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Abstract— In cloud computing, a private (secondary) cloud
can: 1) outsource workload to public (primary) clouds via vertical
federation or 2) share resources with other secondary clouds
through horizontal federation to enhance its service quality.
While there have been attempts to establish a joint vertical and
horizontal cloud federation (VHCF), little is known regarding the
economic aspects (e.g., what stable cooperation pattern will form,
will it improve efficiency) of such a complex cloud network, where
secondary clouds are self-interested. To fill the gap, we analyze
the interrelated workload factoring and federation formation
among secondary clouds, while providing scalable algorithms to
assist them to optimally select partners and outsource workload.
We use a game theoretic approach to model the federation
formation of clouds as a coalition game with externalities.
We adopt a pessimistic core to characterize the cooperation
stability and formulate its computation as a bilevel optimization
problem. The properties of the problem are explored and efficient
algorithms are developed to solve it. Experimental results show
that the two common practices (no-cooperation and all-in-one
federation) are not always stable. The results also show that
compared with the two common practices, secondary clouds can
decrease service delay penalty by around 11% with the proposed
VHCF network.

Index Terms— Cloud computing, cloud federation, workload
factoring, coalition formation, core, bilevel optimization.

I. INTRODUCTION

CLOUD computing has emerged as a popular service
model where computing resources can be accessed by

users over the Internet on a usage basis, avoiding upfront
investment on the physical infrastructures. It has been shown
that individual private clouds (secondary clouds) can form
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Fig. 1. Typical VHCF network. 4 secondary clouds form 2 horizontal
federations. The horizontal federations can also rent resources from the
primary cloud through a vertical federation.

horizontal cloud federations [1] and scale up their ser-
vices by pooling their computing resources. Furthermore, the
horizontally federated clouds can vertically outsource part of
their requests to a public cloud (primary cloud) and pay the
usage fee, which is called workload factoring/outsourcing. For
example, in Fig. 1, if secondary cloud A receives 80 requests
from its end users and has only 60 computing resource
units (e.g., CPU, memory, and bandwidth), while secondary
cloud B receives 20 requests and has 30 resource units, then
B can share its redundant resources to process the excessive
requests from A and receive a share of payoff from A, while
for A, this payoff share is usually lower than the cost of
outsourcing to primary clouds.

Meanwhile, the total number of requests is still larger
than the total number of resources. To finish the requests on
time and avoid the penalty of violating service level agree-
ments (SLAs), the formed horizontal federation can further
outsource their requests to the primary cloud via a vertical
federation. Different from the resource sharing in a horizontal
federation, the resources of the primary clouds are on a renting
basis and are often costly. Moreover, the resources in a hori-
zontal federation are dedicated to processing internal requests,
while in a vertical federation, the resources of a primary
cloud are shared by different external requests. Therefore,
the performance (i.e., processing time) of the requests in a
primary cloud depends on the number of external requests
outsourced by other entities [2]. While horizontal federations
may still experience resource shortage or redundance, vertical
federation is a perfect complement. Due to the merits, such a
joint vertical and horizontal cloud federation (VHCF) network
is evaluated both theoretically [3] and practically (e.g., Aris-
totle federated cloud [4] and EUBrazil Cloud Connect [5]).

Although the technical aspects of both the vertical and
horizontal federations have been investigated [3], [6], [7],
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TABLE I

LIST OF NOTATIONS

the economic aspects of forming such a joint cloud federation
have never been studied, while these individual private clouds,
which can be treated as intelligent agents in a network, are
usually self-interested. To this end, three intrinsic questions
remain to be answered: 1) Federation Formation. If cooper-
ation incurs a cost, what is the stable cooperative pattern?
Is the grand coalition1—a coalition of all the clouds—always
stable? How much benefit will each coalition obtain, and
how to divide the benefit among the coalition members so
that nobody wants to deviate? 2) Workload factoring. Since
a coalition’s task performance in a primary cloud depends on
the strategies of the competing coalitions, what is the optimal
workload factoring strategy of each coalition? 3) Efficiency.
Is it beneficial for a group of secondary clouds to employ
such a VHCF network?

Due to the interdependency of the competitive workload fac-
toring among different coalitions and the cooperative resource
and payoff sharing within a coalition, it is not easy to
answer the aforementioned questions. Recently, several game
theoretic approaches have been proposed to study the eco-
nomics of cloud computing [2], [8]–[18] and other forms of
networks [19]–[25]. Unfortunately, these approaches ignored
either cooperation or competition among the players (see
Section II for details), and thus their methods cannot be
applied. We make four key contributions towards answering
these challenging questions.

First, we present a new game theoretic model which consid-
ers both cooperation and competition among cloud providers
in the joint VHCF network. We first establish that for a
fixed coalition structure (a partition of the secondary clouds),
the horizontal cloud federations play a competitive workload
factoring game. We then propose a coalition game to study the
federation formation among the secondary clouds. We show
that the coalition value, which is decided by the workload
factoring game, depends not only on a coalition itself, but also
on the specific coalition structure. To characterize the most
stable situation where no subset of secondary clouds want to
deviate, we use the commonly adopted least pessimistic core
as the solution concept.

Second, based on the analysis, we formulate the compu-
tation of the least pessimistic core as a bilevel optimization
problem. The lower level problem computes Nash equilibrium

1We use “horizontal federation” and “coalition” interchangeably, to denote
a group of cooperating secondary clouds. Note that we do not treat “vertical
federation” as a coalition, since the “sharing” of resources via vertical
federation is on a renting basis.

strategies of the workload factoring game given a fixed coali-
tion structure (it answers the second question above), and the
upper level problem, using the lower level problem as a sub-
routine, finds the least pessimistic core and the corresponding
coalition structure and payoff division (the first question).

Third, we exploit the structural properties of the game and
design efficient algorithms to solve the bilevel optimization
problem. We first prove the strict concavity of a coalition’s
value function. Using this property, we establish the existence
and uniqueness of the pure strategy Nash equilibrium of the
workload factoring game and significantly simplify the lower
level problem. For the upper level problem which belongs
to the hardest class of combinatorial optimization problems,
we propose a binary search algorithm, which prunes the
solution space (i.e., feasible coalition structures) based on two
heuristic rules. Our proposed algorithms can assist secondary
providers to optimally select partners, decide workload factor-
ing strategies and negotiate payoff in a VHCF network.

Last, we conduct extensive experimental evaluations.
We first show through a simple scenario the iterrelated work-
load factoring and federation formation. We then evaluate the
superadditivity and externality. We also study the coalition
formation results under different network conditions and show
that, the two common practices - no-cooperation and the grand
coalition - may not be stable if cooperation incurs a cost.
We also show the improvement of the secondary clouds’ total
utility by using the VHCF network, comparing with no coop-
eration and grand coalition (it answers the last question above).
Finally, we show the efficiency of the proposed algorithms in
terms of runtime and optimality.

The rest of this paper is organized as follows. Related
work is reviewed in Section II. Section III describes the
cloud network model. Section IV presents the game theoretic
analysis of the VHCF network. Section V presents algorithms
for the formulated problem. Section VI provides experimental
results. The paper is summarized in Section VII. We refer to
Table I for a list of notations.

II. RELATED WORK

Our work falls into the broad research area of economics
of cloud computing, which can be categorized into top-
ics including resource allocation/task scheduling [8], [9],
pricing [10], [11] and workload factoring/outsourcing [2],
[12], [13]. Our research belongs to the last category. There
have been a few works on optimizing cloud outsourcing.
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Van den Bossche et al. [12] aim at maximizing utilization of
internal data center, minimizing cost of running outsourced
tasks, while maintaining service quality. In [13], workload
factoring is considered in combination with the task scheduling
problem within a private cloud. These works neglect the
interrelated outsourcing behaviors among different secondary
clouds. Nahir et al. [2] study the workload factoring among
users of the same cloud provider. A non-cooperative game
is formulated where cloud users make strategic decisions on
workload factoring. However, they do not consider cooperation
among the cloud providers.

