Reinforcement Nash Equilibrium Solver

Xinrun Wang', Chang Yang?, Shuxin Li', Pengdeng Li',
Xiao Huang?, Hau Chan® and Bo An'*
'Nanyang Technological University, Singapore
2The Hong Kong Polytechnic University, Hong Kong SAR, China
3University of Nebraska-Lincoln, Lincoln, Nebraska, United States
4Skywork Al, Singapore
{xinrun.wang, shuxin.li, pengdeng.li, boan} @ntu.edu.sg, chang.yang @connect.polyu.hk
xiaohuang @comp.polyu.edu.hk, hchan3 @unl.edu

Abstract

Nash Equilibrium (NE) is the canonical solution con-
cept of game theory, which provides an elegant tool
to understand the rationalities. Though mixed strat-
egy NE exists in any game with finite players and ac-
tions, computing NE in two- or multi-player general-
sum games is PPAD-Complete. Various alternative
solutions, e.g., Correlated Equilibrium (CE), and
learning methods, e.g., fictitious play (FP), are pro-
posed to approximate NE. For convenience, we call
these methods as “inexact solvers”, or “solvers” for
short. However, the alternative solutions differ from
NE and the learning methods generally fail to con-
verge to NE. Therefore, in this work, we propose
REinforcement Nash Equilibrium Solver (RENES),
which trains a single policy to modify the games with
different sizes and applies the solvers on the modi-
fied games where the obtained solution is evaluated
on the original games. Specifically, our contribu-
tions are threefold. i) We represent the games as
a-rank response graphs and leverage graph neural
network (GNN) to handle the games with different
sizes as inputs; ii) We use tensor decomposition, e.g.,
canonical polyadic (CP), to make the dimension of
modifying actions fixed for games with different
sizes; iii) We train the modifying strategy for games
with the widely-used proximal policy optimization
(PPO) and apply the solvers to solve the modified
games, where the obtained solution is evaluated on
original games. Extensive experiments on large-
scale normal-form games show that our method can
further improve the approximation of NE of differ-
ent solvers, i.e., a-rank, CE, FP and PRD, and can
be generalized to unseen games.

1 Introduction

Game theory provides a pervasive framework to model the
interactions between multiple players [Fudenberg and Tirole,
1991]. The canonical solution concept in non-cooperative
games, i.e., the players try to maximize their own utility, is
Nash Equilibrium (NE), where no player can change its strat-

egy unilaterally to increase its own utility [Nash Jr, 1950].
According to Roger Myerson, the introduction of NE is a
watershed event for game theory and economics [Myerson,
1999]. NE provides an impetus to understand the rationali-
ties in much more general economic contexts and lies at the
foundation of modern economic thoughts [Myerson, 1999;
Goldberg et al., 2013]. Mixed strategy NE exists in any
game with finite players and actions [Nash Jr, 1950]. How-
ever, from an algorithmic perspective, computing NE in
two-player or multi-player general-sum games is PPAD-
Complete [Daskalakis et al., 2009; Chen et al., 2009]. In
two-player zero-sum games, NE can be computed in poly-
nomial time via linear programming. In more generalized
cases, the Lemke—Howson algorithm is the most recognized
combinatorial method [Lemke and Howson, 1964], while us-
ing this algorithm to identify any of its potential solutions is
PSPACE-complete [Goldberg et al., 2013].

Given the difficulties of computing NE directly, there are
many alternative solutions and learning methods proposed to
approximate NE. For convenience, we call these solutions and
learning methods as “inexact solvers”, or “solvers” for short.
Among them, one of the most widely used solution concepts is
Correlated Equilibrium (CE) [Aumann, 1974; Aumann, 1987],
which considers the Bayesian rationality and is a more general
solution concept than NE, i.e., any NE is CE. Recently, another
solution concept c-rank is proposed [Omidshafiei et al., 20191,
which adopts Markov-Conley Chains to highlight the presence
of cycles in game dynamics and attempts to compute stationary
distributions as a mean for strategy profile ranking. a-rank is
successfully applied to policy space response oracle (PSRO)
to approximate NE [Muller et al., 2020]. The computations
of both solution concepts are significantly simplified, but both
solutions may be diverge from the accurate NE.

To address the computational challenges, various heuris-
tic methods are proposed to approximate NE. One of the
most widely used methods is fictitious play [Brown, 1951;
Heinrich et al., 2015], which takes the average of the best-
responses iteratively computed by assuming the opponents
play the empirical frequency policies. Another widely used
learning method is projected replicator dynamics (PRD) [Lanc-
tot et al., 20171, which is an advanced variant of replicator
dynamics (RD) [Taylor and Jonker, 1978] by enforcing explo-

rations. Unfortunately, both methods fail to converge to NE
in general cases. Another line of research is the homotopy
method [Herings and Peeters, 2010; Gemp et al., 2022], which
tries to build a continuum between the game and a simplified
game with known NE and then uses the known NE to approxi-
mate the NE in the original game. The methods to build the
continuum is important, which requires game-specific knowl-
edge for efficient approximation. Furthermore, most previous
methods require running the methods on each specific game
and the obtained models are game-specific and lack the gen-
eralizability. Due to the limitation of space, we provide a
detailed discuss of related works in Appendix B.

