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ABSTRACT
Quantitative stock investment is a fundamental financial task that
highly relies on accurate prediction of market status and profitable
investment decision making. Despite recent advances in deep learn-
ing (DL) have shown stellar performance on capturing trading
opportunities in the stochastic stock market, the performance of
existing DL methods is unstable with sensitivity to network ini-
tialization and hyperparameter selection. One major limitation of
existing works is that investment decisions are made based on one
individual neural network predictor with high uncertainty, which
is inconsistent with the workflow in real-world trading firms. To
tackle this limitation, we propose AlphaMix, a novel three-stage
mixture-of-experts (MoE) framework for quantitative investment
to mimic the efficient bottom-up hierarchical trading strategy de-
sign workflow of successful trading companies. In Stage one, we
introduce an efficient ensemble learning method, whose compu-
tational and memory costs are significantly lower comparing to
traditional ensemble methods, to train multiple groups of trading
experts with personalised market understanding and trading styles.
In Stage two, we collect diversified investment suggestions through
building a pool of trading experts utilizing hyperparameter level
and initialization level diversity of neural networks for post hoc
ensemble construction. In Stage three, we design three different
mechanisms, namely as-needed router, with-replacement selection
and integrated expert soup, to dynamically pick experts from the
expert pool, which takes the responsibility of a portfolio manager.
Through extensive experiments on US and Chinese stock markets,
we demonstrate that AlphaMix significantly outperforms many
state-of-the-art baselines in terms of 7 popular financial criteria.
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1 INTRODUCTION
The stock market, a financial ecosystem involving over $90 trillion1
market capitalization globally in 2020, is one of the most popu-
lar channels for investors to pursue desirable financial assets and
achieve investment goals. As the famous efficient market hypoth-
esis [10] claims, forecasting stock prices accurately and making
highly profitable investment decisions are extremely challenging
tasks due to the noisy nature of the financial markets. In the last
decade, deep learning (DL) methods have become an appealing
direction for stock prediction [51] and quantitative investment [3]
owing to its ability to learn insightful market representations in
an end-to-end manner. Most existing DL methods adopt various
advanced network architectures (e.g., LSTM [28], Attention [34]
and Transformer [6]) to extract meaningful features from hetero-
geneous financial data such as fundamental factors [4], economics
news [17], social media [51] and investment behaviors [5].

To apply deep learning models for quantitative investment, the
vast majority of existing methods [11, 24, 50, 54] first adopt stock
prediction as a supervised learning task. Observable market infor-
mation (e.g., historical price) is used as the feature vector and the
future price movement direction [54] or return rate [50] is applied
as the target for classification or regression, respectively. One neu-
ral network (NN) predictor is optimized to capture the underlying
pattern of financial markets by minimizing the corresponding loss
function. Later on, the trained predictor is applied on new test sets
for prediction. Finally, investment strategies are constructed by
picking stocks with the top predicted price rising probability [54]
or highest predicted return rate [50]. However, the performance of
previous methods is unstable and sensitive to many factors such

1https://data.worldbank.org/indicator/CM.MKT.LCAP.CD/
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Figure 1: Overview of the bottom-up hierarchical trading
strategy design workflow in real-world trading companies.

as random seeds [1]. The potential reason of this phenomenon is
that existing methods make investment decisions based on only
one individual predictor, whose predictions are usually uncertain
[14] and fail to seize fleeting trading opportunities in stock markets.
Demonstrative experiments are shown in Section 6.5.

