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Abstract
The popularity of mobility-on-demand (MoD) systems boosts online collective multiagent 
planning (Online_CMP), where spatially distributed servicing agents are planned to meet 
dynamically arriving demands. For city-scale MoDs with a fleet of agents, Online_CMP 
methods must make a tradeoff between computation time (i.e., real-time) and solution 
quality (i.e., the number of demands served). Directly using an offline policy can guaran-
tee real-time, but cannot be dynamically adjusted to real agent and demand distributions. 
Search-based online planning methods are adaptive, but are computationally expensive and 
cannot scale up. In this paper, we propose a principled Online_CMP method, which reuses 
and improves the offline policy in an anytime manner. We first model MoDs as a collec-
tive Markov Decision Process ( ℂ-MDP) where the collective behavior of agents affects the 
joint reward. Given the ℂ-MDP model, we propose a novel state value function to evaluate 
the policy, and a gradient ascent (GA) technique to improve the policy. We further show 
that offline GA-based policy iteration (GA-PI) can converge to global optima of ℂ-MDP 
under certain conditions. Finally, with real-time information, the offline policy is used as 
the default plan, GA-PI is used to improve it and generate an online plan. Experimental 
results show that our offline policy reuse-guided Online_CMP method significantly outper-
forms standard online multiagent planning methods on MoD systems like ride-sharing and 
security traffic patrolling in terms of computation time and solution quality.

Keywords Mobility-on-demand systems · Collective multiagent planning · Policy reuse · 
Markov Decision process

1 Introduction

Mobility-on-demand (MoD) systems are transforming urban mobility by providing con-
venient and timely service to demands [2]. Such MoD systems include ride-sharing where 
vehicles drive to meet passengers’ requirements [22] and security traffic patrolling where 
police officers patrol to respond to emergencies [24]. In MoD systems, a fleet of agents 
(e.g., vehicles and police officers) are planned to meet customer demands (e.g., passengers 
and emergencies). Due to the uncertainty in demand arrival, online collective multiagent 

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-024-09650-z&domain=pdf


 Autonomous Agents and Multi-Agent Systems           (2024) 38:19 

1 3

   19  Page 2 of 26

planning (Online_CMP) has attracted lots of attention [9, 10, 35]. A key characteris-
tic of Online_CMP problems is that agents should be sequentially planned for servicing 
demands, and the plan in one period has a direct impact on following periods’ plan.

Many existing approaches have attempted to find a balance between computation time 
(i.e., real-time) and solution quality (i.e., the number of demands served) for Online_CMP. 
To guarantee real-time, the offline policy can be directly used as a guide to online planning. 
For example, using historical data to construct the offline model, efficient offline solutions 
can be achieved by linear programming (LP) [7, 11, 17, 36]. Directly using the offline 
policy, however, cannot be adapted to real agent and demand distributions. Multiagent 
reinforcement learning (MARL) can learn how to take actions by observing the real envi-
ronment [8, 18, 25–28]. Since the MoD environment is non-stationary with thousands of 
agents learning concurrently, MARL methods are not stable and may trap into sub-optimal 
solutions. On the other hand, online adaptive methods proceed with a rolling horizon at 
each period and attempt to search a desirable plan sequence for the current observation [9, 
22]. However, searching is time-consuming, online adaptive methods often have difficulty 
in computing policies in real-time with a sufficiently long look-ahead horizon.

In general, most existing offline learning and online search policies are independent, 
an exception is the recently proposed two-stage offline learning online planning (OLOP) 
framework [33, 39]. In the offline stage, given the historical data, MARL is employed to 
learn the state value function. In the online stage, agents are always matched with demands 
that have larger state values. Unfortunately, in traditional OLOP framework, MARL is used 
to learn the state value function, which might be sub-optimal and reduce the online plan-
ning efficiency. Moreover, online one-step lookahead planning again gets trapped in the 
dilemma of serving current real demands or future demands (i.e., state value).

In this paper, we propose an offline police reuse-guided online Online_CMP method, 
which can trade computation time with solution quality. The contributions of this paper can 
be summarized as follows:

• We adopt the representation of a collective Markov Decision Process ( ℂ-MDP) [25, 36] 
for Online_CMP in which the collective behavior of agents affects the joint reward. By 
examining how local policy at each state influences successive state-action reward, we 
design novel joint-action reward and state value functions for policy evaluation.

• We propose a gradient ascent (GA) technique to improve the offline policy monoto-
nously. We show that the GA-based policy iteration (GA-PI) can converge to optimal 
solutions of ℂ-MDP under certain conditions. Given real-time observations, we use the 
offline policy as the default plan. GA-PI is then used to restart from the default plan and 
improve it in an anytime manner, thereby generating an efficient online plan.

• Finally, we validate our GA-PI algorithm on stochastic and deterministic MoD appli-
cations, including ride-sharing and security traffic patrolling. Experimental results 
show that 1) GA-PI can converge in an anytime manner, 2) The proposed Online_CMP 
method based on offline policy reuse significantly outperforms the state-of-the-art 
Online_CMP methods that separately use offline learning or online search methods. We 
also develop an open-source simulation platform for MoD applications.

The remainder of this paper is organized as follows. In Sect. 2, we provide a review of the 
related literature. In Sect. 3, we formulate the online collective multiagent planning model. 
We propose the offline and online planning algorithm in Sects.  4 and 5, respectively. In 
Sect. 6, we conduct a series of experiments to validate the proposed algorithm. Finally, we 
conclude our paper in Sect. 7.
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2  Related work

As claimed earlier, our main contribution is to propose an offline policy reuse method for 
online planning, where the policy iteration technique is proposed to generate and improve 
the offline policy. In this section, we briefly summarize related offline learning, online pol-
icy search, policy iteration methods and ridesharing.

Offline learning methods Due to stochastic demand-supply dynamics in MoD systems, 
offline learning methods can be further grouped into model-based and model-free catego-
ries. In the model-based category, the historical data is used to build the model, such as 
traffic delay and demand distributions. Linear programming [7, 36] and dynamic program-
ming [37] techniques can be used to solve the offline problem. A piecewise linear approxi-
mation is presented for the non-linear reward function [17]. In the model-free category, 
multi-agent reinforcement learning (MARL), which learns a policy by interacting with 
the complex MoD systems, has been proposed to find an approximate solution. To allow 
coordination among agents, context constraints are utilized to align state values [19], and 
the mean field approximation is used to model local interactions [18]. To achieve trade-off 
between immediate and future gains, a hierarchical RL is proposed [16], where the central-
ized manager sets abstract goals and the worker takes actions to satisfy the goals. Cen-
tralized training can balance the supply and demand distributions by the KL divergence 
optimization [42]. The imbalance between demand and supply in future periods can also 
be integrated for reward design [8, 15]. By capturing the mixture of agents distribution and 
policy, an expectation maximization-based inference approach is proposed to optimize the 
policy [25]. However, these offline methods cannot be adaptive to real agent and demand 
distributions [10, 21].