We leverage deep learning methods to improve the approx-
imation of NE of the inexact solvers. One straightforward
method is supervised learning (SL) [Krizhevsky er al., 2012;
He et al., 2016], i.e., training a deep neural network which
takes the game as input and outputs the NE directly. However,
there are several issues of SL methods. First, it is difficult to
generate the high quality dataset for SL methods due to: 1)
computing NE as labels is time-consuming and there are no
efficient methods for computing NE, thus the generation of
training datasets in SL methods is inefficient, ii) one game may
have multiple NEs, i.e., multiple labels, and the computation
of all equilibria and the equilibrium selection problem is not
addressed [Harsanyi et al., 1988]. Second, the SL methods
will inevitably generate the inexact solutions and further re-
finement methods are required to improve the approximation
results, which makes the methods to be complicated. There-
fore, inspired by [Wang er al., 2021], we leverage reinforce-
ment learning (RL) methods, instead of using SL. methods, to
achieve this goal, i.e., iteratively modifying the games with
different sizes with a single strategy learned by RL methods
and applying the solvers, e.g., a-rank, to the modified games
to obtain the solutions which are evaluated on the original
games. However, there are two main issues: i) the games
with different sizes result in varied inputs to the RL methods,
where a simple neural network architecture, e.g., multi-layer
perceptron (MLP) cannot handle, and ii) the number of payoff
values grows exponentially with the number of players and
actions, which brings difficulties to modify the games if we
only change a payoff value once.

To address the above issues, we propose REinforcement
Nash Equilibrium Solver (RENES). Our main contributions
are three-fold. First, we represent the games with different
sizes as a-rank response graphs, which are used to charac-
terize the intrinsic properties of games [Omidshafiei er al.,
20201, and then leverage the graph neural network (GNN) to
take the a-rank response graphs as inputs. Second, we use
tensor decomposition, e.g., canonical polyadic (CP), to make
the modifying actions fixed for games with different sizes,
rather than changing a payoff value once. Third, we train the
modifying strategy for games with the widely-used proximal
policy optimization (PPO) and apply the solvers to solve the
modified games, where the obtained solution is evaluated on
original games. Extensive experiments on large-scale normal-
form games, i.e., 3000 sampled games for training and 500
sampled games for testing, show that our method can further
improve the approximation of NE of different solvers, i.e.,
a-rank, CE, FP and PRD, and can be generalized to unseen

games. To the best of our current knowledge, this work is the
first effort in game theory that leverages RL methods to train a
single strategy for modifying the games, and so as to improve
the solvers’ approximation performances.

2 Preliminaries
We present the preliminaries of game theory in this section.

Normal-form Games. Consider the K-player normal-form
game, where each player k € [K] has a finite set of actions
AF. We use A~* to represent the action space excluding the
player k, also for other terms. We denote the joint action
space as A = xye(x]A*. Let a € A be the joint action
of K players and M(a) = (M*(a)) € R¥ is the payoff
vector of players when playing the action a. A mixed strategy
profile is defined as 7 € A(.A), which is a distribution over
A and 7(a) is the probability that the joint action a will be
played. The expected payoff of player k € [K] is denoted as
MF(r) = Y acA m(a)M*(a).

Solution Concepts. Given a mixed strategy 7, the best
response of player k € LK] is defined as BR*(1) =
arg max, e o (ar)[M* (1, 7 %)]. A factorized mixed strat-
egy m(a) = [lpex 7% (a*) is Nash Equilibrium (NE) if
7% € BR¥(r) for k € [K]. We define the NashConv value as
NC (1) = Y pein) M*(BR*(m), m%) — M*¥(7) to measure
the distance of the mixed strategy from an NE. Computing
NE in general-sum games is PPAD-Complete [Daskalakis et
al., 2009]. Therefore, many alternative solutions are proposed
to approximate NE. One of the most investigated alternative
solutions is Correlated Equilibrium (CE) [Aumann, 1987]. A
mixed strategy profile is CE if for all k € [K],

Y i m@M @) = M@0 20 1)

where b* #* a* and bF € AF. Any NE is a CE, therefore, CE
is a generalized solution concept of NE, and CE is equivalent
to NE in two-player zero-sum games. CE can be computed
in polynomial time and many learning methods, e.g., regret
matching [Hart and Mas-Colell, 20001, can lead to CE. As any
NE is CE, CE also suffers the equilibrium problem, therefore,
researchers propose many measures to select the equilibrium,
e.g., maximum welfare CE and maximum entropy CE [Marris
et al., 2021]. «-rank is recently proposed in [Omidshafiei
et al., 2019], which is the stationary distribution of the «-
rank response graph constructed from the game. We will
introduce the a-rank response graph, as well as a-rank in
detail, in Section 4.1 as we also use the a-rank response graph
to transform the games into graphs.

Learning Methods. Instead of considering alternative solu-
tions, many learning methods are proposed to approximate NE.
Fictitious play (FP) [Brown, 1951; Heinrich ef al., 2015] is a
famous method to approximate NE. FP starts with arbitrary
strategies for players, and at each round, each player will com-
pute the best response to the opponents’ average behaviors.
FP can converge to NE in certain classes of games, e.g., two-
player zero-sum and many-player potential games [Monderer
and Shapley, 1996], while convergence is not guaranteed in

2.0
2.0

*
0.03409

A Y
0.48500 1.52000 -08

*
0.00000

[[0.56 -0.89]
[0.49 0.07]]

9 -0.25] [[-0.57 0.95] -02
0. [0.85 -0.82]]

. . | . N
‘2.0 -1.0] 1.0 2.0 ‘2.0 -1.0 0 1.0 2.0

2.0

(a) a-rank (b) CE
o e *
& &
10 0.19663 o8
o o 0.7
Bl -08
-0.6
ol 0.00995 s _§ N
0.00298 0.46206 -05
-0.4
o o -04
- [[-0.91 -0.12] = ([037 0.4]
! [0.2 -0.38]] 02 [-0.11-0.16]] .
[[0.36 -0.58] [[0.61 0.08]
o [0.04 0.13]] o [0.85-0.88]]
N | I ' i N | i ' ' -02
-2.0 -1.0 0 1.0 2.0 -2.0 -1.0 0 1.0 2.0
(c) FP (d) PRD