In Figure 1, we plot an overview of trading strategy design work-
flow in real-world trading firms. There are multiple groups of trad-
ing experts with diversified background knowledge (e.g, finance
and computer science). Within one group, they collaboratively
work together to analyze the market from the same perspective. At
the same time, groups work independently with different trading
styles and risk tolerance to avoid mutual impact and correlated
decisions. Then, a senior portfolio manager summarizes their re-
sults and makes the final investment decisions. This bottom-up
hierarchical workflow plays a key role in designing robust and prof-
itable trading strategies [8]. Inspired by it, we propose AlphaMix, a
novel three-stage mixture-of-experts (MoE) framework for quan-
titative investment. In Stage one, an efficient ensemble learning
method, whose computational and memory costs are significantly
lower than traditional ensemble methods, is proposed to train mul-
tiple trading experts with personalised market understanding and
trading styles. In Stage two, we build a pool of diversified trading
experts by utilizing both hyperparameter level and initialization
level diversity of neural networks for post hoc ensemble construc-
tion. In Stage three, we design three different mechanisms, namely
with-replacement selection, integrated expert soup and as-needed
router, to dynamically pick experts from the expert pool to take
the responsibility of a portfolio manager. As illustrated in Figure 2,
AlphaMix achieves the best performance with much smaller model
size comparing to three prevalent ensemble methods [22, 45, 52].
The main contributions of this work are two-fold:
• To the best of our knowledge, AlphaMix is the first mixture-
of-experts framework for quantitative investment. In Al-
phaMix, we first efficiently optimize multiple independent
groups of trading experts, then we build a pool of diversified
models for post hoc ensemble construction, and finally three
different mechanisms are introduced to further improve per-
formance by dynamically picking these experts.
• Through experiments on real-world data of two influen-
tial stock markets spanning over 5 years, we show that Al-
phaMix significantly outperforms 11 state-of-the-art baseline
methods in terms of 7 financial criteria and demonstrate Al-
phaMix’s practical applicability to quantitative investment
with a series of exploratory and ablative studies.
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Figure 2: Model size vs. Sharpe ratio dot plot on US stock
market. Ensemble methods (red) generally outperform other
RNN (dark blue) and Non-RNN (light blue) methods. Our Al-
phaMix (purple) performs the best (17% improvement) with
tiny computation overhead than the base model (MLP).

2 RELATEDWORK
2.1 Financial Prediction with Deep Learning
Extensive deep learning methods have been proposed for stock
prediction, which can be generally categorised into: 1) recurrent
neural networks (RNN), 2) non-recurrent neural networks (NRNN),
and 3) models with alternative data sources.
RNN models. RNN-based models are popular for stock prediction
since they are specifically designed to capture temporal patterns in
sequential data. Nelson et al. [28] show that GRU outperformsmany
baseline methods. Wang et al. [40] combine attention mechanism
with LSTM to model correlated time steps. To improve the robust-
ness of LSTM, Feng et al. [11] apply adversarial training techniques
for stock prediction. Zhang et al. [55] propose a State Frequency
Memory (SFM) recurrent network with Discrete Fourier Transform
(DFT) to discover multi-frequency patterns in stock markets.
NRNN models. There are also many DL approaches that make
stock prediction without using RNN-based models. Liu et al. [25]
introduce a multi-scale two-way neural network (NN) to predict
the stock trend. Ding et al. [6] propose a hierarchical Gaussian
transformer-based model for stock movement prediction. Another
direction of work employs graph-based DL models to model pair-
wise relations between stocks. For instance, Feng et al. [12] enhance
graph convolutional networks (GCNs) with temporal convolutions
for mining inter-stock relations. Sawhney et al. [36] focus on stock
industry data and links between company CEOs.
Models with alternative data. To further show the potential
of DL methods, the usage of additional data sources is another
direction for trading signal discovery. Xu and Cohen [51] propose
a variational autoencoder architecture to extract latent information
from tweets. Chen et al. [5] enhance trading strategy design with
the investment behaviors of professional fund managers. Other
data sources such as economics news [17] and earning calls [37]
are also used to improve the prediction performance.

