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Abstract In game theoretical analysis of incentive mechanisms, all players are assumed to
be rational. Since it is likely that mechanism participants in the real world may not be fully
rational, such mechanisms may not work as effectively as in the idealized settings for which
they were designed. Therefore, it is important to evaluate the robustness of incentive mech-
anisms against various types of agents with bounded rational behaviors. Such evaluations
would provide us with the information needed to choose mechanisms with desired properties
in real environments. In this article, we first propose a general robustness measure, inspired
by research in evolutionary game theory, as the maximal percentage of invaders taking non-
equilibrium strategies such that the agents sustain the desired equilibrium strategy. We then
propose a simulation framework based on evolutionary dynamics to empirically evaluate
the equilibrium robustness. The proposed simulation framework is validated by comparing
the simulated results with the analytical predictions based on a modified simplex analy-
sis approach. Finally, we implement the proposed simulation framework for evaluating the
robustness of incentive mechanisms in reputation systems for electronic marketplaces. The
results from the implementation show that the evaluated mechanisms have high robustness
against a certain non-equilibrium strategy, but is vulnerable to another strategy, indicating
the need for designing more robust incentive mechanisms for reputation management in
e-marketplaces.
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1 Introduction

Game theory provides a powerful theoretical framework to analyze strategic interactions
where the payoff of a player depends on his/her strategy and those of others. Incentive
mechanisms, based on game theoretical analysis, have been designed to promote the desired
behavior of rational players. For example, consider reputation systems in electronic commerce
applications, where the ratings provided by independent buyers are aggregated to assist other
buyers in choosing satisfactory sellers. The reputation system desires truthful ratings from
buyers, and incentive mechanisms, such as the side-payment incentive mechanism [13], have
been proposed where the equilibrium strategy of rational buyers is to provide truthful ratings.
However, in realistic scenarios, players with bounded rationality [29] may deviate from the
desired equilibrium strategy, causing other rational players to also deviate, and as a result the
incentive mechanisms may fail to achieve the expected performance.

The study of bounded rationality is increasingly important in the field of mechanism
design. The existence of bounded rational players, who may make mistakes due to reasons
unknown tomechanism designers, has beenwidely recognized bymany researchers [3,5,35].
Aiyer et al. [2] propose a filtering approach to eliminate the impact of naive Byzantine (irra-
tional) players who randomly deviate from equilibrium strategies. Moreover, the qualitative
analysis of the robustness against various attacks has been proposed, such as [34], where a
mechanism is claimed to be either resistent or vulnerable with respect to an attacking strat-
egy. However, one common limitation of the existing approaches is that they cannot tell to
what extent these incentive mechanisms are robust against non-equilibrium strategies. Mea-
suring the robustness of mechanisms is useful for ensuring the practical usability of incentive
mechanisms and towards the design of more robust incentive mechanisms.

In this article, we aim to propose a qualitative approach to evaluate the robustness of incen-
tive mechanisms against bounded rational players who implement various non-equilibrium
strategies. We first define a general robustness measure of a desired equilibrium, inspired by
evolutionary game theory, as the maximum percentage of bounded rational agents existing in
the system while it is still better off for rational agents to perform the suggested strategies in
the desired equilibrium. A practical robustness measure with feasible computational cost is
then proposed by considering a finite number of rational agents and a specific non-equilibrium
strategy. Due to the complex settings of various mechanisms and various non-equilibrium
strategies existing in a realistic case, a simulation framework is proposed to calculate the
proposed robustness. We then formalize various forms of representative games in a uniform
format and validate the proposed simulation framework. It is shown to be able to produce
the same results as those by analytical analysis. Finally, we implement our simulation frame-
work in evaluating and comparing the robustness of four incentivemechanisms for reputation
systems in e-marketplaces where bounded rational agents adopt different attacking strate-
gics. We have observed that the robustness of mechanisms decreases against sophisticated
non-equilibrium strategies, demonstrating the need for more robust incentive mechanisms
for reputation systems.

The key contributions of this article include:

1. a general robustnessmeasure of a desired equilibriumand apracticalmeasurement against
a specific non-equilibrium strategy;
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2. a simulation framework for quantitatively evaluating the practical robustness measure-
ment;

3. the validation of the simulation framework in representative games;
4. the implementation of the framework in evaluating incentive mechanisms in reputation

systems for e-marketplaces against various types of untruthful attacking strategies.

The remainder of this article is structured as follows. A review of related work is given
in Sect. 2. In Sect. 3, two formal robustness measures for incentive mechanisms are defined
when the populations are infinite and finite, respectively. In Sect. 4, a simulation framework
for evaluating the robustness is proposed. The validation of the simulation framework in
representative games is presented in Sect. 5.2, and the implementation and evaluation of the
simulation framework in e-marketplaces are presented in Sect. 6. Finally, Sect. 7 concludes
the article with an overview of future work.

2 Related work

In classical game theory, the players or agents are perfectly rational and behave according
to their and other’s preferences or payoffs in the their interactions [23,30]. Players in the
classical setting generally have a perfect knowledge of the environment and the payoffs and
try to maximise their individual utility. However, under the biological circumstances, e.g. a
population of birds or insects surviving on an isolated island, it becomes impossible to judge
what actions are rational. Instead, players learn to optimise their behaviors andmaximise their
return through a process of trial and error [27]. This learning process matches the concept of
evolution in biology, and forms the basis of evolutionary game theory [23,24,32]. Based on
this, in this article, we aim to propose a robustness metric where some agents are not rational.

In the literature of incentive mechanism design, increasing attention has been paid to
designing practical incentive mechanisms which could achieve the desired outcome while
relaxing the assumption that every player is rational (e.g., [1,3,6]). These studies aim to
design mechanisms for players with bounded rationality. However, there are various reasons
for a player being bounded rational, e.g., unknown external utility or emotion [7,29], and
it is nearly impossible to motivate them to behave “rationally”. We adopt a more practical
perspective and focus on studying the behavior of rational players when bounded rational
players choose non-equilibrium strategies.

