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Abstract
Optimal placement of charging stations for electric vehicles (EVs) is critical for providing 
convenient charging service to EV owners and promoting public acceptance of EVs. There 
has been a lot of work on EV charging station placement, yet EV drivers’ charging strategy, 
which plays an important role in deciding charging stations’ performance, is missing. EV 
drivers make choice among charging stations according to various factors, including the 
distance, the charging fare and queuing condition in different stations etc. In turn, some 
factors, like queuing condition, is greatly influenced by EV drivers’ choices. As more EVs 
visit the same station, longer queuing duration should be expected. This work first pro-
poses a behavior model to capture the decision making of EV drivers in choosing charg-
ing stations, based on which an optimal charging station placement model is presented to 
minimize the social cost (defined as the congestion in charging stations suffered by all EV 
drivers). Through analyzing EV drivers’ decision-making in the charging process, we pro-
pose a k-Level nested Quantal Response Equilibrium charging behavior model inspired by 
Quantal Response Equilibrium model and level-k thinking model. We then design a set of 
user studies to simulate charging scenarios and collect data from human players to learn 
the parameters of different behavior models. Experimental results show that our charging 
behavior model can better capture the bounded rationality of human players in the charg-
ing activity compared with state-of-the-art behavior models. Furthermore, to evaluate the 
proposed charging behavior model, we formulate the charging station placement problem 
with it and design an algorithm to solve the problem. It is shown that our approach obtains 
placement with a significantly better performance to different extent, especially when the 
budget is limited and relatively low.
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1 Introduction

Electric vehicles (EVs) are attracting growing interest from the public in recent years. 
Many countries have started investing on EVs to mitigate the shortage of fossil fuels 
and the serious air pollution caused by traditional combustion vehicles. A critical issue 
that limits the promotion of EVs is their limited battery capacity, which brings mile-
age anxiety for drivers. Consequently, the EV charging stations, which can support EVs 
with fast and convenient charging (between 20 and 30 minutes, around 12 times faster 
than charging with domestic electricity [1]) is important for the successful boosting 
of EVs. With integrated network of charging stations, EV drivers can select the most 
suitable and convenient one to use according to their preference. Such facility support 
would increase the willingness of the public to accept EVs. On the one hand, character-
istics of charging stations (e.g., the location and size) influence the charging behavior 
of EV drivers; in turn, the choices of EV drivers affect the performance of charging sta-
tions (e.g., the length of the queue). Thus, it is important to study the interrelationship 
between EV drivers’ charging behavior and the performance of charging stations, which 
should be furthermore considered in the planning and construction process of charging 
stations.

While there has been a number of studies [2–5] on Charging Station Placement Prob-
lems (CSPP), only a few of them [2, 5] take into consideration the influence of EV 
drivers’ charging behavior. Moreover, among a few studies that mention EV drivers dur-
ing solving CSPP, their behavior models are based on rather simple assumptions. There 
is lack of comprehensive study of EV drivers’ preference over different factors and/or 
they assume that EV drivers are fully rational. Although there are some other studies 
on EV drivers’ charging behavior or patterns without considering the charging station 
placement problem [6–9], they focus on statistics of their charging time, frequency and 
peak demand etc. None of them have studied the decision making process of EV drivers 
about choosing charging stations in the charging process.

In this paper, we propose a realistic k-Level nested Quantal Response Equilibrium 
(k-Level QRE) charging behavior model, which is the first contribution of this work. 
In the proposed model, with different levels of rationality, EV drivers try to minimize 
the charging cost and compete with each other over limited resources for charging. Our 
k-Level QRE charging behavior model is inspired by the QRE model [10] and level-k 
thinking model [11]. To the best of our knowledge, we are the first to study EV drivers’ 
specific charging behavior.

Our second contribution is that we formulate the charging station placement problem 
with the k-Level QRE charging behavior model and design an algorithm to solve the 
complex optimization problem. We utilize the approximate derivative and design a gra-
dient descent based approach.

The third contribution of this work is that we design a set of simulations of charg-
ing scenarios and collect data from human players to learn the parameters of different 
behavior models and compare the fitting results of them. The comparison result proves 
that our proposed model can better capture the charging behavior of EV drivers.

The last contribution is that we conduct experimental evaluations to prove the effec-
tiveness of employing the k-Level QRE charging behavior model for CSPP. We compare 
it with benchmarks with other behavior models. It is shown that our approach for place-
ment significantly outperforms the benchmarks by decreasing the EV drivers’ queuing 
duration to different extent, especially when the budget is limited and relatively low.



