
PrefRec: Recommender Systems with Human Preferences for
Reinforcing Long-term User Engagement

Wanqi Xue∗
Nanyang Technological University

Singapore
wanqi001@e.ntu.edu.sg

Qingpeng Cai
Kuaishou Technology

Beijing, China
caiqingpeng@kuaishou.com

Zhenghai Xue
Nanyang Technological University

Singapore
zhenghai001@e.ntu.edu.sg

Shuo Sun
Nanyang Technological University

Singapore
shuo003@e.ntu.edu.sg

Shuchang Liu
Kuaishou Technology

Beijing, China
liushuchang@kuaishou.com

Dong Zheng
Kuaishou Technology

Beijing, China
zhengdong@kuaishou.com

Peng Jiang
Kuaishou Technology

Beijing, China
jiangpeng@kuaishou.com

Kun Gai
Unaffiliated

Beijing, China
gai.kun@qq.com

Bo An
Nanyang Technological University

Singapore
boan@ntu.edu.sg

ABSTRACT
Current advances in recommender systems have been remarkably
successful in optimizing immediate engagement. However, long-
term user engagement, a more desirable performance metric, re-
mains difficult to improve. Meanwhile, recent reinforcement learn-
ing (RL) algorithms have shown their effectiveness in a variety of
long-term goal optimization tasks. For this reason, RL is widely
considered as a promising framework for optimizing long-term
user engagement in recommendation. Though promising, the appli-
cation of RL heavily relies on well-designed rewards, but designing
rewards related to long-term user engagement is quite difficult.
To mitigate the problem, we propose a novel paradigm, recom-
mender systems with human preferences (or Preference-based
Recommender systems), which allows RL recommender systems
to learn from preferences about users’ historical behaviors rather
than explicitly defined rewards. Such preferences are easily acces-
sible through techniques such as crowdsourcing, as they do not
require any expert knowledge. With PrefRec, we can fully exploit
the advantages of RL in optimizing long-term goals, while avoiding
complex reward engineering. PrefRec uses the preferences to au-
tomatically train a reward function in an end-to-end manner. The
reward function is then used to generate learning signals to train
the recommendation policy. Furthermore, we design an effective
optimization method for PrefRec, which uses an additional value
function, expectile regression and reward model pre-training to
improve the performance. We conduct experiments on a variety of
long-term user engagement optimization tasks. The results show
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that PrefRec significantly outperforms previous state-of-the-art
methods in all the tasks.
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1 INTRODUCTION
Recent recommendation systems have achieved great success in op-
timizing immediate engagement such as click-through rates [19, 35].
However, in real-life applications, long-term user engagement is
more desirable than immediate engagement because it directly af-
fects some important operational metrics, e.g., daily active users
(DAUs) and dwell time [44]. Despite the great importance, how to ef-
fectively optimize long-term user engagement remains a significant
challenge for existing recommendation algorithms. The difficulties
are mainly on i) the evolving of long-term user engagement lasts
for a long period; ii) factors that affect long-term user engagement
are usually non-quantitative, e.g., users’ satisfactory; and iii) the
learning signals which are used to update our recommendation
strategies are sparse, delayed, and stochastic. When trying to op-
timize long-term user engagement, it is very hard to relate the
changes in long-term user engagement to a single recommendation
[41]. Moreover, the sparsity in observing the evolution of long-term
user engagement makes the problem even more difficult.
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Reinforcement learning (RL) has demonstrated its effectiveness
in a wide range of long-term goal optimization tasks, such as board
games [33, 34], video games [11, 39], robotics [25] and algorithmic
discovery [13]. Conventionally, when trying to solve a real-world
problem with reinforcement learning, we need to first formulate it
as a Markov Decision Process (MDP) and then learn an optimal pol-
icy that maximizes cumulative rewards or some other user-defined
reinforcement signals in the defined MDP [7, 36]. Considering the
characteristic that RL seeks to optimize cumulative rewards, it is
rather suitable for optimizing long-term signals, such as user stick-
iness, in recommendation [41, 53]. As in Figure 1, recommender
systems can be modeled as an agent to interact with users which
serve as the environment. Each time the agent completes a recom-
mendation request, we can record the feedback and status changes
of users to calculate a reward as well as the new state for the agent.
Applying RL will lead to a recommendation policy which optimizes
user engagement from a long-term perspective.

Despite that RL is an emerging and promising framework to opti-
mize long-term engagement in recommendation, it heavily relies on
a delicately designed reward function to incentivize recommender
systems behave properly. However, designing an appropriate re-
ward function is very difficult especially in large-scale complex
tasks like recommendation [5, 6, 10, 41]. On one hand, the reward
function should be aligned with our ultimate goal as much as pos-
sible. On the other hand, rewards should be sufficiently dense and
instructive to provide step-by-step guidance to the agent. For imme-
diate engagement, we can simply use metrics such as click-through
rates to generate rewards [48, 51]. Whereas for long-term engage-
ment, the problem becomes rather difficult because attributing
contributions to long-term engagement to each step is really tough.
If we only assign rewards when there is a significant change in
long-term engagement, learning signals could be too sparse for
the agent to learn a policy. Existing RL recommender systems typ-
ically define the reward function empirically [10, 44, 53] or use
short-term signals as surrogates [41], which will severely violate
the aforementioned requirements of consistency and instructivity.