Figure 1: Motivating Examples. The payoff matrices of the two
players are displayed in the figure in green and red colors, respectively.
The x-axis and y-axis are the values of 6 and 62, respectively. For
plotting, the interval [—2, 2] is discredited with a step size 0.1. The
NashConv values of the solvers on the original games M is marked
as the green triangle and the minimal NashConv value is marked as
the red star. We note that the games M selected for the solvers are
specifically designed and differ from each other.

general games. Replicator dynamics (RD) [Schuster and Sig-
mund, 1983] is a learning dynamics from evolutionary game
theory, which is defined as

i (a?) = af (@) [MP (@b, m) = MP(m)), @)

and RD can converge to NE under certain conditions. To
ensure the exploration of RD, a variant of RD, projected
replicator dynamics (PRD) is proposed in [Lanctot et al.,
2017], which projects the strategy to the set A7V(AY) =
{r" € A(AN|7"(a*) > [zg7.Va* € A"} PRD
is demonstrated to be more effective than RD to approxi-
mate NE in many games empirically [Lanctot et al., 2017,
Li and Wellman, 2021].

3 Motivating Examples

In this section, we provide motivating examples of RENES
to demonstrate that the strategies obtained by alternative so-
lutions and learning methods can diverge from NE strategies
and can be improve through modifying the games.
Specifically, we consider the general -sum games with 2
players and each player has 2 actions. Thus, the game can
be represented as a 2 x 2 x 2 tensor M = (M, M?) where
k k
Mk = {’”;1 2 }, k € {1,2} and the payoff values are in
M2y Mag
[—1, 1]. For simplicity and easy visualization, we only modify
the payoff values of the first actions of players. Denoting the
modification values as 51 and §2, therefore, the modified game
~ ~ ~ ~ k k k
is M = (NI', B12) where M* = {muj‘s ’",ﬂ, ke {1,2}.
Moy May

The values of ¥ € [—2,2]. We then apply the considered

solvers, i.e., alternative solutions and learning methods, to the
modified games and evaluate on the original games.

The results are displayed in Figure 1. We can observe that
in the specifically designed games, the solvers diverge from
the exact NE. Through only modifying the payoff values of the
first actions, we can significantly improve the approximation
of a-rank, CE and PRD and also slightly improve on FP. With
larger spaces of the modification, we can even further improve
the approximation of solvers. The results in Figure 1 demon-
strate the effectiveness of the fundamental idea of RENES,
i.e., improving the approximation of solvers through modi-
fying the games. However, there are still several issues: 1)
when the space of modification is larger, the enumeration of
all possible combinations is impossible, ii) for different games
with different sizes, the modification spaces vary significantly.
Therefore, we propose RENES which can provide the efficient
modification strategies for the games with different sizes.

4 RENES

In this section, we introduce the proposed REinforcement
Nash Equilibrium Solver (RENES). The general procedure
of RENES is displayed in Figure 2. Specifically, RENES is
formed with three components: i) a modification oracle O,
represented as neural networks and trained with RL methods,
e.g., PPO [Schulman et al., 2017], which takes the original
game M as input and generates the modified game M, ii)
an inexact solver H, which takes the modified game M’ and
generates the solution 7, and iii) an evaluation measure &,
which evaluates the obtained solution 7 on the original game
M and provides the reward signal to the RL method when
training the modification oracle O. The solvers considered
in this paper are a-rank, CE, FP, PRD and the evaluation
measure used in this paper is NashConv [Muller et al., 2020].
We will provide the details of the design and training of the
modification oracle O in the rest of this section.

Modified Game Solution

M — HM) —

\ o,/

O(]\/f) €-- 51\,1(71')
M
Original Game

Figure 2: Flow of RENES. Specifically, staring with the original
game M, the modification oracle O modified the game to M’ and the
solver H is applied to the modified game M’. The obtained solution
m is evaluated on M with £.

4.1 Games as a-Rank Response Graphs

The normal-form games are normally represented as high-
dimensional tensors. However, current deep learning methods
cannot efficiently handle high dimensional tensors. There

are two possible solutions: i) flattening the tensor into a 1-D
vector and using MLP as the modification oracle O, where
the relations between payoff values will be eliminated and the
length of the vector is varied for games with different sizes,
and ii) using convolutional neural network (CNN), which is
efficient to process images [He er al., 2016]. However, CNN
still cannot process high dimensional tensors, e.g., 4-D, and
cannot handle games with different sizes. Another option is
that we can add a cap of the game size and use the maximum
size of the game to build the policy network (we use O to
fill in the tensor if the game is smaller than the maximum
size during training and testing), however, this will still hurt
the generalizability of RENES, as it cannot handle the games
beyond the maximum size.

R P S
R 0 —1 1
P 1 0 —1
S| -1 1 0

(a) Payoff table

(b) a-rank response graph

Figure 3: Payoff table and a-rank response graph for Rock-Paper-
Scissors (RPS) game, where o = 100 and m = 50 when computing
the a-rank response graph.