Autonomous Agents and Multi-Agent Systems            (2021) 35:3  

1 3

Page 3 of 19     3 

2  Related work

Due to the rising attention to environment-friendly energy usage in transportation area, 
electric vehicle (EV) and its charging techniques have been extensively researched in 
recent years [12–14]. Meanwhile, to support the introduction of EVs, the charging station 
placement problem (CSPP) has also been widely studied [3, 4, 15–24]. They focus on dif-
ferent aspects, including the charging station coverage, the cooperation with power grid, 
and the travel cost of EV drivers to access the charging stations etc., to optimize the loca-
tion and/or size of charging stations. Nevertheless, they lack enough attention on the influ-
ence from the participating EV drivers on the performance of the charging stations. Among 
a few studies that consider EV drivers’ charging strategies, He et al. [2] use a multi-nomial 
logit model to model EV drivers’ charging route distribution. However, they fail to explain 
why the drivers’ behavior would form the distribution and how to decide the parameters in 
the logit model. Xiong et al. [5, 25] assume that the drivers are fully rational in the charg-
ing game and would form Nash equilibrium in choosing charging stations, which is usually 
impractical in real-world scenarios.

While perfect rationality has been extensively studied and used to model players’ deci-
sion-making in congestion games [26, 27], it is not the best solution for the charging game 
that we want to study. Nash equilibrium (NE) in a game is defined as the state where no 
player can improve his/her utility by unilaterally changing his/her own decision. While the 
number of players goes to infinity, NE converges to the Wardrop user equilibrium (UE), 
i.e., whichever choice used by the players has the same and maximum utility. However, 
the assumptions in perfect rationality are usually impractical in reality due to (1) players’ 
lack of accurate information (on others’ behavior) and (2) limited computational ability. 
Bounded rationality is first proposed by Simon [28], where players tend to seek a satisfac-
tory solution rather than an optimal one. However, the qualitative definition of “satisfactory 
solution” does not specify its distance from the optimal solution and thus it is hard to quan-
titatively evaluate it for specific problems. Moreover, the existence of Bounded Rational 
User Equilibria (BRUE) makes the solution space a non-convex set.

To model the bounded rationality of human players, Mckelvey and Palfrey [10] pro-
pose quantal response equilibrium (QRE). QRE specifies a set of mixed strategies for each 
player while assuming a random perception error in utility estimation. A typical QRE for-
mation is the logit equilibrium based on a presumed error distribution, i.e., i.i.d. Gumbel 
distribution.

Note that the subscript i denotes a specific choice, ui is the utility of choice i, and pi is the 
probability of using choice i. However, the hyper-parameter—rationality level � defined 
in QRE can be any value from 0 to ∞ , and it may vary from case to case. This character 
hinders the application of QRE to real-world problems. Some work (e.g. [29]) discovers 
that value of � is largely dependent on specific problem structure, but there is no further 
research on how it is influenced. Thus, the hyper-parameter � is usually carefully studied 
for specific problems and applications.

Human behavior has also been valued and extensively studied in the economic research 
community. Prospect theory, a Nobel-prize-winning theory is a classic behavior economic 
theory proposed by Daniel Kahneman and Amos Tversky [30]. As shown in Fig. 1, peo-
ple’s prospect utility for a certain decision is influenced by a reference point, as well as 

pi =
e�ui

∑
j e

�uj
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the loss or gain versus it. Another behavior model, cognitive hierarchy model (which is 
well known as level-k thinking model [11]) assumes that players act with different levels of 
rationality.

Some existing work has focused on EV drivers’ charging behaviors or patterns. Smart 
and Schey [6] collect and analyze data collected from an EV project. Their data show some 
statistics of EV users, including the driving distance, charging frequency and the place to 
charge (home or charging stations) etc. Franke and Krems [7] focus on studying the charge 
level at which people recharge. Azadfar et al. [8] also present some statistics of EV drivers’ 
recharging behavior such as driving distance between charging activities etc. Quirós-Tortós 
et al. [9] use probability distribution functions to analyze EV drivers’ start charging time 
and peak demand etc. to understand the interaction between charging activities and the 
power grid. However, to the best of our knowledge, there is no existing work studying EV 
drivers’ charging profile and strategy.

In this work, we formulate the charging process of EV drivers as a charging game; study 
and describe the bounded rationality of EV drivers in charging activities with a k-Level 
QRE model (which is inspired by the QRE model and level-k thinking model); and inte-
grate the obtained realistic charging behavior model into the CSPP formulation to improve 
the charging station performance.

3  Charging game and equilibria

In this section, we first describe the EV charging scenario and model it as a charging game. 
Then we discuss three kinds of different equilibrium concepts for the charging game, 
including two state-of-the-art equilibria and the k-Level QRE model proposed in this work 
(Table 1).