The robustness problem is also referred to as the implementation problem where some of
the players are “faulty” in the sense that they fail to act optimally [5]. The term k-FTNE is
defined to serve as a stronger equilibrium concept than theNash equilibrium,where each non-
faulty player would sustain the designed strategy as long as other non-faulty players sustain
the designed strategy, regardless of the strategyusedbyup to k faulty players.Another relevant
concept in game theory is k−t robust Nash equilibrium (NE) [6]. An equilibrium is t-immune
if it can be tolerant up to t irrational agents. An equilibrium is k-resilient if all the rational
agents in a coalition of size up to k (k ≥ 1) will not deviate from the equilibrium strategy.
The limitation of the above studies is that they only provide an abstract characterization of a
robust equilibrium, and does not provide an operational approach to quantitatively evaluating
mechanism robustness. In this article, we formally define the measurement of robustness for
incentive mechanisms and propose a simulation framework to quantitatively evaluate the
robustness.

To improve the robustness andprotect incentivemechanisms from the influenceof bounded
rational players, a crowd filtering approach has been proposed. In [2], a fault tolerance model
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named BAR model is used to filter out players who randomly deviate from the desired
equilibrium strategies. However, the model fails to filter out players with complex strategies.
Since it is difficult to insulate the impact of every non-equilibrium strategy, it is necessary to
study the robustness of mechanisms and our work meets that need.

Qualitative analysis of the robustness of incentive mechanisms has been proposed for
different non-equilibrium strategies. Witkowski et al. [34] analyze the conditions when a
mechanism is robust against various types of collusive attacks. In contrast, we aim to provide
a quantitative measurement of robustness, which is especially useful for comparing incentive
mechanisms used in practice.

In reputation systems for e-marketplaces, many incentive mechanisms have been widely
used to promote truthful feedbacks (ratings) from agents, such as side-payment mecha-
nism [13], credibility mechanism [19], and trust-based incentive mechanism [36]. They are
designed based on different methodology, and have been proven that the strategy of truthful
reporting is an equilibrium strategy for each agent. However, there is no measurement to
justify which one is more practical when they are implemented in a realistic environment. In
this article, we implement the proposed simulation framework to evaluate and compare the
robustness of these mechanisms against various non-equilibrium strategies. We can not find
a dominant mechanism among these, as for every pair of mechanisms there exist different
scenarios where each member of the pair is more robust. This result establishes the need for
a more robust incentive mechanism and our work provides an evaluation measurement for
researchers working on developing such a mechanism.

3 Robustness measure

Incentive mechanism design is a sub-field of game theory that considers how to implement
the desired, e.g., socially efficient, solutions by motivating rational players to truthfully
disclose their private information [10,15]. Players’ equilibrium strategy profile1 is called a
desired strategy profile (equilibrium) which leads to the desired outcome of the mechanism,
assuming that the players are rational. Players who instead adopt a non-equilibrium strategy
are recognized to be bounded rational. We study the robustness of incentive mechanisms
when only some of the players are bounded rational.

Our robustness measure of incentive mechanisms is inspired by the concept of evolu-
tionary stable strategy (ESS) studied in evolutionary game theory—the application of game
theory to biology [21,22,25,32]—to study the evolution of strategies in the population(s) of
individuals who are competing with each other for survival and reproduction. A strategy is
evolutionarily stable if a population of individuals using the strategy will not deviate from
it even when the population is invaded or infiltrated by a small fraction of mutants, i.e.,
individuals using an alternative (non-equilibrium) strategy. In an incentive mechanism, if the
desired equilibrium strategy is an ESS, the mechanism will be robust against a sufficiently
small fraction of bounded rational invaders. Furthermore, an incentive mechanism is more
robust than another if its desired equilibrium is robust against a larger fraction of invaders.
Based on this intuition, we propose a general quantitative definition of robustnesswith respect
to the desired equilibrium.

We work within an evolutionary framework of agent populations. Within this framework
an incentive mechanism in a game with n players I = {1, . . . , n} is modeled by n popula-

1 For ease of analysis, we assume a single equilibrium for a mechanism. Our analysis can be extended to
handle multiple equilibria.
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tions: for each player position,2 there is a large population of individuals (agents), and each
such individual is following a pure strategy. Let Si = {si

1, . . . , si
mi

} be the set of pure strate-
gies available to the individuals of population i and Δi = {xi ∈ R

mi | ∑si
j ∈Si

xi ( j) =
1, xi ( j) ≥ 0, j = 1, . . . , mi } be the set of possible strategy profiles for population i ,
where each xi ( j) corresponds to the fraction of individuals in the population i playing
strategy si

j ∈ Si . Note that xi is formally equivalent to a mixed strategy for the player
i ∈ I in the n-player game. The combination of n population profiles is x ∈ Θ where
Θ = ×i∈I Δi . Suppose ε ∈ (0, 1) proportion of the population i invade the mechanism
by playing a different profile yi ∈ Δi . As a result, the new population profile for popu-
lation i becomes xε

i = ε · yi + (1 − ε)xi . If we denote the set of payoff functions for
all populations as u = {u1, . . . , un} where the payoff of an agent in population i taking
strategy si

j is ui (si
j , x−i ). The average payoff of the rational players in the population i

before and after the invasion can be expressed as ui (xi , x−i ) = ∑mi
j=1 xi ( j)ui (si

j , x−i ) and

ui (xi , xε−i ) = ∑mi
j=1 xi ( j)ui (si

j , xε−i ) respectively and the average payoff of the mutant

invaders in population i is ui (yi , xε−i ) = ∑mi
j=1 yi ( j)ui (si

j , xε−i ). Now, we can describe a
general mechanism as M = {I,Θ, u} and the robustness of a desired equilibrium can be
defined as follows.

Definition 1 (Robustness of a desired equilibrium) Given an incentive mechanism M =
{I,Θ, u} with a desired equilibrium x ∈ Θ , the robustness of x is R such that

R = min
y∈Θ(y �=x)

arg max
ε∈(0,1)

ui (xi , xε−i ) > ui (yi , xε−i ), ∀i ∈ I. (1)

In other words, the robustness of a desired equilibrium is themaximumproportion of invaders
such that the desired equilibrium strategy is still the best strategy for rational players in each
population.

Observation 1 The robustness of a strictly dominant equilibrium is 1.

Proof Given that the desired equilibrium x is a strictly dominant equilibrium, ui (xi , xε−i ) >

ui (yi , xε−i ) in Eq. (1) would be always true for all ε ∈ (0, 1). Thus the robustness of the
equilibrium is 1, i.e., R = 1.

However, the computational cost of formally analyzing the robustness measure in Def-
inition 1 makes such analysis infeasible. First, the size of the population corresponding to
each player position is assumed to be infinite in the definition so as to model all possible
mixed strategies of the player. The payoff of a population is thus difficult to calculate through
aggregating all individuals’ utilities. Second, the strategy of the mutants y �= x is continuous
and it may be impossible to verify Eq. (1) for all y ∈ Θ . Moreover, the size of players I
in a realistic game can be very large, making the robustness measure computationally pro-
hibitive. Given the difficulty of formally analyzing the robustness of incentive mechanisms,
we consider finite populations to be able to realistically measure the robustness of incentive
mechanisms.