To handle the games with different sizes, we represent
the games as the a-rank response graphs, which is shown
to represent the intrinsic properties of games in [Omid-
shafiei et al., 2020], and then use graph neural network
(GNN) [Kipf and Welling, 2016; Veli¢kovi¢ et al., 2018;
Yun et al., 2019] to extract the features of games. We note that
GNN can efficiently handle the graphs with different sizes [Li
et al., 2018], as it takes the neighboring information to update
the node embeddings. The definition of a-rank response graph,
as well as a-rank, is defined in Definition 1, where each joint
action corresponds to a node on the graph, and the two nodes
are connected if there is only one player has different action in
the joint actions. The transition probabilities are determined
by Eq. (3). A concrete example of a-rank response graph for
the rock-paper-scissors game is displayed in Figure 3. After
representing the games as graphs, we use the same value, e.g.,
1.0, as the node features and the transition probabilities as the
weights of edges. Then, we use GNN, e.g., GCN [Kipf and
Welling, 2016] to process the a-rank response graph to obtain
the embedding of the graph, and then we add an MLP to gen-
erate the outputs. We use PPO to train the modification oracle,
where both actor and critic use this architecture to generate the
action and the state-action value, respectively. More training
details can be found in Section 4.4.

Definition 1. The a-rank response graph is defined over all
Jjoint pure actions, specified by a transition matrix C. Given a
joint pure action a and a' = (c*,a~F) is a joint pure action

which equals to a except the player k, we denote the transition

probability from a to a’ as C(a, a’)
{ 1—exp(—a(M*(a)=M*(a)))

if M*(a) # M*(a)

n 1—exp(—am(MF(a’)—MF(a)))’
n otherwise

m?

3)

where n = 1/(ZkE[K](|Ak| — 1)). The self-transition proba-

bility is defined as C(a,a) =1 =31 o jorear Cla,a’).

If two joint actions a and a' differ in more than one player’s

action, C(a,a’) = 0. The values of o and m are the selection

pressure and the number of populations, respectively, which

are specified by users. The transition matrix C define a di-

rected graph, i.e., a-rank response graph, where the stationary
distribution of C' is the a-rank distribution.

4.2 Action Spaces of RENES

Most RL methods are designed for the problems with fixed
action spaces. However, when the game sizes change, the
number of elements which can be changed is also different.
Therefore, the action space of RENES needs to be specially
designed. A naive definition of the action space is that at each
step, RENES changes the payoff of a player in a specific joint
action, i.e., generating the indices of the elements in the payoff
table and the way to modify this payoff value. In this case,
the action size of RENES is K - [, |A%|, which grows

exponentially along with the number of actions of each player.
On the other hand, we still need to specify the maximum size
of the game sizes to generate valid indices of the elements,
which hurts the generalizability of RENES.

Therefore, we consider a more compact action space with
tensor decomposition [Kolda and Bader, 2009]. Specifically,
we use the canonical polyadic (CP) decomposition of the
payoff table M and set the rank r to be fixed and the action of
RENES is the coefficients over r:

T
M~ Zi:l Ai-mii ®@mo; @ @Mmiqri, (4

where A = (\;),i = 1,--- ,r are the weights of the decom-
posed tensors and my;, k € {1,..., K + 1} are the factors
which are used to modify the game. For the decomposition,
the weight A = 1'. Given any arbitrary weight X, we can
reconstruct the payoff tensor with the reconstruction oracle
Rar(A). Therefore, we let the modified oracle O to modify
the weights and update the game by

My =M1 +n-Ra(A). (5)

With the tensor decomposition, we can use a fixed size of
action space of RENES, specified by r. The tensor decom-
position can be viewed as a simple method of the abstrac-
tion [Brown and Sandholm, 2015; Brown and Sandholm,
20171, and more sophisticated and decomposition methods
can be considered in future works [Burch er al., 2014].

4.3 MDP Formulation of RENES

As RL relies on the Markov Decision Process (MDP) formula-
tion [Schulman et al., 2017], we will also first reformulate our
problem into an MDP:

'The tensor decomposition is implemented by TensorLy (https:
//github.com/tensorly/tensorly). Other implemented decomposition
methods can also be used.

https://github.com/tensorly/tensorly
https://github.com/tensorly/tensorly

* States. The state of RENES is defined as the tuple with
the original game M, and the current game M;_;. Note
that we compute the solution with the current game M;_;
and evaluate the obtained solution on the original game
Mo, therefore, (My, M;_1) give the full information of
the underlying MDP to solve, therefore, we ignore all the
intermediate games generated, i.e., Mz, ¢t € {1,...,t —
2}, which can simplify and stabilize the training.

* Actions. The actions of RENES are the weights X\ over
the decomposition factors, which will be used to update
M;_4 to obtain M, following Eq. (5).

¢ Transition Function. After obtaining the new modified
game M, the problem will transit to the new state defined
by the tuple of My and M;.

* Reward Function. The immediate reward at step ¢ is
defined as NC(m;_1) — NC(m¢), where 7 is the strategy
obtained when applying the solver to the modified game
M;. As we use NashConv (lower is better) as our evalua-
tion measure, the decrement of the NashConv will be the
positive reward of RENES. With maximizing the accumu-
lated reward, RENES can boost the approximation of NE
of the solver. We also consider using a normalized Nash-
Conv measure, defined as [NC(m_1) — NC(m)]/NC(mp),
where NC(7g) is the normalizer. This normalized Nash-
Conv can make the performances on different games
comparable. However, when NC(mp) is small, e.g., less
than 0.01, and [NC(7;—1) — NC(m¢)| is much larger than
NC(mp), e.g., 1.0, this can make the reward value be ex-
tremely large and cannot be used for training. Therefore,
the normalized NashConv is only used for evaluation.

* Horizon & Discounting Factor. The horizon T specifies
the maximum step, e.g., 50, where the modification can
be used to modify the game for better performance. The
discounting factor is denoted as y € (0, 1].