Competition and cooperation among different cloud
providers have been independently studied in other eco-
nomic aspects of cloud computing. In [14], price competition
is considered in the setting of multiple cloud providers.
Instead of studying the competition among cloud providers,
in [15], the competition among the cloud users is investi-
gated. These two works focus on competition among cloud
providers or users, but they ignore their potential cooperation.
Cooperation among clouds is studied by applying cooperative
game theory. In [16] the resource and revenue sharing prob-
lem within a horizontal cloud federation is formulated as a
stochastic program. In [17], a coalition game based resource
allocation and revenue sharing scheme is proposed. The stable
coalition structure is obtained with the merge-split algorithm.
Guazzone et al. [18] introduce an MILP-based formulation
of the energy-aware resource allocation within a coalition,
which aims at minimizing energy cost of a coalition. However,
these works only study the cooperative behavior among cloud
providers.

Game theory has been extensively employed to analyze
cooperation and competition in other forms of networks.
Guruacharya et al. [19] study the coalition formation game
among small cell base stations for joint beamforming in cell
networks. An overlapping coalition formation game model is
proposed in [20] to study the cooperation among secondary
users in cognitive radio networks, while in another work [21],
the coalition formation among primary users is studied.
Lee et al. [22] model the cooperation of the small-scale
electricity suppliers and the end users as a coalition game.
In [23], the spectrum sharing among wireless users in a
wireless network is modelled as a non-cooperative game.
Zhong et al. [24] study a non-cooperative resource allocation
game among the device-to-device users in cell networks.
In [25] a non-cooperative spectrum load balancing game
among the secondary users is proposed in a cognitive radio
network. These works mainly focus on resource contention
among different entities.

To the best of our knowledge, no previous work has
analyzed interrelated competition and cooperation among a
same group of entities in cloud networks or other forms of
networks. We aim at filling the gap.

III. CLOUD NETWORK SYSTEM

In this section, we first introduce the secondary clouds and
horizontal federation. We then describe the primary clouds and
vertical federation. Last, we define the coalition values of the
horizontal federations.

A. Secondary Cloud and Horizontal Federation

We consider a set of secondary clouds denoted as J =
{1, 2, . . . , j, . . . , |J |}. Each secondary cloud j has a pool of
computing resources. Each secondary cloud j is characterized
by three parameters: the number of available resources (capac-
ity) cs

j , the number of requests r s
j from its end users and

the per unit utility ps
j it gets for processing a unit user

request.2 We denote a horizontal federation, or coalition of
a subset of secondary clouds as C ⊆ J . Once a coalition
C is formed, the resources and requests of its members
are aggregated: c(C) = ∑

j∈C cs
j and r(C) = ∑

j∈C rs
j .

A partition of secondary clouds, or a coalition structure
π = {C1, . . . , Ck, . . . , Cm}, consists of different coalitions.
We denote � as the set of all coalition structures. Follow-
ing [18] and [16], we refine that a partition π is exhaustive
and disjoint: ∪m

k=1Ck = J , and Ck ∩ Ck′ = ∅ (for any
Ck, Ck′ ∈ π such that Ck �= Ck′ ).

B. Primary Cloud and Vertical Federation

As shown in Fig. 1, instead of processing all the requests
with the federated resource pool, a horizontal federation
may also outsource requests to primary clouds via verti-
cal federation. We denote the set of primary clouds as
I = {1, 2, . . . , i, . . . , |I |}. Similarly, each primary cloud i
is characterized by its capacity cp

i , number of requests r p
i

and unit price p p
i . Denote the number of requests from

coalition Ck to primary cloud i as zki , the total number of
requests received by primary cloud i is r p

i =
∑

Ck∈π zki .
The request strategy of coalition Ck is denoted as a vector
zk = 〈zk1, . . . , zki , . . . , zk|I |〉T ,3 and the request strategy pro-
file associated with a coalition structure π = {C1, C2, . . . , Cm}
is a matrix z = 〈z1, z2, . . . , zm〉.
C. Processing Time, Delay and Coalition Value Function

Due to cloud virtualization technology, a request actu-
ally runs on a virtual machine (VM) instead of a physical
machine. For example, c resources can host r VMs, while
each VM takes up c

r resources. By default, we assume that
each request runs on one VM,4 and if one VM takes up a
unit resource, its processing time is a unit period. As a result,
when r requests run on c resources, the processing time of
each request is r/c.5 As is noticed, when r > c, it causes a
“congestion” effect and delay of processing. According to the
service level agreement [29], a cloud provider bears a penalty

2We assume rs
j is predictable and refer to [26] as an example of demand

prediction. For ease of analysis, we consider only one type of computing
resource, as is the case in [2]. Throughout the paper, the superscript p means
“primary”, while s means “secondary”.

3Note that this formulation is a generalization of “vendor lock-in”, which
means that a secondary cloud can outsource requests to only one primary
cloud. Nonetheless, our formulation can be reduced to the vendor lock-in
case by simply setting the number of outsourced requests to only one primary
cloud as non-zero.

4Different request sizes can be treated as a large request being divided into
smaller unit ones.

5We refer to [2] for a detailed discussion of processing time. Note that we do
not consider requests being dropped by cloud providers. In practice, the rate
of dropping a request is very low—for example, according to the service
level agreement of Amazon EC2 [27] and Microsoft Azure [28], the rate of
dropping a request is less than 0.05%, which is negligible.
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if the processing time exceeds a “deadline”. By default, we set
the deadline of each request as a unit time period.6 For primary
cloud i , given the total number of requests r p

i and capacity c p
i ,

its delay of processing time is

τi (z) = r p
i /c p

i − 1. (1)

Similarly, the delay function of a coalition Ck is denoted as

ξk(z) = r(Ck)−∑
i∈I zki

c(Ck)
− 1, (2)

where r(Ck)−∑
i∈I zki is the number of requests processed in-

house. Note that when capacity is larger than the total number
of requests, the delay is negative, as the requests are processed
before the deadline.

We denote the penalty function of a primary cloud i as
f p
i (τi ). For ease of analysis, we assume all secondary clouds

have a same penalty function f s . Therefore, the penalty of
coalition Ck is f s(ξk). However, our formulation can be
extended to different penalty rates.7 Accordingly, we define
the value function v(Ck ;π; z) of coalition Ck ∈ π with request
strategy z as:

v(Ck ;π; z) =
∑

j∈Ck
ps

jr
s
j −

∑

i∈I
p p

i zki − (
∑

j∈Ck
r s

j

−
∑

i∈I
zki ) f s(ξk(z))

−
∑

i∈I
zki ( f s(τi (z))− f p

i (τi (z))), (3)

where the first term on the right hand side is the utility of
processing requests from the end users. The second term
is the payment to the primary clouds. The last two terms
indicate the delay penalty for the requests processed in-house
and in primary clouds, respectively. Note that for the case of
negative delay, i.e., the request is finished before the deadline,
the penalty can be viewed as a “bonus”.