Online policy search methods Online planning methods typically consider demands that 
are revealed incrementally over time and making decisions based on these real demands. 
A greedy algorithm is proposed to maximize the matching between the observed demands 
and supplies [41]. To address the myopic inefficiency, Lowalekar et  al. [22] propose a 
multi-stage optimization framework, where future demands can be sampled from historical 
data. At each decision period, given the current observed and future anticipated demands 
sampled from the historical data, integer program (IP) can be formulated to search the opti-
mal solution. To mitigate the computation expense, the multi-sample multi-stage IP can be 
approximated by the Lagrangian dual decomposition [21], network flow average [40], and 
Monte-Carlo Tree Search [9]. Unfortunately, due to inefficiency of searching in an expo-
nential planning search space, most existing online planning methods have difficulty in 
computing policies in real-time with a sufficiently long look-ahead horizon.

Online adaptive methods by offline policy reuse Guided by the offline policy �(a|s) that 
determines the probability of taking action a at state s, a straightforward online adaptive 
method is allocating agents to each demand proportional to � [10, 11]. To plan multiple 
agents to serve multiple demands, Xu et  al. [39] propose a bipartite matching between 
demands and agents, where the weight of an edge is modeled by the state value learned 
offline. The state-value function can be further improved periodically in an online man-
ner [33]. However, the MARL-based state value function learned might be sub-optimal 
and inefficient for guiding online planning. Moreover, online matching again traps in the 
dilemma of serving current real demands or anticipated future demands. Compared with 
these most related offline policy reuse methods, our proposed GA-PI method can find opti-
mal solutions on the offline ℂ-MDP, which can be used as an efficient baseline to the online 
planning.
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Policy iteration methods Policy Iteration (PI) lies at the core of RL and many planning 
methods [32]. The classic PI algorithm repeats consecutive stages of policy evaluation and 
policy improvement with respect to a value function. For a single agent MDP, Bellman 
equation [3] is efficient for value function evaluation. However, due to the dependence of 
reward function on historical collective behaviors of agents, Bellman equation cannot apply 
to ℂ-MDP. For RL with function approximation [38], policy gradient methods [26] have 
been widely used to learn and improve the policy parameter. Traditional parameterized 
policy approximation is only convergent to a locally optimal policy [31]. We overcome 
such technical difficulties by examining how history collective behaviors influence succes-
sive state-action reward and designing a novel state valuation function without parameter 
approximation.

Ridesharing In multi-capacity ridesharing applications, there are a set of (known) 
requests to be serviced, and a set of available vehicles. Each vehicle should be allocated 
to a group of requests with the capacity and travel delay constraints, and the objective is to 
maximize the number of requests serviced [2, 5]. When requests arrive dynamically, they 
will be inserted into existing routes in a real-time manner [20, 23]. Multi-capacity rideshar-
ing falls into the vehicle routing literature that makes the best greedy allocations. However, 
it does not consider sequential vehicle routing problems. In contrast, our work focuses on 
sequential vehicle re-positioning that considers the impact of current vehicle-request allo-
cation on future allocations.

3  The model

In our motivating MoD problems of interest, a population of agents Q = {q1,… , qn} are 
available. The agents are planned to serve demands in sequence for T periods. In ride-shar-
ing, agents represent vehicles and demands represent passengers [10, 11], and in security 
traffic patrolling, agents represent police officers and demands represent traffic/crime emer-
gencies [24, 29]. Let V = {v1, v2,… , vm} be the set of m regions. Different regions have 
different demands and their demands vary over periods.

The response of planning agents to demands at one period has an impact on subsequent 
periods. MDP is an ideal model for sequential MoD problems. To characterize how the 
collective behavior of agents affects the joint reward, we adopt a collective MDP ( ℂ-MDP) 
representation [26, 36]. Different from the single agent MDP, the reward function in ℂ-
MDP depends on history policy rather than merely on current state and action. Formally, a 
ℂ-MDP can be described by M = ⟨S,A,T ,R, o, s0⟩:

• State S is a finite set of spatial-temporal states. Each state s ∈ S is a tuple (t, v), where t 
is the current period and v is the current region. Let t(s) and v(s) denote the period and 
region of state s. Here, we assume that all agents start from a source state s0.1 Through-
out this paper, the set S includes the source state s0 , unless specified.

• Action A is a finite set of actions. The set of actions available at state s = (t, v) , A(s), 
is the set of regions that can be reached from the region v. For example, the action 
a =→ vj denotes that the agent is planned to move to the region vj.

1 Our method can be easily extended to general settings where agents have a randomized distribution on 
states.
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• Transition T(s, a, s�) ∈ [0, 1] is the transition probability of ending up at state s′ after 
taking action a at state s. In reality, due to congestion or traffic signals, there may be 
stochastic delays that disrupt the mobility. This transition function can be estimated by 
the Google Map using the daily travel time between regions.

• Demand distribution o(s, a) = {o0(s, a), o1(s, a),…} denotes the probability distribution 
of demand ⟨s, a⟩ , where ok(s, a) ∈ [0, 1] is the probability of k demands ⟨s, a⟩ requested 
at s, and 

∑
k ok(s, a) = 1 . The demand ⟨s, a⟩ can be served by the agent taking action a 

at state s. For example, in ride-sharing, the demand ⟨s, a⟩ , where a =→ vj indicates the 
passenger order to pick up at s and drop off at the region vj . At state s, once an agent 
plans to travel to another region vj , he can serve the passenger order with the same ori-
gin–destination type, i.e., starting from v(s) and going for vj . As typically assumed in 
the ride-sharing literature [8, 10, 21], this demand distribution can be estimated by the 
historical demand data, which is often available using GPS traces of the taxi fleet.

• Reward R(s, a) is the immediate reward for taking action a at state s. In MoDs, each 
demand can only be served by one agent. For example, in ride-sharing, one vehicle 
is enough to complete a certain passenger order. Thus, the state-action reward R(s, a) 
depends on both the number of demands ⟨s, a⟩ and the number of agents at state s tak-
ing action a. A concise reward function is defined in Sect. 3.1 (Table 1).

The policy and objective Let �(a|s) denote the probability of taking the action a ∈ A(s) 
at state s, we have �(a|s) ∈ [0, 1] and 

∑
a∈A(s) �(a�s) = 1 . Let �(s) = {�(a|s)}a∈A(s) denote 

the local policy at the state s. A policy � = ⟨�(s),�(−s)⟩ denote the system policy, where 
�(−s) referring to all the local policies except �(s) . For the C-MDP problem with respect 
to city-scale MoD systems, our object is to match the demands (i.e., vehicles) and requests 
(i.e., passengers) at each spatial-temporal state. This kind of object is not dependent on 
the identity of the agents involved, but only on the number of agents involved. Therefore, 
driven by the collective influence of agents, we consider the homogeneous policy � for all 

Table 1  Notation overview Notation Description

Q = {q1,… , qn} The set of agents
o(s, a) The probability distribution of demand
�(a|s) The probability of taking a at s
�(s) = {�(a|s)}a∈A(s) The local policy at the state s
�(−s) All the local policies except �(s)
� = ⟨�(s),�(−s)⟩ The whole system policy
pre(s) = {s�|T(s�, a, s)>0} The direct previous states of s
post(s = {s�|T(s, a, s�) > 0} The direct posterior states of s
�(s) The order priority of the state s
succ(s) = {s�|𝜙(s�) > 𝜙(s)} The successor states of s
prio(s) = {s�|𝜙(s�) < 𝜙(s)} The prior states of s
��(s) The expected number of agents at state s
R�(s, a) The expected reward of taking a at s
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agents, such that the total rewards over the horizon T, 
∑

s∈S,a∈A(s) R(s, a)
2 is maximized [26, 

28, 36]. Because the number of agents in the MoD system is large, the action probability 
can be interpreted as the fractional population, and converts agents into a spatial-temporal 
flow.