4.4 Training RENES with PPO

After reformulating the training of RENES as MDP, we then
train RENES with RL methods. RL is an area of the policy
optimization in complex sequential decision-making environ-
ments [Sutton and Barto, 2018]. RL methods rely on the
trail-and-error process to explore the solution space for better
policies. The primary RL method is Q-learning [Watkins and
Dayan, 1992; Mnih et al., 2015], which can only be used on
the problems with discrete actions, and the policy gradient
methods are proposed for the problems with both discrete and
continuous actions [Sutton et al., 1999; Mnih et al., 2016;
Haarnoja et al., 2018].

PPO is an on-policy policy gradient method, which is a
simplified, but more data efficient and reliable, variant of Trust
Region Policy Optimization (TRPO) [Schulman et al., 2015],
which leverages the “trust region” to bound the update of the
policy to avoid training collapse. Compared with TRPO, PPO
is more data efficient and with more reliable performances
than TRPO, while only using the first-order optimization for
computational efficiency.

Specifically, PPO is maximizing the objective

J(0) =E[min(rg - A,clip(rg,1 —€,14¢)- A)], (6)

where 1y is the importance sampling ratio conditional on 6, 6
is the parameter of the policy, A is the advantage value which
is computed by using the discounted accumulative reward
minus the critic network prediction of the state-action value,
and e is the hyperparameter which controls the boundary of
the trust region. We only provide a short introduction of PPO
in this section, as we take PPO as a blackbox for optimizing
the modification oracle O. Other RL methods, e.g., soft actor
critic (SAC) [Haarnoja et al., 2018], can be used and for more
details of RL, we refer readers to [Sutton and Barto, 2018].

5 Experiments

In this section, we present the experimental results of RENES
on large-scale normal-form games. We consider two cases:
i) simple case where all games have the same size to verify
the idea of modifying the games to boost the performance of
inexact solvers, and ii) general case where the games have
different sizes to verify that the design of RENES can handle
the game with different sizes. We then conduct the ablation
study on the numbers of the action dimensions and the horizon.

5.1 Experimental Setups

Games and Solvers. For the games, we randomly sample
3000 games for training, and 500 games for testing to verify
the ability of Renes to generalize to unseen games. The games
are represented as high dimensional payoff tensors with di-
mensions as [K, |A'[,...,|A%]], which are used for tensor
decomposition. We also do the normalization of the payoff
to stablize the training. The four selected solvers are: a-rank,
CE, FP and PRD. For a-rank and PRD, we use the implemen-
tations in OpenSpiel [Lanctot et al., 2019]>. We use regret
matching [Hart and Mas-Colell, 2000] in OpenSpiel for CE
and implement FP by ourselves. More details of the games
and solvers are in Appendix B.

Evaluation Measures. Different from RL where the accu-
mulated reward is considered, we focus on the minimum Nash-
Conv during the T steps of the modification. As the solvers
have different performances on different games, we would use
the normalized NashConv measure to make the performances
comparable. Specifically, the performance of RENES on a

specific game is measured by 1 NC (o)

sures the relative improvement over the performance of the
solver on the original game, therefore, 0 implies no improve-
ment and 1 implies the obtained solution is the exact NE. We
take the average over all games to measure the performance.

, which mea-

Baselines. We take the two baselines to compare with
RENES: i) the performance of the solver on the original games
without any modification, ii) the performance of the random
policy of modifying games. The two baselines correspond to
the value of 0 and the performance at O step of the RL training
using the proposed measure. Most of the previous methods
require running the methods on specific games and the learned
policies cannot be generalized to other games, while RENES
can generalize to unseen games without training, so we do not
consider these SOTA methods as our baselines.?

Zhttps://github.com/deepmind/open_spiel
*More justifications of the baselines can be found in Appendix A.

https://github.com/deepmind/open_spiel

0.325

0.300

0.275

0.250

0.225

0.200 ;
—e— train —e— train
01754 ¥ 0.12
. test o test

0.150

0 100000 200000 300000 400000 500000 0 100000 200000 300000 400000 500000

(a) a-rank (b) CE

0.035

0.030

0.025

0.020
0.069 ; —e— train

—e— train
o test 0015 o test

0 100000 200000 300000 400000 500000 0

(c) FP

100000 200000 300000 400000 500000

(d) PRD

Figure 4: Results of RENES in simple case. The solid lines and dotted
lines are the results on the training set and the testing set of games,
respectively. The transparent lines are the results with different seeds,
as the runs will different seeds achieve the best performances in
different epochs, so we plot them for better understanding of the
training across different seeds. The blue line is the averaged results
and the shaded area plots the standard deviation. Note that the y-axis
scale differs across figures for better visualizations. The same style
is also adopted in Figures 5 and 6.

Training with PPO For the training, we set the decomposi-
tion rank » = 10, i.e., the number of the action dimensions is
10, and T' = 50, i.e., the number of the maximum steps of the
modification is 50. Conceptually, the more action dimensions
and the more steps, the better performance of RENES. Larger
values of r may bring the difficulties of training and make the
training unstable. As at each time step, we need to run solvers
to solve the modified game, which is time-consuming when
T is very large. We choose these two values to balance the
trade-off between the performance and the efficiency. We run
the experiments with three seeds. The values of the hyperpa-
rameters can be found in Appendix B. Due to the limitation of
the computational resources, we do not conduct the exhaustive
tuning of the hyperparameters.

5.2 Simple Case

In this section, we present the experiments on the simple case.
For the simple case, we randomly sample 3000 games for
training and 500 games for testing where all games are 2-
player games with 5 actions of each player. As all games have
the same size, we simply flatten the payoff tensors to 1-D
vectors and using MLP for the policy and critic in PPO.