Moreover, the mutants or invaders in a realistic mechanism always attack the mechanism
using several mature techniques or strategies, e.g., constant attack and whitewashing attack
in reputation systems [12]. It is also observed that these attacks are typically conducted by
a single player. Thus, it is practical to measure the robustness of an incentive mechanism
against representative types (and their combinations) of mutants in a single population.

2 When the game is symmetric and the positions of the n players are equivalent, a single population could
represent all the players who interact with each other.
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Fig. 1 Evaluating robustness based on replicator dynamics

We note that the robustness measure in Definition 1 is a static concept. A mechanism is
always implemented in real time and players could dynamically adjust their strategies as time
goes on, which has been modeled by the well-known replicator dynamics (RD) model [4,
8,17,18]—a representative model for evolutionary dynamics (population dynamics)—for
capturing long-range evolutionary dynamics with natural selection forces. If agents using the
desired equilibrium strategy could achieve higher payoff (fitness) in a population, then they
are more likely to reproduce and produce offsprings which use the same strategy (replicator)
and eventually through this process the strategy distribution of the population will converge
to a stable equilibrium profile. Based on this analysis, we now propose an evolutionary
dynamics based practical robustness measure that evaluates the robustness of an equilibrium
against any specific non-equilibrium strategy.

In Fig. 1, agents adopting the non-equilibrium strategy yk �= xk are gradually added to the
original population of rational agents (population without mutants) and the resultant popula-
tions repeatedly interact under the mechanism. The strategy distribution of the rational agent
populations evolves through the RDmodel until convergence. Successively more mutants are
added until the population converges to a distribution different from the desired equilibrium.

Definition 2 (Robustness against a non-equilibrium strategy) The robustness of an incentive
mechanismM, with desired equilibrium strategy profile x , against a non-equilibrium strategy
yk , used by bounded-rational invaders, is

R(N , yk) = M

N + M
(2)

where N is the finite population size for each player position and M is the maximum number
of bounded rational invaders such that the converged strategy profile, under the RD model,
does not deviate from the desired equilibrium.

We assume that each player position has the same population size and the robustness of
an incentive mechanism is a function of the population size and the non-equilibrium strategy.
We will evaluate the robustness of a mechanism with different population sizes and against
different non-equilibrium strategies.

4 Simulation framework

In this section, we propose a simulation-based framework to calculate the robustness of an
incentive mechanism. Our framework is based on replicator dynamics [16] and is used to
study the dynamics of the equilibrium strategy distribution in populations that include agents
using a non-equilibrium strategy. Strategies which can garner higher payoffs become more
prevalentwhile ineffective strategies are gradually eliminated through the replicator dynamics
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process. According to Definition 2, we gradually add agents using a specific non-equilibrium
strategy and let the populations evolve over time until convergence. We stop inserting more
agents when the equilibrium strategies are abandoned by the populations of rational agents in
the converged population profile after a sufficiently large number of evolutionary dynamics
steps.

Recall that an incentive mechanism is denoted by M(I,Θ, u). The population size for
every player position is N , and the pure strategy set of player i ∈ I is Si = {si

1, . . . , si
mi

}.
The desired equilibrium is x = (x1, . . . , xn) where xi is the desired equilibrium strategy of
population i . The robustness of a mechanism M against a non-equilibrium strategy yk is
evaluated using Algorithm 1.

Input : M : incentive mechanism under evaluation;
n : number of players in M;
N : population size for each player;
x : desired equilibrium;
T : number of evolutionary process repeated;
yk : non-equilibrium strategy of invading agents ;

Output: R(N , yk ), Robustness ofM against yk ;

Initialize ε = 1
T ; ξ = 0;1

Set M = 1;2
repeat3

For each player j , N agents taking strategy x j ;4

Add M agents taking strategy yk to population k;5
λ = 0;6
for T imes = 1 → T do7

x = x ;8
while x is not converged do9

RunM in the n populations;10
for i = 1 → n do11

Calculate average payoff ui (s
i
j , x− j ) for each strategy si

j ∈ Si ;12

Generate new population i ;13

x = the strategy profile of rational populations ;14

if x �≈ x then15
λ = λ + 1;16

ξ = λ
T ; M = M + 1;17

until ξ ≥ ε;18

return R(N , yk ) = M−1
N+M−1 ;19

Algorithm 1: Evaluating the Robustness of an Incentive MechanismMAgainst a Non-
Equilibrium Strategy yk .

In Algorithm 1, we first set three parameters which are used in the simulation framework
(Line 1). We initialize the number of agents taking non-equilibrium strategy to be M = 1
(Line 2), then gradually increase the number M until the rational agents deviate from their
desired equilibrium profile x in at least ε = 1

T (Line 4–18). Due to the randomness involved
in the evaluation framework (Line 11–14), we repeat the evolutionary process for T times
and T = 50 when we implement it to evaluate the robustness of incentive mechanisms in
e-marketplaces in Sect. 6, and in each round, the strategy profile of each population i evolves
(Line 9–14) until it converges. The “x is not converged” (Line 9) in the framework means that
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the strategy profile x is still not stable enough according to the convergence criteria specified
in Sect. 5.2. The variableλ records the number of times out of T rounds that the rational agents
deviate from their equilibrium strategy (x �≈ x), i.e., the converged strategy profile deviates
from the desired equilibrium x as indicated by maxi∈I, j∈{1,...,mi } |xi ( j) − xi ( j)| > 0.01
(Line 15–16). After completing T repetitions, we calculate the percentage of times that the
populations of rational agents deviate from the desired equilibrium (Line 17). We use the
probability ε = 1

T to specify the extent to which the deviation is considered acceptable,
which is further explained in Proposition 2. If ξ < ε, we conclude that the populations of
rational agents could still sustain their desired equilibrium when invaded by M agents using
the non-equilibrium strategy yk , and we will then repeat the number of simulation runs after
increasing M by 1. When yk is a mixed strategy, the M agents probabilistically take each
pure strategy according to the probability distribution stated in yk . This continues until the
deviation of the rational agent strategies in the converged population becomes too frequent
(ξ ≥ ε). Then, the robustness of themechanism against yk is returned as R(N , yk) = M−1

N+M−1
(Line 19), as per Definition 2.