3.1  Charging scenario and charging game formulation

When EV drivers need to charge their EVs, they are usually faced with multiple choices, 
where each is a charging station with some specific characteristics. These characteris-
tics may include the distance to the station, the charging fare to pay for charging and the 
queuing condition in the station etc. Specifically, considering the queuing condition, it is 
straightforward to see that more people selecting the same station would lead to longer 

Fig. 1  The value function of 
prospect theory
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queuing duration. In a sense, people are competing with each other for the resource — the 
charging stations and they are self-interested in this process. Therefore, we define a charg-
ing game to model the interactions among them.

Let us first take a look at the charging scenario. We consider the EV charging prob-
lem in such an environment. Assume that there is an EV driver population scattered in the 
city. According to the geographic condition, residential distribution and city plan, the city 
can be divided into a set N = {1,… , n} of zones.1 Each zone i ∈ N  has Ei residents that 

Table 1  Notations

Notation Meaning

N = {1,… , n} The set of zones; if there is a charging station in zone i, it is named the ith charging station
� The portion of EV owners that use charging stations
xi The number of chargers in the ith charging station; xi = 0 means there is no charging sta-

tion in zone i
Ei The number of EV owners in zone i; they are treated as identical group i players of the 

charging game
�i = {pij} The mixed strategy of EV owners in zone i, where pij is the probability they charge in the 

jth charging station
� = {�i} The strategy profile of all EV owners
�⋆ An equilibrium strategy profile
�⋆
−i

An equilibrium strategy profile of all players except group i players
Ci The charging cost of all EV owners in zone i
cij The unit charging cost for EV owners in zone i to charge in the jth charging station
tij, dij The travel time and distance between zone i and the jth charging station
fj The charging fare of the jth charging station
qj The queuing duration in the jth charging station, which is a function of the strategy profile 

�

� The time used to charge one EV
yj The number of EV owners that use the jth charging station under strategy profile � , 

yj =
∑

i Ei�pij

wt,wd ,wf ,wq The weights of travel time, distance, charging fare and queuing duration in function cij
� The rationality parameter of QRE and k-Level QRE models
�l The proportion of level-l players in the k-Level QRE model, 

∑k

l=1
�l = 1

�l
i
= {pl

ij
} The strategy of level-l players in zone i

SC The social cost
B The budget
S = {�0} The set of initial searching points, each of which is a valid placement
NI The maximum number of iterations of Algorithm 1
NS The maximum searching step size (integer) of Algorithm 1

1 This is inspired by the city plan of Singapore (http://www.prope rtyhu b.com.sg/singa pore-distr ict-guide 
.html). Based on the zoning assumption, residents in the same zone are living relatively close. Although 
identifying the specific location and treating each of them as a different player would be closer to the real-
world scenario, it’s relatively unrealistic for formulating and solving the optimization problem. Thus, we 
make the comprise and treat them as a group of identical agents.

http://www.propertyhub.com.sg/singapore-district-guide.html
http://www.propertyhub.com.sg/singapore-district-guide.html
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own EVs and a part � ∈ (0, 1) of them use charging stations instead of home electricity to 
recharge their EVs. Suppose there is at most one charging station in each zone i and we 
name it the ith charging station, whose size is xi (i.e., there are xi chargers and at most xi 
EVs can be served in the meantime) and location is decided by the government according 
to various factors (e.g., the land property and city planning requirement etc.).2 Then the EV 
charging problem is for each EV driver to make decision about where to charge the EV. 
The charging game has following components.

– Player. The EV drivers are players of the charging game.
– Strategy, mixed strategy and strategy profile. A strategy for a player is to use one 

accessible charging station. For example, a player in zone i can charge in the jth charg-
ing station. Considering that players in the same zone have the same accessibility to 
charging stations, we treat them as identical players. The EV drivers in zone i are thus 
called group i players. We then focus on the mixed strategy �i = {pij} , i.e., the strategy 
distribution of players in each group i, where pij is the probability that players in zone i 
charge in the jth charging station. The strategy profile of the charging game is denoted 
by � = {�i} , i.e., the mixed strategy of all groups.

– Cost. Considering that charging in different charging stations bring the same utility for 
EV drivers, i.e., having the EV recharged, we assume that EV drivers of each group i 
only consider their cost Ci (details to be discussed later in this section) when making 
decision in the charging process.3

– Equilibrium. Players are self-interested in the charging game, thus they are always 
searching for better strategy to decrease the charging cost with their best ability. An 
equilibrium strategy profile �⋆ is the stable state of the game where no player has the 
incentive to unilaterally deviate from their current strategy.

We then discuss the cost definition in the charging game. Considering the charging pro-
cess, an EV driver needs to drive from home to the charging station, (probably) queue in 
the charging station for some time and pay the charging fare. Thus, we decide to include 
the following factors in the charging cost function.4

– Travel time tij : the time of driving between zone i and the jth charging station. We 
assume that the travel time is similar for going to and coming back from the charging 
station.