To mitigate the problem, we propose a new training paradigm,
recommender systems with human preferences (or Preference-
based Recommender systems), which allows RL recommender sys-
tems to learn from human feedback/ preferences on users’ historical
behaviors rather than explicitly defined rewards. We demonstrate
that RL from human preferences (or preference-based RL), a frame-
work that has led to successful applications such as ChatGPT [29],
is also applicable to recommender systems. Specifically, in PrefRec,
there is a (virtual) teacher giving feedback about his/her prefer-
ences on pairs of users’ behaviors. We use the feedback (stored in a
preference buffer) to automatically train a reward model which gen-
erates learning signals for recommender systems. Such preferences
are easy to obtain because no expert knowledge is required, and
we can use technologies such as crowdsourcing to easily gather a
large number of labeled data. Furthermore, to overcome the prob-
lem that the reward model may not work well for some unseen
actions, we introduce a separate value function, trained by expectile
regression, to assist the training of the critic in PrefRec1. Our main
contributions are threefold:

1PrefRec adopts the framework of actor-critic in reinforcement learning.
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Figure 1: Reinforcement learning recommender systems.

• We propose a new framework, recommender systems with
human preferences, to optimize long-term engagement. Our
method can fully exploit the advantages of reinforcement
learning in optimizing long-term goals, while avoiding the
complex reward engineering in reinforcement learning.
• We design an effective optimization method for the proposed
framwork, which uses an additional value function, expectile
regression and reward model pre-training to improve the
performance.
• We collect the first reinforcement learning from human feed-
back (RLHF) dataset for long-term engagement optimiza-
tion problem in recommendation and propose three new
tasks to evaluate performance of recommender systems. Ex-
perimental results demonstrate that PrefRec significantly
outperforms previous state-of-the-art approaches on all the
tasks.

2 PRELIMINARIES
2.1 Long-term User Engagement in

Recommendation
Long-term user engagement is an important metric in recommenda-
tion, and typically reflects as the stickiness of users to a product. In
general, given a product, we expect users to spend more time on it
and/or use it as frequently as possible. In this work, we assume that
users interact with the recommender systems on a session basis:
when a user accesses a product, such as an App, a session begins,
and it ends when the user leaves. During each session, users can
launch an arbitrary number of recommendation requests as they
want. Such session-based recommender systems has been widely
deployed in real-life applications such as short-form videos rec-
ommendation and news recommendation [40, 45, 50, 51]. We are
particularly interested in increasing

i the number of recommended items that users consume dur-
ing each visit;

ii the frequency that users visit the product.
Optimizing these two indicators is nontrivial because it is diffi-
cult to relate them to a single recommendation. For example, if
a user increases its visiting frequency, we are not able to know
exactly which recommendation leads to the increase. To this end,
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Figure 2: The framework of recommender systems with human preferences. A teacher provides feedback about his/her
preferences between users’ behavioral trajectories. Trajectory 1 demonstrates a trend from low-active to high-active and
trajectory 2 shows an opposite tendency. Therefore, the teacher will prefer trajectory 1 to trajectory 2. With feedback of
preferences, we can automatically train a reward function in an end-to-end manner. The preference-based recommender
systems is then optimized by using rewards predicted by the learned reward function.

we propose to use reinforcement learning to take into account the
potential impact on the future when making decisions.

2.2 Recommendation as a Markov Decision
Process (MDP)

Applying RL to recommender systems requires defining recom-
mendation as a Markov Decision Process (MDP). Recommender
systems can be described as an agent to interact with users, who
act as the environment. Formally, we formulate recommendation
as a Markov Decision Process (MDP) ⟨S,A,P,R, 𝛾⟩:
• S is the continuous state space. 𝑠 ∈ S indicates the state of
a user which contains static information such as gender and
age; and dynamic information, such as the rate of likes and
retweets. A state is what the recommender systems relies on
to make decisions.
• A is the continuous action space, where 𝑎 ∈ A is an ac-
tion which has the same dimension as the representation
of recommendation items. We determine the item to rec-
ommend by comparing the similarity of an action and item
representations [44, 48].
• P : S × A × S → R is the transition function, where
𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) defines the probability that the next state is
𝑠𝑡+1 after recommending an item 𝑎𝑡 at the current state 𝑠𝑡 .
• R : S × A → R is the reward function. 𝑟 (𝑠𝑡 , 𝑎𝑡 ) determines
how much the agent will be rewarded after recommending
𝑎𝑡 at state 𝑠𝑡 .
• 𝛾 is the discount factor. 𝛾 determines how much the agent
cares about rewards in the distant future relative to those in
the immediate future.

The recommendation policy 𝜋 (𝑎 |𝑠) : S → A is defined as a map-
ping from state to action. Given a policy 𝜋 (𝑎 |𝑠), we define a state-
action value function (Q-function) 𝑄𝜋 (𝑠, 𝑎) which generates the

expected cumulative reward (return) of taking an action 𝑎 at state
𝑠 and thereafter following 𝜋 :

𝑄𝜋 (𝑠𝑡 , 𝑎𝑡 ) = E(𝑠𝑡 ′ ,𝑎𝑡 ′ )∼𝜋

[
𝑟 (𝑠𝑡 , 𝑎𝑡 ) +

∞∑︁
𝑡 ′=𝑡+1

𝛾 (𝑡
′−𝑡 ) · 𝑟 (𝑠𝑡 ′ , 𝑎𝑡 ′ )

]
.