The new population for each player (Line 11–14) will be generated after each evolutionary
dynamics step based on the Moran process [16,17], a well-known evolutionary dynamics
process for finite populations. More specifically, we divide each population i with N rational
agents into ki subsets where agents in each set j take pure strategy si

j ∈ Si . The size of the

corresponding subsets are N1, . . . , Nmi , and the average payoff of the set j is ui (si
j , x−i ). If

subset j is empty, i.e., N j = 0, ui (si
j , x−i ) = 0. In each step, we randomly choose an agent

from each population i to be replaced by a new agent using strategy si
j with probability

Pi (s
i
j ) = N j × ui (si

j , x−i )
∑mi

l=1 Nl × ui (si
l , x−i )

(3)

and the other N − 1 agents in the new generation inherit the strategies of the N − 1 agents
(excluding the selected agent) one by one. According to Eq. (3), a strategy si

j in population
i is more likely to be taken by more individuals in the next generation when the proportion
of agents taking si

j is larger and average payoff ui (si
j , x−i ) is higher.

Note that a strategy si
j that becomes extinct (N j drops to 0) will never re-appear as the

probability of another agent adopting that strategy Pi (si
j ) also becomes 0. To avoid the system

being locked in initial homogeneous states with all agents using the same desired strategy, it
is necessary to use variation to re-introduce extinct strategies.

For each population i , if the strategy set Sd
i = {si

j |N j = 0, j = 1, . . . , mi } is not empty,

the framework will run the variation process. First, we randomly choose one strategy si
j

appearing in the population with probability Pi (si
j ), and uniformly choose another strategy

si
j ′ in the extinct strategy set Sd

i . We then change the strategy of an agent from subset j to be

si
j ′ with probability

Fi (s
i
j → si

j ′) = 1

e
ρ(ui (si

j ,x−i )−ui (si
j ′ ,x−i )) + 1

(4)

where ρ is a positive constant, representing the intensity of variation [17,26]. When
ρ 	 1, Fi (si

j → si
j ′) converges to 0.5 which produces high neutral fluctuation. When

ρ → +∞, Fi (si
j → si

j ′) becomes a step function where the probability of the strategy si
j ′

appearing is 1 if ui (si
j , x−i ) < ui (si

j ′ , x−i ), and 0 otherwise. We have conducted extensive
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evaluations with different ρ values: the results show that ρ does not significantly influence
the evolution of the population profile. We have verified that the evaluated robustness is not
sensitive to the value of ρ in the Prisoner’s Dilemma game, as presented in Fig. 4. This is due
to the fact that a strategy could only reappear in the population through the variation process
when the strategy has already been extinct. Therefore, we use ρ = 1 in all our simulations
unless otherwise specified.

The robustness of mechanisms is related to the population size N . However, for special
settings, the robustness R(N , yk) can be independent of population size N as shown in
Proposition 1. Generally speaking, R(N , yk) increases as the population size grows because
the stochastic effect is less impactful in a larger populationwhich results in a larger robustness
value. The value R(N , yk) finally converges when the population size is large enough, which
will be evaluated in Proposition 2.

Proposition 1 There exists ε = G(N ) where dG(N )
dN < 0 such that the evaluated robustness

of a mechanism is independent of the population size N.

Proof We first prove this result in a special case and then show how to generalize it. Consider
a special mechanism for a symmetric game in which each player has two pure strategies s1
and s2. The desired equilibrium strategy is pure strategy s1 denoted by x = [1, 0]. The other
strategy s2 is y = [0, 1]. The population containing N rational agents whose strategy profile
is x and M bounded rational agents whose strategy profile is y such that the expected utility
of agents taking s1 in the rational population is a = u(x, δ · y + (1 − δ)x) and the utility of
taking s2 is b = u(y, δ · y + (1 − δ)x) for any δ ∈ (0, 1).

Among the rational agents, the number of agents taking s1 is denoted by N1, and the
number of agents taking s2 by N2. Initially, N1 = N and N2 = 0. According to the Moran
process in generating a new population, only one agent could change its strategy in each step.
Suppose that the probability of the number of desired strategy taker N1 changing from i to
j after each step is Ti, j . T = {Ti, j } is a (N + 1) × (N + 1) tridiagonal matrix where

T0,1 = 0
T0,0 = 1
. . . . . .

Ti,i−1 = i
N · (N−i)b

i ·a+(N−i)b

Ti,i+1 = N−i
N · i ·a

i ·a+(N−i)b
Ti,i = 1 − Ti,i−1 − Ti,i+1

. . . . . .

TN ,N−1 = 0
TN ,N = 1

Next we show that when ε = G(N ) = 1
N+1 , the robustness of the mechanism is inde-

pendent of the population size N . The dynamic process has two absorbing states (when the
population profile becomes one of these, the Moran process will converge): N1 = 0 and
N1 = N . We now calculate the probability, fi , of the population converging to state N1 = 0
when starting at state N1 = i , which is recursively defined as, ∀i ∈ {1, . . . , N − 1},

fi = Ti−1,i · fi−1 + Ti,i · fi + Ti+1,i · fi+1. (5)

We note that f0 = 1 and fN = 0, and hence f1, . . . , fN−1 can be calculated by solving these
N − 1 linear equations [17]:
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Fig. 2 The state transition of the
population

fi =

⎧
⎪⎨

⎪⎩

i
N η = 1

1−( 1
η
)i

1−( 1
η
)N η > 1

(6)

where η = b
a . When η → 1, we can derive that lim

η→1
fi = i

N , and it is how we obtain the

value fi for η = 1. Since f1 and fN−1 will be utilized in the following proof, we specify
them as follows:

f1 =

⎧
⎪⎨

⎪⎩

1
N η = 1

1− 1
η

1−( 1
η
)N η > 1

and fN−1 =

⎧
⎪⎨

⎪⎩

N−1
N η = 1

1−( 1
η
)N−1

1−( 1
η
)N η > 1

(7)

The value f1 is also called the fixation probability that a single, bounded rational agent
using y makes all the other N − 1 rational agents using x to eventually choose strategy y.
Conversely, the probability that a single agent using x makes all the other N −1 agents using
y to eventually use strategy x , is denoted by f ′

1 which is calculated by 1 − fN−1.