However, this line of work focuses on designing one powerful
DL model to extract meaningful market features, which usually
involve millions of parameters and are hard to train in practice. Our
AlphaMix proposes a new direction to make investment decisions
with multiple models and significantly outperforms existing SOTA
methods with simple multi-layer perceptrons (MLP) backbones.
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2.2 Ensemble Learning
Ensemble methods, which combine the output of different models
to improve the overall generalization performance, have been stud-
ied for decades [15, 16, 21, 31, 43, 45, 46]. DeepEns [22] shows its
potential for uncertainty estimation. Although ensemble methods
achieve stellar performance when each member makes independent
errors [23], the significant increase of computation and memory
cost becomes a major bottleneck for the wide deployment of en-
semble methods. In recent years, the major direction in ensemble
research is how to reduce the cost of training, testing and mem-
ory. Snapshot ensemble [18], in which a single model is trained
by cyclic learning rates, is proposed to encourage visiting multi-
ple local minima within one run. Wen et al. [43] propose an effi-
cient mini-batch friendly ensemble method called BatchEns with
an ensemble weight generation mechanism using Hadamard prod-
uct. Recent works highlight the benefit of ensemble models with
hyperparameter diversity [45] and architecture diversity [15], re-
spectively. Instead of combining the outputs of neural networks,
model soup [47] directly average the weights of neural networks
and achieves great performance in pretrain settings with no extra
inference cost.

Although there is a lot of progress in ensemble learning, most
existing ensemble methods for stock markets [30] are only straight-
forward applications of traditional methods such as bagging and
stacking with linear increase of both computation and memory cost.
For instance, Xiang and Fu [48] combine different neural networks
as sub-models with bagging for stock market prediction. There
is still a lack of advanced efficient ensemble learning methods for
capturing the fleeting trading opportunities in financial markets. Al-
phaMix is designed by customizing advanced ensemble techniques
[2, 41, 43, 45, 47] into this filed to fill the gap.

2.3 Mixture of Experts
Ever since its introduction more than two decades ago [19], the
mixture-of-experts (MoE) approach has been the key component
for many works. Eigen et al. [9] extend MoE into deep learning by
stacking two layers of mixture of experts with a trainable weighted
gating network. Shazeer et al. [38] present a sparsely-gated MoE
layer to enable training extremely large number of experts. Ma
et al. [26] propose a multi-gate MoE framework to model task rela-
tionships in multi-task learning. Xu et al. [49] propose an adaptive
Master-Slave regularized model for unexpected revenue prediction
enhanced with alternative data. MoE models have achieved stellar
performance in many challenging fields such as computer vision
[35, 41, 42] and natural language processing [7, 38].

However, even though MoE methods have been successful in
many fields, there is a lack of MoE frameworks for quantitative
investment in the stochastic financial market. AlphaMix is the first
MoE framework to fill this gap with three stages to mimic the
efficient hierarchical bottom-up trading strategy design workflow
in real-world trading firms.

3 GENERATING DIVERSIFIED EXPERTS
In this section, we first provide a formulation of quantitative invest-
ment. We then introduce an efficient ensemble approach to train

multiple groups of trading experts with tiny computation and mem-
ory overhead. Finally, we conduct model augmentation to build a
pool of diversified trading experts, which utilizes two sources of
diversity: varied hyperparameters and random initialization.

3.1 Problem Formulation
We formulate quantitative investment as a supervised learning
task by generating trading strategies based on stock movement
predictions following [54]. Consider a stock pool of size 𝑁 , where
for each stock 𝑖 on trading day 𝑡 , there is a corresponding closing
price 𝑝𝑖𝑡 and a feature vector 𝑥𝑖𝑡 .
Formalizing stockmovement prediction.We define stockmove-
ment prediction with label 𝑦𝑖[𝑡,𝑡+𝜏 ] over a period of 𝜏 days as a clas-
sification task following [51, 54]. Here, we define the label using
the closing price of a given stock 𝑝𝑖𝑡 , that can either rise or fall on
day 𝑡 + 𝜏 compared to day 𝑡 as:

𝑦𝑖[𝑡,𝑡+𝜏 ] =

{
1, 𝑝𝑖𝑡+𝜏 > 𝑝𝑖𝑡

0, 𝑝𝑖𝑡+𝜏 ≤ 𝑝𝑖𝑡
(1)

Unless otherwise stated, we use 𝑥 and 𝑦 to denote the sequential
feature vectors (𝑥𝑖