(1)
We seek to optimize the policy 𝜋 (𝑎 |𝑠) so that the return obtained
by the recommendation agents is maximized:

max
𝜋
J (𝜋) = E𝑠𝑡∼𝑑𝜋

𝑡 ( ·),𝑎𝑡∼𝜋 ( · |𝑠𝑡 )
[
𝑄𝜋 (𝑠𝑡 , 𝑎𝑡 )

]
, (2)

where 𝑑𝜋𝑡 (·) denotes the state visitation frequency at step 𝑡 under
the policy 𝜋 . By optimizing the above objective, the agent can
achieve the largest cumulative return in the defined MDP.

3 CHALLENGES OF DESIGNING THE REWARD
FUNCTION

Despite that RL is a promising approach to optimize long-term
user engagement, the application of RL heavily relies on a well-
designed reward function. The reward function must be able to
reflect the changes in long-term engagement at each time step. In
the meantime, it should be able to provide instructive guidance to
the agent for optimizing the policy. Practically, quantifying rewards
properly is very challenging because it is really difficult to relate
changes in long-term engagement to a single recommendation [41].
For example, when recommending a video to a user, we have no
way of knowing how many videos the user will continue to watch
on the platform before exiting the current session, and obviously,
how this amount will be affected by the recommendation is even
harder to know. For this reason, it is challenging to give a reward
regarding the impact of recommended videos on the average video
consumption of users. Similarly, recommending a video cannot
be used to predict when the user will revisit the platform after
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Figure 3: Left: Illustration of the expectile loss function 𝐻𝜏 (𝑢). 𝜏 = 0.5 corresponds to the MSE loss, and 𝜏 > 0.5 upweights
positives differences 𝑢. Center: Expectiles of a Gaussian distribution. Right: An example of expectile regression on a two-
dimensional distribution.

exiting the current session. Designing rewards related to the visit-
ing frequency of users is also difficult. As a compromise solution,
one could only assign rewards at the beginning or the end of a
session. However, this kind of reinforcement signals will be too
sparse for the recommender systems to learn a reasonable policy,
especially when the session length is large [44]. Existing methods
either design the reward function highly empirically [10, 44, 53] or
use immediate engagement signals as surrogates [41], which will
cause deviation between the optimization objective and the real
long-term engagement. For this reason, it is urgent to propose a
framework to address the difficulties in reward designing when
using RL to optimize long-term user engagement.

4 RECOMMENDER SYSTEMS WITH HUMAN
PREFERENCES

To resolve the difficulties in designing the reward function, we pro-
pose a novel paradigm, Peference-based Recommender systems
(PrefRec), which allows an RL recommender systems to learn from
preferences on users’ historical behaviors rather than explicitly
defined rewards. By this way, we can overcome the problems in
designing the reward function when optimizing long-term user
engagement. In this section, we first introduce how to utilize prefer-
ences to generate reinforcement signals for learning a recommender
systems. Then, we discuss how to optimize the performance of Pre-
fRec by using expectile regression to better estimate the value
function. Next, we propose to pre-train the reward function to
stabilize the learning process. Last, we summarize the algorithm.

4.1 Reinforcing from Preferences
While the reward for a recommendation request is hard to obtain,
preferences between two trajectories of users’ behaviors are easy to
determine. For example, if one trajectory shows a transition from
low-active to high-active and the other shows an opposite trend
or an insignificant change, we can easily indicate the preference
between them. Labeling preferences does not require any expert
knowledge, so we can easily use techniques such as crowdsourcing
to obtain a large amount of feedback on preferences. In PrefRec,
we assume that there is a human teacher providing preferences
between user’s behaviors and the recommender systems uses this

feedback to perform the task. There are mainly two advantages
in using preferences: i) labeling the preference between a pair of
trajectories is quite simple compared to designing rewards for every
step; and ii) the recommender systems is incentivized to learn the
preferred behavior directly because reinforcement signals come
from preferences.

We provide the framework of recommender systems with human
preferences in Figure 2. As we can find, there is a teacher providing
preferences between a pair of users’ behavioral trajectories2. The
teacher could be humans or or even a programwith labeling criteria.
For trajectory 1, the user increases its visiting frequency gradually
and consumes more andmore items in each session, which indicates
that it is satisfied with the current recommendation policy. On the
contrary, trajectory 2 shows the user is becoming less and less
active, suggesting that the current recommender system should
be improved to better serve the user. The teacher will obviously
prefer trajectory 1 to trajectory 2. After generating such preference
data, we use them to automatically train a reward function 𝑟 (𝑠, 𝑎;𝜓 ),
parameterized by𝜓 , in an end-to-endmanner. The preference-based
recommender systems uses the predicted reward 𝑟 (𝑠, 𝑎;𝜓 ) rather
than hand-crafted rewards to update its policy.