We could derive that f1 < 1
N when η < 1, and ∂ f1

∂η
> 0.3 Since lim

η→1

1− 1
η

1−( 1
η
)N = 1

N when

N is a constant, and
∂[(1− 1

η
)/(1− 1

ηN )]
∂η

> 0, f1 is a strictly increasing function of η. Similarly,

we could derive that f ′
1 is a strictly decreasing function of η. Intuitively, as η = b

a increases,
the strategy y can obtain higher utility compared to strategy x , making it more likely that all
agents take y, i.e., f1 increases with η, and correspondingly, it is less likely that all agents
adopt x , i.e., f ′

1 decreases with η.
Considering the variation process, we assume a strategy x (or y) can be re-introduced into

the population even after x (or y) became extinct. For a population where all agents use x at
state N1 = N , the probability of it evolving to the state N1 = 0 (considering one mutator) is
f1 and the probability of the population evolving from N1 = 0 to N1 = N is f ′

1. This state
transition is described as in Fig. 2. Then, the probability that the population where all agents
use x evolve to a population where all agents use y is

ξ(N , η) = f1 − f1 f ′
1 + f1( f1 f ′

1) − f1 f ′
1( f1 f ′

1) + · · ·
= f1 + f1( f1 f ′

1) + f1( f1 f ′
1)

2 · · ·
− f1 f ′

1 − f1 f ′
1( f1 f ′

1) − f1 f ′
1( f1 f ′

1)
2 − · · ·

= f1 − f1 f ′
1

1 − f1 f ′
1

(8)

From Eqs. (7) and (8) and using lim
η→1

f ′
1 = 1

N , we have ξ(N , η)|η=1 = 1
N+1 . We can also

derive that

∂ξ(N , η)

∂η
=

∂ f1
∂η

(1 − f ′
1) − ∂ f ′

1
∂η

f1(1 − f1)

(1 − f1 f ′
1)

2 > 0 (9)

3 We do not consider the case of η < 1 in Eq. (7) as in that case f1 < 1
N , which is a very small value for a

large population size and hence equilibrium strategies are very likely to be robust against one or few invaders.
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In Algorithm 1, ε represents the maximum acceptable rate of deviation from the desired
strategy. The algorithm increases M until ξ(N , η) = ε. If ε = 1

N+1 , the condition becomes

ξ(N , η) = 1
N+1 . Since ξ(N , η) is a strictly increasing function of η, it is satisfied only when

η = 1, i.e., b = a, which is independent of the population size N . Therefore, in the above
special case, there exists a function G(N ) = 1

N+1 such that the robustness is independent of

the population size N , as ε = G(N ) where dG(N )
dN < 0.

When the population have more than two pure strategies, the robustness of the mechanism
will still be independent of N by treating s2 in the above proof as the non-equilibrium pure
strategy such that the agents taking the non-equilibrium strategy could achieve the highest
payoff among all the non-equilibrium pure strategies, and η = b

a where b is the payoff of
taking this strategy and a is the payoff of taking the desired equilibrium strategy. For a general
mechanism with n > 2 players, it can be easily derived that such G(N ) sill exists, since the
population for each player could evolve in the same way as that in the special case.

However, it is more reasonable to set ε as a constant since ε represents the acceptable rate
of deviation from the desired strategy.

Proposition 2 When ε = ε0 is a constant, the robustness of a mechanism increases with the
population size N where N > 1

ε0
+ 1, and finally converges at a value when the agents of a

population taking a non-equilibrium strategy can achieve ε0
1−ε0

times payoff more than that
of the desired equilibrium strategy.

Proof In Algorithm 1, we stop increasing M when the rate of deviation from the desired
strategy, ξ(N , η) = λ

T , becomes more than ε. For a constant ε0, if the robustness of a
mechanism increases with the population size, then ξ(N , η) should be a decreasing function
of the population size N .

Given that N > 1
ε0
, we can obtain η > 1 when ξ(N , η) = ε0 since ∂ξ(N ,η)

∂η
> 0 and

ξ(N , 1) = 1
N+1 < ε0. Since we have (according to Eq.6)

∂ f1
∂ N

= ( 1
η
)N ln( 1

η
)(1 − 1

η
)

(1 − ( 1
η
)N )2

= ηN−1ln(η)(1 − η)

(1 − ηN )2
(10)

∂ f ′
1

∂ N
= ηN ln(η)(1 − η)

(1 − ηN )2

then
∂ f ′

1
∂ N = η

∂ f1
∂ N < 0. According to Eq. (8), we derive that

∂ξ(N , η)

∂ N
=

∂ f1
∂ N (1 − f ′

1) − ∂ f ′
1

∂ N f1(1 − f1)

(1 − f1 f ′
1)

2

= 1

(1 − f1 f ′
1)

2

∂ f1
∂ N

(1 − f ′
1 − η f1 + η f 21 )

= (1 − f1)(1 − f ′
1)

(1 − f1 f ′
1)

2

∂ f1
∂ N

< 0.

(11)

Thus, for a constant ε0, the robustness is a decreasing function of the population size N where
N > 1

ε0
+ 1 > 1.

We next show the convergence of the robustness value as the population size approaches
infinity. Since ∂ξ(N ,η)

∂ N < 0 and lim
N→+∞

∂ξ(N ,η)
∂ N = 0, then ξ(N , η) is a decreasing function of
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N and lim
N→+∞ ξ(N , η) = 1 − 1

η
. Given that ε = ε0, we could derive that η = 1

1−ε0
. In other

words, the robustness of an incentive mechanism will converge to a constant as population
size approaches infinity when η satisfies the condition η = 1

1−ε0
. This means that there

exists a non-equilibrium strategy whose payoff is ε0
1−ε0

times more than that of the desired
equilibrium strategy.

We have shown that the robustness of an incentive mechanism is an increasing function of
the population size and is bounded from below, provided that ε is a constant. As ε is set to a
very large value (e.g., approaching to 1 where most agents take the non-equilibrium strategy),
then the framework would allow the non-equilibrium to achieve a payoff of ε0

1−ε0
→ +∞

times that of the equilibrium strategy when the population is large. To avoid this singularity in
the following simulations, we set ε = 1

T = 0.02 which is a sufficiently small but measurable
value4 and will gradually increase the population size until the robustness value converges.
We observe that by setting ε to a small value the evaluation framework will converge at nearly
the same robustness value as the ones analyzed by the extended simplex analysis in the next
section.

5 Validation of the framework on representative games

In this section, we validate the proposed simulation framework by comparing the simulated
resultswith the analytical ones in simple representative games. The simplex analysis approach
is used to analytically evaluate the robustness of equilibrium strategies.