The results of the simple case are displayed in Figure 4 and
Table 1. We observe that the training on the training set of
games can be generalized to the testing set, which indicates
that RENES can be used as a general policy to modify the
games, even on unseen games. More specifically, we observe
that RENES can significantly boost the performance of a-
rank, i.e., larger than 0.3 over all three seeds, as shown in
Figure 4a, and achieve 0.313 and 0.324 on training and testing
sets, respectively. For PRD, both random policy and RENES

can only bring small improvements, i.e., smaller than 0.05 over
all seeds, as shown in Figure 4d, and only achieve 0.032 and
0.033 on training and testing sets, respectively. For the other
solvers, RENES can bring notable improvements, i.e., larger
than 0.16 for CE and 0.1 for FP over three seeds. Overall,
we can conclude that the performances of inexact solvers can
be boosted through modifying the games. We also observe
that longer training of RENES does not necessarily improve
the performance, i.e., Figures 4a, 4c and 4d, as observed in
other RL experiments. We believe that with more tuning of the
hyperparameters, RENES can achieve better performances.

5.3 General Case

We then conduct the experiments on the general case. In the
general case, we also sample 3000 games for training and 500
games for testing, where the games have {2, 3} players and
each player is with {2, 3,4} actions. We only focus on small
games as the running of solvers for large multi-player is even
more time-consuming. As the game sizes vary in this case, we
will take the GNN as the base network and add an MLP head
to form the policy and the critic in PPO, respectively. Other
settings are the same as the simple case.

& —e— train 7 —— train
0061 & o test o test

0 100000 200000 300000 400000 500000 0 100000 200000 300000 400000 500000

(a) a-rank (b) CE

0.040

0.035

0.030

0.025

0.020

0.015

—e— train

—s— train
test ooi0{® s test

0 100000 200000 300000 400000 500000 0

(c) FP

100000 200000 300000 400000 500000

(d) PRD

Figure 5: Results of RENES in general case

The results of the general case are displayed in Figure 5 and
Table 2. We observe that similar to the simple case, the policy
of RENES trained on the training set can be generalized to the
testing set, which indicates that RENES can be a general policy
for unseen games even when the game sizes vary. Compared
with the simple case, RENES achieves lower performances
over different solvers on the general case. Specifically, RENES
still brings the largest improvement for a-rank, i.e., 0.139 on
both training and testing dataset, and the smallest improvement
for PRD, i.e., 0.032 and 0.041 on training and test datasets,
respectively. For the other two solvers, RENES also brings
notable improvements, i.e., larger than 0.120 and 0.071 on
both training and test datasets, respectively.

To summarize, for both simple and general cases, we ob-
serve that RENES can improve the approximations of NE for

| | a-rank CE FP PRD
Trainine | Random | 0.180(0.006) ~0.124(0.007) ~ 0.068(0.003) ~0.015(0.001)
£ | RENES | 0.313(0.010) 0.185(0.004) 0.128(0.001) ~0.032(0.001)
Testing | Random | 0.180(0.006) 0.123(0.010) 0.055(0.007) ~0.016(0.002)
& | RENES | 0.324(0.010) 0.190(0.007) 0.127(0.009) 0.033(0.004)

Table 1: Results of RENES in Simple Case. To calculate the values, we pick the best values across different epochs for each seed and compute

the mean values and standard deviation values.

\ \ a-rank CE FP PRD
Trainin Random | 0.074(0.008) 0.064(0.002) 0.031(0.003) 0.013(0.001)
& | RENES | 0.139(0.016) 0.122(0.003) 0.071(0.002) 0.032(0.003)
Testin Random | 0.074(0.005) 0.061(0.010) 0.033(0.005) 0.011(0.003)
g RENES | 0.139(0.019) 0.120(0.002) 0.077(0.013) 0.041(0.002)

Table 2: Results of RENES in General Case.

different existing solvers, i.e., a-rank, CE, FP and PRD. We
believe that RENES can be an orthogonal tool for approximat-
ing NE in multi-player general-sum games. With combining
the advanced solvers and RENES, we can further achieve a
better approximation of NE.

5.4 Ablations

—e— train_10
e test_10
—— train_5
e test 5

0.20 —e— train_50 o020{ f
4 o test 50 ¥
0157 % —— train_30 o1s
e test_30

0.1
0 100000 200000 300000 400000 500000 0

(a) Horizon T°

100000 200000 300000 400000 500000

(b) Action dimensions r

Figure 6: Ablations on a-rank in simple case.

We present the ablation results in this section. We ablate
two configurations determined by us: i) the number of max-
imum steps, i.e., horizon T, and ii) the number of the action
dimension r. These two configurations are the main hyper-
parameters of RENES related to game theory. And for other
hyperparameters related to PPO, we do not conduct the abla-
tions. For efficiency, the ablation experiments are conducted
on the simple case with a-rank as the solver.

The ablation results are displayed in Figure 6. We observe
that with more steps and more actions, the performances are
better, which indicates that there is a trade-off between the per-
formance and the efficiency of RENES, and advanced methods
can be used for the optimal configurations of the two values
given the limited resources, e.g., Optuna [Akiba er al., 2019].
We also observe that when the horizon is longer and the num-
ber of action dimensions is larger, the results are more sensitive
to the seeds, which may due to the intrinsic of the randomness
of the initialization of PPO.

6 Discussion

6.1 Limitations and Future Works

The limitations of RENES are as follows: i) We only con-
duct experiments on small normal-form games, as for larger
games, the running time of RENES, as well as the solvers,
will increase. We will consider scaling RENES up to large
normal-form games, e.g., 5 players and 30 actions each player,
in the future. ii) We only conduct experiments on normal-
form games, while extensive-form games (EFGs) are more
difficult for computing NE and novel methods to modifying
EFGs are required, i.e., the methods to handle the imperfect
information and the sequential properties in EFGs. iii) We
only focus on NE in this paper. The core idea of modifying
the games to facilitate the computation can also be generalized
to other solution concepts, e.g., quantal response equilibrium
(QRE) [McKelvey and Palfrey, 1995]. Due to the space limi-
tation, we provide a detailed discussion about the limitations
and future works in Appendix C.

