ymi,j = 1Ri
m>Rj

m
. The 344

overall objective can be written as: 345

LCL = − E
m=1,··· ,W
πi,πj∼Π

[
ym
i,j ·log

(
ŷm
i≻j

)
+(1−ym

i,j)·log
(
1−ŷm

i≻j

)]
.

(7)
The complete training procedures of PoRank is summa- 346
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rized in Appendix. In practice, to reduce the computational347

cost brought by CL, we set ζm as a linear projection followed348

by a sigmoid function. Therefore, the number of additional349

parameters only grows linearly with the number of workers.350

Note that the CL is only available during training since we351

still use ŷi≻j to generate the predicted ranking of policies.352

5 Experiments353

In this section, we compare PoRank with widely-used OPE354

methods on various tasks. We present ablation studies with355

respect to PCT and CL, which are the main components of356

PoRank. Note that hyper-parameter selection and more ex-357

perimental results can be found in Appendix.358

5.1 Experimental settings359

Trajectory Set We evaluate PoRank and all baseline360

OPE methods on D4RL dataset consisting of various tra-361

jectory sets [Fu et al., 2020]. Overall, we adopt trajec-362

tory sets collected from 2 environments of Mujoco games:363

HalfCheetah-v2 and Walker2d-v2. Besides, there364

are 3 different types of trajectory sets for each environment:365

expert, full-replay and medium. The difference be-366

tween them is that the behavioral policies collecting these 3367

types of trajectories show different performance. And these368

behavioral policies are trained by the Soft Actor-Critic (SAC)369

algorithm online [Haarnoja et al., 2018].370

Policy Set To evaluate the abilities of all methods to cor-371

rectly rank policies. We use the policy set released by [Jin372

et al., 2022] . For each trajectory set mentioned above, there373

are 2 types of policy sets ( referred as Set I and Set II)374

in which the expected return of policies are evenly spaced375

in the performance range of them. As mentioned in [Jin et376

al., 2022], Set I and Set II aim to simulate two kinds377

of OPE cases. The policies contained in Set I are trained378

by offline RL algorithms (CQL [Kumar et al., 2020], BEAR379

[Kumar et al., 2019], CRR [Wang et al., 2020]) and show380

diverse behavioral performance. This is aligned with prac-381

tical cases where the sources of policies are diverse and un-382

known. Set II contains policies trained by SAC, which is383

the same as the algorithm of training the behavioral policies.384

Therefore, Set II corresponds to the practical OPE cases385

in which the target policies share many common properties 386

with the policies generating the trajectory data. 387

Baselines 2 We compare PoRank with six state-of-the- 388

art baselines. i) Fitted Q-Evaluation (FQE [Hoang et al., 389

2019]). It is a value-based OPE method, which learns a neu- 390

ral network to approximate the Q-function of the evaluated 391

policy by temporal difference learning on the trajectory set. 392

ii) Model-based estimation (MB [Paduraru, 2013]). It learns 393

the dynamics model of environment, and estimates the ex- 394

pected return of evaluated policies by computing their av- 395

erage returns of Monte-Carlo rollouts in the model environ- 396

ment. iii) Weighted importance sampling (IW [Mahmood et 397