5.1 Extended simplex analysis approach

For ease of presentation,we consider a two-player asymmetric game5 to introduce the simplex
analysis which is a well-known approach for analyzing evolutionary dynamics [20], and we
extend it to calculate the robustness of some representative games.

The strategy sets of the two players are S1 = {s11 , . . . , s1m1
} and S2 = {s21 , . . . , s2m2}, and

their payoff matrices are A1 and A2 which are m1 × m2 and m2 × m1 matrix, respectively:

A1 =
⎡

⎢
⎣

a1
11 · · · a1

1m2
...

. . .
...

a1
m11

· · · a1
m1m2

⎤

⎥
⎦A2 =

⎡

⎢
⎣

a2
11 · · · a2

1m1
...

. . .
...

a2
m21

· · · a2
m2m1

⎤

⎥
⎦ (12)

The population profile of population 1 is x1 = [x1(1), . . . , x1(m1)] where x1( j) is the
proportion of agents in this population using strategy s1j ∈ S1 and

∑m1
j=1 x1( j) = 1. Similarly,

the population profile of population 2 is x2 = [x2(1), . . . , x2(m2)].
The evolutionary dynamics of the populations is then the dynamics of x1 and x2. Since the

population profile xi for population i is a strategy distribution satisfying
∑mi

j=1 xi ( j) = 1, xi

is also called as a simplex. This analysis approach is thus called the simplex analysis. The
evolutionary dynamics of the simplex is described by the replicator dynamics [17,28]:

4 There are two considerations for choosing an appropriate value for the parameter ε: (1) ε should be no less
than its measurable accuracy 1

T ; (2) it is better to use a smaller value for ε.
5 For a symmetric game played in a single population, it can be considered as two replicated populations.
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∇x1 = x1

[

A1x2 − xT
1 A1x2

m1

]

(13)

∇x2 = x2

[

A2x1 − xT
2 A2x1

m2

]

(14)

where ∇x1 and ∇x2 denote the gradient vector of the population profiles at x1 and x2,
respectively. These equations show that the proportion of agents taking a certain pure strategy
in a population increases if and only if the agents could achieve higher utility than the average
payoff of the population, and vice versa.

According to Eqs. (13) and (14), we could calculate the gradient at each point in the
simplex space. Starting from a particular point, we generate a smooth trajectory by moving
a small distance along the calculated gradient, until reaching a fixed point which is called an
attractor. Each attractor attracts the points around it.

Let x∗
i be an attractor of the population i where i = 1 or 2. Since the attractor is the point

to which the points around it will converge, the following equations should be satisfied:

∇xi = 01×mi , xi = x∗
i∇xi · (x∗

i − xi ) > 0, xi ∈ x∗
i ± ε

(15)

where x∗
i ± ε represents the point set around x∗

i in the space.
Next, we extend this approach to analytically evaluate the robustness of an incentive

mechanism. One population is denoted by i and the invaders are added to population i
taking non-equilibrium strategy yi , and the other population is denoted by j . We evaluate
the maximum proportion of invaders such that the population profile of rational agents x is
an attractor x∗. Based on this intuition, we make the following modifications to the basic
simplex analysis approach:

1. Update the population profile of population i from xi to

x̂i = {(1 − R)xi , R · yi } (16)

by separately listing the strategy profiles of rational agent population i and the bounded
rational strategy, where R is the proportion of the bounded rational agents. The desired
equilibrium6 becomes x̂∗

i = {(1 − R)x∗
i , R · yi }.

2. Update the payoff matrix of the population j ( j �= i) from A j to Â j by adding mi

columns to describe the payoff of the population j interacting with the bounded rational
agents taking yi . Then Â j is a m j × 2mi matrix.

3. Calculate ∇ x̂i = [∇xi , 01×m1 ], and ∇x j = x j [(Â j x̂1 − xT
j Â j x̂i

m j
].

4. Calculate solution set Ω = {R} of Eq. (16) satisfying:
∇ x̂i = 01×2mi , ∇x j = 01×m j (17)

and one of the following mi + m j equations

∂∇ x̂i
∂ x̂i (k)

= 0, where k = 1, . . . , mi
∂∇x j
∂x j (k)

= 0, where k = 1, . . . , m j
(18)

5. Calculate the robustness value:

R(M, yi ) =
{
max{Ω} Ω �= ∅
1 Ω = ∅ (19)

6 We assume that the strategy of bounded rational agents cannot evolve as they are not rational.
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The robustness computed using the simplex analysis is exactly the one defined in Defini-
tion 2 when the population size is infinite. Thus, our simulated robustness should converge
to the analytical value as population size N becomes sufficiently large.

It worth noticing that the extended simplex analysis approach can only be used to evalu-
ate the robustness of stylized games which have explicit payoff matrices. For complex real
mechanisms, the payoff matrix is not explicitly available or even cannot estimated through
empirical approaches, such as [31,33]. As a result, this analytical approach may not be gen-
erally applicable. Thus, we validate the proposed simulation frame on several representative
games which can be analyzed using the extended simplex analysis approach.

5.2 Evaluation on representative games

In this section, we evaluate the proposed simulation framework by comparing the simu-
lated results with the analytical ones calculated by the simplex analysis approach in some
representative games.

We first discuss the parameters used in the simulation framework. We conduct the exper-
iments with the Symmetric Coordination Game with population sizes N = 400, 600, and
800, respectively. In the game, the pure strategy set for each player is {Le f t, Right} and
the payoff matrix is shown at the left side of Fig. 3. Both players gain the same payoff if
they choose the same strategy, i.e., α if both choose Left and β if both choose Right. Thus,
two pure strategy Nash equilibria exist. Assume that {Left, Left} is the desired equilibrium,
rational agents would always choose Left given that other agents are also rational and choose
Left, i.e., x∗ = {1, 0}. The bounded rational agents, instead, would choose any other strategy
but Left. We let the bounded rational agents always choose Right, i.e., y = {0, 1}, and both
α and β be 1, in this experiment. The evaluated robustness values are listed in Table1.