IV. COALITION FORMATION AND WORKLOAD

FACTORING OF SECONDARY CLOUDS

In this section, we analyze the interrelated workload fac-
toring and coalition formation among the secondary clouds.
As an example, we look at the two horizontal cloud federa-
tions in Fig. 1. First, the workload factoring among different
horizontal federations is interdependent. For example, if Fed-
eration 1 reduces its outsourced request to the primary cloud,
Federation 2 will have an incentive to increase its outsourced
requests, since the processing time in the primary cloud is
shorter.8 Second, the workload factoring and the formation of

6Requests with longer deadlines can be treated as several separate “virtual”
requests spanning over multiple time periods. For example, if a request with
a deadline of 5 unit time is received at a time t , we treat it as 5 separate
virtual requests received in 5 consecutive time periods from t to t + 4. For
each virtual request, it has a deadline of one unit time. While in the current
time t , only the first among the 5 virtual requests is taken into account, and
the rest 4 requests are counted as requests in future time periods.

7When different secondary clouds have different penalty functions, they will
have an incentive to allocate more requests to the clouds with smaller penal-
ties. We can extend our formulation by incorporating a resource allocation
subscheme among the clouds [8], [9].

8Throughout this paper, we look at small and medium scale of cloud
networks, where one secondary cloud’s request processing time in the primary
cloud is impacted by the other secondary clouds, as is the case studied in [2].

Fig. 2. Two steps to analyze the VHCF network.

coalition structures are interdependent. For example, if the two
clouds in Federation 2 decide not to cooperate, they may need
more resources and the total number of outsourced requests
will increase, which further impacts the outsourcing strategy
of Federation 1. On the other hand, the outsourcing strategy of
Federation 1 also influences whether the rest of the clouds will
cooperate. For example, if Federation 1 submits fewer requests
to the primary cloud, the processing time in the primary cloud
is shorter. In this case, the two clouds in Federation 2 will tend
to submit more requests to the primary cloud, and it is less
beneficial for them to cooperate.

Due to the above two complicated interrelations, we decom-
pose the analysis into two steps, which is shown in Fig. 2.
In the first step, we consider a fixed coalition structure and a
workload factoring game. Next, we study the coalition forma-
tion among the secondary clouds and use a least pessimistic
core to characterize the most stable outcome. Based on the
analysis, we formulate the computation of the least pessimistic
core as a bilevel optimization problem.

A. Workload Factoring Game (WFG) for a
Fixed Coalition Structure

Definition 1: For a fixed coalition structure π , a WFG is
a non-cooperative game, where the players are the different
coalitions, the strategy is the number of requests outsourced
to primary clouds, and the utility of a player is defined
in Eq.(3).

For non-cooperative games, Nash equilibrium (NE) is a
natural solution concept, where each player is not willing to
unilaterally change its strategy. Given coalition structure π ,
the NE strategy zN

k of Ck is:

zN
k ∈ arg maxzk∈Ak v(Ck ;π; zk, zN

−k), ∀Ck ∈ π, (4)

where zN−k denotes the equilibrium strategies of all the other
coalitions. Ak is the feasible region of zk :

zki ≥ 0, ∀i ∈ I , (5)
∑

i∈I
zki ≤ r(Ck). (6)

The entire feasible solution space is A = ×m
k=1Ak , where × is

a Cartesian product. Eq.(5) means that the number of requests
from coalition Ck to each primary cloud i is non-negative,
while Eq.(6) requires that the sum of requests outsourced by
each coalition Ck cannot exceed its total number of requests.9

9We leave the description of solution algorithms of the WFG and the
following CFG-e in Section V.
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B. Coalition Formation Game With Externalities (CFG-e)

So far, we have addressed the second question in Section I,
i.e., an optimal workload factoring strategy in a competitive
setting is an NE strategy. After we obtain the workload
factoring strategy for each coalition structure with Eq.(4), each
coalition’s utility can be calculated by Eq.(3). To simplify
notation, we omit zN , and denote the NE value of a coalition
Ck ∈ π as v(Ck ;π). As is noticed, the coalition value depends
on the specific coalition structure. In the following, we answer
the first question in Section I by proposing a coalition game
model.

Definition 2: CFG-e is a coalition game played by sec-
ondary clouds, where coalition value depends on the spe-
cific coalition structure, i.e., it has externality effect. The
outcome of a coalition game is a tuple (π, x), where x =
〈x1, . . . , x j , . . . , x|J |〉 denotes the payoff of each secondary
cloud.

Since the secondary clouds are self-interested, we need to
consider a stable outcome, i.e., no subset of players can get
a higher payoff by deviating from the current outcome and
forming a new coalition. However, for a CFG-e, when the
players want to deviate, they have to consider the response
of the residual players (i.e., the rest of the players). There
has been extensive discussion on the stability in a CFG-e.
We refer to Kóczy [30] for a review. In this paper, we use the
commonly adopted pessimistic core10 as the solution concept,
which means that if a group of players want to deviate, they
are pessimistic about their potential coalition value [32].

Definition 3: The pessimistic value of a coalition C in a
CFG-e is the lowest possible value in all coalition struc-
tures �C which contain C: ṽ(C) = minπ∈�C v(C, π).11

Consider an outcome (π, x), where x j ≥ 0,∀ j ∈ J , it is
in the pessimistic core if

∑
j∈C x j ≥ ṽ(C), ∀C ∈ C , and∑

j∈C x j = v(C, π), ∀C ∈ π . The two constraints ensure
that 1) the sum of payoff for each subset of players is no
smaller than the pessimistic value of their intended coalition
and 2) the sum of payoff of all the coalition members is equal
to the coalition value. However, the pessimistic core can be
empty, or there can be multiple cores. Thus we define a “least
pessimistic core” to denote the set of most stable outcomes
for a CFG-e.

Definition 4: The least pessimistic core of a CFG-e is the
outcome (π, x) with the smallest ε satisfying

∑

j∈C
x j ≥ minπ∈�C v(C, π) − ε, ∀C ∈ C (7)

∑

j∈C
x j = v(C, π), ∀C ∈ π (8)

x j ≥ 0, ∀ j ∈ J (9)
When ε > 0, a set of players prefer to deviate when the loss
of deviation is no larger than ε, while ε ≤ 0 means that they
prefer to stay at the current outcome even if they can get a
reward of −ε if they deviate. Therefore, the outcome with the
smallest ε is the most stable. Note that in Eq.(7), to obtain the
pessimistic value of a coalition C , we need to go through all

10We use core instead of Shapley value [31] because to incentivize the
self-interested clouds, stability is more desired than fairness.

11Our framework can be easily extended to the optimistic core [30] by
defining an optimistic value v̂(C) = maxπ∈�C v(C, π).

the coalition structures that contain C , which is impractical
when the scale of the problem is large. Before we finally
formulate the bilevel optimization problem to obtain the least
pessimistic core and the corresponding outcome, we simplify
Eq.(7) with two important properties of the proposed CFG-e,
namely, superadditivity and positive externality.

Lemma 1: When cooperation incurs no cost, the proposed
CFG-e is superadditive, i.e., for any two coalitions Ck, Ck′ ,
there is v(Ck ∪Ck′ ; {Ck ∪Ck′ }∪πr ) ≥ v(Ck ; {Ck, Ck′ }∪πr )+
v(Ck′ ; {Ck, Ck′ } ∪ πr ), where πr denotes a partition of the
residuals J \ (Ck ∪ Ck′ ). Coalition structure {Ck ∪ Ck′ } ∪ πr

means that Ck and Ck′ cooperate, and {Ck, Ck′ } ∪ πr means
that they do no cooperate.

Proof: The proof is in two phases. First, we prove
that for two coalitions Ck and Ck′ , if the total number
of their outsourced requests after cooperation equals the
sum of outsourced requests before cooperation, their total
delay is no larger after cooperation. Second, we prove that,
if the total number outsourced requests can be changed,
the total delay (utility) is still no larger (smaller) after
cooperation.