– Travel distance dij : the distance between zone i and the jth charging station.
– Charging fare fj : the money to pay in the jth charging station. We assume a fixed fare 

for all players that use the same charging station.
– Queuing duration qj(�) : the time to wait in line in the jth charging station, 

which depends on the size xi of the charging station and the number of EV drivers 
yi =

∑
i Ei�pij that use it. Note that the queuing duration qj in the charging station of 

3 Under some circumstances, EV drivers might have different benefits while charging their EVs in different 
charging stations (e.g., getting access to other facilities). In that case, our model can be extended by deduct-
ing the benefit in the cost function.
4 We list the most common factors that influence EV drivers’ charging cost. While other factors may make 
a difference in some special scenarios, the model can be extended accordingly.

2 Readers might wonder why only one charging station is considered in one zone. The reason is that in case 
there are multiple charging stations in one zone, we can always divide the zone into a number of new zones, 
each with one charging station.



Autonomous Agents and Multi-Agent Systems            (2021) 35:3  

1 3

Page 7 of 19     3 

zone j is decided by how many EV drivers use it. Thus it is a function of the strategy 
profile � . Similar to [25], we assume that all chargers to be deployed have the same ser-
vice ability, and each of them averagely takes � minutes to recharge one EV. The queu-
ing duration qj for EV drivers in the jth charging station is 

A linear combination5 of aforementioned factors with corresponding weights is used to 
formulate charging cost Ci.

where qj(�) , cij(�) and Ci(�) mean that the queuing duration qj and cost Ci are functions of 
the strategy profile � , and cij is the unit cost of charging in the jth charging station.

3.2  Nash equilibrium

Nash equilibrium is widely used in game theory. By assuming that players have the knowl-
edge of all other players’ strategies and are fully rational, the Nash equilibrium describes 
the state where no player can decrease her charging cost via unilateral strategy change. In 
the charging game, it means: if the jth charging station is used with non-zero probability pij 
by group i players, there must be charging cost cij = minj� cij� . Otherwise, pij will decrease 
while pij⋆ with j⋆ = argminj� cij� would increases. Formally, the Nash equilibrium �⋆ can 
be denoted as Eq. (4), which can further be represented by Eq. (5).

Note that �⋆
−i

 denotes the equilibrium strategy profile of all players except group i players.

3.3  QRE model

With the charging cost function in Eq. (3), we can denote the selection distribution of play-
ers according to Quantal Response Equilibrium (QRE) model with Eq. (6).

(1)qj(�) =
�yj

2xj
=

�
∑

i Ei�pij

2xj

(2)Ci(�) = Ei�
∑

j

pijcij(�)

(3)cij(�) = wttij + wddij + wf fj + wqqj(�)

(4)�⋆
i
∈ argmin

�i

Ei𝜏
∑

j

pijcij(�i,�
⋆

−i
),∀i ∈ N

(5)cij(�
⋆) = min

j�
cij� (�

⋆), if p⋆
ij
> 0,∀i ∈ N

(6)pij =
e−�cij(�)

∑
j� e

−�cij� (�)

5 Linear combination is a commonly used simple but powerful method.
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Note that � is the rationality parameter of the QRE model. When � → 0 , players tend to 
be irrational and choose one charging station randomly; when � → ∞ , players tend to be 
rational and choose the option with the lowest cost. In this case, players are actually using 
the Nash equilibrium.

3.4  k‑level QRE model

A strong assumption in aforementioned QRE model is that players can form QRE distribu-
tion � according to the actual charging cost cij(�) . In practice, QRE is usually employed when 
the cost for each strategy is a constant, which is different from our charging game, where the 
charging cost of a strategy is in turn a function of the strategy distribution (as shown in Eq. 
(3)). In other words, players can hardly know cij(�) when they are making decision.

With respect to the above characteristic, we propose a k-Level nested Quantal Response 
Equilibrium (in short, k-Level QRE) model to capture the decision making of the EV drivers.

We assume that there are players with k different levels of rationality, which means play-
ers from different levels perceive the unknown charging cost differently and make distinct 
decisions. Specifically, the level-1 players are the least rational players and would form 
a QRE distribution according to their direct observation, i.e., the current queuing duration 
that they observe. We denote the observable queuing duration for all charging stations as 
�0 = {q0

1
,… , q0

n
} , where q0

j
, j ∈ N  is for the jth charging station. Then, level-1 players would 

form the following QRE distribution �1 with each

Consequently, level-2 players, as they are more intelligent and rational, would think other 
players are in level-1, anticipate their choice distribution �1 and perceive the queuing dura-
tion as �1(�1) . Note that the queuing duration in charging stations depends on the strategy 
profile �1 , thus it is a function of �1 . The QRE distribution �2 formed by level-2 players is 
then presented with Eq. (8).