al., 2014]). It leverages weighted importance sampling to cor- 398

rect the weight of the reward, regarding the collected trajec- 399

tory data distribution to the data distribution of the evaluated 400

policy. iv) DualDICE [Nachum et al., 2019]. It also aims to 401

achieve distribution correction yet without directly using im- 402

portance sampling. It learns an estimation of the state-action 403

stationary distribution for achieving distribution correction. 404

v) Doubly Robust (DR [Jiang and Li, 2016]). It utilizes an 405

unbiased estimator that leverages an estimated environment 406

model to decrease the variance of the unbiased estimates pro- 407

duced by importance sampling techniques. 408

Worker Set In all experiments, we use 15 models trained 409

by 5 OPE methods mentioned above ( IW, MB, DR, 410

DualDICE, and FQE, each trained 3 models with different 411

seeds) as our OPE workers. We present the architecture de- 412

tails for them in Appendix. 413

Evaluation Metrics We evaluate all models accord- 414

ing two widely-used metrics. i) Spearman’s Rank 415

Correlation. It is the Pearson correlation between the 416

ground truth rank sequence and the evaluated rank sequence 417

of the evaluated policies. So, a higher rank correlation indi- 418

cates a better policy ranker. ii) Normalized Regret@k. 419

It is the normalized difference between the actual value of 420

the best policy in the policy set, and the actual value of the 421

best policy in the estimated top-k set. Mathematically, it can 422

2We leverage a popular implementation of OPE algo-
rithms: https://github.com/google-research/google-research/tree/
master/policy eval. It contains the first 5 baselines used in our paper

 https://github.com/google-research/ google-research/tree/master/policy_eval
 https://github.com/google-research/ google-research/tree/master/policy_eval


Table 1: Comparing PoRank with other OPE baselines.

HalfCheetah-v2 Walker2d-v2

Rank Correlation ↑ Regret @1 ↓ Rank Correlation ↑ Regret @1 ↓

Set I Set II Set I Set II Set I Set II Set I Set II

Expert

PoRank (Ours) 0.65 ± 0.10 0.35 ± 0.03 0.00 ± 0.00 0.32 ± 0.02 0.85 ± 0.12 0.83 ± 0.08 0.01 ± 0.01 0.02 ± 0.03
FQE -0.53 ± 0.14 0.31 ± 0.10 0.23 ± 0.06 0.60 ± 0.07 0.62 ± 0.20 -0.08 ± 0.03 0.04 ± 0.07 0.02 ± 0.07
DualDICE 0.47 ± 0.18 0.27 ± 0.06 0.38 ± 0.02 0.22 ± 0.04 0.52 ± 0.16 0.31 ± 0.14 0.43 ± 0.07 0.28 ± 0.03
MB 0.39 ± 0.04 0.24 ± 0.08 0.34 ± 0.05 0.18 ± 0.02 0.46 ± 0.11 0.29 ± 0.12 0.39 ± 0.03 0.23 ± 0.08
IW 0.18 ± 0.03 0.09 ± 0.02 0.23 ± 0.04 0.02 ± 0.01 0.24 ± 0.07 0.06 ± 0.03 0.28 ± 0.02 0.14 ± 0.07
DR -0.12 ± 0.03 -0.18 ± 0.04 0.13 ± 0.06 0.08 ± 0.01 0.14 ± 0.09 0.12 ± 0.06 0.19 ± 0.03 0.04 ± 0.02

Full-replay

PoRank (Ours) 0.72 ± 0.19 0.34 ± 0.08 0.01 ± 0.02 0.31 ± 0.01 0.82 ± 0.04 0.81 ± 0.17 0.09 ± 0.06 0.21 ± 0.09
FQE 0.24 ± 0.18 0.52 ± 0.01 0.36 ± 0.09 0.03 ± 0.02 0.71 ± 0.13 -0.19 ± 0.19 0.06 ± 0.04 0.48 ± 0.02
DualDICE -0.57 ± 0.18 0.06 ± 0.09 0.53 ± 0.08 0.27 ± 0.03 -0.26 ± 0.14 -0.24 ± 0.18 0.42 ± 0.01 0.28 ± 0.06
MB 0.23 ± 0.04 -0.19 ± 0.02 0.17 ± 0.06 0.34 ± 0.07 0.63 ± 0.13 0.71 ± 0.03 0.08 ± 0.01 0.14 ± 0.09
IW -0.24 ± 0.01 -0.31 ± 0.04 0.42 ± 0.07 0.46 ± 0.02 0.11 ± 0.09 -0.65 ± 0.08 0.09 ± 0.01 0.43 ± 0.08
DR 0.03 ± 0.04 0.18 ± 0.03 0.34 ± 0.08 0.09 ± 0.02 0.31 ± 0.06 0.02 ± 0.07 0.06 ± 0.04 0.18 ± 0.05