3.1  The policy‑dependent reward function

Before defining the policy-dependent reward function, we first define useful notations such 
as the expected number of agents at states as well as its probability distribution function.

The ℂ-MDP can be regarded as a directed acyclic graph (DAG), where states are nodes 
and transitions are directed edges. We start with sorting states S in a topological order 
according to the transition function. Let pre(s) = {s�|T(s�, a, s) > 0} denote the direct 
previous states of s, and post(s) = {s�|T(s, a, s�) > 0} denote the direct posterior states of 
s. Given such partial orders, the set of states S can be sorted in topological order using 
the depth-first search technique. Let �(s) ∈ [0, |S|] denote the order priority of the state s, 
where �(s0) = 0 . Moreover, we define succ(s) = {s�|𝜙(s�) > 𝜙(s)} the successor states of s, 
and prio(s) = {s�|𝜙(s�) < 𝜙(s)} the prior states of s. Since the transitions directed from the 
states with the earlier time to the states with later time, the earlier state has a higher order 
priority than the later state.

Expected number of agents Given the policy � , let ��(s) denote the expected number 
of agents reaching state s. If the expected number of agents ��(s�) of direct previous states 
s� ∈ pre(s) is known, ��(s) can be computed by the following recurrence formula

The expected number of agents ��(s) at state s only depends on the expected number of 
agents and actions of these previous states prio(s). Thus, ��(s) can be updated according 
to the topological order, and a dynamic programming (DP)-based technique can be used to 
compute ��(s) , which is shown in Algorithm 1. In Line 1, all agents start from the source 
state s0 , i.e., the expected number of agents at s0 , ��(s0) = n . In Lines 2–3, the expected 
number of agents ��(s�) of each previous state s� ∈ prio(s) is computed in a topological 
order.

Algorithm 1  Computing the Expected Number of Agents ��(s)

Similarly, let ��(s, a) denote the expected number of the agents reaching state s tak-
ing action a, which can be computed by ��(s, a) = ��(s) ⋅ �(a|s) . Intuitively, the minimum 

(1)��(s) =
∑

s�∈pre(s),a�∈A(s�)

��(s
�)�(a�|s�)T(s�, a�, s).

2 From here on in our discussion we will assume no discounting, although for completeness we do include 
the possibility of discounting in the algorithm.
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between the expected number of agents and the expected number of demands can be used 
for state-action reward approximation [36], i.e.,

where õ(s, a) =
∑

k k ⋅ ok(s, a) denote the expected number of demands. Unfortunately, the 
linear reward function can deteriorate real reward arbitrarily on problems with few agents, 
as shown in Fig. 1.

Probability distribution of agents Here, using the probability distribution of agents [17], 
we propose a expected reward function that better approximates the real reward function. 
Given the expected number of agents ��(s, a) , each agent has the probability �� (s,a)

n
 reach-

ing state s taking action a. Thus, the probability of exactly k agents reaching state s taking 
action a follows a Binomial distribution:

where n and �� (s,a)
n

 represent the twin parameters, namely the number of trials and the prob-
ability of success of each trial of a binomial distribution, respectively.

Expected reward function Given the demand probability distribution 
o(s, a) = {o0(s, a),…} and agent probability distribution f�(s, a) = {f 0

�
(s, a),…} derived 

by the policy � , the expected reward R(s, a) achieved by taking action a at state s can be 
defined by

(2)R𝜋(s, a) ≈ min{𝜆𝜋(s, a), õ(s, a)}.

(3)f k
�
(s, a) =

(
n

k

)(
��(s, a)

n

)k(
1 −

��(s, a)

n

)n−k

.

(4)

R�(s, a) =

n∑

k=0

k

[
ok(s, a)

(
∑

j≥k

f
j

�
(s, a)

)
+f k

�
(s, a)

(
∑

j≥k+1

oj(s, a)

)]

=

n−1∑

k=0

[1 − Fk
�
(s, a)][1 − Ok(s, a)]
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〈0.5, {0.4, 0.6}〉

〈0.5, {0, 1.0}〉
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〈0.4, {0.4, 0.6}〉

〈0.6, {0.1, 0.9}〉

〈1.0, {1, 0}〉

〈1.0, {1, 0}〉

Fig. 1  Left: A toy MoD instance. Right: Given the policy � , the total rewards achieved by different reward 
function over different number of agents. The real reward is averaged over 1000 trials, which is approxi-
mately equal to the same with the expected reward. However, there is a non-negligible error between the 
linear reward and real reward
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where F�(s, a) and O(s, a) are the Cumulative Distribution Functions of f�(s, a) and o(s, a), 
respectively. To mitigate the computation load of R(s, a), we can pre-compute F�(s, a) by 
dividing the expected number of agents �(s, a) into a set of intervals in an offline manner.

We use a toy example to illustrate these notations including the expected number of 
agents, the probability distribution of agents and the expected reward function.

Example 1 In the left of Fig.  1, there is an MoD instance consisting of six states 
{s0, s1, s2, s3, s4, s5} . The directed edge between states indicates the deterministic transition func-
tion. Each transition (s, a, s�) is associated with a tuple ⟨�(a�s), o(s, a)⟩ , where the former �(a|s) 
indicates the local policy. The o(s, a) = {o0(s, a), o1(s, a)} indicates the demand distribution. 
Here, we assume demand follows a 0–1 distribution, i.e., has a o1(s, a) probability, there is one 
demand and a o0(s, a) probability for zero demand. Now suppose that there are two agents start-
ing from the source state s0 . Given the policy � = {�(s0),�(s1),�(s2),�(s3),�(s4),�(s5)} , the 
expected number of agents reaching state s2 taking action → v(s3) is 
��(s2) ⋅ �(→ v(s3)|s2) = ��(s0) ⋅ �(→ v(s2)|s0) ⋅ �(→ v(s3)|s2) = 0.4. The probability of zero 

agent reaching state s2 taking action → v(s3) is f 0� (s2,→ v(s3)) =

(
2

0

)
(
0.4

2
)0(1 −

0.4

2
)2 = 0.64 , 

the probability of one agent f 1
�
(s2,→ v(s3)) = 0.32 and the probability of two agents 

f 0
�
(s2,→ v(s3)) = 0.04 . Finally, for the state-action ⟨s2,→ v(s3)⟩ , the expected state-action 

reward

Moreover, from the right of Fig. 1, we can find that the expected reward function is effi-
cient to approximate real reward function.