Similarly, level-k players form QRE distribution �k as Eq. (9).

In Fig. 2, we can see the illustration of k-Level QRE model’s structure while k = 2.
We denote the portion of level-l players as �l . Then, the actual distribution � of all players’ 

charging choices is decided by the distribution of players in each level and the vector �:

where 
∑k

l=1
�l = 1.

(7)p1
ij
=

e−�cij(�
0)

∑
j� e

−�cij� (�
0)

(8)p2
ij
=

e−�cij(�
1(�1))

∑
j� e

−�cij� (�
1(�1))

(9)pk
ij
=

e−�cij(�
k−1(�k−1))

∑
j� e

−�cij� (�
k−1(�k−1))

(10)pij =

k∑

l=1

�lp
l
ij



Autonomous Agents and Multi-Agent Systems            (2021) 35:3  

1 3

Page 9 of 19     3 

4  Charging station placement problem formulation and algorithm

Based on the charging game definitions in the above section, we can then define the Charg-
ing Station Placement Problem (CSPP). Actually, the CSPP is a problem to find the best 
charging station placement, i.e., vector � = {xi} , to optimize a pre-defined objective w.r.t. 
the charging game equilibrium state.

We use Singapore as a concrete example to demonstrate the process of formulating and 
solving the CSPP. As we can see from Fig. 3, Singapore city is a well-developed metro-
politan with the whole territory divided into a number of zones according to the residential 

Fig. 2  The k-level QRE model with k = 2

Fig. 3  Zonal division of a target area
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condition, geography and nature etc. We divide the island into a set N  of n zones for the 
CSPP, which is shown with broad lines on the map.

We treat the government as the investor to construct the charging stations and they aim 
to optimize the objective for peak hours, which is the most critic time period for city trans-
portation. To decide the objective of the CSPP, we mainly take two factors into considera-
tion. (1) Congestion issue is a main concern for most big cities in the world [31]. (2) The 
limited space and relatively long charging time for EVs would make congestion a potential 
problem for charging stations. Thus, we define social cost SC as the objective to optimize 
in the CSPP, which is the total queuing duration of all EV drivers6, i.e., Eq. (11).

Meanwhile, a budget B is introduced to constrain the upper bound of investment from the 
government, which is the total number of chargers that can be placed in all charging sta-
tions. Then, the CSPP is to minimize SC by strategically deciding the optimal charging sta-
tion placement � = {xi} with respect to the EV drivers’ charging behavior in the charging 
game.

Specifically, with our proposed k-Level QRE model, the CSPP can be formulated as 
follows.

The CSPP is an integer non-convex optimization problem, finding the global optimum is 
NP-hard. The number of possible charging station placements is as large as nB , so it is 
impossible to enumerate all solutions to find the optimal one. Therefore, we propose an 
algorithm named MAGD (Algorithm 1) with techniques including multi-start point search-
ing, derivative approximation and gradient descent method to compute an approximate 
solution.

MAGD solves the charging station placement problem with multiple start points, with 
each of which, it iteratively finds the best local optimum. Firstly, we randomly generate a set 
of start points S (Line 1), where each �0 ∈ S represents a charging station placement. The 
optimal object value is initialized as infinity (Line 2). For each start point �0 , the algorithm 
use gradient decent method to search the corresponding local minimal objective value O0

bj
 

(Lines 3 to 19). We initialize O0
bj

 by setting � as �0 and solve the relaxed CSPP (Line 4). In 
each of the NI iterations, for each integer step size from the maximum NS ( > 1 ) to 1, we first 
set � as the current �0 (Line 7) and solve the optimization problem to get the number of EV 
users in each charging station, i.e., {yi} (Line 8), then compute the approximated gradient for 
each xi (Line 9). The vector � is then updated by increasing (resp. decreasing) step for the xi 
with the minimal (resp. maximal) gradient (Lines 10 - 12). The objective for the updated � is 
computed as Obj (Line 13), which is used to compare with the current local optimal objective 

(11)SC =
∑

i∈N

�Ei

∑

j

pijqj(�)

(12)min
�
SC

(13)
�.t.1 − 3, 7 − 10

∑

i∈N

xi ≤ B, xi ∈ ℕ

6 The reason is that we think the most important factor is the congestion in charging station for this place-
ment problem. But our framework is able to be extended to include other factors.
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O0
bj

 . If Obj < O0
bj

 , both �0 and O0
bj

 will be updated and we go to next iteration; otherwise, we 
would change step size. After NI iterations, we compare the local minimal objective O0

bj
 of the 

start point with the O⋆
bj

 and update the current optimal solution and objective if O0
bj
< O⋆

bj
 . By 

increasing the number of start points and expanding the searching space, the probability of 
reaching the global optimal solution would be increased.