Medium

PoRank (Ours) 0.82 ± 0.13 0.81 ± 0.04 0.02 ± 0.01 0.03 ± 0.04 0.82 ± 0.11 0.72 ± 0.13 0.13 ± 0.02 0.08 ± 0.03
FQE 0.48 ± 0.12 -0.12 ± 0.09 0.05 ± 0.03 0.12 ± 0.08 0.71 ± 0.14 0.72 ± 0.19 0.08 ± 0.04 0.13 ± 0.01
DualDICE -0.42 ± 0.19 -0.28 ± 0.11 0.32 ± 0.07 0.13 ± 0.02 0.43 ± 0.17 0.23 ± 0.14 0.03 ± 0.08 0.28 ± 0.06
MB 0.12 ± 0.03 -0.19 ± 0.14 0.23 ± 0.02 0.12 ± 0.01 0.47 ± 0.11 0.02 ± 0.10 0.18 ± 0.03 0.13 ± 0.02
IW -0.53 ± 0.02 -0.78 ± 0.04 0.63 ± 0.01 0.57 ± 0.06 0.27 ± 0.09 0.67 ± 0.03 0.38 ± 0.01 0.27 ± 0.09
DR 0.63 ± 0.01 0.17 ± 0.04 0.03 ± 0.08 0.28 ± 0.09 0.07 ± 0.05 0.37 ± 0.02 0.28 ± 0.04 0.38 ± 0.08

be computed by regret@k =
Vmax−Vtopk

Vmax−Vmin
, where Vmax and423

Vmin is the expected return of the best and the worse policies,424

respectively, in the entire set, while Vtopk is the estimated top425

k policies. So, a lower regret value indicates a better policy426

ranker.427

5.2 Experimental Results428

Comparison with Other OPE Baselines We evaluated Po-429

Rank against five baseline methods in two environments. Fig-430

ure 1 presents the rank correlation and regret@1 values of the431

estimated rank sequences generated by each model.432

Our results demonstrate that PoRank consistently outper-433

forms the baseline methods. Specifically, PoRank achieved434

the highest rank correlations in 11 of the 12 policy sets and435

the lowest regret@1 values in 7 sets. This indicates PoRank’s436

capability to deliver robust and effective performance across437

diverse policy scenarios.438

Notably, PoRank excels in learning from noisy labels gen-439

erated by other OPE workers. In our experiments, the OPE440

workers, which generate these noisy labels for PoRank, were441

directly sampled from the trained models of the baselines.442

For instance, in the Set I of the expert trajectory set in443

HalfCheetah-v2, while all OPE baselines exhibited poor per-444

formance , PoRank achieved a high rank correlation of about445

0.65—despite relying on these low-quality labels. We at-446

tribute this resilience to two key factors: i) The Policy447

Comparison Transformer (PCT) in PoRank effectively mit-448

igates the biases of inaccurate workers. ii) The crowd layer449

adeptly distinguishes reliable OPE workers from unreliable450

ones and adjusts for their individual biases. In conclusion,451

PoRank demonstrates highly effective and robust OPR results452

across a variety of policy sets. It effectively reduces the bi-453

ases induced by OPE workers, thereby outperforming these454

workers significantly.455

Comparing with Other Label Aggregation Methods We456

propose to use PCT and crowd layer to aggregate the infor-457

mation of multiple OPE workers. There are also other simple458

mechanism to aggregate worker information. For example, 459

ranking policies by the average score of workers (denoted by 460

Average) or ranking policies by the number of worker votes 461

(denoted by Major Voting).

Table 2: Performance with different label aggregation methods.

Environment Avg. Score Major Voting Ours Ours with RA
HalfCheetah-expert -0.34 -0.27 0.71 0.72

HalfCheetah-full-replay 0.24 0.31 0.74 0.73
HalfCheetah-medium 0.32 0.57 0.81 0.80

Walker2d-expert 0.53 0.23 0.85 0.83
Walker2d-full-replay 0.41 0.31 0.82 0.75
Walker2d-medium 0.21 0.29 0.80 0.87

Table 3: Performance with different batch size of state-action pairs.