6.2 Conclusion

In this work, we propose RENES, which leverages RL meth-
ods to find a single policy to modify the original games with
different sizes and applies existing solvers to solve the modi-
fied games. Our contributions are threefold: i) We adopt the
a-rank response graph as the representation of the game to
make RENES handle the games with different sizes; ii) We
leverage the tensor decomposition to improve the efficiency of
the modification; iii) We train RENES with the widely-used
PPO method. Extensive experiments show that our method
can boost the performances of solvers and generate more accu-
rate approximation of NE. To the best of our knowledge, this
work is the first attempt to leverage RL methods to train a sin-
gle policy to modify the games to improve the approximation
performances of different solvers in game theory. We hope this
method can open a new venue of modifying games as the pre-
training task, complimentary to new methods and solutions, to
approximate NE with generalizability and efficiency.

Acknowledgements

This research is supported by the National Research Founda-
tion Singapore and DSO National Laboratories under the Al
Singapore Programme (AISG Award No: AISG2-GC-2023-
009). Hau Chan is supported by the National Institute of
General Medical Sciences of the National Institutes of Health
[P20GM130461], the Rural Drug Addiction Research Center
at the University of Nebraska-Lincoln, and the National Sci-
ence Foundation under grant IIS:RI #2302999. Any opinions,
findings and conclusions, or recommendations expressed in
this material are those of the author(s) and do not reflect the
views of the funding agencies.

Contribution Statement

Xinrun Wang and Chang Yang are the co-first and co-
corresponding authors who contribute to this work equally.

References

[Akiba er al., 2019] Takuya Akiba, Shotaro Sano, Toshihiko
Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A
next-generation hyperparameter optimization framework.
In KDD, pages 2623-2631, 2019.

[Aumann, 1974] Robert J Aumann. Subjectivity and corre-
lation in randomized strategies. Journal of Mathematical
Economics, 1(1):67-96, 1974.

[Aumann, 1987] Robert J Aumann. Correlated equilibrium
as an expression of Bayesian rationality. Econometrica:
Journal of the Econometric Society, pages 1-18, 1987.

[Brown and Sandholm, 2015] Noam Brown and Tuomas
Sandholm. Simultaneous abstraction and equilibrium find-
ing in games. In IJCAI, pages 489-496, 2015.

[Brown and Sandholm, 2017] Noam Brown and Tuomas
Sandholm. Safe and nested subgame solving for imperfect-
information games. In NeurlIPS, pages 689-699, 2017.

[Brown, 1951] George W Brown. Iterative solution of games
by fictitious play. Activity Analysis of Production and Allo-
cation, 13(1):374, 1951.

[Burch et al., 2014] Neil Burch, Michael Johanson, and
Michael Bowling. Solving imperfect information games
using decomposition. In AAAI, 2014.

[Chen et al., 2009] Xi Chen, Xiaotie Deng, and Shang-Hua
Teng. Settling the complexity of computing two-player
Nash equilibria. Journal of the ACM, 56(3):1-57, 2009.

[Daskalakis et al., 2009] Constantinos Daskalakis, Paul W
Goldberg, and Christos H Papadimitriou. The complex-
ity of computing a Nash equilibrium. SIAM Journal on
Computing, 39(1):195-259, 2009.

[Fudenberg and Tirole, 1991] Drew Fudenberg and Jean Ti-
role. Game Theory. MIT press, 1991.

[Gemp et al., 2022] Tan Gemp, Rahul Savani, Marc Lanctot,
Yoram Bachrach, Thomas Anthony, Richard Everett, An-
drea Tacchetti, Tom Eccles, and Janos Kramar. Sample-
based approximation of nash in large many-player games
via gradient descent. In AAMAS, pages 507-515, 2022.

[Goldberg et al., 2013] Paul W Goldberg, Christos H Pa-
padimitriou, and Rahul Savani. The complexity of the ho-
motopy method, equilibrium selection, and Lemke-Howson

solutions. ACM Transactions on Economics and Computa-
tion (TEAC), 1(2):1-25, 2013.

[Haarnoja et al., 2018] Tuomas Haarnoja, Aurick Zhou,
Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with
a stochastic actor. In ICML, pages 1861-1870, 2018.

[Harsanyi et al., 1988] John C Harsanyi, Reinhard Selten,
et al. A general theory of equilibrium selection in games.
MIT Press Books, 1, 1988.

[Hart and Mas-Colell, 2000] Sergiu Hart and Andreu Mas-
Colell. A simple adaptive procedure leading to correlated
equilibrium. Econometrica, 68(5):1127-1150, 2000.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pages 770-778, 2016.

[Heinrich et al., 2015] Johannes Heinrich, Marc Lanctot, and
David Silver. Fictitious self-play in extensive-form games.
In ICML, pages 805-813, 2015.

[Herings and Peeters, 2010] P Herings and Ronald Peeters.
Homotopy methods to compute equilibria in game theory.
Economic Theory, 42(1):119-156, 2010.

[Kipf and Welling, 2016] Thomas N Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[Kolda and Bader, 2009] Tamara G Kolda and Brett W Bader.
Tensor decompositions and applications. SIAM Review,
51(3):455-500, 2009.

[Krizhevsky er al., 2012] Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E Hinton. ImageNet classification with deep
convolutional neural networks. In NeurIPS, 2012.