The complexity of the MAGD algorithm is O(2|S|NINSCrelax) where Crelax is the com-
plexity of the relaxed CSPP with fixed variable � to compute the strategy profile � . With 
the k−Level QRE model, Crelax = O(k|�|) , where ��� =

∑
i

∑
j 1 is the size of the strategy 

space. To find the strategy profile of the relaxed CSPP, we start with computing the level-1 
players’ strategy with the observable queuing duration (Eq. (7)), with which the perceived 
queuing duration for the level-2 players would be computed and used to compute the cor-
responding level-2 strategy profile (Eq. (8)), and so forth. After getting the strategy profile 
of players from all k levels, we then use Eq. (10) to compute the global strategy profile � . 
Therefore, the overall complexity of the MAGD algorithm is at most O(n2) when players in 
each zone i would charge in any of the n charging stations. 

5  User study design

To learn the charging cost function and the level of rationality of EV drivers, we design a 
set of user studies to simulate the charging scenarios and collect data from human players.
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We present charging scenarios for players with abstracted information as shown in 
Fig.  4.7 The interface includes (1) a grey scale map as background, (2) the start point8 
marked with red circled S where EV drivers (players) stay, (3) the number of EV drivers at 
the start point that will go for charging at the same time, (4) the candidate charging stations 
marked with purple icons and named as CSi, i ∈ {1, 2,…} , (5) the charging fare in $ at 
each charging station circled near the corresponding charging station, (6) the hint for queu-
ing duration, (7) the charging routes from the start point to each candidate charging station, 
along which the travel time and distance are denoted in min and km respectively, and (8) a 
table with text information below the map.

The travel time and the distance from the start point to each of the charging stations are 
assumed to be constants. To visualize the travel speed in the charging route, inspired by 
Google Maps, we use four colors to draw the travel routes (respectively representing travel 
speed from fast to slow. All candidate charging stations are assumed to be located beside a 

Fig. 4  An example of user study interface

7 The design of the game has been performed in several iterations with studies on human players to ensure 
that they are aware of all the games’ parameters.
8 We design the charging games to capture the players’ behavior when competition exists in the charging 
scenario by setting one start point but multiple EV drivers. Although there are EV drivers from other start 
points in real-world scenarios, they form the equilibrium after repeating charging activities in a long term. 
Setting a too complicated charging game would make it unrealistic for players to fit in a short time.
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shopping center.9 The EV drivers at the same start point will charge at the same time, thus 
they would cause congestion in the charging stations. The EV drivers in a charging station 
with x EV drivers choosing it would wait for x mins on average before starting charging.

With all the information provided, a player is able to see the difference between differ-
ent charging choices and then make his/her charging decision. For example, as shown in 
Fig. 4, if a player at the start point S chooses the charging station CS1 , meanwhile there are 
12 other EV drivers that also select CS1 , the player would travel 13 minutes, 9 kilometers, 
pay 1$ and queue 13 minutes before charging.

5.1  Environment setting

To study the charging behavior of EV drivers, we design two different charging scenario 
settings {I1, I2} respectively with: (1) one start point and two candidate charging stations 
( I1 ); and (2) one start point and three candidate charging stations ( I2 ). For each setting, we 
carefully design 6 scenarios with different parameters. The basic idea is to provide dis-
tinct scenarios to avoid over-fitting. The total 12 charging scenarios are separated into two 
groups {GA,GB} , each with 3 from I1 and another 3 from I2.

To decide the parameters in the charging scenarios, we first randomly generate 1000 set-
tings respectively for I1 and I2 , each of which with travel time, distance, charging fare and 
the number of EVs all randomized from a given interval/set. Then we use k-means cluster-
ing to class the settings into 6 clusters and select one from each cluster in two steps as fol-
lows. Table 2 presents all settings got the 12 charging games. 

1. Find the maximum dmax and minimum dmin distance between the settings’ parameter 
vectors in a group and the corresponding group center. Set the radius for searching as 
0.5 ∗ dmax + 0.5 ∗ dmin.