Batch size Avg. Rank Correlation

8 0.21
16 0.27
32 0.37
64 0.39

128 0.56
256 0.65
512 0.64
1024 0.66
2048 0.65

462
Actually, the superiority of CL over these baslines has been 463

demonstrated in [Filipe and Pereira, 2018]. However, it is 464

still valuable to reproduce this superiority in the context of 465

OPR. Specifically, we report the rank correlations in the fol- 466

lowing Table 2. We can see from the first four columns that 467

our method dominates these two baselines in all of the six 468

environements. Note that the framework of PoRank can also 469

combine with more advanced crowdsourcing methods other 470

than CL. On the other hand, the line of works in rank aggre- 471

gation, focusing on aggregating a set of pairwise comparisons 472



Table 4: Ablations. Comparison of policy ranking performance among PoRank (PCT with CL), and its ablation models PCT with
GL, SOPR-T with GL, and SOPR-T with CL across different policy sets. Models with PCT architectures consistently achieves higher
scores than models with SOPR-T architectures, underscoring the advantage of PCT in generating meaningful cross-policy representations.
Notably, PCT with CL and SOPR-T with CL show competitive performance against their GL counterparts, despite lacking additional
supervised information from deployed policies, affirming the effectiveness of the CL in learning from OPE-generated noisy labels.

HalfCheetah-v2 Walker2d-v2

Rank Correlation ↑ Regret @1 ↓ Rank Correlation ↑ Regret @1 ↓

Set I Set II Set I Set II Set I Set II Set I Set II

Expert

PoRank (PCT w/ CL) 0.65 ± 0.10 0.35 ± 0.03 0.00 ± 0.00 0.32 ± 0.02 0.85 ± 0.12 0.83 ± 0.08 0.01 ± 0.01 0.02 ± 0.03
PCT w/ GL 0.43 ± 0.14 0.63 ± 0.10 0.13 ± 0.06 0.05 ± 0.07 0.82 ± 0.20 0.78 ± 0.03 0.04 ± 0.07 0.05 ± 0.07
SOPR-T w/ CL -0.47 ± 0.18 0.47 ± 0.06 0.58 ± 0.02 0.52 ± 0.04 0.72 ± 0.16 0.71 ± 0.14 0.13 ± 0.07 0.18 ± 0.03
SOPR-T w/ GL -0.29 ± 0.04 0.70 ± 0.08 0.34 ± 0.05 0.18 ± 0.02 0.56 ± 0.11 0.80 ± 0.12 0.19 ± 0.03 0.03 ± 0.08

Full-replay

PoRank (PCT w/ CL) 0.72 ± 0.19 0.34 ± 0.08 0.01 ± 0.02 0.31 ± 0.01 0.82 ± 0.04 0.81 ± 0.17 0.09 ± 0.06 0.21 ± 0.09
PCT w/ GL 0.57 ± 0.18 0.37 ± 0.06 0.08 ± 0.02 0.32 ± 0.04 0.72 ± 0.16 0.81 ± 0.14 0.03 ± 0.07 0.18 ± 0.05
SOPR-T w/ CL -0.37 ± 0.18 0.36 ± 0.06 0.58 ± 0.02 0.52 ± 0.04 0.74 ± 0.16 0.71 ± 0.11 0.13 ± 0.07 0.19 ± 0.03
SOPR-T w/ GL -0.29 ± 0.04 0.24 ± 0.28 0.34 ± 0.05 0.08 ± 0.02 0.66 ± 0.11 0.79 ± 0.12 0.19 ± 0.03 0.23 ± 0.08

Medium

PoRank (PCT w/ CL) 0.82 ± 0.13 0.81 ± 0.04 0.02 ± 0.01 0.03 ± 0.04 0.82 ± 0.11 0.72 ± 0.13 0.13 ± 0.02 0.08 ± 0.03
PCT w/ GL 0.73 ± 0.14 0.88 ± 0.10 0.03 ± 0.01 0.00 ± 0.00 0.72 ± 0.20 0.88 ± 0.03 0.14 ± 0.07 0.02 ± 0.07
SOPR-T w/ CL -0.27 ± 0.18 0.47 ± 0.06 0.58 ± 0.02 0.02 ± 0.04 0.72 ± 0.16 0.81 ± 0.14 0.14 ± 0.07 0.08 ± 0.03
SOPR-T w/ GL 0.59 ± 0.04 0.84 ± 0.08 0.14 ± 0.05 0.08 ± 0.02 0.76 ± 0.11 0.89 ± 0.12 0.19 ± 0.03 0.03 ± 0.08