Remark 1 Due to the dependence of reward on the number of agents, this optimization 
problem of ℂ-MDP becomes significantly more complicated than a single agent MDP. 
Using a piecewise linear reward function to approximate the expected reward function [i.e., 
Eq. (2)], a baseline LP solution has been proposed in [7, 17, 36]. However, the disadvan-
tages of the LP baseline are: (1) requiring carefully designed approximation of the non-
linear objective function, where the solution quality can deteriorate arbitrarily, (2) non-
adaptive to real agent and demand information, and (3) time consuming of reusing the LP 
to return the adaptive policy at each decision period. To address these issues, this paper 
proposes a novel policy iteration variant, which can be adapted to dynamic MoD environ-
ments and improved for online planning in an anytime way.

4  The algorithm

In this section, by examining how the history policy affects the successive state-action 
reward, we propose a novel policy iteration algorithm that can find optimal solutions on 
the constructed ℂ-MDP. The proposed algorithm builds off the structured state value-based 
policy evaluation and the gradient-ascent-based policy improvement.

R(s2,→ v(s3)) =

n−1∑

k=0

[1 − F�

k
(s, a)][1 − Ok(s, a)] = 0.216.
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4.1  Structured state value function

Since the state-action reward R�(s, a) depends on the expected number of agents ��(s) , we 
first quantify how the local policy �(s) at s affects the expected number of agents ��(s�) of 
the successor state s� ∈ succ(s) . From the point of view of state s, we can rewrite the policy 
� = ⟨�(s),�(−s)⟩ . Let ⟨��(s),�(−s)⟩ be a policy identical to � except to perform the local pol-
icy ��(s) at state s. Next, we show that the local policy �(s) has a linear effect on the expected 
number of agents at the successor state s� ∈ succ(s).

Lemma 1 Given the state s and its successor state s� ∈ succ(s) , let �⟨�(s),�(−s)⟩(s�) and 
�⟨��(s),�(−s)⟩(s

�) denote the expected number of agents at s′ under the policies ⟨�(s),�(−s)⟩ 
and ⟨��(s),�(−s)⟩ , respectively. We have

where the policy ⟨��(s) + (1 − �)��(s),�(−s)⟩ is identical to � except to perform the local 
policy ��(s) + (1 − �)��(s) at state s, and � ∈ [0, 1].

Proof We show it by induction with respect to states. For the state s� ∈ post(s) of the direct 
posterior state of s, we have that

where a =→ v(s�) indicates the action taking at s and transiting to the state s′ , and the 
action a�� =→ s� indicates the action taking at s′′ and transiting to the state s′ . Thus, we 
have

In the case that s� ∈ succ(s) , i.e., the state s′ is the successor of s. By induction, we can 
assume that any prior state s�� ∈ pre(s�) of state s′ has the additive property that

For the successor state s′ , we have that

(5)�⟨��(s)+(1−�)��(s),�(−s)⟩(s
�) = ��⟨�(s),�(−s)⟩(s

�) + (1 − �)�⟨��(s),�(−s)⟩(s
�).

�⟨��(s)+(1−�)��(s),�(−s)⟩(s
�)

= ��(s) ⋅ (��(a�s) + (1 − �)��(a�s)) ⋅ T(s, a, s�)
+

∑
s��∈pre(s�)⧵s,a����(s

��)�(a���s��)T(s��, a��, s�)

�⟨��(s)+(1−�)��(s),�(−s)⟩(s
�)

= �

�
��(s)�(a�s)T(s, a, s�) +

∑
s��∈pre(s�)⧵s,a����(s

��)�(a���s��)T(s��, a��, s�)
�

+ (1 − �)

�
��(s)�

�(a�s) ⋅ T(s, a, s�) +∑
s��∈pre(s�)⧵s,a����(s

��)�(a���s��)T(s��, a��, s�)
�

= ��⟨�(s),�(−s)⟩(s
�) + (1 − �)�⟨��(s),�(−s)⟩(s

�).

�⟨��(s)+(1−�)��(s),�(−s)⟩(s
��) = ��⟨�(s),�(−s)⟩(s

��) + (1 − �)�⟨��(s),�(−s)⟩(s
��).
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Finally, we can conclude that the local policy �(s) has the additive effect on the arrival rate 
�⟨�(s),�(−s)⟩(s

�) of the successor state s� ∈ succ(s) .   ◻

This additive property will be useful for gradient computation in Sect. 4.2.
Structured state value function V�(s).Similar to MDPs, we require a state value function 

to estimate how good it is to be at a state. In ℂ-MDPs, considering that the state-action 
rewards depend on history policies, we define a new state value function variant as the total 
rewards accumulated from current state-action (s,  a) and all successor state-action pairs 
(s�, a�) , i.e.,

The structure state value function explicitly captures the influence of history policy on 
related state-action rewards. In particular, the state value function at the initial state s0 , 
V�(s0) returns the offline objective. Using the expected number of agents returned by Algo-
rithm 1, we can evaluate the state value function V�(s) for an arbitrary policy � and state s. 
The policy evaluation is formally described in Algorithm 2. In Line 1, Algorithm 1 is used 
to return the expected number of agents ��(s�) at each successor state s� ∈ succ(s) . The 
expected number of agents ��(s�) will be used for computing immediate reward, as shown 
in Eq. (4). Given the expected number of agents at succ(s�) , Lines 2–3 accumulate the total 
rewards of these successor state-action pairs ⟨s′, a′⟩.

Algorithm 2  Structured State Value Function V�(s)

4.2  Gradient ascent‑based policy improvement

We propose a gradient ascent (GA)-based policy improvement algorithm to optimize the state 
value function. We first introduce GA in stateless settings, and extend GA to our ℂ-MDPs 
settings. Policy gradient algorithms have widely employed in RL for action selection [32]. Dif-
ferent from traditional parameterized policy gradient methods, we directly calculate the policy 

�⟨��(s)+(1−�)��(s),�(−s)⟩(s
�)

=
∑

s��∈pre(s�),a��

�
�⟨��(s)+(1−�)��(s),�(−s)⟩(s

��) ⋅ �(a���s��) ⋅ T(s��, a��, s�)
�

=
∑

s��∈pre(s�),a��

�
��⟨�(s),�(−s)⟩(s

��)

+ (1 − �)�⟨��(s),�(−s)⟩(s
��)
�
⋅ �(a���s��) ⋅ T(s��, a��, s�)

= ��⟨�(s),�(−s)⟩(s
�) + (1 − �)�⟨��(s),�(−s)⟩(s

�).

(6)V�(s) =
∑

a∈A(s)

R�(s, a) +
∑

s�∈succ(s),a�∈A(s�)

R�(s
�, a�).
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gradient on the structured state value function without any kind of parameterization. Moreo-
ver, the proposed GA-based policy improvement algorithm is guaranteed to converge.

A straightforward extension of GA to ℂ-MDPs is to enumerate all of the pure strategies in 
ℂ-MDPs. Each pure strategy consists of the complete sequential deterministic action starting 
from the source state s0 . The policy can be a probability distribution over these pure strate-
gies. By translating ℂ-MDPs into stateless settings, GA is guaranteed to converge to the opti-
mal solution [6]. However, this kind of GA extension has an exponentially increasing strategy 
space with the size of states and actions [7, 14], which is impractical for city-scale MoD sys-
tems. This paper proposes a new method to scale-up as well as to guarantee convergence. The 
fundamental idea is to use GA to optimize the local policy �(s) at each state s. We show that 
optimizing the local policy maximizes the global objective.