For the same population size (e.g., N = 400), the robustness of themechanism increases as
ε increases, and for the same ε the robustness value increases as the population size increases
as stated in Proposition 2. In the following evaluation framework, we set ε = 1

T = 0.02.
Moreover, to justify that a population profile has converged, we set the convergence criterion
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Fig. 3 The robustness of the Symmetric Coordination Game

Table 1 The robustness of the coordinated game (α = 1, β = 1) with different N and ε

N ε = 0.1 ε = 0.3 ε = 0.9

400 325/(325 + N ) = 0.448 330/(330 + N ) = 0.452 375/(375 + N ) = 0.484

600 525/(525 + N ) = 0.467 532/(532 + N ) = 0.470 576/(576 + N ) = 0.490

800 725/(725 + N ) = 0.475 735/(735 + N ) = 0.479 779/(779 + N ) = 0.493
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Fig. 4 The robustness of the Prisoner’s Dilemma
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Fig. 5 The robustness of the Battle of Sexes game

maxL
j=1(max |x (t) − x (t− j)|) ≤ ϑ where t > L and x (t) is the population profile of the

population at time step t , which includes two parameters L and ϑ . This criterion specifies
that the maximum difference of the converged profile of the population at step t with that
over the previous L time steps is no more than a threshold ϑ . We use L = 100 and ϑ = e−2

in our experiments.
The first game we evaluated is a Symmetric Coordination Game as described earlier.
According to Eqs. (17)–(19), The robustness of the game against this non-equilibrium

strategy is α
α+β

We implement this game in our simulation framework by varying α and
β values. Figure3 shows that the simulated robustness does indeed always converge to the
analytical results as population size is sufficiently large.

The second game we consider is the Prisoner’s Dilemma, where each player has two
pure strategies: Cooperation and Defection. Its payoff matrix is shown in the matrix on the
left-hand side of Fig. 4, where d > b > c > a, 2b > a + d .

The population profile is x = (x(1), x(2))where x(1)denotes the proportion of population
taking strategy cooperation. In this game, there is one unique dominant Nash equilibrium
where all players take pure strategy defection, denoted by x∗ = (0, 1). The non-equilibrium
strategy is cooperation. Based on Observation 1 and Eqs. (17) and (18), the robustness of the
game against this non-equilibrium strategy is 1. Figure4 shows that the simulated robustness
converges to 1. We also set ρ with different values (0.2, 0.5, 0.8 and 1), and the simulation
results are exactly the same (the curves for different ρ overlap with each other), showing that
our simulation results are not sensitive to the parameter ρ.

The third game used for validating our approach is the Battle of Sexes game. There are
two players: Man and Woman, and a man or woman has two choices (strategies): Boxing and
Ballet. The payoff matrix of the players is shown in the matrix on the left side of Fig. 5.

A man prefers to watch Boxing and a woman prefers Ballet. In this game, a pair of
individuals is randomly chosen to show up at the sites for either boxing or ballet. If the
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two individuals have the same sex or different sites, they will gain nothing. Otherwise, a
pair of man and woman showing up at the same site will gain α or β(α > β), i.e., when
both choose Boxing, the man agent gains α and the woman agent gains β; when both choose
Ballet, the man agent gains β and the woman agent gains α. The population profile is denoted
by x = (x(1), x(2), x(3), x(4)) where x(1) is the proportion of men who chooses Boxing,
x(2) is the proportion of men who chooses Ballet, and so on. The sum of x(1) and x(2) is
the proportion of men, denoted by ω, and the sum of x3 and x4 is women, which is 1 − ω.
We assume that the desired equilibrium (attractor) is x∗ = (ω, 0, 1 − ω, 0) when both man
and woman choose Boxing. The non-equilibrium strategy of players is Ballet. Based on the
simplex analysis, the robustness of the game should be ((1 − ω)α]/[(1 − ω)α + β]. As one
can observe in Fig. 5, the simulated robustness converges to the theoretical results as the
population size is large enough.

6 Evaluate incentive mechanisms in reputation systems for
E-marketplaces

We now apply the simulation framework to evaluate and compare the robustness of four
incentive mechanisms in reputation systems for e-marketplaces to promote truthful ratings
from buyers. Specifically, Jurca [13] proposes a side-payment mechanism where truthfully
providing ratings is the buyers’ equilibrium strategy. Jurca further proposes another version
of this mechanism to minimize the budget required to reward buyers, called min-budget side-
payment mechanism [13]. The credibility mechanism [19] requires both buyers and sellers to
submit ratings about the outcome of their transactions. If there is a disagreement, both of them
are punished and prevented from conducting transactions for several periods, because such
a case signals that one of them is lying. The trust-based mechanism [36] is built on a buyer
social network where reputable buyers (advisors) are more likely to be chosen as advisors
by many other buyers. Sellers offer more attractive products or lower prices to satisfy those
reputable buyers who will be helpful in propagating the sellers’ good reputation. Buyers
are thus incentivized to provide truthful ratings so as to become reputable. These reputation
systems assist a buyer agent in selecting its interaction seller agents in e-marketplaces by
impacting the future expected utility gain of the seller agents. It indicates that the game
representing these reputation mechanisms should be in a repeated manner, which cannot be
represented by payoff matrices, showing the wide applicability of the proposed simulation
framework.

In the simulation framework, a set of buyers and sellers, in the proportion 10 : 1, peri-
odically interact. In each period, each buyer chooses one seller to conduct a transaction by
considering the sellers’ reputation, i.e., the probability of a seller being chosen is in proportion
to her reputation value. After the transaction, the buyer (and/or seller) has a chance to rate
the transaction. The provided ratings are collected and processed to update seller trustwor-
thiness (and/or buyer social network). At the end of each period, the population then evolves
according to Algorithm 1, i.e., we randomly select a buyer to choose her strategy based on
the expected payoff of each existing strategy and also randomly choose another buyer to
mutate towards one of the extinct strategies according to Eq. (4). The strategy set of a rational
buyer contains two strategies: desired equilibrium strategy and non-equilibrium strategy.7

The parameters of the four incentive mechanisms are set according to their suggested values

7 The strategy of rational buyers can be various, and we assume that the rational buyers would not investigate
the strategies not existing in the system.
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as in the corresponding papers [13,19,36]. In the trust-based incentive mechanism [36], the
maximum number of advisors for a buyer is set to 1/4 of the whole buyer population.