[Lanctot et al., 2017] Marc Lanctot, Vinicius Zambaldi,
Audriinas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien
Pérolat, David Silver, and Thore Graepel. A unified game-
theoretic approach to multiagent reinforcement learning. In
NeurlPS, pages 4193-4206, 2017.

[Lanctot et al., 2019] Marc Lanctot, Edward Lockhart, Jean-
Baptiste Lespiau, Vinicius Zambaldi, Satyaki Upadhyay,
Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl
Tuyls, Shayegan Omidshafiei, et al. OpenSpiel: A frame-
work for reinforcement learning in games. arXiv preprint
arXiv:1908.09453, 2019.

[Lemke and Howson, 1964] Carlton E Lemke and Joseph T
Howson, Jr. Equilibrium points of bimatrix games. Jour-

nal of the Society for Industrial and Applied Mathematics,
12(2):413-423, 1964.

[Li and Wellman, 2021] Zun Li and Michael P Wellman. Evo-
lution strategies for approximate solution of bayesian
games. In AAAI pages 5531-5540, 2021.

[Li et al., 2018] Zhuwen Li, Qifeng Chen, and Vladlen
Koltun. Combinatorial optimization with graph convolu-

tional networks and guided tree search. In NeurIPS, pages
537-546, 2018.

[Marris et al., 20211 Luke Marris, Paul Muller, Marc Lanc-
tot, Karl Tuyls, and Thore Graepel. Multi-agent training
beyond zero-sum with correlated equilibrium meta-solvers.
In ICML, pages 7480-7491, 2021.

[McKelvey and Palfrey, 1995] Richard D McKelvey and
Thomas R Palfrey. Quantal response equilibria for normal
form games. Games and economic behavior, 10(1):6-38,
1995.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529-533,
2015.

[Mnih er al., 2016] Volodymyr Mnih, Adria Puigdomenech
Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In
ICML, pages 1928-1937, 2016.

[Monderer and Shapley, 1996] Dov Monderer and Lloyd S
Shapley. Fictitious play property for games with identical
interests. Journal of Economic Theory, 68(1):258-265,
1996.

[Muller et al., 2020] Paul Muller, Shayegan Omidshafiei,
Mark Rowland, Karl Tuyls, Julien Perolat, Siqi Liu, Daniel
Hennes, Luke Marris, Marc Lanctot, Edward Hughes, et al.
A generalized training approach for multiagent learning. In
ICLR, 2020.

[Myerson, 1999] Roger B Myerson. Nash equilibrium and the
history of economic theory. Journal of Economic Literature,
37(3):1067-1082, 1999.

[Nash Jr, 1950] John F Nash Jr. Equilibrium points in n-
person games. PNAS, 36(1):48-49, 1950.

[Omidshafiei ez al., 2019] Shayegan Omidshafiei, Christos
Papadimitriou, Georgios Piliouras, Karl Tuyls, Mark Row-
land, Jean-Baptiste Lespiau, Wojciech M Czarnecki, Marc
Lanctot, Julien Perolat, and Remi Munos. «-rank: Multi-
agent evaluation by evolution. Scientific Reports, 9(1):1-29,
2019.

[Omidshafiei et al., 2020] Shayegan Omidshafiei, Karl Tuyls,
Wojciech M Czarnecki, Francisco C Santos, Mark Row-
land, Jerome Connor, Daniel Hennes, Paul Muller, Julien
Pérolat, Bart De Vylder, et al. Navigating the landscape of
multiplayer games. Nature Communications, 11(1):1-17,
2020.

[Schulman et al., 2015] John Schulman, Sergey Levine,
Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In ICML, pages 1889-1897,
2015.

[Schulman et al., 2017] John Schulman, Filip Wolski, Pra-
fulla Dhariwal, Alec Radford, and Oleg Klimov. Prox-
imal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[Schuster and Sigmund, 1983] Peter Schuster and Karl Sig-
mund. Replicator dynamics. Journal of Theoretical Biology,
100(3):533-538, 1983.

[Sutton and Barto, 2018] Richard S Sutton and Andrew G
Barto. Reinforcement Learning: An Introduction. MIT
press, 2018.

[Sutton et al., 1999] Richard S Sutton, David McAllester,
Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation.
In NeurlPS, pages 1057-1063, 1999.

[Taylor and Jonker, 1978] Peter D Taylor and Leo B Jonker.
Evolutionary stable strategies and game dynamics. Mathe-
matical biosciences, 40(1-2):145-156, 1978.

[Velickovié et al., 2018] Petar Veli¢kovi¢, Guillem Cucurull,
Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. In /ICLR, 2018.

[Wang et al., 2021] Runzhong Wang, Zhigang Hua, Gan Liu,
Jiayi Zhang, Junchi Yan, Feng Qi, Shuang Yang, Jun Zhou,
and Xiaokang Yang. A bi-level framework for learning to
solve combinatorial optimization on graphs. In NeurIPS,
2021.

[Watkins and Dayan, 1992] Christopher JCH Watkins and Pe-
ter Dayan. Q-learning. Machine learning, 8(3):279-292,
1992.

[Yun er al., 2019] Seongjun Yun, Minbyul Jeong, Rachyun
Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph trans-
former networks. In NeurIPS, pages 11983-11993, 2019.

	Introduction
	Preliminaries
	Motivating Examples
	RENES
	Games as -Rank Response Graphs
	Action Spaces of RENES
	MDP Formulation of RENES
	Training RENES with PPO

	Experiments
	Experimental Setups
	Simple Case
	General Case
	Ablations

	Discussion
	Limitations and Future Works
	Conclusion