𝑡−𝑘 , ..., 𝑥
𝑖
𝑡 ) and next day stock movement 𝑦𝑖[𝑡,𝑡+1]

of stock 𝑖 on time 𝑡 in the following of this work for simplicity.
Trading strategy generation. To evaluate the performance of
quantitative investment methods, we apply a widely used simple yet
robust trading strategy called daily top 𝑘 buy & hold as in [50, 54].
Specifically, we rebalance our portfolio by evenly allocating money
into the top 𝑘 stocks with the highest probability to increase from
the stock pool at the end of each trading day.

3.2 An Efficient Ensemble Approach
To fully utilize the potential of ensemble learning methods in fi-
nancial markets, there are two major challenges: i) how to train
diversified ensemble members by taking personal market status un-
derstanding and trading styles into consideration; ii) how to address
the significant time and memory cost of traditional ensemble meth-
ods for real-world deployment. To address these two challenges, we
introduce an efficient ensemble approach to train a group of trading
experts simultaneously with limited cost overhead leveraging the
idea of [43]. As shown in Figure 3, we first allocate each ensemble
member two trainable vectors representing personal market un-
derstanding and trading style. Then, we generate an independent
rank-one matrix of each ensemble member by multiplying the two
personalised vectors. Finally, the ensemble weights are generated
by calculating the Hadamard product of the shared weight matrix
and the independent rank-one matrix.

Formally, let𝑊 be the weights in a neural network layer. De-
note the input dimension as𝑚 and the output dimension as 𝑛, i.e.,
𝑊 ∈ R𝑚×𝑛 .𝑀 trading experts are trained, where each expert has
weight matrix𝑊𝑖 . Specifically, each expert 𝑖 owns a tuple of train-
able vectors 𝑟𝑖 and 𝑠𝑖 with dimension𝑚 and 𝑛, which represents
the expert’s personal market understanding and trading style, re-
spectively. Our algorithm generates a group of ensemble weights
𝑊𝑖 as follows:

𝑊𝑖 =𝑊 ◦ 𝐹𝑖 , where 𝐹𝑖 = 𝑟𝑖𝑠𝑇𝑖 (2)
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Figure 3: Illustration of the efficient ensemble approach on
how to generate the weights for two ensemble members.

For each training sample in the mini-batch, it receives an en-
semble weights𝑊𝑖 by computing Hadamard product of𝑊 (shared
slow weights) and a rank-one matrix 𝐹𝑖 (personal fast weights).
The subscript 𝑖 represent expert 𝑖 . The insight here is that one
can modulate intermediate features of neural networks to achieve
promising performance [32, 43] instead of modulating the whole
weight matrices.
Vectorization for Parallelization. To further elaborate the effi-
ciency of this approach, we show that the above ensemble weight
generationmechanism can be parallelizable within one device based
on [43]. Specifically, one computes a forward pass with respect to
multiple ensemble members in parallel by manipulating the matrix
computations for a mini-batch [44]. We denote 𝑎 as the activations
of the incoming neurons in a neural network layer. The next layer’s
activations 𝑐 are calculated as:

𝑐𝑛 = 𝜙 (𝑊𝑇
𝑖 𝑎𝑛) = 𝜙 ((𝑊 ◦ 𝑟𝑖𝑠𝑇𝑖 )

𝑇
𝑎𝑛)

= 𝜙 ((𝑊𝑇 (𝑎𝑛 ◦ 𝑟𝑖 )) ◦ 𝑠𝑖 )
(3)

where 𝜙 represents the activation function and the subscript 𝑛
denotes the index in the mini-batch. The output is next layer’s
activations from the 𝑖𝑡ℎ ensemble member. In order to vectorize
these computations, we define matrices 𝑅 and 𝑆 whose rows consist
of the vectors 𝑟𝑖 and 𝑠𝑖 for all data samples in the mini-batch. The
vectorized form of the above equation is as follows:

𝐶 = 𝜙 (((𝐴 ◦ 𝑅)𝑊 ) ◦ 𝑆) (4)

where𝐴 and𝐶 are the mini-batch input and output of this layer. By
applying equation 4, the next layer’s activations for each ensem-
ble member can be computed in a mini-batch friendly way. As a
results, this ensemble method allows us to take full advantage of
parallel accelerators for efficiently training multiple trading experts
simultaneously. In practice, we can divide the input mini-batch in
𝑀 sub-batches and each sub-batch receives ensemble weight𝑊 𝑖 to
match the input and the ensemble weight,.
Individual Ensemble Loss. For the computation of ensemble
loss, we feed the feature vector 𝑥 into the neural network and get
predicted stock movement 𝑦𝑖 of expert 𝑖 . To combine the loss of
multiple experts, one way is to use the aggregated classification

logits. We define the collaborated aggregated loss as:

𝐿
𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑦

𝑐𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑣𝑒
(𝑥,𝑦) = 𝐿𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑦

(
1
𝑛

∑︁𝑛

𝑖=1
𝑦𝑖 , 𝑦

)
(5)

where 𝐿𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑦 denotes any classification loss (e.g., cross-entropy).
However, collaborative loss leads to correlated decisions [24] in-
stead of complementary experts in our preliminary experiments.
To discourage correlations, we require each expert to do the job
well by itself. Therefore, we apply an effective individual loss as:

𝐿
𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑦

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙
(𝑥,𝑦) = 1

𝑛

∑︁𝑛

𝑖=1
𝐿𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑦 (𝑦𝑖 , 𝑦)) (6)

Ensembling During Testing. For inference, we first acquire the
predictions of each ensemble member and then average them as
the final prediction. For the scenarios of batch size 𝐵 and𝑀 ensem-
ble members, we repeat the data of the input mini-batch𝑀 times
to get an effective batch size 𝐵 ∗ 𝑀 , which enables all ensemble
members to compute the output of the same 𝐵 input data points in
a single forward pass. As a result, it reduces the computation cost
by eliminating the need to calculate the output of each ensemble
member sequentially [43].

3.3 Hyper-Level Expert Augmentation
In professional trading firms, there is usually an administrative
staff who collects and organizes the investment suggestions from
different groups of trading experts as supportive information for
portfolio managers’ final decisions. Motivated by this, we introduce
a way to construct an expert pool exploiting two sources of diver-
sity: varied hyperparameters [45] and random initialization [13],
which fully utilizes the investment decisions diversity of different
groups of trading experts. We proceed in three main steps as sum-
marized in Algorithm 1 following [45]. Specifically, random_search
is a function that train models2, i.e., 𝑓𝜃 (·, 𝜆), with random selected
hyperparameters 𝜆 (e.g., learning rate, hidden size). topk_ens is a
function that pick models with top 𝐾 performance. In lines 1-2,
we run random search of hyperparameters, which leads to a set
of 𝑁 models (i.e.,M0). Then, we generate one "row" of 𝐾 models
using topk_ens to pick 𝐾 models with better performance. We then
tile and stratify that "row" by training the models for 𝐾 different
random initialization, thus 𝑂 (𝐾2) models to train in total (lines
4-7). A pictorial view of the expert pool is illustrated in Figure 4.
We show that the expert pool of two strong ensemble methods, i.e.,
DeepEns [22] and HyperEns [45], are subsets of that for AlphaMix,
which indicates that AlphaMix has the potential to achieve better
performance by utilizing both sources of diversity.