The proposed policy improvement algorithm executes over iterations. On each itera-
tion k, GA is used to improve the local policy �k(s) with respect to the state value function 
V⟨�k(s),�k(−s)⟩(s) of state s. Let ∇V⟨�k(s),�k(−s)⟩(s) denote the gradient of V⟨�k(s),�k(−s)⟩(s) with 
respect to the local policy �k(s) , which can be computed by

As discussed earlier, the state value function V⟨�k(s),�k(−s)⟩(s) is a collective effect of joint 

actions, it is difficult to compute the partial gradient 
dV⟨�k (s),�k (−s)⟩(s)

dai
 for each action ai . Inspired 

by online convex optimization without a gradient [13], we use a simple approximation gra-
dient instead:

where � is a small positive real number, and �i is a unit vector (0,… , 1,… , 0) with the 
ith component is equal to 1 and 0 otherwise. The additive property of expected number 
of agents ��(s) can be used to speed up the gradient computation, shown in Algorithm 3. 
In Lines 1 and 2, at each successive state s� ∈ succ(s) , the expected numbers of agents 
under the policies ⟨�(s),�(−s)⟩ and ⟨��i,�(−s)⟩ are computed respectively. In Lines 3–4, 
the expected number of agents at s′ , �⟨�(s)−��i ,�(−s)⟩(s

�) can be computed directly by adding 
�⟨�(s),�(−s)⟩(s

�) and �⟨��i,�(−s)⟩(s
�).

Algorithm 3  Compute the Gradient ∇V⟨�k (s),�k (−s)⟩(s)

(7)∇V⟨�k(s),�k(−s)⟩(s) =
dV⟨�k(s),�k(−s)⟩(s)

da1
,… ,

dV⟨�k(s),�k(−s)⟩(s)

da�A(s)�

(8)
dV⟨�k(s),�k(−s)⟩(s)

dai
≈

V⟨�k(s)+��i ,�
k(−s)⟩(s) − V⟨�k(s)−��i ,�

k(−s)⟩(s)

2�
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According to the gradient direction, the local policy �k(s) can be improved by

where �s is the learning rate at state s. The projection function P is utilized to project the 
vector �k(s) + �t∇V⟨�k(s),�k(−s)⟩(s) to the convex domain [0, 1]|A(s)| where 

∑
a∈A(s) �(a�s) = 1 . 

Given such a positive simplex domain, a polynomial time algorithm [12] of performing 
Euclidean norm projection can be employed.

4.3  GA‑based policy iteration algorithm

This section presents our GA-based policy iteration algorithm (GA-PI). The main idea 
behind GA-PI is to evaluate the current policy �k and improve it to achieve a better policy 
�k+1 on each iteration.

A complete GA-PI is shown in Algorithm 4. On each iteration t, GA is used to improve 
the local policy �k(s) at state s (i.e., Lines 3–10). In Line 4, we initialize the learning rate 
�s = 1 at state s. In Line 5, the policy gradient ∇V(�t, s) is computed by Algorithm 3. In Lines 
6-9, the learning rate �s is carefully discounted by a discounting factor � ∈ [0, 1] such that the 
improved policy �t+1(s) is non-deceasing over the previous policy �k(s) . The existence of such 
a learning rate is shown in [6]. The policy iteration (i.e., Lines 2–11) terminates when certain 
condition is satisfied, e.g., the time allotted for computing offline policy is running out.

Algorithm 4  GA-based Policy Iteration (GA-PI)

4.4  Theoretical analysis

In this section, we first show that GA-PI can converge with finite iterations, and prove its 
convergence to the optimum under certain conditions.

Monotony property On the one hand, we first show the monotonicity of the GA-PI 
algorithm.

(9)�k+1(s) = P(�k(s) + �s∇V⟨�k(s),�k(−s)⟩(s).
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Lemma 2 GA-PI is monotonically non-decreasing on the global objective V�(s0) such that 
V�k+1 (s0) ≥ V�k (s0).

Proof Let V⟨�k(s0),�
k(−s0)⟩(s0) denote the global objective on the kth iteration. Without loss of 

generality, assume that the source state s0 is visited at the kth iteration, and the local policy 
�k(s0) will be improved to �k+1(s0) by the GA Eq.  (9). Let V⟨�k+1(s0),�

k(−s0)⟩(s0) denote the 
global objective on the iteration k + 1 , we have that

Next, on the (k + 1) th iteration, for any successor state s ∈ succ(s0) , by fixing the local 
policy �k+1(s0) at source state s0 and local policies �k+1(−s) at other states expected s, the 
local policy �k+1(s) at s will be improved to �k+2(s) . The global objective V�k+2(s),�k+1(−s)⟩(s0) 
on the iteration t + 2 satisfies

Equation (11) holds because

In Eq. (12) follows from the policy improvement from �k+1(s) to �k+2(s) at state s. Equa-
tion (13) holds because the update of the local policy �k+1(s) will not affect the reward of 
other states s� ∉ succ(s) . Inductively, we can conclude the monotonicity result that each 
iteration the local policy �k(s) is improved to �k+1(s) , the global objective will be improved 
as well.   ◻

Theorem 1 The GA-PI algorithm converges within finite iterations.

On one hand, according to the expected reward function R(s, a) defined in Eq.  (4), 
the global objective V�(s0) has a upper bound 

∑
s,a õ(s, a) , where õ(s, a) is expected num-

ber of demands ⟨s, a⟩ . Derived from the monotonicity that each iteration the policy is 
improved, V�(s0) will be increased appropriately. Thus, we can conclude the conver-
gence result.

Convergence to the optimum with linear state-action reward In the following, we 
show that when the state-action reward function R(s,  a) is approximated linearly by 
Eq. (2), i.e., R𝜋(s, a) = min{𝜆𝜋(s, a), õ(s, a)} , the GA-PI will converge to the optimum.

Given the linear reward function R(s, a), We first present the concave property of the 
state value V�(s) . By fixing the policy �(−s) at all states except to the state s, we show 
that the state value function V⟨�(s),�(−s)⟩(s) is concave with the local policy �(s) at state s. 
Before presenting the concave property, we first present a useful proposition.

(10)V⟨�k+1(s0),�
k(−s0)⟩(s0) ≥ V⟨�k(s0),�

k(−s0)⟩(s0).

(11)
V⟨�k+2(s),�k+1(−s)⟩(s0)

=
�

s�∉succ(s),a�

R�k+1 (s
�, a�) + V⟨�k+2(s),�k+1(−s)⟩(s)⟨⟩

(12)≥
�

s�∉succ(s),a�

R�k+1 (s
�, a�) + V⟨�k+1(s),�k+1(−s)⟩(s)

(13)= V⟨�k+1(s0),�
k+1(−s0)⟩(s0)

V⟨�k+2(s),�k+1(−s)⟩(s) =
�

s��∈succ(s),a��∈A(s�)

R�k+2 (s
��, a��).
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Proposition 2 Let f (x) = min{bx, c} , where b ∈ ℝ and c ∈ ℝ , f(x) is concave such that 
given any x ≠ y and � ∈ [0, 1] ∶ f (�x + (1 − �)y) ≥ �f (x) + (1 − �)f (y).

With the help of the Proposition 2, we can prove the concave property of the state value 
function V(�(s),�(−s), s).