Formally, a trajectory 𝜎 is a sequence of observations and ac-
tions {(𝑠1, 𝑎1), . . . , (𝑠𝑇 , 𝑎𝑇 )}. Given a pair of trajectories (𝜎0, 𝜎1),
a teacher provides a feedback indicating which trajectory is pre-
ferred, i.e., 𝑦 = (0, 1), (1, 0) or (0.5, 0.5), where (0, 1) indicates
trajectory 𝜎1 is preferred to trajectory 𝜎0, i.e., 𝜎1 ≻ 𝜎0; (1, 0) in-
dicates 𝜎0 ≻ 𝜎1; and (0.5, 0.5) implies an equally preferable case.
Each feedback is triple (𝜎0, 𝜎1, 𝑦) which is stored in a preference
bufferD𝑝 = {((𝜎0, 𝜎1, 𝑦))𝑖 }𝑁𝑖=1. We use a deep neural network with
parameters𝜓 to predict the reward 𝑟 (𝑠, 𝑎;𝜓 ) at a specific step (𝑠, 𝑎).
By following the Bradley-Terry model [4, 30, 43], we assume that
the teacher’s probability of preferring a trajectory depends expo-
nentially on the accumulated sum of the reward over the trajectory.
Then the probability that trajectory 𝜎1 is preferred to trajectory 𝜎0
can be written as a function of 𝑟 (𝑠, 𝑎;𝜓 ):

𝑃𝜓
[
𝜎1 ≻ 𝜎0

]
=

exp
(∑

𝑡 𝑟
(
s1𝑡 , a

1
𝑡 ;𝜓

) )∑
𝑖∈{0,1} exp

(∑
𝑡 𝑟

(
s𝑖𝑡 , a

𝑖
𝑡 ;𝜓

) ) . (3)

2For a pair of trajectories, they may come from different users or from different periods
of the same user.
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Algorithm 1: Recommender Systems with Human Prefer-
ences
Input: Preference buffer D𝑝 = {(𝜎0, 𝜎1, 𝑦)𝑖 }𝑁𝑖=1, replay

buffer D𝑟 = {(𝑠, 𝑎, 𝑠′)𝑖 }𝑀𝑖=1, pre-train episodes 𝐾
1 Initialize the reward model 𝑟 (𝑠, 𝑎;𝜓 ), the Q-function

𝑄 (𝑠, 𝑎;\ ), the V-function 𝑉 (𝑠;[), the recommendation
policy 𝜋 (·|𝑠; `)

2 Set soft-update rate _ and initialize the target Q-function
𝑄 (𝑠, 𝑎; \̂ )

3 for pre-train episodes 𝑘 = 1 to 𝐾 do
4 Sample a mini-batch of preferences (𝜎0, 𝜎1, 𝑦) from D𝑝

5 Update the reward model 𝑟 (𝑠, 𝑎;𝜓 ):𝜓 ← 𝜓 − ∇𝜓L𝜓
(Eq. 4)

6 end
7 while not end training do
8 Sample a mini-batch of transitions (𝑠, 𝑎, 𝑠′) for D𝑟

9 Label the sampled transitions by the reward model to
obtain (𝑠, 𝑎, 𝑟, 𝑠′)

10 Update the V-function 𝑉 (𝑠;[): [ ← [ − ∇[L𝑉[ (Eq. 9)
11 Update the Q-function 𝑄 (𝑠, 𝑎;\ ): \ ← \ − ∇\L

𝑄

\
(Eq. 6)

12 Update the recommendation policy 𝜋 (·|𝑠; `):
` ← ` − ∇`L𝑃

` (Eq. 10)
13 Soft-update the target Q-function 𝑄 (𝑠, 𝑎; \̂ ):

\̂ ← _\ + (1 − _)\̂
14 if fine-tune reward model then
15 Sample a mini-batch of preferences (𝜎0, 𝜎1, 𝑦) from

D𝑝

16 Update the reward model 𝑟 (𝑠, 𝑎;𝜓 ):𝜓 ← 𝜓 − ∇𝜓L𝜓
(Eq. 4)

17 end
18 end

Since the preference buffer D𝑝 = {((𝜎0, 𝜎1, 𝑦))𝑖 }𝑁𝑖=1 contains true
labels of preferences, we can train the reward model 𝑟 (𝑠, 𝑎;𝜓 )
through supervised learning, updating it by minimizing the cross-
entropy loss:

L𝜓 = − E
(𝜎0,𝜎1,𝑦)∼D𝑝

[
𝑦 (0) log 𝑃𝜓

[
𝜎0 ≻ 𝜎1

]
+ 𝑦 (1) log 𝑃𝜓

[
𝜎1 ≻ 𝜎0

] ]
,

(4)
where 𝑦 (0) and 𝑦 (1) are the first and second element of 𝑦, respec-
tively. After learning the reward model 𝑟 (𝑠, 𝑎;𝜓 ), we can use it to
generate learning signals for training the recommendation policy.

4.2 Optimizing the Recommendation Policy
When learning the recommendation policy, there is a replay buffer
D𝑟 storing training data. Unlike conventional RL recommender
systems, we store (𝑠, 𝑎, 𝑠′) rather than (𝑠, 𝑎, 𝑟, 𝑠′) in the buffer D𝑟

because we cannot obtain explicit rewards from the environment3.
We utilize the learned reward model 𝑟 (𝑠, 𝑎;𝜓 ) to label the reward
for a tuple (𝑠, 𝑎). After labelling, an intuitive approach is to learn
the Q-function by minimizing the following temporal difference

3With a slight abuse of notation, we use 𝑠′ to denote the next state.