1) Total number of outsourced requests do not change.
We first assume that after Ck and Ck′ form a new coalition,
the total number of outsourced requests equals the sum of their
outsourced requests before cooperation. In this case, only the
delay penalty (the third term in Eq.(3)) in the coalition value
function is changed. Denote the number of requests processed
in-house as rin(Ck) = r(Ck) − ∑

i∈I zki and rin(Ck′ ) =
r(Ck′ ) −

∑
i∈I zk′i , we can obtain the total delay of Ck and

Ck′ under two cases: 1) Ck and Ck′ cooperate and form a new
coalition; 2) Ck and Ck′ do not cooperate. By subtracting the
total delay of these two cases, we have:

rin(Ck)(
rin(Ck)

c(Ck)
− 1)+ rin(Ck′ )(

rin(Ck′ )

c(Ck′)
− 1)

− (rin(Ck)+ rin(Ck′ ))

(
rin(Ck)+ rin(Ck′ )

c(Ck)+ c(Ck′)
− 1)

= r2
in(Ck)

c(Ck)
+ r2

in(Ck′ )

c(Ck′)
− (rin(Ck)+ rin(Ck′ ))2

c(Ck)+ c(Ck′ )

= (rin(Ck)c(Ck′ )− rin(Ck′ )c(Ck))
2

c(Ck)c(Ck′ )(c(Ck)+ c(Ck′))
≥ 0.

The equality holds (i.e., the total delays of the above two
cases are equal) when the processing rates of coalitions Ck and
Ck′ are the same (i.e., rin (Ck)

c(Ck)
= rin (Ck′ )

c(Ck′ )
). Therefore, the total

delay (also for unit delay, since the total number of requests
is the same whether the two coalitions cooperate or not) is
always no larger when clouds cooperate than the total delay
when they do not cooperate.

2) Total number of outsourced requests can be changed.
If the new coalition Ck ∪ Ck′ can change the number of
outsourced requests, it can at least maintain the current request
strategy (or change it only when it is beneficial). As a result,
the total delay of the merged new coalition is still always
no larger than the total delay of the two separate coalitions.
Correspondingly, the utility of the merged new coalition is
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always no smaller than the sum of utility of Ck and Ck′ if
these two coalitions do not cooperate. �

Lemma 2: When cooperation incurs no cost, the pro-
posed CFG-e has positive externality, i.e., for any coali-
tions Ck, Ck′ , Ck′′ ⊆ J , and a partition πr of the residuals
J \ (Ck ∪ Ck′ ∪ Ck′′ ), the value of Ck is always no smaller
when Ck′ and Ck′′ cooperate: v(Ck ; {Ck, Ck′ ∪ Ck′′ } ∪ πr ) ≥
v(Ck ; {Ck, Ck′ , Ck′′ } ∪ πr ).

Proofsketch: At the NE strategy of a coalition, if the
coalition increases its outsourced requests by a very small
amount (it brings no change of the processing time in either
the coalition or the primary clouds), the benefit from the
decrease of delay penalty in-house equals the payment to the
primary clouds plus the delay penalty from the primary clouds.
According to the proof of Lemma 1, when the new coalition
Ck ∪ Ck′ maintains its request strategy, its unit delay never
increases. Thus the new coalition has an incentive to decrease
its outsourced request so that the delay in-house increases,
the delay in primary clouds decreases, and the equilibrium is
reached again. When the delay in primary clouds decreases,
the delay penalty of other coalitions decreases, and their utility
increases. �

Theorem 1: When cooperation incurs no cost, the grand
coalition is the most stable coalition structure.

Proofsketch: When cooperation incurs no cost, superaddi-
tivity implies that cooperation is beneficial to the coalition
members, while positive externality implies that cooperation
is beneficial to the clouds outside the coalition. Thus the grand
coalition will always be the most stable coalition structure. �

However, forming coalitions incurs additional cost, such
as extra hypervisor machines, administration cost and data
transmission cost. Therefore, we add a cost term to the
coalition value function:

v ′(Ck, π) = v(Ck , π)− Cco(Ck). (10)

Since the coalition cost is generated in the intra communi-
cation within a coalition, we assume it depends only on the
coalition itself, i.e., it does not have externality effect.

Theorem 2: When coalition cost has no externality effect,
the proposed CFG-e has positive externalities.

Proofsketch: This is a direct extension of Lemma 2. �
According to Theorem 2, the pessimistic value of a

coalition C is associated with the coalition structure π where
all residual players form singleton coalitions, i.e., each coali-
tion has only one member. With this property, the pes-
simistic value of all coalitions can be obtained directly,
which greatly simplifies Eq.(7). Combining this property with
Eqs.(4), (7)-(9), the solution (i.e., the most stable outcome) of
this CFG-e is expressed with the following bilevel optimiza-
tion problem:

minπ,x,zN ε (11)

s.t.
∑

j∈C
x j ≥ ṽ(C)− ε, ∀C ∈ C (12)

∑

j∈Ck
x j = v ′(Ck;π; zN ), ∀Ck ∈ π (13)

x j ≥ 0, ∀ j ∈ J (14)
π ∈ � (15)

zN
k ∈ arg maxzk∈Ak v(Ck ;π; zk, zN−k), ∀Ck ∈ π (16)

Eqs.(11)-(15) describe the upper level problem of comput-
ing the pessimistic core, while Eq.(16) denotes the lower level
problem of computing an NE strategy for a fixed coalition
structure π . Eqs.(11)-(14) compute the least ε value for a
fixed π . Eq.(15) denotes the feasible coalition structure space,
which will be introduced in detail in Section V.

V. COMPUTING LEAST PESSIMISTIC CORE

Due to the two-level structure and involved form of coalition
value functions, there is no existing method to solve the above
optimization problem directly. In this section, we decompose
the bilevel problem and design algorithms for both levels.
In the lower level, we propose two algorithms CLONE and
CLOSE. CLONE employs the constraint generation method,
and is a generic algorithm. CLOSE is a more efficient
algorithm which employs several structural properties of the
lower level problem, but is limited to concave coalition value
functions. In the upper level, we propose Brute-Force and
CUBE. CUBE implements a binary search method with two
heuristic rules and is more efficient than Brute-Force.

A. Solving the Lower Level WFG

Given a coalition structure π , the lower level problem in
Eq.(16) is a feasibility problem:

maxzN 0 (17)

v(Ck ;π; zN ) ≥ v(Ck ;π; zk, zN
−k), ∀zk ∈ Ak , Ck ∈ π

(18)

zN ∈ A (19)

1) The General Algorithm CLONE: Unfortunately, the num-
ber of constraints in Eq.(18) is infinite since zk ∈ Ak is
a continuous parameter. We use the constraint generation
method [33] to deal with the infinite constraint space. The
basic idea is to start with solving a relaxation of the original
problem by sampling a small subset of constraints and then
use a sub-routine to find violated constraints, and gradually
expand the set by adding the violated constraints to the relaxed
problem until no violated constraint is found. CLONE (Com-
pute Lower level Optimization with coNstraint gEneration),
as shown in Algorithm 1, begins by randomly sampling a
finite subset �k of constraints from Ak for each coalition Ck .
A relaxed master problem is solved which is in the same
form as the original feasibility problem in Eqs.(17)-(19) and
returns the feasible solution z∗. The only difference is that the
master problem replaces Ak with �k in Eq.(18). Constraint
generation is then applied to find the “mostly violated” con-
straint for each coalition Ck , as is shown in the following slave
problem:

maxzk∈Ak D fk = v(Ck ;π; zk, z∗−k)− v(Ck ;π; z∗k, z∗−k).