Theorem 3 Let R𝜋(s, a) = min{𝜆𝜋(s, a), õ(s, a)} , given the policy �(−s) at all states except 
state s, the state value function V⟨�(s),�(−s)⟩(s) is concave with the local policy �(s) at state s, 
i.e., ∀� ∈ [0, 1],�(s) ≠ ��(s) , we have

Proof We first show that the policy �(s) is convex. For any �(s) ∈ [0, 1]d , ��(s) ∈ [0, 1]d , 
and � ∈ [0, 1] , we have ��(s) + (1 − �)��(s) ∈ [0, 1]d , where d is the dimension of action 
space at s. Given the policy (�(s),�(−s)) , the state value function at s is

Alternatively, given the policy ⟨��(s),�(−s)⟩ , the state value function becomes

Similarly, for the policy ⟨��(s) + (1 − �)��(s),�(−s)⟩ , we have

(14)V⟨��(s)+(1−�)��(s),�(−s)⟩(s) ≥ �V⟨�(s),�(−s)⟩(s) + (1 − �)V⟨��(s),�(−s)⟩(s).

V⟨𝜋(s),𝜋(−s)⟩(s)

=
∑

aR(s, a) +
∑

s�∈succ(s),a�R(s
�, a�)

=
∑

a∈A(s) min{𝜆⟨𝜋(s),𝜋(−s)⟩(s)𝜋(a�s), õ(s, a)}
+
∑

s�∈succ(s),a� min{𝜆⟨𝜋(s),𝜋(−s)⟩(s
�)𝜋(a��s�), õ(s�, a�)}.

V⟨𝜋�(s),𝜋(−s)⟩(s)

=
∑

a∈A(s) min{𝜆⟨𝜋(s),𝜋(−s)⟩(s)𝜋
�(a�s), õ(s, a)}

+
∑

s�∈succ(s),a� min{𝜆⟨𝜋�(s),𝜋(−s)⟩(s
�) ⋅ 𝜋(a��s�), õ(s�, a�)}.

(15)

V⟨𝛼𝜋(s)+(1−𝛼)𝜋�(s),𝜋(−s)⟩(s)

=
∑

a min{𝜆⟨𝜋(s),𝜋(−s)⟩(s)
�
𝛼𝜋(a�s)+(1−𝛼)𝜋�(a�s)

�
, õ(s, a)}

+
∑

s�∈succ(s),a� min

�
𝜆⟨𝛼𝜋(s)+(1−𝛼)𝜋�(s),𝜋(−s)⟩(s

�)𝜋(a��s�), õ(s�, a�)
�

=
∑

a min

�
𝜆⟨𝜋(s),𝜋(−s)⟩(s)

�
𝛼𝜋(a�s) + (1 − 𝛼)𝜋�(a�s)

�
, õ(s, a)

�

+
∑

s�∈succ(s),a� min

��
𝛼𝜆⟨𝜋(s),𝜋(−s)⟩(s

�)
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The Eq. (15) derives from additive property in the Lemma 1, and the In Eq.(16) derives 
from concavity of Proposition 2. Finally, we have this concave result.   ◻

Algorithm 5  Real-Time Online Planning (Online_GA-PI)

5  Real‑time online planning

The solutions of the GA-PI constructed on the offline ℂ-MDP provide a static policy, how-
ever, cannot be dynamically adjusted to real-time agent and demand distributions. In this 
section, we propose an online planning algorithm to dynamically adjust the policy accord-
ing to real-time observations. The main idea is that given the real-time information, the 
offline policy is used as a baseline plan. We reuse GA-PI to the current plan and improve it 
in an anytime manner.

At the beginning of each decision period t, given the observed demands and agents’ 
positions, we first construct an online ℂ-MDP Mt = ⟨St,At,Tt, ot⟩ , shown as follows.

• The state s ∈ St satisfies t(s) ≥ t.
• Given the real traffic delay dt

jk
 between regions vj and vk , the transition from the current 

state s = (t, vj) to the state s� = (t + dt
jk
, vk) is deterministic, i.e., T(s,→ vk, s

�) = 1.
• Given the demands occurring at current state s = (t, v) , the demand distribution 

o(s,  a) is deterministic. For example, if there are k demands ⟨s, a⟩ occurring at s, 
o(s, a) = {0, 0,… , 1,… , 0} where the kth element ok(s, a) = 1.

• Given agents’ positions, the initial agent distribution �t(s) at current state s = (t, v) is 
deterministic, where �t(s) equals to the number of agents locating at state s.

(16)

+ (1 − 𝛼)𝜆⟨𝜋�(s),𝜋(−s)⟩(s
�)
�
𝜋(a��s�), õ(s�, a�)

�

≥ 𝛼
∑

a∈A(s) min{𝜆⟨𝜋(s),𝜋(−s)⟩(s)𝜋(a�s), õ(s, a)}
+ (1 − 𝛼)

∑
a∈A(s) min{𝜆⟨𝜋(s),𝜋(−s)⟩(s)𝜋

�(a�s), õ(s, a)}
+ 𝛼

∑
s�∈succ(s),a� min{𝜆⟨𝜋(s),𝜋(−s)⟩(s

�)𝜋(a��s�), õ(s�, a�)}
+ (1 − 𝛼)

∑
s�∈succ(s),a� min{𝜆⟨𝜋�(s),𝜋(−s)⟩(s

�)𝜋(a��s�), õ(s�, a�)}
= 𝛼V(𝜋(s),𝜋(−s), s) + (1 − 𝛼)V(𝜋�(s),𝜋(−s), s).
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The other model parameters (i.e., the future transition function and demand distribution) 
are the same with the model defined in Sect. 3. Given the online ℂ-MDPs Mt , we employ 
GA-PI to restart from the baseline offline policy with the real information and improve it 
in the new iteration. Algorithm 5 describes how to generate the real-time online planning. 
In Line 2, given the real-time observations, the previous period policy �t−1 is used as a 
baseline policy �t . In Line 2–4, the baseline policy �t is improved by the GA-PI algorithm 
within time budget. The real-time budget can be set as 5  sec, and is domain dependent. 
In Line 5, the agent takes the action ⟨s, a⟩ according to the probability �t(a|s) . Once the 
agent is planned to take the action ⟨s, a⟩ , he should be responsible for serving this type of 
demand.

6  Experiments

6.1  Experiment setup

All computations are performed on a 64-bit workstation with 64 GB RAM and a 16-core 
3.5 GHz processor. All records are averaged over 40 instances, and each record is statisti-
cally significant at 95% confidence level unless otherwise specified.

6.1.1  Dataset description

Both synthetic and real-world datasets are used in our experiments.
Synthetic dataset (SYN) The synthetic dataset consists of 20 × 20 regions, 48 periods 

and 200 agents. The demand type o(s, a) follows a Gaussian distribution N(1.5, 0.25). The 
transition function T(s, a, s�) follows the uniform distribution U(0,  1). We also test other 
demand and transition distributions, and have the similar results.

Real-world dataset Two typical ride-sharing and security traffic patrolling datasets are 
used.