(TD) error:

L𝑄

\
= E
(𝑠,𝑎,𝑠′ )∼D𝑟

[
(𝑟 (𝑠, 𝑎;𝜓 ) + 𝛾𝑄 (𝑠′, 𝜋 (·|𝑠′); \̂ ) −𝑄 (𝑠, 𝑎;\ ))2

]
,

(5)
where D𝑟 is the replay buffer, 𝑄 (𝑠, 𝑎;\ ) is a parameterized Q-
function, 𝑄 (𝑠, 𝑎; \̂ ) is a target network (e.g., with soft updating
of parameters defined via Polyak averaging), and 𝜋 (·|𝑠) is the rec-
ommendation policy. However, in practice, we find that this method
does not perform well. It may be because the recommendation pol-
icy 𝜋 (·|𝑠) will choose significantly different actions from the stored
data, making the reward function and the Q-function unable to
predict the corresponding values. To resolve this, we introduce
a separate value function (V-function) that predicts how good or
bad a state is. By doing so, we can eliminate the uncertainty that
comes with the recommended policy. Instead of minimizing the TD
error in Eq. 5, we turn to minimize the following loss to learn the
Q-function:

L𝑄

\
= E
(𝑠,𝑎,𝑠′ )∼D𝑟

[
(𝑟 (𝑠, 𝑎;𝜓 ) + 𝛾𝑉 (𝑠′;[) −𝑄 (𝑠, 𝑎;\ ))2

]
, (6)

where𝑉 (𝑠′;[) is the V-function with parameters[. Given the replay
buffer D𝑟 , the relationship between Q-function and V-function is

𝑉 (𝑠) = E𝑎 [𝑄 (𝑠, 𝑎)], (𝑠, 𝑎) ∈ D𝑟 . (7)

Conventionally, we can optimize the parameters of the V-function
by minimizing the following Mean Squared Error (MSE) loss:

L𝑉[ = E
(𝑠,𝑎)∼D𝑟

[
(𝑄 (𝑠, 𝑎; \̂ ) −𝑉 (𝑠;[))2

]
. (8)

However, such V-function corresponds to the behavior policy which
collects the replay buffer D𝑟 . We want to achieve improvement
upon the behavior policy. Inspired by expectile regression [23, 24],
we let the V-function to regress the 𝜏 expectile (𝜏 ≥ 0.5) of 𝑄 (𝑠, 𝑎)
rather than the mean statistics as in Eq. 7. Then the loss for V-
function becomes:

L𝑉[ = E
(𝑠,𝑎)∼D𝑟

[
𝐻𝜏 (𝑄 (𝑠, 𝑎; \̂ ) −𝑉 (𝑠;[))

]
, (9)

where 𝐻𝜏 (𝑢) = |𝜏 − I(𝑢 < 0) |𝑢2, I(·) is the indicator function.
Specially, if 𝜏 = 0.5, Eq. 8 and Eq. 9 are identical. For 𝜏 > 0.5, this
asymmetric loss (Eq. 9) downweights the contributions of𝑄 (𝑠, 𝑎; \̂ )
smaller than 𝑉 (𝑠;[) while giving more weights to larger values
(as in Fig. 3, left). Fig. 3 (right) illustrates expectile regression on
a two-dimensional distribution: increasing 𝜏 leads to more data
points below the regression curve. Back to the learning of the V-
function, the purpose is to let 𝑉 (𝑠;[) to regress an above-average
value. The Q-function is jointly trained with the V-function, while it
also serves as the critic to guide the update of the recommendation
policy, i.e., the actor. The recommendation policy is optimized by
minimizing the loss:

L𝑃
` = − E

(𝑠,𝑎)∼D𝑟

[𝑄 (𝑠, 𝜋 (·|𝑠; `);\ )] , (10)

where 𝜋 (·, 𝑠; `) is the recommendation policy with parameters `.

4.3 Pre-training the Reward Function
The reward function is used to automatically generate reinforce-
ment signals to train the recommendation policy. However, A re-
ward model that is not well-trained will cause the collapse of the
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recommendation policy. Thus, to stabilize the training, we propose
to pre-train the reward function before starting the updating of the
recommendation policy. Specifically, we first prepare a preference
buffer that stores a pool of preference feedback between interac-
tion histories. Then we initialize a deep neural network with the
structure of multi-layer perceptron to learn from the preference
buffer. The neural network is updated by minimizing the loss in
Eq. 4. After training for several episodes, we start the training of the
recommendation policy. At this phase, the reward model is updated
simultaneously with the recommender systems. By doing so, the
reward model can handle potential shift in human preferences and
can therefore generate more accurate learning signals.

4.4 Overall Algorithm
We provide the overall algorithm of PrefRec in Algorithm 1. A pref-
erence buffer D𝑝 and a replay buffer D𝑟 is required for training
PrefRec. From lines 1 to 2, we do the initialization for the deep
neural networks and set hyper-parameters such as soft-update rate.
From lines 3 to 5, we pre-train the reward model to confirm that it
is able to provide reasonable learning signals when updating the
recommendation policy. Lines 7 to 18 describe the training process
of the recommendation policy. We first sample a mini-batch of tran-
sitions from the replay buffer D𝑟 . Then we lable the samples data
with the reward model. Following that, we update the parameters
of the V-function, the Q-function and the recommendation policy
accordingly. Finally, if fine-tuning the reward model, we will train
the reward model to keep it up-to-date.

4.5 Discussions
PrefRec differs from both inverse reinforcement learning (IRL) [28]
and model-based RL [54]. The key differences between PrefRec
and IRL include that IRL requires costly expert demonstrations
while PrefRec only requires simple label-like feedback. The reward
function in PrefRec is learned by aligning with human preferences,
whereas in IRL it is inferred from expert demonstrations. On the
other hand, model-based RL relies on environmental rewards and
aims to simplify learning by approximating the reward and transi-
tion functions. In contrast, PrefRec does not require environmental
rewards and is designed to be learned without them.