We simulate four non-equilibrium strategies (i.e., attacks) adopted by irrational agents,
which have been well recognized in the literature of reputation systems for e-marketplaces
[13,14]: (1) random attack, y1, where a buyer randomly reports ratings for the transactions
with sellers; (2) constant attack, y2, where a buyer always reports the opposite ratings for
transactions; (3)whitewashing attack, y3, where a buyer first provides untruthful ratings, then
leaves the system but re-enters using a new identity; (4) collusive attack, y4, where a set of
buyers form a group to conduct transactions with trustworthy sellers (top 50%) and report
negative ratings for them.8 To measure the robustness of a mechanism against a specific
attack, each time the simulation framework takes into account two strategies, i.e., the desired
equilibrium strategy (truthfully reporting strategy) x = (1, 0) and the simulated attacking
strategy yk = (0, 1)(k ∈ {1, 2, 3, 4}). In the simulated scenarios, the population size, N , is
equal to the number of rational buyers who take the desired strategy x , starting from 1. The
irrational buyers taking yk , in a number of M starting from 1, enter into the simulated system.
The combined population then evolve according to the simulation framework (Algorithm 1).

The robustness results are shown in Fig. 6. Figure6a shows that all four mechanisms
are totally robust against agents that report randomly. As the proportion of these attackers
increases, the utility of buyers in taking any single non-equilibrium strategy cannot increase
due to their random ratings.

Figure6b shows the estimated robustness against the constant attack. The trust-based
mechanism performs the best and min-budget side-payment mechanism performs the worst.
In the trust-based mechanism, buyers choose other honest buyers (advisors) to join their
social network. The constant attackers have little chance to enter rational buyers’ network
(i.e., gain high reputation), thus cannot significantly affect the behavior of rational buyers.
In the credibility mechanism, as the proportion of the constant attackers increases, rational
sellers would first deviate from equilibrium strategy, which further causes rational buyers to
deviate. Thus, its robustness is only slightly higher than 0.5. In the side-payment mechanism,
ratings provided by buyers are compared with the majority of buyers’ ratings. When the
majority becomes dishonest, the rational buyers will also deviate. Its robustness is thus
around 0.5. The min-budget side-payment mechanism is less robust than the side-payment
mechanism, because the former sacrifices the robustness property in order to achieve the
minimal side-payment imposed on the e-marketplace owner.

Figure6c shows the robustness against the whitewashing attack. The two side-payment
mechanisms achieve higher robustness than the other two mechanisms, and the credibility
mechanism bears the lowest robustness. The side-payment mechanisms have little reliance
on the experience or history of buyers, resulting in similar robustness as that against the
constant attack in Fig. 6b. Further, in the credibility mechanism, if a punished agent, that
cannot conduct transactions, re-enters the system with a new identity, the punishment
becomes invalid and fails to effectively incentivize agents to be honest, resulting in the lowest
robustness.

Figure6d shows robustness against the collusive attack. The credibility mechanism
achieves the highest robustness but the trust-based mechanism performs the worst. The cred-

8 Themain purpose of conducting the empirical evaluation is to verify whether the proposed simulation frame-
work can output meaningful robustness evaluation results of different incentive mechanisms against different
attacks. By considering those typical pure attacking strategies, we can (1) leverage the analytical results in
the literature such as [14]; (2) perform qualitative analysis on the robustness of the incentive mechanisms.
Then, we can easily check whether our simulation framework implemented in the empirical evaluation gives
the same results.
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Fig. 6 The robustness of the incentive mechanisms against different attacks

ibility mechanism punishes agents by not allowing them to conduct transactions for several
periods, which effectively decreases the impact of the collusive attackers. In the trust-based
mechanism, collusive attackers can provide untruthful ratings, add each other in the social
network, and become reputable. These “reputable” attackers will then gain a high utility,
causing rational buyers to deviate from the equilibrium strategy. From Fig.6, we can observe
that the robustness decreases as attacks become more refined, e.g., whitewashing and col-
lusive attacks are more sophisticated than random and constant attacks. This trend was also
predicted by other researchers [13]. In addition, none of the incentivemechanisms can always
perform perfectly against different attacks.

7 Conclusion and discussion

In this article, we propose a quantitative approach to evaluate the robustness of incentive
mechanisms against bounded rational strategies. The main contributions are summarized as
follows: (1)We provide formal definitions of a robustness measure for incentive mechanisms
in the presence of bounded rational players. (2) We propose a general simulation framework
based on evolutionary dynamics, and analyze the influence of its parameter settings on the
robustness measure introduced. (3) We then validate the outcomes of our simulation frame-
work by comparing with theoretical predictions of robustness in several representative game
models. (4) We use our simulation framework to evaluate and compare the robustness of
several incentive mechanisms proposed for reputation systems in e-marketplaces against dif-
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ferent non-equilibrium strategies; results show that the robustness of mechanisms decreases
against sophisticated non-equilibrium strategies and highlights the need for more robust
incentive mechanisms for reputation systems in e-marketplaces.

It is worth noting that the proposed robustness evaluation framework only considers a
single type of non-equilibrium (non-cooperative) strategy each time, which is due to the
following two reasons. Firstly, in some domains it is a typical way to separately evaluate each
type of attacks, such as e-marketplaces [9,11], even though various types of attacks could
coexist in a realistic environment. Secondly, the proposed robustness is based on the concept
of evolutionary stable strategy in evolutionary game theory, where the alternative strategies
in consideration are generally referred to as pure strategies in non-cooperative interactions
by default [23,24,32]. In future work, one nature extension is to consider various or mixed
types of attacks (including coordinate non-equilibrium strategy) through searching for the
support from other theoretical concepts other than ESS.

Moreover, the proposed simulation framework can be enhanced in several aspects. First,
it can be used to search for the worst non-equilibrium strategy. In the proposed simula-
tion framework, we are to find the robustness of an incentive mechanism against a specific
non-equilibrium strategy. It is a natural extension to search for the worst attacking strategy
where the incentive mechanism under evaluation exhibits the lowest robustness value. It then
becomes an optimization problem to minimize the robustness in a space composed by all
possible non-equilibrium strategies. Secondly, the robustness evaluation framework can be
extended to allow rational players to form coalitions and conduct coordinate attacks. A coali-
tion is formed by k rational players who coordinate their actions to increase the overall utility
of the coalition, assuming that the players will use side-payments within the formed coalition
to share corresponding gains. The rational coalition is different from the collusive attack used
in Sect. 6 where the bounded rational players form coalitions to attack the system for gain-
ing more utility. By checking the evolution of rational non-collusive players, our framework
can be extended to calculate the largest collusive player size such that non-collusive players
still sustain equilibrium strategies. Finally, the robustness of various incentive mechanisms
in e-marketplaces will be evaluated through the proposed simulation framework. Using the
data from these experiments, we will analyze the key factors that impact the robustness of
incentive mechanisms. Our aim in this process is to design and develop more robust incentive
mechanisms by carefully considering those influential factors.
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