into a ranking list. Therefore, we use a more recent and sim-473

ple RA method [Maystre and Grossglauser, 2017] (denoted474

by RA) to replace Equation 6 in our work. From the last two475

columns we can see that this method indeed further improves476

PoRank in some evironments. However, this does not con-477

tradicts to our main contribution: modeling the OPR problem478

from the perspective of crowdsourcing.479

Selection of the Batch Size of State-action Pairs In the480

training phase, the batch size of state-action pairs feeded481

into the Transformer is an important hyper-parameter in our482

model. It play the role in balancing the computational cost483

and the performance. We chose the number 256 as the batch484

size. This choice is supported by the experimental results re-485

ported in Table 3, which show the averaged rank correlations486

of our model with the batch size growing. We can find that487

when the batch size is larger than 256, the performance of our488

model tends to be stable.489

Ablations We conducted ablation studies to evaluate the490

importance of each component in our framework, using the491

same policy sets as the primary experiments. The results are492

depicted in Table 4. In our framework, termed PoRank, we493

integrate two key components: the Policy Comparison Trans-494

former (PCT) for generating cross-policy representations, and495

the Crowd Layer (CL) that aggregates information from OPE496

workers. This integration allows PoRank to rank policies497

without requiring additional ground truth labels. We com-498

pared PCT with CL (PoRank) against three different abla-499

tions: i) PCT with GL: This model uses our PCT architec-500

ture but discards the CL, relying on extra ground truth labels501

(GL) for training. It is trained using additional sets of de-502

ployed policies released by [Jin et al., 2022]. Without CL, it503

lacks the capability to learn from OPE workers. ii) SOPR-T504

with GL: [Jin et al., 2022], a transformer-based model de-505

signed to learn individual policy representations. Unlike PCT,506

SOPR-T does not focus on capturing the differences between507

policies at the decision level. Like PCT with GL, it also508

requires extra ground truth labels for training. iii) SOPR-T509

with CL: This variation of SOPR-T attempts to learn from 510

OPE workers by incorporating the CL, similar to PoRank, but 511

does not require additional supervised information from de- 512

ployed policies. 513

As shown in Table 4, PCT with CL outperforms 514

SOPR-T with CL on 8 policy sets, while PCT with GL 515

surpasses SOPR-T with GL on 8 policy sets. This sug- 516

gests that our cross-policy representation, which aims to dis- 517

cern the nuanced decision differences between policies, ex- 518

hibits stronger representational power compared to single- 519

policy representations used by SOPR-T. Moreover, PCT 520

with CL (PoRank) and SOPR-T with CL both demon- 521

strate competitive performance against their counterparts 522

PCT with GL and SOPR-T with GL, despite the ab- 523

sence of additional supervised information from deployed 524

policies. This underscores the effectiveness of using the CL 525

to learn from OPE-generated noisy labels when extra policies 526

providing supervised labels are not readily available. 527

6 Conclusions 528

In this study, we introduced PoRank, a novel framework de- 529

signed to learn robust off-policy rankers from a set of unre- 530

liable off-policy estimators. Unlike existing approaches that 531

require the deployment of policies online for gathering super- 532

vision signals, PoRank innovatively leverages labels gener- 533

ated by existing Off-Policy Evaluation (OPE) methods. This 534

feature significantly reduces the training cost of the ranker. 535

Our theoretical analysis elucidates the relationships between 536

a worker’s bias, variance, and overall quality. We further 537

contribute a unique Policy Comparison Transformer (PCT) 538

architecture, developed to discern the relative discrepancies 539

between policies through effective cross-policy representa- 540

tions. Empirical results confirm PoRank’s superior perfor- 541

mance over baseline models across diverse tasks and policy 542

sets. Importantly, PoRank demonstrates excellent generaliz- 543

ability across various policy sets. Our ablation studies fur- 544

ther validate the effectiveness of each individual component 545

within the PoRank framework. 546
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