5 EXPERIMENTAL RESULTS
We conduct extensive experiments to evaluate our algorithm. In
particular, we will answer the following research questions (RQs):
• RQ1: Can the framework of PrefRec lead to improvement in
long-term user engagement?
• RQ2: Whether PrefRec is able to outperform existing state-
of-the-art methods?
• RQ3: Whether the learned reward signals is able to reflect
the true underlying rewards?
• RQ4: How do the components in PrefRec contribute to the
performance?

5.1 Preparing the dataset
Since PrefRec is a new framework in recommendation, there is no
available dataset for evaluation. To prepare the dataset, we track

Figure 4: The proportion of the levels in session depth and
visiting frequency.

complete interaction histories of around 100, 000 users from a lead-
ing short-form videos platform for months, during which over 25
millions recommendation services are provided4. For each user,
we record its interaction history in a session-request form: the
interaction history consists of several sessions with each session
containing a number of recommendation requests (see Sec. 2.1).
The recommender system provides service at each recommenda-
tion request where we record the state of a user and the action of
the recommender system. Each state is a 245-dimensional vector
containing the user’s state information, such as gender, age and
historical like rate. We applied scaling, normalization and clipping
to each dimension of states in order to stabilize the input of models.
An action is a 8-dimensional vector which is the representation of
recommended item at a request. We record the timestamp of each
time a user starts and exits a session. With the timestamp, we can
calculate the duration that a user revisits the platform and thus can
infer the visiting frequency. We measure changes in long-term user
engagement at the end of each session for each user. Specifically,
we first calculate the average session depth 𝛿𝑢𝑎𝑣𝑔 and the average
revisiting time 𝜖𝑢𝑎𝑣𝑔 for each user 𝑢 during the time span. For each
session, 𝛿𝑢

𝑖
denotes the number of requests in the 𝑖-th session of

the user 𝑢. If 𝛿𝑢
𝑖
is larger than the average session depth 𝛿𝑢𝑎𝑣𝑔 , we

consider that there is an improvement in session depth. Similarly,
we can calculate the revisiting time 𝜖𝑢

𝑖
for session 𝑖 and if it is less

than the average revisiting time 𝜖𝑢𝑎𝑣𝑔 , we consider that there is an
improvement in visiting frequency. We quantify the changes in
session depth and visiting frequency into six levels (level 0 to level
5; the more higher level, the more positive change) where the levels
are determined by the following equations, respectively:

L𝑢𝑖 (𝑑𝑒𝑝𝑡ℎ) =
(
⌊
𝛿𝑢
𝑖

𝛿𝑢𝑎𝑣𝑔
⌋
)
.𝑐𝑙𝑖𝑝 (0, 5)

L𝑢𝑖 (𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) =
(
⌊
𝜖𝑢𝑎𝑣𝑔

𝜖𝑢
𝑖

⌋
)
.𝑐𝑙𝑖𝑝 (0, 5)

(11)

We provide the proportion of the calculated levels of all sessions in
Fig. 4. For session depth, most of sessions stay in level 0 and only

4Data samples and codes are at https://www.dropbox.com/sh/hgsqg5fabnvmp26/
AABF-2dvarI_bdyygYEt5aw7a?dl=0.

https://www.dropbox.com/sh/hgsqg5fabnvmp26/AABF-2dvarI_bdyygYEt5aw7a?dl=0
https://www.dropbox.com/sh/hgsqg5fabnvmp26/AABF-2dvarI_bdyygYEt5aw7a?dl=0
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Figure 5: Learning curves of RL recommender systems under the framework of PrefRec, averaged over 5 runs.

very few of them are located in level 4 and 5. The visiting frequency
demonstrates a more even distribution.

After processing the data, we can prepare the two buffers, i.e., the
preference buffer D𝑝 and the replay buffer D𝑟 , which are used in
PrefRec. For the preference bufferD𝑝 , we uniformly sample 20, 000
pairs of users who have launched for more than 200 recommenda-
tion requests in the platform. We set the length of trajectory 𝜎 as
100 and randomly sample a segment of trajectories with this length
from the interaction histories of the selected users. To generate
the preferences, we write a scripted teacher who provides its feed-
back by comparing cumulative levels of changes on the trajectory
segments. For the replay buffer D𝑟 , we randomly sample 80% of
users as the training set and split their interaction histories into
transitions (𝑠, 𝑎, 𝑠′)to fill up the replay buffer D𝑟 .

5.2 Baselines
We compare PrefRec with a variety of baselines, including reinforce-
ment learning methods for off-policy continues control (DDPG,
TD3, SAC), offline reinforcement learning algorithms (TD3_BC,
BCQ, IQL), and imitation learning:
• DDPG [26]: An off-policy reinforcement learning algorithm
which concurrently learns a Q-function and a deterministic
policy. The update of the policy is guided by the Q-function.
• TD3 [15]: A reinforcement learning algorithm which is de-
signed upon DDPG. It applies techniques such as clipped
double-Q learning, delayed policy updates, and target policy
smoothing.
• SAC [18]: An off-policy reinforcement learning algorithm
trained to maximize a trade-off between expected return
and entropy, a measure of randomness in the policy. It also
incorporates tricks such as the clipped double-Q learning.
• TD3_BC [14]: An offline reinforcement learning algorithm
designed based on TD3. It applies a behavior cloning (BC)
term to regularize the updating of the policy.
• BCQ [16]: An offline algorithm which restricts the action
space in order to force the agent towards behaving similarly
to the behavior policy.
• IQL [24]: An offline reinforcement learning method which
uses expectile regression to estimate the value of the best
action in a state.