(20)

The most violated constraint refers to the parameter zk that
maximizes the difference between the utility of coalition Ck

computed by zk and by the optimal solution z∗k of the master
problem. The solutions of the slave problem return the set
of mostly violated constraints, which will be added to the



CHEN et al.: WORKLOAD FACTORING AND RESOURCE SHARING VIA JOINT VHCF NETWORKS 563

Algorithm 1 CLONE

1 Sample a subset � of constraints from A;
2 repeat
3 zN ← solution of master problem;
4 zopt

k ← solution of slave problem,
5 D f opt

k ← objective of slave problem;
6 for Ck ∈ π do
7 if D f opt

k > ek then add zopt
k to �;

8 until D f opt
k ≤ ek, ∀Ck ∈ π ;

9 return zN
k , v(Ck ;π; zN ), ∀Ck ∈ π .

set of constraints � of the master problem. The process
iterates until convergence, i.e., the optimal value D f opt

k of
the slave problem corresponding to each coalition Ck ∈ π is
no larger than a small threshold ek . This threshold is set as
the multiplication of the coalition’s gross revenue

∑
j∈Ck

r s
j ps

j
and a small ratio e (we will evaluate the runtime of the
algorithm with different scales of e in Section VI). In this
way, we decompose the original optimization problem into a
series of master-slave non-linear optimization problems, which
have a finite number of constraints and can be solved directly
by existing optimization solvers like KNITRO.

2) The Faster Algorithm CLOSE: With CLONE, we can
solve the lower level optimization with any form of coalition
value functions. However, it solves a series of non-linear
master-slave problems, and thus becomes rather slow for
large scale settings.12 In the following, we first demonstrate
that under the commonly employed linear delay penalty
rules [34]–[36] (i.e., f p

i (τi ) = β
p
i τi , f s(ξk) = βsξk , where

β
p
i and βs are penalty rates for primary cloud i and sec-

ondary clouds, resp.), the value function of each coalition
Ck is strictly concave w.r.t. its request strategy vector zk .
We then use this property to establish the existence and
uniqueness of the NE. Based on the theoretical analysis,
we introduce a more efficient algorithm to solve the lower level
problem.

Lemma 3: With linear penalty functions f p
i (τi ) = β

p
i τi ,

f s(ξk) = βsξk , the coalition value function defined in Eq.(3)
is strictly concave w.r.t. its request strategy zk .

Proof: Let Ak = βs

c(Ck)
, Dk = ∑

j∈Ck
ps

jr
s
j −

βsr(Ck)(
r(Ck)
c(Ck)

− 1), vk = v(Ck ;π; z), we rewrite the
value function in Eq.(3) as: vk = −Ak(

∑
i∈I zki )

2 −
∑

i∈I (
(βs−β

p
i )zki

cp
i

∑
Ck′ ∈π zk′i ) + ( 2βs r(Ck)

c(Ck)
− β

p
i )

∑
i∈I zki +

Dk −∑
i∈I p p

i zki . The Hessian matrix of −vk is defined as

Hll′(−vk) = ∂2vk
∂zkl ∂zkl′

, l, l ′ ∈ I . Substitute vk with the above
equation, we have:

Hll′(−vk) =
⎧
⎨

⎩

2(Ak + (βs−β
p
i )p p

i
cp

l
), l = l ′,

2Ak, l �= l ′.

12CLONE is still meaningful because when coalitions’ value functions are
not strictly concave, only CLONE can be applied.

Let Bl = βs−β
p
i

cp
l

. For any upper left l̃ × l̃ matrix, where l̃ =
1, . . . , i, . . . , |I |, its determinant

det Hl̃ = 2l̃

∣
∣
∣
∣
∣
∣
∣
∣

Ak + B1 Ak · · · Ak

Ak Ak + B2 · · · Ak

· · · · · · · · · · · ·
Ak Ak · · · Ak + Bl̃

∣
∣
∣
∣
∣
∣
∣
∣

= 2l̃

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Ak + B1 Ak · · · · · · Ak

−B1 B2 0 · · · 0
· · · 0 B3 · · · · · ·
· · · · · · · · · · · · 0
−B1 0 · · · 0 Bl̃

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 2l̃

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Ak + B1 + Ak

l̃∑

l=2

B1

Bl
Ak · · · · · · Ak

0 B2 0 · · · 0
· · · 0 B3 · · · · · ·
· · · · · · · · · · · · 0

0 0 · · · 0 Bl̃

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= (Ak + B1 + Ak

∑l̃

l=2
B1/Bl)�

l̃
l=2 Bl,

Since Ak > 0, Bl > 0, then det Hl̃ > 0,∀l̃ ∈ I , i.e., the
Hessian matrix of −vk w.r.t. zk is positive definite everywhere.
Thus −vk is strictly convex w.r.t. zk , while v(Ck ;π; zk) is
strictly concave. �

The strict concavity of coalition function is intuitive: when
the number of outsourced requests is small, the coalition value
increases with the outsouced requests because the in-house
overload is relieved. When the number of outsourced requests
is too large, the coalition value begins to decrease because the
benefit of relieving in-house overload is smaller than the cost
of outsourcing.

Theorem 3 (Existence and Uniqueness of Equilibrium):
With linear delay penalty, the pure strategy Nash equilibrium
for the WFG given a coalition structure π is non-empty and
unique.

Proof: For each coalition Ck as a player of the WFG,
given the strategies z−k of the other players, it will select
the optimal strategy zk that maximizes its value, which is
a mapping φk : A−k → Ak defined as zk = φk(z−k).
According to Lemma 3, the value function v(Ck ;π; z) of
each coalition Ck is strictly concave w.r.t. zk . Combined with
the compactness (closed and bounded) of both the domain
A−k and the range Ak , we have that the mapping φk(z−k) is
non-empty and unique. Also, the compactness of A−k implies
that the mapping φk : A−k → Ak is upper hemicontinuous.
The non-emptiness, uniqueness (point to point), and upper
hemicontinuity are naturally inherited by the mapping φ :
A → A defined as φ(z) = ×m

k φk(z−k). Moreover, since the
vertices of A defined in Eqs.(5)-(6) are affinely independent,
A is a simplex (and closed). Applying Kakutani’s fixed point
theorem [37], there exists a unique zN ∈ A such that z = φ(z).
Thus, the pure strategy NE of our problem is non-empty and
unique. �

Based on Theorem 3, we design a more efficient algorithm
for the lower level problem.
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Fig. 3. Two cases of NE. x and y axes denote the request strategy of coalitions
C1 and C2, resp. The two lines L1 and L2 denote the best responses curves
of coalitions C1 and C2 when the feasible region A is relaxed, while the
dashed line segments are outside the feasible region. Following Theorem 6,
they are replaced by the dotted line segments.

Theorem 4: When the feasible region A in Eq.(19) is
relaxed to R

m×n, the lower level optimization problem is
equivalent to solving the following linear equation system:

∂v(Ck ;π; z)
∂zki

= 0, ∀i ∈ I , ∀Ck ∈ π. (21)

Proof: When the feasible region is relaxed to z ∈ R
m×n ,

then the computation of the NE for a fixed coalition structure
π is equivalent to: maxzk v(Ck ;π; z),∀Ck ∈ π . According
to Lemma 3, when the request strategy z−k of the other
coalitions is fixed, the value function of each coalition is
strictly concave w.r.t. zk . Employing the first order condition,
for coalition Ck , its unique optimal strategy vector can be
computed as: ∂vk

∂zki
= 0,∀i ∈ I . Considering all the coalitions,

we obtain Eq.(21). �
Unfortunately, the solution of Eq.(21) may not always lie

in the feasible region in Eqs.(5)-(6).
Theorem 5: The solution of Eq.(21) is guaranteed to satisfy

the feasibility constraints in Eq.(6).
Proof: With Theorem 4, for each coalition Ck ∈ π ,

we compute its NE strategy vector with 2βs

c(Ck)
(r(Ck) −

∑
i∈I zki ) − βs−β

p
i

cp
i

(
∑

Ck′ ∈π zk′i + zki ) − p p
i − β

p
i = 0.