• Ride-sharing (RS) The ride-sharing dataset is a real trip dataset from New York city 
[1], which is divided into 370 non-overlapping, same-sized hexagonal regions. The 
horizon T is discretized into 288 periods and each period contains 5 min. We use the 
trip data of February 2016, each piece of data contains the start time of a trip and the 
coordinates of its pick-up and drop-off regions. Pre-processing operations are con-
ducted on the raw data, for example, some out-of-bounds trips are removed according 
to their coordinates of the boarding and alighting positions. After pre-processing, there 
are about 300,000 requests per day, which can be used to model the demand-type distri-
bution o(s, a). We use the real road network data provided by OpenStreetMap to model 
the transition function T(s, a, s�) . The number of vehicles is set to 10,000.

• Security traffic patrolling (STP) The security traffic patrolling aims at the omnipresence 
patrolling such that when an emergency occurs, there are always police officers nearby 
serving it in time. The dataset is collected from a typical district of a modern city [37]. 
The district consists of 20 × 20 regions, and each day is discretized into 48 periods. The 
dataset contains approximately 24,000 incident requests (IRs) of the year 2017. We use 
the IR dataset to estimate the IR occurrence rate o(s, a). The police officers taking the 
incident service action (i.e., staying at the current region) can respond the IR. We use 



Autonomous Agents and Multi-Agent Systems           (2024) 38:19  

1 3

Page 17 of 26    19 

OpenStreetMap to record the traffic delay, which can be used to estimate the transition 
function T(s, a, s�) . There are 50 police officers available for security traffic patrolling.

6.1.2  Evaluation metric

We use the accumulated (expected) reward and computation time to evaluate the perfor-
mance. The reward represents the passenger orders served in ride-sharing and incidents 
responded in security traffic patrolling. In terms expectation, we mean in the offline 
scenarios.

6.1.3  Compared methods

We compare our GA-PI method with the following two categories of methods: offline 
methods and online methods. Note that all methods are carefully tuned and their best 
results are reported.
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Fig. 2  OFFLINE: The expected total rewards (normalized) achieved by the offline methods in real-world 
ride-sharing and security traffic patrolling, and the synthetic datasets
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Offline baselines: 

• LP-based approximation (LP-App) [36], where the linear program (LP) is constructed 
on ℂ −MDP and the piece linear reward [i.e., Eq. (2)] is used to approximate the real 
reward function. The commercial solver Gurobi (version 9.10) is used to solve the LP.

• Bellman’s value iteration (Bellman-VI) [4], where a state value function V(s) is defined 
and improved by the Bellman formula: 

Online baselines: 

• LP-based approximation (LP-App) [11], where the online planing directly reuses the 
offline policy.

• Offline learning and online planning (OLOP) [33, 39]. Using the available historical 
data, a model-free Q-learning is proposed to learn the state value. Guided by the state 
value, an online matching between agents and demands is proposed to dispatch the 
agents to regions.

• Sample-Based combination optimization (SCO) [22], where at each period, the 
demands of future periods are sampled. To maximize the current and future demands of 
multiple samples, an integer program is proposed to return the current period policy.

6.2  Experiment results

The convergence in offline scenarios Fig. 2 shows the convergence of the proposed GA-PI 
to the baseline offline methods in real-world RS (Fig. 2a) and STP (Fig. 2a) datasets and 
the SYN dataset (i.e., Fig.  2a). The x-axis represents the iteration steps, and each step 
records the visit and policy update at a state. The y-axis normalized total reward repre-
sents the ratio between the rewards achieved and the maximum rewards achieved by our 
GA-PI. From Fig. 2, we can observe that in all three datasets, the proposed GA-PI method 
is anytime, by which the system efficiency (i.e., solution quality) increases with time. This 
result is in accordance with our theoretical analysis. The Bellman-VI algorithm, however, 
only converges to the local optima. This is in spite of Bellman-VI providing near optimal 
solutions in single agent MDP domains. In ℂ-MDPs, Bellman-VI is myopic of maximizing 
the current state value, ignoring the effect (i.e., the expected number of agents) of history 
behavior on the current state. The backward mechanism of computing the expected num-
ber of agents allows GA-PI to dominate Bellman-VI. This advantage is prominent in ride-
sharing (i.e., Fig. 2a), where customer orders (i.e., demands) are uniformly distributed over 
state-action pairs. By considering the history effect, the GA-PI can dispatch agents among 
states uniformly, but the myopic Bellman-VI always dispatches agents to states with the 
highest state values. In the datasets of STP and SYN with the smaller size of agents, Bell-
man-VI can converge faster than our proposed GA-PI. The baseline LP-App only achieves 
70% rewards of GA-PI in security traffic patrolling scenario (i.e., Fig. 2b). The potential 
reason is that in such a dataset, the reward R(s, a) is sparse since only staying at the cur-
rent regions can respond to the IR. The linear reward approximation Eq.  (2) causes the 

(17)V(s) = max
�

∑

a∈As

�(a|s)
[
R(s, a) +

∑

s�

T(s, a, s�)V(s�)

]
.
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mismatch between the number of agents and demands at each state, thereby decreasing 
the solution quality. LP-App performs the best in RS, which is followed by SYN and STP. 
This result can be explained by the fact that the number of agents in STP (i.e., 50) is much 
smaller than that in RS (i..e, 10,000). Figure 1 has verified that the linear reward function 
(which is used in LP-App) deteriorate the real reward significantly with few agents.

The real-time and efficiency in online scenarios Fig. 3 compares the online methods on 
these datasets in terms of real-time and the exact reward achieved. The x-axis time budget 
represents the response time available for online methods. We observe that Online_GA-PI 
can always return an online plan within seconds, which can be regarded as a real-time 
method for MoD applications (e.g., RS and STP). Although the differences are minor, it can 
also be seen that given more time budget, Online_GA-PI achieves higher rewards. We argue 
that this can be explained by the fact that given the current period model Mt , Online_GA-PI 
is an anytime method. With large enough time budget, Online_GA-PI can visit all of the 
state-actions properly, and it could restart from the current solution with the new informa-
tion in the new iteration, and will converge to the optimal solution of Mt . The SCO has the 

Fig. 3  ONLINE: The real total rewards achieved by the online methods in real-world ride-sharing and secu-
rity traffic patrolling, and the synthetic dataset
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similar monotone property. This can be explained by the fact that given more time budget, 
the longer look-ahead periods can be sampled, and better solution quality will be achieved.

In most scenarios, Online_GA-PI achieves the highest rewards. An exception is in the 
SYN dataset with 1 s budget (i.e., Fig. 3c), OLOP outperforms Online_GA-PI. The poten-
tial reason is that OLOP can efficiently learn the state value in such a static MoD envi-
ronment (since the transition and reward function is known). As we can see in Fig. 3a, b 
within a more stochastic environment (the model is constructed by averaging the historical 
data), model-based Online_GA-PI can achieve significantly higher rewards than the model-
free-based RL (i.e., OLOP). Looking at the comparisons between the offline and online 
scenarios, we can find the consistency property.

In summary, experiment results suggest that (1) GA-PI is an anytime algorithm that con-
verges to the optima progressively, (2) Online_GA-PI is a real-time algorithm that scales 
well to city-scale MoD problems with hundreds of regions, thousands of agents and long 
horizon periods, and (3) Online_GA-PI outperforms state-of-the-art online planning meth-
ods in terms of solution quality.