• IL: Imitation learning treats the behaviors in the replay buffer
as expert knowledge and learns amapping from observations
to actions by using expert knowledge as supervisory signals.

Since our work focuses on addressing complex reward engineering
when reinforcing long-term engagement and how to convey human
intentions to RL-based recommender systems, we mainly make
comparisons with classical RL algorithms. Works like FeedRec [53]
emphasizes on designing DNN architecture and is orthogonal to
PrefRec which focuses on the policy optimization process.

5.3 Evaluation Metric
Among the 10, 0000 users, we sample 80% of them as the training
set and the remaining 20% users constitute the test set. For the test
users, we store their complete interaction histories separately, in the
session-request format. We adopt Normalised Capped Importance
Sampling (NCIS) [37], a widely used standard offline evaluation
method [12, 17], to evaluate the performance. Formally, the score
of a policy 𝜋 is calculated by

𝐽𝑁𝐶𝐼𝑆 (𝜋) = 1
|U|

∑︁
𝑢∈U

[∑ | T𝑢 |
𝑖=0 𝜌𝑖 (𝜋,T𝑢 )L𝑢𝑖∑ | T𝑢 |
𝑖=0 𝜌𝑖 (𝜋,T𝑢 )

]
, (12)

whereU is the set of test users, T𝑢 is the set of sessions of the user
𝑢, 𝜌𝑖 (𝜋,T𝑢 ) is the probability that the policy 𝜋 follows the request
trajectory of the 𝑖-th session in T𝑢 , and L𝑢

𝑖
is the level of change

for the 𝑖-the session (as defined in Eq. 11). Intuitively, 𝐽𝑁𝐶𝐼𝑆 (𝜋)
awards a policy with a high score if the policy has large probability
to follow a good trajectory.

5.4 Implementation Details
To ensure fairness in comparison across all methods and experi-
ments, a consistent network architecture is utilized. This architec-
ture consists of a 3-layer Multi-Layer Perceptron (MLP) with 256
neurons in each hidden layer. The hyper-parameters for the PrefRec
method are listed in Table 1. All methods were implemented using
the PyTorch framework.

5.5 Overall Results
We conduct experiments to verify if the framework of PrefRec can
improve long-term user engagement in terms of i) session depth;
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Table 1: Hyper-parameters of PrefRec.

Hyper-parameter Value

Optimizer Adam [22]
Actor Learning Rate 5 × 10−6
Critic Learning Rate 5 × 10−5
State Dimensions 245
Action Dimensions 8
Transitions Batch Size 4096
Preferences Batch Size 256
Normalized Observations Ture
Gradient Clipping False
Fine-Tuning True
Discount Factor 0.9
Expectile Rate 0.7
Soft-update Rate 0.999
Segment Length 100
Preference Buffer Size 2 × 104
Replay Buffer Size 3 × 106
Number of Pre-train Epoch 3
Number of Train Epoch 5

ii) visiting frequency; and iii) a mixture of the both. We randomly
sample 500 users from the test set and use them to plot the learn-
ing curves of our method and the baselines. As in Fig. 5, PrefRec
achieves a significant and consistent increase in cumulative long-
term engagement changes in all the tasks, although it does not
receive any explicit reinforcement signal. Similar phenomenon can
also be observed in some of those generic reinforcement learning
algorithms, such as DDPG. They demonstrates growth in specific
tasks, though not that stable. The learning curves indicate that the
learned reward function is able to provide reasonable reinforcement
signals. and the framework of PrefRec provides an effective training
paradigm to achieve reward-free recommendation policy learning.
Next, we save the models with the best performance in training
and test their performance on the whole test set. As in Table 2,
those generic reinforcement learning algorithms poorly without
explicit rewards. PrefRec is able to outperform all the baselines by
a wide margin in all the three tasks, showing the effectiveness of
the proposed optimization methods. Despite utilizing only a single
dataset, optimizing session depth and visiting frequency are distinct
challenges. The results of the experiments demonstrate the gener-
alization ability of PrefRec as it consistently delivers improvements
across both tasks. The optimization of session depth and visiting
frequency are not necessarily interdependent; the algorithm that
produces a deep session may not result in high visiting frequency,
and similarly, high visiting frequency does not guarantee a deep
session (as seen in Fig. 5).

5.6 Training Process of the Reward Function
To ensure the validity of the learning signals generated by the re-
ward function, it must accurately predict the preferences that are
utilized in the training phase. To evaluate the performance of the
reward function, we have plotted its prediction accuracy in Fig. 6.
The results show a noticeable improvement in accuracy as the train-
ing process advances. Additionally, we also plot the learning loss

Table 2: Overall performance comparisons on various long-
term user engagement optimization tasks. The “±” indicates
95% confidence intervals.