Extract r(Ck) − ∑
i∈I zki , we have r(Ck) − ∑

i∈I zki =
c(Ck)
2βs (

βs−β
p
i

cp
i

(
∑

Ck′ ∈π zk′i + zki )+ p p
i ). Practically, the price of

primary clouds is much lower than that of secondary clouds.
Thus, we assume their penalty rate is also lower than that of
secondary clouds, i.e., βs > β

p
i . Moreover, we have zki ≥ 0,

and thus
∑

i∈I zki ≤ r(Ck) is satisfied. �
Theorem 5 implies that the feasibility constraint in Eq.(6)

can be omitted. In the next, we further discuss the feasibility
constraint in Eq.(5). As we know, each partial differential
equation in Eq.(21) can be viewed as a best response curve
of a coalition given the strategies of other coalitions (Fig. 3).
The intersection of these curves is the solution of Eq.(21).
However, for each curve, there is a segment that lies outside
the feasible region (the dashed line segments in Fig. 3).

Theorem 6: For the best response curves of a coalition
described in Eq.(21), the segments that lie outside the feasible
region (i.e., zki < 0) should be replaced by the curve zki = 0.

Proof: According to the definition of strict concavity,
for the best response curve where zki < 0, we have

Algorithm 2 CLOSE

1 z∗ ← solution of Eq.(21);
2 for Ck ∈ π do
3 for i ∈ I do
4 if z∗ki < 0 then
5 Replace the corresponding equation in Eq.(21)

by zki = 0;

6 zN ← Solution of the new equation system;
7 return zN

k , v(Ck ;π; zN ), ∀Ck ∈ π .

Algorithm 3 Brute-Force

1 ε∗ ← M;
2 for �K , K = 1 : |J | do
3 ε∗K ← M;
4 for node π ∈ �K do
5 Solve Eq.(16) for π , get coalition values;
6 επ ← solution of Eqs.(11)-(14);
7 if ε∗K > επ then ε∗K ← επ

8 if ε∗ > ε∗K then ε∗ ← ε∗K
9 return ε∗

v(Ck ;π; z′′ki = 0, zk,−i , z−k) > λv(Ck ;π; zki <
0, zk,−i , z−k) + (1 − λ)v(Ck ;π; z′ki > 0, zk,−i , zk), where
zk,−i is the request strategy to primary clouds except i ,
zki is on the best response curve, z′ki > 0 is any value
in the feasible region A. Since z′′ki = 0 is between zki

and z′ki , then 0 < λ < 1. Also we have v(Ck ;π; z′′ki =
0, zk,−i , z−k) < v(Ck ;π; zki < 0, zk,−i , z−k). Therefore,
v(Ck ;π; z′′ki = 0, zk,−i , z−k) > v(Ck ;π; z′ki > 0, zk,−i , z−k)
holds for any z′ki > 0 and the best response curve should be
zki = 0. �

Based on the properties above, we propose CLOSE (Com-
pute Lower level Optimization with Strictly concavE value
function) to solve the lower level problem in Eqs.(17)-(19),
as shown in Algorithm 2.

B. Solving the Upper Level CFG-e
Since the coalition value function is in an implicit form

which depends on the solution of the lower level prob-
lem, the upper level problem cannot be formulated as a
single integer-linear program. Instead, a separate linear pro-
gram (Eqs.(11)-(14)) has to be solved to find the least core of
each coalition structure. A natural idea is to do a brute-force
search within � to find the least pessimistic core.

1) The Exact Algorithm Brute-Force: We first introduce a
coalition structure graph.

Definition 5: A coalition structure graph (CSG) � is a
graph with |J | levels, where each node denotes a coalition
structure, and each level �K , K = 1, 2, ..., |J | contains the
coalition structures that have K coalitions. Fig. 4 shows an
example CSG with 3 secondary clouds.

A brute-force searching algorithm, as shown in Algorithm 3,
traverses all the nodes from bottom-up, level by level. For
each node, a linear program (Eqs.(11)-(14)) is called as a
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Fig. 4. CSG with 3 secondary clouds. The bottom node (level 1) is the grand
coalition, the top node (level 3) has 3 singleton coalitions, and all nodes in
level 2 have 2 coalitions.

subroutine to obtain the least core value επ for the node. ε∗
and ε∗K respectively denote the least core value for � and in
the level �K , which are initialized as a very large value M .

2) The Heuristic Algorithm CUBE: Note that the number
of coalition structures is a Bell number w.r.t. the number
of secondary clouds n, which belongs to one of the most
notorious large numbers in the combinatorial mathematics and
is of order O(nn) and ω(nn/2) [38]. As a result, it is rather
inefficient to do a brute-force search within the exponentially
large solution space. In fact, finding the least core for large
scale coalition games with externalities, which belongs to
hardest class of combinatorial optimization problems, has long
been an open problem. Although there have been attempts
to solve much simpler problems [39], [40], no attempts have
been made to obtain the least core for large scale coalition
games with externalities. In this paper, we design a binary
search algorithm, CUBE, to solve the upper level problem,
which implements two heuristic pruning rules based on the
properties of the CFG-e.

3) Heuristic Rule 1: When ε∗K < ε∗K ′ , search in levels closer
to �K . ε∗K < ε∗K ′ implies that the nodes in �K tend to be more
stable than those in �K ′ . Thus we put more search effort to
the levels closer to �K .

4) Heuristic Rule 2: For a coalition C ∈ π , if the
ratio of its request and capacity r(C)

c(C) satisfies r(C)
c(C) <

1 or r(C)
c(C) > θ ×

∑
C∈π r(C)∑
C∈π c(C)

,13 prune this node π . The intuition

behind this heuristic rule is that when a coalition C has
redundant resources ( r(C)

c(C) < 1) or has too low available

resources ( r(C)
c(C) > θ ×

∑
C∈π r(C)∑
C∈π c(C)

), the coalition value is
expected to be low and thus the coalition will not form. If any
such coalition C exists, a coalition structure which contains
C cannot exist either. With smaller values of θ , the pruning is
more aggressive, while sacrificing optimality.

Based on the above two rules, we propose CUBE (Compute
Upper level problem with Binary sEearch). As shown in
Algorithm 4, the algorithm iteratively searches within the
smallest level �K to the largest level �K ′ , which are ini-
tialized as 1 and |J |, respectively. For K < K ′, meaning
that there are more than 2 levels of nodes, CUBE computes
the least core ε∗K , ε∗K ′ of these two levels (Lines 4-11).
In Lines 7-8, it skips any node which satisfies heuristic rule 2.
If ε∗K < ε∗K ′ , according to heuristic rule 1, the largest level
becomes K ′ = �(K + K ′)/2�, which means that half of the

13It reveals the average request-capacity ratio of all secondary clouds.

Algorithm 4 CUBE

1 ε∗ ← M; K ← 1, K ′ ← |J |;
2 while K < K ′ do
3 ε∗K ← M, ε∗K ′ ← M;
4 for node π ∈ �K do
5 for C ∈ π do
6 if r(C)

c(C) ≥ 1 && r(C)
c(C) ≤ T2 then

7 Solve Eq.(16) for π , get coalition values;
8 επ ← solution of Eqs.(11)-(14);
9 if ε∗K > επ then ε∗K ← επ ;

10 Repeat Lines 5-10 for �K ′ , get ε∗K ′ ;
11 if ε∗K < ε∗K ′ then K ′ ← � (K + K ′)/2�;
12 else K ← �(K + K ′)/2�;
13 return ε∗;

TABLE II

SUMMARY OF PARAMETERS MENTIONED IN THE EXPERIMENTAL
SETTINGS. WE EVALUATE THE INFLUENCE OF THESE

PARAMETER VALUES ON COALITION FORMATION

RESULTS IN SECTION VI-C

levels closer to level �K ′ are pruned. Else, the smallest level
is updated as K ← �(K + K ′)/2�.