4 ROUTING EXPERTS DYNAMICALLY
The role of a senior portfolio manager is to make the final invest-
ment decisions based on the suggestions from different groups of
junior trading experts. We try three different mechanisms to act
as a portfolio manager by dynamically picking experts from the
pool. First, we propose a novel routing mechanism to route the
experts on an as-needed basis [41]. Second, we provide one simple
yet robust ensemble aggregation option named with-replacement
selection [2] that builds ensembles where the contribution of each
2each 𝑓𝜃 ( ·, 𝜆) is a model trained with the efficient ensemble approach in Section 3.2
that represents the investment decision of one group of experts.
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Algorithm 1: Construct A Diversified Expert Pool

1 M0 = {𝑓𝜃 𝑗
(·, 𝜆 𝑗 )}𝑁𝑗=1 ← random_search(N);

2 𝜀0 ← topk_ens(M′, 𝐾) and 𝜀𝑠𝑡𝑟𝑎𝑡 = {};
3 foreach 𝑓𝜃 (·, 𝜆) ∈ 𝜀0 .unique() do
4 foreach 𝑘 ∈ {1, ..., 𝐾} do
5 𝜃

′ ←− random initialization;
6 𝑓𝜃𝑘 (·, 𝜆) ←− train 𝑓𝜃 ′ (·, 𝜆) ;
7 𝜀𝑠𝑡𝑟𝑎𝑡 = 𝜀𝑠𝑡𝑟𝑎𝑡 ∪ {𝑓𝜃𝑘 (·, 𝜆)}
8 end
9 end

10 return 𝜀𝑠𝑡𝑟𝑎𝑡
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Figure 4: Pictorial view of the expert pool. Our AlphaMix
can search in the whole "block" (green), while Deepens and
Hyperens are built on one column (orange) or row (blue).

ensemble member is weighted. Further, we customize the idea of
model soup [47] from pre-train settings, which directly mixes the
weights of neural networks, to incorporate different trading experts’
knowledge without any extra training or inference cost. See Section
6.2 for detailed performance comparison of the three mechanisms.

4.1 Training As-Needed Routers
For a portfolio manager, it is a smart way to listen to suggestions
from junior traders sequentially and make final investment deci-
sions once they believe necessarily enough suggestions are already
considered. This helps them avoid hesitation due to too many sug-
gestions and make timely profitable decisions. Motivated by this,
we train 𝑛 − 1 routers with parameters ℎ𝜃1 , ..., ℎ𝜃𝑛−1 to dynamically
deploy these (arbitrarily ordered) experts sequentially on an as-
needed basis as shown in Figure 5 inspired by [41]. When the mean
logits of the first 𝑘-th expert provide the correct prediction (𝑦 = 𝑦),
which indicates the first 𝑘 experts are enough, the router should
ideally switch off the 𝑘 + 1 expert with 𝑦𝑜𝑛 = 0. Otherwise, the
router should turn on the 𝑘 + 1 expert to explore more possibility
with 𝑦𝑜𝑛 = 1. In practice, we build a binary classifier with two fully
connected layers to learn each router. Each of the 𝑛 − 1 routers for
𝑛 experts has a shared component to reduce feature dimensions
and an individual component to make decisions. Specifically, we
normalize the market feature 𝑥 and reduce the embedding dimen-
sion (8 in our experiments) by a fully connected layer𝑊1, which
is shared with all routers, followed by LeakyReLU, and then con-
catenate it with the mean logits 𝑦𝑘𝑚𝑒𝑎𝑛 = 1

𝑘

∑𝑘
𝑖=1 𝑦𝑖 of the first 𝑘

experts. Furthermore, we project it to a scalar by𝑊 (𝑘 )2 which is

independent between routers, and finally apply Sigmoid function
𝑆 (𝑥) = 1

1+𝑒−𝑥 to get a continuous activation value 𝑣 (𝑥) ∈ [0, 1]:
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Figure 5: Illustration of AlphaMix with as-needed routers.
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𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝑙𝑢 (𝑊1

𝑥
∥𝑥 ∥ )

𝑦𝑘𝑚𝑒𝑎𝑛

])
(7)

The routers are optimized with a weighted variant of binary
cross-entropy loss:

𝐿𝑟𝑜𝑢𝑡𝑒𝑟 = −𝜔𝑦𝑜𝑛𝑙𝑜𝑔(𝑣 (𝑥)) − (1 − 𝑦𝑜𝑛)𝑙𝑜𝑔(1 − 𝑣 (𝑥)) (8)

where 𝜔 controls the easiness to switch on the routers. We find 𝜔 =

1.7 to be a good trade-off between performance and computational
cost for both datasets. At the test time, we simply threshold the
activation with 0.5 to decide the on/off of the current router.