2. Randomly select a setting from the cluster in the circle with the cluster center and dis-
tance radius.

Table 2  Parameters of the 12 
charging games (travel time t, 
distance d and charging fare f 
respectively in min, km, $)

Game CS1(t, d, f ) CS2 Game CS1(t, d, f ) CS2 CS3

1 8, 6, 4 8, 6, 1 7 8, 7, 3 8, 8, 2 9, 8, 1
2 18, 6, 2 8, 6, 2 8 7, 6, 3 8, 7, 2 7, 7, 3
3 12, 5, 2 12, 12, 2 9 4, 3, 4 6, 3, 3 10, 8, 2
4 8, 5, 2 12, 12, 2 10 4, 3, 2 6, 3, 3 10, 8, 3
5 9, 5, 1 8, 6, 3 11 10, 8, 2 10, 9, 1 1, 1, 3
6 18, 7, 4 9, 10, 1 12 9, 8, 4 12, 9, 1 2, 1, 2

9 In real-world application, a charging station can be located in other positions. In the experiments, we say 
that a charging station is next to a shopping center to provide a simulated scenario for players.
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5.2  Charging game

Each invited human player is randomly directed to GA or GB . They are asked to make a choice 
in each of the 6 different scenarios for once.

We put the user studies on a virtual machine build on Microsoft Azure platform. Players 
are invited to access the user studies via a link. They would first see the introduction with a 
video and text explanation, which clearly explain how the charging scenarios are set and what 
decisions they are supposed to make. After acquiring the preliminary information, players 
would see a toy example on the next page, which is used to ensure that the participants have 
fully understood the user study. Until then players would formally start the charging games.

5.3  Model fitting

We employ the Maximum Likelihood Estimation (MLE) to learn the parameters � . For a 
charging scenario S with M records from the players, the logarithmic likelihood of � is

where cs(i) is the charging station selected in the sample i. Assuming that there are B 
charging stations (strategies) for the players and the number of players that choose to use 
the jth is Mj , then we have 

∑
j Mj = M and

By substitute pj with k-Level QRE model, we have

As we can see from above function, � = {�l} is another set of unknown parameter. Our 
approach is to enumerate the value of each �l within [0, 1] with interval 0.01, and find the 
best set.

In fact, we design a number of charging scenarios with different environment settings 
to study players’ charging behavior. Thus, we are maximizing the sum of the logarithmic 
likelihood when learning the parameters. The function fmincon of Matlab is used for the 
maximization.

6  Experimental result

We invite N = 50 players to participate the charging game, with 25 of them making choices 
for charging scenarios in group GA and the rest for group GB . In this section, we fit the 
charging behavior models with results from charging games and discuss the results.

(14)log L(�|S) =
M∑

i=1

log pcs(i)(�)

(15)log L(�|S) =
B∑

j=1

Mj log pj(�)

(16)logL(�|S) =
B∑

j=1

Mj log(

k∑

l=1

�lp
l
j
)

(17)max
�,�

log L(�) =
∑

S

log L(�|S)
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For a charging scenario with M EVs set for the start point, the actual queuing duration 
in a candidate charging station i with Ni players selecting it is calculated as qi = M ⋅ Ni∕N 
min.

We use Python language and PyOpt package to solve the electric vehicle charging sta-
tion placement optimization problem. We compare the result with (1) using QRE and (2) 
an existing method from [32], which assumes EV owners form Nash equilibrium in the 
charging game, i.e., the charging cost of each choice should be the same and minimum if 
the choice is selected by any player.

6.1  Fitting results of charging behavior models

We fit Nash equilibrium (“NE”) model (Eqs. (4) and (5)), QRE model (Eq. (6)) and k-Level 
QRE (“k-LQRE”) models (Eq. (10)) of different k values ( k ∈ {1, 2, 3, 4} ) with the experi-
mental data collected from human players. Table 3 presents the fitting errors’ mean and 
standard deviation for different behavior models. MAE is the mean absolute error ( ∈ [0, 1] ) 
and smaller MAE value means better fitting performance. R2 is the mean squared error 
( ∈ (−∞, 1] for non-linear models). A R2 value closer to 1 means a better fitted model. DKL 
— the Kullback-Leibler Divergence is used to evaluate how different are two distributions. 
Smaller DKL means two distributions are more similar, i.e., the fitted model is closer to the 
collected data. As we can see, the R2 value for some of the models is negative, which is 
basically saying that the mean of the data provides a better fit to the outcomes than do the 
fitted non-linear function values [33]. Combining the fitting metrics, we can see that the 3−
Level QRE model performs best. Since the 4−Level QRE model is quite close to the 3−
Level one, we further compare the result of Chi-square test on these two models. The null 
hypothesis is that the charging strategy profile follows the corresponding behavior model. 
It is shown that the 3−Level QRE model has a larger p-value 0.96. Thus we select k = 3 
as the best hyper-parameter for the k-Level QRE model in the charging game. The experi-
ments for charging station placement would be performed with the 3−Level QRE model.

Table 4 shows the learnt parameters for different behavior models, where � is the ration-
ality parameter when applicable and others are the weights for corresponding factors. 
Table  5 demonstrates the proportion of players in each rationality level for the k−Level 
QRE models. For example, when k = 3 , the results show that 56% of players are in level 1 
and their charging decisions are made without considering others’ behavior; 22% players 
think others are in level 1 and take into consideration their strategies; and the rest are in 
level 3.