VI. EXPERIMENTAL RESULTS

In this section, we: 1) show through a simple example
the interrelated workload factoring and coalition formation,
and the general process of obtaining the least pessimistic
core; 2) evaluate superadditivity and externality; 3) evaluate
coalition formation under different VHCF scenarios; 4) show
the improvement of total utility by using the VHCF network;
5) evaluate the performance of different algorithms.

A. Obtaining Least Pessimistic Core: A Simple Scenario

To show the interrelated workload factoring and coalition
formation, and the general process of obtaining the least
pessimistic core, we first study a simple scenario of 1 primary
cloud and 3 secondary clouds. Note that in this subsection,
we do not intend to evaluate how different parameters (e.g.,
the price, penalty of secondary clouds, coalition cost, demand
and supply sizes. We refer to Table II for a summary of
parameters that are mentioned in the experimental settings.)
influence the coalition formation results among the secondary
clouds (which will be evaluated in Section VI-C). As a result,
in this subsection, we just assign arbitrary values to these
parameters, as described in the following.
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TABLE III

NE, COALITION VALUE AND LEAST PESSIMISTIC CORE (OUTCOME HIGHLIGHTED IN YELLOW)

TABLE IV

PESSIMISTIC VALUE

By default, we set the price of the primary cloud as 1.
Correspondingly, we set the price vector of the 3 secondary
clouds as 〈2, 1.98, 2.01〉 — approximately twice as that of
the primary cloud’s. The prices of the secondary clouds are
set close because, to ensure interoperability among different
secondary clouds, the application service in these cooperating
clouds should be similar, while the prices of their service
should also be close. The capacity of the primary cloud is
set as 40. The capacity and request vectors of the 3 secondary
clouds are 〈40, 50, 60〉 and 〈60, 40, 90〉, resp. Following the
line of research of [34]–[36], throughout this section, we adopt
the linear penalty rules. In this subsection, the penalty rates
of the primary clouds and secondary clouds are set as β p = 1
and βs = 2, resp. Note that when penalty rate equals price,
it means if processing delay is twice as much as the deadline,
the penalty for delay equals the price paid and the provider
gets no payment from the user.

Coalition cost is defined as14: Cco(Ck) = cco(|Ck | − 1)γ ,
where cco is the unit coalition cost. (|Ck | − 1)γ is determined
by the coalition size |Ck |. For example, when a coalition is a
singleton, there is no coalition cost. Whenever a new member
enters the coalition, it incurs additional coalition cost. γ is
a factor which measures the extent to which coalition size
influences the coalition cost. Larger γ values indicate larger
coalition size effect. We set γ = 1 (i.e., coalition cost is linear
w.r.t. coalition size), cco = 6 (i.e., when a new member joins
the coalition, an additional cost of 6 is produced).

First, we call CLONE/CLOSE to compute the NE strategies
and coalition values of different coalition structures, which are
shown in the 2nd and 3rd columns of Table III. We can see that
the workload factoring and the coalition formation are inter-
dependent. For example, the request strategy of coalition {1}
is 29.4 when secondary clouds 2 and 3 cooperate, while 28.5
when they do not cooperate. Alternatively, it can be viewed
as the request strategy of {1} influences whether secondary
clouds 2 and 3 cooperate. We can also see that the coalition
value of a coalition depends on the coalition structure, i.e., the
externality effect, which will be studied in detail in the next
subsection.

After we obtain the coalition values for each coali-
tion structure, we can get the pessimistic value of each

14Each secondary cloud will estimate the cost if it joins a coalition. The
detailed modelling of coalition cost is out of scope of this research.

Fig. 5. Superadditivity and externality.

coalition. For example, the two coalition structures which
contain coalition {1} are {1}, {2, 3} and {1}, {2}, {3}. According
to Definition 3, the pessimistic value of {1} is the smaller one
among the two values 130.1 and 125.0. Therefore, the pes-
simistic value of coalition {1} is ṽ({1}) = 125.0. In fact,
this is the direct result of Theorem 2, since in coalition
structure {1}, {2}, {3}, both {2} and {3} are singleton coalitions.
Similarly, we can obtain the pessimistic value of all the
coalitions in Table IV.

Last, for each coalition structure, we call the linear program
in Eqs.(11)-(14) to compute the least ε and the corresponding
payoff of each secondary cloud, as is shown in the last two
columns of Table III. We can see that only the least ε of
the grand coalition is 0, which means that only the grand
coalition and its corresponding payoff division is in the least
pessimistic core (highlighted in yellow). Take another coalition
structure {1}, {2, 3} as an example, the payoff of secondary
cloud 2 is 118.2, while the pessimistic value of coalition {2} is
119.2 > 118.2. Therefore, secondary cloud 2 has an incentive
to deviate from the current outcome and form a singleton
coalition. Interestingly, although secondary cloud 1 gets the
highest payoff in this coalition structure, it is not stable due
to secondary clouds 2’s deviation.

B. Superadditivity and Externality

In this subsection, we show the superadditivity and exter-
nality of the CFG-e. We consider 4 secondary clouds and
1 primary cloud. Similarly, since we do not intend to evaluate
the influence of the parameter values in this subsection,
we assign arbitrary values for the parameters in this subsection.
The primary cloud’s capacity is set as 50. The penalty rates
of the primary and secondary clouds are set as in the above
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Fig. 6. Coalition formation results under different cloud network conditions.

subsection. The capacity, request and price vectors of the first
three secondary clouds are also set as in the above subsection.
The unit coalition cost cco is set as 0 so that cooperation
incurs no coalition cost. The capacity of secondary cloud 4 is
set as 70. For different number of requests of secondary
cloud 4, we evaluate 4 coalition structures: 1) {1, 2}, {3, 4};
2) {1, 2}, {3}, {4}; 3) {1}, {2}, {3, 4}; 4) {1}, {2}, {3}, {4}.

In Fig. 5a, we show the values of coalitions {3, 4}, {3}
and {4} when secondary clouds 1 and 2 cooperate or not.
It shows that for all the three coalitions, the coalition value
is always larger when secondary clouds 1 and 2 cooperate,
which is consistent with the positive externality. Furthermore,
for a certain cooperation status of secondary clouds 1 and 2,
the value of coalition {3, 4} is always larger than the sum
of values of coalitions {3} and {4}, which implies supper-
additivity. The same holds for Fig. 5b. In addition, we can
see that in Fig. 5a, the values of coalitions {4} and {3, 4}
increase with the number of requests of secondary cloud 4.
While this observation is straightforward, we also notice that
in both Figs. 5a and 5b, the values of all the other coalitions
which do not contain secondary cloud 4 decrease. This is
because when the number of requests in secondary cloud
4 increases, it tends to outsource more requests to the primary
cloud, which leads to congestion in the primary cloud and
further deteriorates the task performance of other coalitions.
This phenomenon indicates that the externality is caused by
the resource contention in the primary cloud.