Depth Frequency Mixture

DDPG [26] 0.3211 ±0.0060 1.1408 ±0.0163 1.0642 ±0.0119
TD3 [15] 0.3495 ±0.0038 0.9714 ±0.0141 0.6423 ±0.0097
SAC [18] 0.3190 ±0.0031 0.6416 ±0.0058 0.5348 ±0.0047
TD3_BC [14] 0.3246 ±0.0032 0.6781 ±0.0060 0.5326 ±0.0047
BCQ [16] 0.3142 ±0.0033 0.6580 ±0.0060 0.5528 ±0.0052
IQL [24] 0.3311 ±0.0054 1.0354 ±0.0141 0.8230 ±0.0099
IL 0.3202 ±0.0031 0.6406 ±0.0058 0.5348 ±0.0047
PrefRec (ours) 0.4229 ±0.0077 1.7706 ±0.0206 1.3788 ±0.0133
% Improv. 21.00% 55.20% 29.56%
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Figure 6: Prediction accuracy of the reward function.
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Figure 7: Learning loss of the reward function.

of the reward function in Fig. 7. The results indicate a substantial
decrease in the loss, reducing it to a much lower level compared to
its initial value. The improvement in prediction accuracy and the
reduction in loss demonstrate that the reward function is becoming
increasingly effective at accurately predicting the preferences used
in the training phase. This is crucial for ensuring that the learning
signals generated by the reward function are reliable and accurate,
enabling the model to learn from the preferences effectively.

5.7 Ablations
To understand how the components in PrefRec affect the perfor-
mance, we perform ablation studies on the expectile regression
factor and the pre-training/fine-tuning of the reward function. As
can be found in Table 8, when 𝜏 = 0.5where the expectile regression
becomes identical to the regression to mean, there is an obvious
drop in performance. The phenomenon indicates that the expectile
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Figure 9: Ablations on reward function pre-training and re-
ward function fine-tuning.

regression with a proper 𝜏 contributes to the improvement in per-
formance. What’s more, if compared with the results of DDPG in
Table 2, we can find that introducing a separate V-function also ben-
efits the performance since DDPG can be considered an algorithm
whose 𝜏 = 0.5 and without a V-function. Next, we study whether
the pre-training and fine-tuning of the reward function is useful. As
in Table 9, if we directly update the recommendation policy with-
out pre-training the reward function, the performance decreases.
Similarly, training the recommendation policy with a frozen re-
ward function also degrades the performance. The results suggests
that the pre-training and fine-tuning of the reward function are
important to the performance.

6 RELATEDWORK
6.1 Optimizing Long-term User Engagement in

Recommendation
Long-term user engagement has recently attracted increasing at-
tention due to its close connection to user stickiness. One of the
major difficulties in promoting long-term user engagement is the
lack of consistent and informative reward signals. Reward signals
can be sparse and change over time, making it difficult to accurately
predict and respond to user needs. Zhang et al. [47] augments the
sparse rewards by re-weighting the original feedbacks with coun-
terfactual importance sampling. Wu et al. [42] consider user click
as immediate reward and user’s return time as a hint on long-term
engagement. It also assumes a stationary distribution of candidates
for recommendation. In contrast, Zhao et al. [49] empirically iden-
tify the problem of non-stationary users’ taste distribution and
propose distribution-aware recommendation methods. Other re-
searches focus on maximizing the diversity of recommendations
as an indirect approach to optimize long-term engagement. For
example, Adomavicius et al. [1] propose a graph-based approach
to maximize diversities based on maximum flow. Ashton et al. [2]
propose that high recommendation diversities is related to long-
term user engagement. Apart from diversities, Cai et al. [5] conduct

large-scale empirical studies and propose several surrogate criteria
for optimizing long-term user engagements, including high-quality
consumption, repeated consumption, etc. In this paper we avoid di-
rectly learning from the sparse and non-stationary signals inferred
from the environment. Instead, we propose to learn a parameterized
reward function to optimize the long-term user engagement.

6.2 Reinforcement Learning for Recommender
Systems

Reinforcement learning allows an autonomous agent to interact
with environment and optimizes long-term goals from experiences,
which is particularly suitable for tasks in recommender systems [3,
9, 27, 31, 46, 53]. Shani et al. [31] first proposed to employ Markov
Decision Process (MDP) to model the recommendation behavior.
The subsequent researches focus on standard RL problems, e.g.,
exploration and exploitation trade-off in the context of recommen-
dation systems [8, 38], together with model-based or simulator-
based approaches to improve sample efficiency [3, 32]. Recently,
there has been works on designing proper reward functions for effi-
cient training of recommender systems. For example, Zou et al. [53]
use a Q-network with hierachical LSTM to model both the instant
and long-term reward. Ji et al. [21] model the recommendation
process as a Partially Observable MDP and estimate the lifetime
values of the recommended items. Zheng et al. [51] explicitly model
the future returns by introducing the user activeness score. Ie et
al. [20] decompose the Q-function for tractable and more efficient
optimization. There are also researches focusing on behavior di-
versity [41, 52] as a surrogate for the reward function. Instead of
relying on the aforementioned handcrafted reward signals, in this
paper we propose to automatically train a reward function based
on preferences between users’ behavioral trajectories, which avoids
the difficulties in reward engineering.

7 CONCLUSIONS
In this paper, we propose PrefRec, a novel paradigm of recommender
systems, to improve long-term user engagement. PrefRec allows
RL recommender systems to learn from preferences between users’
historical behaviors rather than explicitly defined rewards. By this
way, we can fully exploit the advantages of RL in optimizing long-
term goals, while avoiding complex reward engineering. PrefRec
uses the preferences to automatically learn a reward function. Then
the reward function is applied to generate reinforcement signals
for training the recommendation policy. We design an effective
optimization method for PrefRec, which utilizes an additional value
function, expectile regress and reward function pre-training to
enhance the performance. Experiments demonstrate that PrefRec
significantly and consistently outperforms the current state-of-the-
art on various of long-term user engagement optimization tasks.
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