4.2 With-Replacement Experts Selection
In real-world trading, a portfolio manager may choose to give more
weights on suggestions of some traders based on his/her preferences.
Correspondingly, we adopt a simple yet efficient mechanism called
with-replacement model selection [2] as shown in Algorithm 2 to
enable weighted contribution of eachmember. Given a set of models
(a pool of trading experts), we build an ensemble greedily until the
target ensemble size is met by selecting the model leading to the
optimal improvement of profits with replacement. This selection
strategy enables to construct ensembles where the contribution of
each member is weighted. To properly deal with the situation that
there might be multiple times the same model is selected, we use
.unique() here to address this issue.

Algorithm 2:With-Replacement Selection
Input: ensemble 𝜀 = {}, ensemble size 𝐾 , validation profit

Pro(·), Probest = +∞, model setM = {𝑓𝜃1 , ..., 𝑓𝜃𝑛 }
1 while 𝜀.unique() ≤ K do
2 𝑓𝜃 ∗ = argmax𝑓𝜃𝑖 ∈MPro(𝜀⋃{𝑓𝜃𝑖 });
3 if Pro(𝜀 ∪ {𝑓𝜃 ∗ }) < Probest then
4 𝜀 = 𝜀 ∪ {𝑓𝜃 ∗ }, Probest = Pro(𝜀);
5 else
6 return 𝜀;
7 end
8 end
9 return 𝜀
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4.3 Integrated Model Soup
Instead of making investment decision directly based on sugges-
tions of other trading experts, another working paradigm for portfo-
lio managers is to integrate the market understanding and analysis
of others and derive investment decisions based on their own ex-
perience. Inspired by it, we customize the idea of model soup [47]
into financial markets, which directly mixs the network weights of
different experts, i.e., their knowledge and market understanding.
Unlike the above two mechanisms that mix the output of different
experts, it is perhaps surprising that averaging the weights of in-
dependently trained models achieves high performance since the
loss landscape of neural network training is nonconvex with many
solutions in different loss basins [47]. The insight here is that fine-
tuned models optimized independently with the same initialization
or hyperparameters may lie in the same basin of the error land-
scape [29]. As shown in Algorithm 3, the greedy soup sequentially
adds each model as a potential ingredient in the soup, and only
pick the model in the soup if performance on the validation set
improves. We sort the models in decreasing order of validation set
performance to ensure that the greedy soup can be no worse than
the best individual model. In the end, we average the weights of
all ingredient networks in the soup with function average() and
construct one network without any extra inference cost.

Algorithm 3: Greedy Expert Soup
Input:Model setM = {𝑓𝜃1 , ..., 𝑓𝜃𝑛 } (sorted in decreasing

order of validation profit Pro(𝑓𝜃𝑖 ),
soup ingredients 𝜑 = {}

1 for 𝑖 ← 1 to 𝑘 do
2 if Pro(average(𝜑⋃ {

𝑓𝜃𝑖

}
) ≥ Pro(average(𝜑)) then

3 𝜑 = 𝜑
⋃ {

𝑓𝜃𝑖

}
4 end
5 end
6 return average(𝜑)

5 EXPERIMENT SETUP
5.1 Datasets
To conduct a comprehensive evaluation of AlphaMix, we evaluate
it on two real-world datasets from US and Chinese stock markets
spanning over five years as representatives of developed and de-
veloping financial markets, respectively. We summarize statistics
of the two datasets in Table 1 and further elaborate on them as
follows:

ACL18 [51] is a widely used public dataset collected using Yahoo
Finance3, which contains historical stock prices of 88 US stocks
with top capital size from 9 different industry categories: Basic
Materials, Consumer Goods, Healthcare, Services, Utilities, Con-
glomerates, Financial, Industrial Goods and Technology, in the
Nasdaq exchange.