C. Coalition Formation Results Under Different
Cloud Network Conditions

This subsection investigates several key factors that deter-
mine the coalition formation results. To approach the para-
meter values in real scenarios, in this subsection, we follow
the pricing schema of Amazon EC2 [41], and assume that
the clouds in the VHCF system use the t2.large VM in a
Linux/UNIX operating system, with a per hour price of 0.104
US dollars (i.e., for all primary clouds i ∈ I , p p

i = 0.104).
We consider 2 primary clouds and 6 secondary clouds. Each
secondary cloud j ’s capacity is randomized within [60, 100].
Its request is randomized within [cs

i − 20, c p
i + 60]. Its price

is randomized within [ps − 0.05, ps + 0.05], where ps indi-
cates the overall price level of the secondary clouds and is
randomized within [0.15, 0.3].The price level is 1.5 to 3 times
as much as the price of the primary cloud. Considering that
we have not counted other costs such as labor, advertisement,
and taxes, this is a reasonable range according to the definition
of a “healthy operating profit margin” by Investopedia [42].

Fig. 7. Total utility and total penalty of the secondary clouds.

Each primary cloud i ’s capacity is randomized within [40, 80].
The penalty rate β p of the primary clouds is randomized
within [0.08, 0.12]. The penalty rate of the secondary clouds is
set as βs = ηps , where η denotes the ratio of penalty against
the price level and is randomized within [0.8, 1.2]— by η = 1,
it means that if the processing time is twice as much as the
pre-contracted deadline, the penalty equals the price (which
means the user does not need to pay for the request). The
unit coalition cost cco and the coalition size factor γ are
randomized within [0, 1.2] and [1, 1.3], respectively.

In this set of experiments, our strategy is to step by step
vary the parameter value under evaluation, and randomize the
values of other parameters over the above specified range. For
each set of results in Fig. 6, we take the average over 30 trials.

We first evaluate the coalition formation results under dif-
ferent coalition cost. We set the unit cost from 0 to 1.5 with
a step of 0.3, and observe coalition formation with different
coalition size factor γ . Fig. 6a shows the average number of
coalitions formed under different coalition cost, where smaller
number of coalitions means that the secondary clouds tend to
cooperate. The figure indicates that when the unit coalition
cost and the coalition size factor γ increase, the number of
coalitions also increases. When coalition cost approaches 1.5,
cooperation is too costly to form. Thus all secondary clouds
tend to stay in singleton coalitions.

We then evaluate the coalition formation under different
price and penalty rates of the secondary clouds. We set
price level ps of the secondary clouds from 0.15 to 0.3
with a step of 0.03, and evaluate the coalition formation
with different secondary clouds’ penalty rate η. As is shown
in Fig. 6b, for a fixed η, the increase of price will promote the
cooperation of the secondary clouds. This is because when the
price of the secondary clouds increases, the coalition cost is
less comparable with the profit. Therefore, cooperation will
generate more benefit. Meanwhile, for a fixed price, when
penalty rate increases, the secondary clouds tend to cooperate.
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Fig. 8. Runtime and least core values of different algorithms. A 90% confidence interval is shown.

As is indicated in the proof of Lemma 2, cooperation can
always lead to no worse delay. Therefore, secondary clouds
tend to cooperate to reduce the high delay penalty.

To investigate how the demand and supply relation influ-
ences coalition formation, we vary the request scale and
capacity of the primary clouds. We define the request scale as
the total number of requests received by the secondary clouds
minus the total capacity of the secondary clouds. We set it
from 40 to 240 with a step of 40, and evaluate its effect on
coalition formation with different capacity scale of the primary
clouds. Fig. 6c shows that when the secondary clouds have
smaller capacity or there are more requests from the end users,
the secondary clouds tend to cooperate. This is because when
the total workload increases or the capacity of the primary
clouds decreases, the delay of processing time will be larger.
Therefore, the secondary clouds cooperate to share resources
and reduce delay.

D. Total Utility Comparison

In this subsection, we answer the last question in Section I:
is it beneficial for the secondary clouds to use a VHCF
network? We compare the secondary clouds’ total utility and
total delay penalty with different request scale for the follow-
ing 4 cases: 1) VHCF network; 2) no cooperation (the case
in [2]); 3) grand coalition (the common practice of horizontal
cloud federation); 4) optimal utility (workload factoring and
coalition formation are optimized by a mediator). We consider
2 primary clouds and 5 secondary clouds. Except the capacity
and request scales, all the parameter values (please refer to
Table II) are set as in the above subsection. We fix the capacity
scale of the primary clouds as 100, and investigate different
request scales from 40 to 160.

As shown in Figs. 7a and 7b, the least pessimistic core
generates larger total utility than that of no-cooperation and
grand coalition. The total utility is higher when the workload
scale is closer to the capacity scale of the primary clouds
because when the workload is low, the gross revenue is
low (although there is a bonus of finishing the requests in
advance), but when the workload is too high, the penalty
delay is too large. By using the VHCF network, the secondary
clouds (using the t2.large VM from Amazon EC2 [41], with
an operating scale of 40 to 160 VMs) can averagely decrease
the delay penalty by 10.6% and 11.0%, compared with no-
cooperation and grand coalition, respectively. The strategic
decision making of the secondary clouds naturally leads to
a sub-optimal total utility. Unfortunately, the pessimistic core

bears an inevitable loss compared with the optimal case, since
each cloud provider is self-interested.

E. Compare Different Algorithms

Last, we compare the runtime and optimality of different
algorithms. In this subsection, all algorithms are implemented
using Java, all linear programs are solved with CPLEX (v12.6)
and all non-linear programs are solved with KNITRO (v9.0.0).
All computations are performed on a 64-bit machine with
16 GB RAM and a quad-core Intel i7-4770 3.4 GHz proces-
sor. We consider 2 primary clouds and vary the number of
secondary clouds. All the parameters are randomized as in
Subsection VI-C. All the results are averaged with 20 trials.

Fig. 8a shows the runtime of Brute-Force with CLONE
under different convergence threshold e, from 0.001 to
0.00001. Intuitively, smaller e leads to longer runtime, which
increases rapidly with the number of secondary clouds. Fig. 8b
shows the runtime of Brute-Force and CUBE (with differ-
ent pruning thresholds θ ) with CLOSE. We can see that
comparing with Fig. 8a, the runtime of Brute-Force and
CUBE with CLOSE is significantly reduced. When the total
number of secondary clouds is smaller than 8, both of the
two CLOSE-based algorithms take less than 1 second to
finish. Furthermore, by implementing CUBE, the runtime
has significantly reduced comparing with Brute-Force, while
maintaining a close-to-optimal least ε value (Fig. 8c). With
smaller θ , it takes less time because more nodes are pruned
during the searching. By setting different pruning threshold,
we can tradeoff between runtime and optimality. Using these
algorithms, we can solve practical scale problems.

VII. CONCLUSION

The integration of vertical and horizontal cloud federation
is a promising approach to improve a cloud’s service quality.
Notwithstanding the merits, the economic aspects of such a
VHCF network is rarely investigated, especially when the
secondary clouds are self-interested. With this work, we make
the first attempt to reveal the interrelated workload factoring
and coalition formation among secondary clouds, and answer
the following intrinsic questions: 1) What is the most stable
coalition structure and payoff division; 2) What are the opti-
mal (equilibrium) workload factoring strategies of different
coalitions; 3) Is it beneficial for the secondary clouds to join
such a VHCF network? The experimental results show that
interestingly, the two common practices in the real world -
no-cooperation and the grand coalition - are sometimes not
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the most stable cooperation pattern. Instead, the most stable
coalition structure usually lies between these two extreme
cases. Furthermore, the experimental results show that by
implementing the VHCF network, the service delay penalty
of the secondary clouds decreases by around 11% compared
with the two common practices. The runtime and optimality
evaluation of the algorithms shows that our proposed algo-
rithms can be applied to real world sized problems, and
assist secondary clouds to choose their partners and decide
the optimal workload factoring strategies. Our framework can
be extended to a variety of network-related domains such as
cellular networks, cognitive radio networks and smart grid,
where cooperative and competitive behaviors coexist.
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