6.3  Comparisons on deterministic domain

6.3.1  Problem description

Traffic enforcement problem (TEP) A set of police officers is deployed for traffic enforce-
ment, with the aim of preventing road accidents or drivers’ illegal behaviors [30]. The 
interaction between police officers and drivers as a defender-attacker Stackelberg game. 
The defender (the police) commits to a deterministic pure patrol strategy on a road network 
G = ⟨V ,E⟨ , where V = {v} is the set of intersections and E = {e = (u, v)} is the set of road 
segments. A daily patrol schedule consists of a trajectory through the graph, i.e., a sequence 
of road segments to patrol. The attacker (drivers, thereby accidents) follows the opportunis-
tic crimes model, and reactive to police enforcement in the current and past periods.

Following the recent advancement in predictive policing, the risk of accidents occur-
ring at the road-segment and period t ( et for short), as risk(et) ∈ [0, 1] . This risk function 
measures how likely a serious traffic accident likely to occur at et in the absence of police 
enforcement. At each period t, the police places enforcement on a subset of size n from E 
(n denote the number of police officers). We denote the traffic police enforcement history 
at period t as Ht . We use the notation H[et] as an indicator of whether a police officer is 
assigned to et . The effectiveness of enforcement as eff(Ht, e

t) ∈ [0, 1] , which measures that 
the effect the police enforcement history has on the risk of accidents occurring at et.

The traffic enforcement is interested in minimizing the total expected number of acci-
dents (i.e., risk) occurring throughout the game. Formally, it seeks to minimize the follow-
ing objective:

6.3.2  Compared methods

We first extend the Online_GA-PI to TEP, shown as the following steps.

(18)min
HT

∑

1≤t≤T

∑

e∈E

risk(et)(1 − eff(Ht, e
t)).
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• Step 1: For each policy officer, we randomly assign the deterministic patrolling policy 
at each spatial-temporal state. This randomized policy can be regarded as the offline 
policy.

• Step 2: Given the offline policy, at each period, starting from the initial state, each 
police officer alternatives his policy if it can reduce the accidents [defined in (18)].

• Step 3: Executing Step 2 iteratively, until the real-time condition is satisfied (e.g., the 
time budget is used up).

Online_GA-PI is compared with 3 baseline methods: first, a Naive models the TEP as a 
Binary Integer Programming (BIP), which is solved by the commercial solver Gurobi. Sec-
ond, a Random solver which for each police unit selects an action at random at each time 
step. Third, a ROSE solver [30], which consists of Master/Slave two levels: at the Master 
level, a relaxed BIP is solved in which only a subset of terms are introduced, and the Slave 
level checks whether any term should be triggered. It should be noted that Naive and ROSE 
methods are exact optimal solutions.

6.3.3  Evaluation metric

We use the solution quality and computation time to evaluate the performance of these 
methods. The solution quality is defined by the accidents reduction compared to the sce-
narios in the absence of police enforcement. The larger solution quality, the better the 
method performs.

6.3.4  Results

Table 2 shows the results on a road network with 284 intersections, 355 road-segments, and 
10 police officers. The risk(et) ∼ N(0.15, 0.05) follows a norm distribution. From Table 2, 
we can find that (1) Naive and ROSE can reduce the most accidents, which are followed by 
our Online_GA-PI. (2) For the fine granularity periods (i.e., T = 70 ), Naive will consume 
nearly 20 min to return the final solution, and ROSE even cannot scale up, on the other 
hand our Online_GA-PI can return the solution at each period in a real-time manner (i.e., ∼ 
3 s). (3) Although Random can return the real-time patrolling policy, it performs arbitrarily 
poorly on reducing accidents.

Concluding, our Online_GA-PI is a good option for TEP problem with respect to the 
tradeoff between accident reduction and computation time.

Table 2  The effect of the 
game round T with respect to 
(expected) accidents reduction 
(AR) and running time (RT)

Each cell is averaged over 20 instances and statistically significant at 
95% confidence level. N/A indicates the computation time exceeds 
1 hr

Methods T = 30 T = 50 T = 70

AR RT(s) AR RT(s) AR RT(s)

Naive 42.3 90 69.6 427 98.4 1138
ROSE 42.1 395 69.6 1510 N/A N/A
Random 30 0 50.1 0 68.3 0
Online_GA-PI 40.1 2.7 67.1 3 95.6 2.8
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6.4  A prototype system for MoDs

This section we will introduce a simulation system3 for the online MoDs. This system 
mainly provides the following features for user. 

1. The user can archive the designed algorithm in the standard environment.
2. The user can run the simulation with any available algorithm.
3. The user can run multiple simulations at the same time.
4. The user can observe the result and the process of the simulations, and compare with 

others.

With these features and the MoDs that previously described, we design an interactive 
system based on web. Based on the described system design and implementation, this part 
will show the function of the simulation system.

The frontend of system is shown in Fig. 4. In the 1st area, the users can configure the 
parameters of environment, algorithm and generator. The “Run” button should be clicked 
to notify the backend to create and start the simulation task. The 2nd area is to show the 
results when the simulation process is running, and which Fig.  4 shows is “Grid”. The 
triangular objects represent agents, while circular objects are regions whose different sizes 
mean the number of rewards in the region. The edges between regions are roads that agent 
can travel through. The 3rd area shows the results of the simulation, and below the charts 
they are the progress bars for all running simulations. There are two button to open differ-
ent function in the 4th area. The left one is to open the configure page of the animation and 
road network, while another one can open the simulation history list. The last one is used 

Fig. 4  Front of system: in order, the areas are parameters configuration, animation effect, indicators of sys-
tem, extra function, simulation switch

3 https:// github. com/ Traffi cRun.

https://github.com/TrafficRun
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to switch the running simulations, and with the rightmost button user can add a simulation 
instance.

7  Conclusion and future work

This paper studies the Online_CMP problem that has a wide range of applications on MoD 
systems, and proposes an offline policy reuse method. In offline scenarios, the CMP is 
modeled as a ℂ-MDP where the reward policy-dependent. Considering the effect of history 
behaviors on successor states, the proposed GA-PI introduces a new state value function, 
which can be evaluated by DP and improved by GA over iterations. We theoretically show 
that improving local policy increases the global objective, leading GA-PI converge to the 
optima. In the online stage, given the real observations, the offline policy is regarded as 
an initial policy and GA-PI is employed to derive an efficient online plan. Experimental 
results on stochastic and deterministic domains show that (1) in offline scenarios, GA-PI 
can converge to the optimal solution, and (2) in online scenarios, the proposed offline pol-
icy reuse method can achieve efficient solution quality in real-time. As a consequence, our 
GA-PI technique provides a real-time Online_CMP method and theoretically guarantees 
that the efficiency can be improved over time.

This paper should also be viewed as providing a bridge between the offline and online 
collective multiagent planning. Directions for future research include offline policy reuse 
methods for general multiagent systems with heterogeneous agents, where the joint reward 
depends on coordination action of agents rather than their anonymity count. Such general-
ized police reuse will arise issues related to the quality of the source policy or even nega-
tive transfer, which have been studied in transfer learning [34].
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