Table 3  Learning results from 
charging games

Models∖
Errors-
mean(std)

MAE R2 DKL

NE 0.147 (0.063) −5.452 (17.444) 0.124 (0.077)
QRE 0.062 (0.030) −0.189 (3.366) 0.028 (0.027)
1-LQRE 0.064 (0.035) −0.541 (4.324) 0.033 (0.034)
2-LQRE 0.052 (0.033) 0.403 (1.407) 0.023 (0.025)
3-LQRE 0.048 (0.036) 0.833 (0.251) 0.017 (0.014)
4-LQRE 0.052 (0.035) 0.779 (0.346) 0.017 (0.020)
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6.2  Charging station placement

As discussed in Sect. 4, we can divide Singapore into 23 zones. We present the experimen-
tal results on Singapore in this section. We also test the scalability of our proposed algo-
rithm with synthetic data because we might need to apply the proposed approach in bigger 
cities. In experiments with synthetic data, we increase the number of zones from 20 to 
200 with a step size of 20. It turns out that the run time of our approach increases with the 
problem size and the maximum run time of the problem with 200 zones is about 17 hours, 
which means the proposed approach can handle charging station placement problems in 
cities as large as 10 times of Singapore. Therefore, we claim that the proposed approach is 
applicable on real-world scenarios.

Table 4  Learning results from 
charging games

Models∖Params. � wt wd wf wq

NE – 0.250 0.250 0.250 0.250
QRE 3.918 0.060 0.028 0.251 0.660
1-LQRE 0.997 0.135 0.058 0.556 0.251
2-LQRE 1.793 0.167 0.046 0.626 0.160
3-LQRE 1.808 0.199 0.006 0.619 0.176
4-LQRE 2.012 0.245 0.000 0.568 0.187

Table 5  Proportion of players in 
each rationality level

Models∖� 1 2 3 4

1-LQRE 1 – – –
2-LQRE 0.8 0.2 – –
3-LQRE 0.56 0.22 0.22 –
4-LQRE 0.19 0.00 0.53 0.28

Table 6  Social cost comparison

SC∖Budget 300 400 500 600

3-Level QRE 6947.82 5256.62 4190.56 3523.95
NE 7625.75 5750.31 5001.71 3719.27
QRE 7604.78 5805.69 4462.38 3564.42
Randomized 8877.99 6451.17 5132.83 4249.91
Demand-based 7432.53 5545.14 4443.04 3705.98
Decreased cost VS. NE ( %) 8.89 8.59 16.22 5.25
Decreased cost VS. QRE ( %) 8.64 9.46 6.10 1.14
Decreased cost VS. randomized ( %) 21.74 18.52 18.36 17.08
Decreased cost VS. demand-based ( %) 6.52 5.20 5.68 4.91
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Especially, we test our approach with data of Singapore.10. The main focus is to com-
pare the social cost of different placement plans while assuming that people actually follow 
the k-Level QRE charging behavior model. As presented in Table 6, we compare with 4 
benchmarks: (1) the existing work that assumes EV drivers follow Nash equilibrium; (2) 
quantal response equilibrium; (3) randomized placement and (4) demand-based plan that 
assign chargers to different zones proportionally according to its number of EV drivers. 
As we can see from the table, our approach can decrease the social cost to different extent 
comparing to all benchmarks, especially when the resource is limited and the budget is 
relatively low.

7  Conclusion

In this work, we study and model the bounded rational charging behavior of electric vehi-
cle (EV) drivers and apply the behavior model in solving EV Charging Station Placement 
problem (CSPP). There are several contributions of this work. (1) We propose a k-Level 
QRE charging behavior model based on the QRE model and the level-k thinking model. 
The proposed model well captures the bounded rationality of EV drivers in charging activi-
ties. (2) We design a series of user studies to simulate the real-world charging scenarios 
and collect data from human players. Experimental results of fitting different behavior 
models based on the collected data show that our behavior model outperforms state-of-
the-art models. (3) The charging station placement problem is formulated by considering 
the EV drivers’ bounded rational charging behavior. An algorithm is designed to solve this 
complex integer non-convex optimization problem. (4) To show the efficiency of the pro-
posed charging behavior model, we execute experiments on charging station placement to 
compare the expected social cost of using different behavior models. The results show that 
our model significantly decreases the social cost. We note that a limitation of our work is 
the amount of data collected from human subject experiments. A potential future extension 
of this work is to validate our proposed model with more human subject experiments or 
real-world data. Moreover, the EV charging behavior model can also be applied to other 
related problems. For example, when charging stations have been constructed, governors 
can use pricing as a method to incentivize the EV drivers’ charging decision.
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