SZ50 is a dataset with 4-year (2016-2020) historical prices of
474 Chinese stocks collected from Yahoo Finance3. The stock pool
3Yahoo Finance: https://github.com/yahoo-finance
4Three stocks are filtered out from the whole stock pool of size 50 since they are not
listed in 2016.

Dataset Market Freq Stock Days From To
ACL18 US 1d 88 1258 12/09/01 17/09/01
SZ50 China 1h 47 1036 16/06/01 20/09/01

Table 1: Dataset statistics detailing market, data frequency,
number of stocks, trading days and chronological period5.

contains component stocks of SSE50 Index, which represents top 50
companies by "float-adjusted" capitalization in Shanghai exchange.

For dataset split, we use data of the last year for test, penultimate
year for validation and the remaining for training on both datasets.
It is worth mentioning that the test period of ACL18 (16/09/01 to
17/09/01) is a stable period of economic growth while the test period
of SZ50 (19/09/01 to 20/09/01) goes through an unstable period due
to the panic decline during the COVID-19 pandemic. Experimental
results in Table 3 show the great performance of AlphaMix under
different market status.

5.2 Features
We generate 11 temporal features as shown in Table 2 to describe
the stockmarkets following [11, 54]. 𝑧𝑜𝑝𝑒𝑛 , 𝑧ℎ𝑖𝑔ℎ and 𝑧𝑙𝑜𝑤 represent
the relative values of the open, high, low prices compared with the
close price at current time step, respectively. 𝑧𝑐𝑙𝑜𝑠𝑒 and 𝑧𝑎𝑑 𝑗_𝑐𝑙𝑜𝑠𝑒
represent the relative values of the closing and adjusted closing
prices compared with time step 𝑡 − 1. 𝑧𝑑𝑘 represents a long-term
moving average of the adjusted close prices during the last 𝑘 time
steps compared to the current close price.

Features Calculation Formula
𝑧𝑜𝑝𝑒𝑛, 𝑧ℎ𝑖𝑔ℎ, 𝑧𝑙𝑜𝑤 e.g., 𝑧𝑜𝑝𝑒𝑛 = 𝑜𝑝𝑒𝑛𝑡/𝑐𝑙𝑜𝑠𝑒𝑡 − 1
𝑧𝑐𝑙𝑜𝑠𝑒 , 𝑧𝑎𝑑 𝑗_𝑐𝑙𝑜𝑠𝑒 e.g., 𝑧𝑐𝑙𝑜𝑠𝑒 = 𝑐𝑙𝑜𝑠𝑒𝑡/𝑐𝑙𝑜𝑠𝑒𝑡−1 − 1
𝑧𝑑_5, 𝑧𝑑_10, 𝑧𝑑_15
𝑧𝑑_20, 𝑧𝑑_25, 𝑧𝑑_30

e.g., 𝑧𝑑_5 =
∑4
𝑖=0 𝑎𝑑 𝑗_𝑐𝑙𝑜𝑠𝑒𝑡−𝑖/5
𝑎𝑑 𝑗_𝑐𝑙𝑜𝑠𝑒𝑡

− 1

Table 2: Formulas of features to describe the stock markets.

5.3 Evaluation Metrics
We evaluate AlphaMix on 7 different financial metrics including 1
profit criterion, 3 risk criteria and 3 risk-adjusted profit criteria:
• Total Return (TR) is the overall return rate of the whole
trading period. It is defined as 𝑇𝑅 =

𝑛𝑡−𝑛1
𝑛1

, where 𝑛𝑡 is the
final net value and 𝑛1 is the initial net value.
• Volatility (VOL) is the variance of the daily return defined as
𝜎 [ret] to measure the risk level of trading strategies, where
ret = (𝑟𝑒𝑡1, 𝑟𝑒𝑡2, ..., 𝑟𝑒𝑡𝑡 ) is a vector of daily return and 𝜎 [.]
is the variance.
• Downside Deviation (DD) is the variance of negative re-
turn of the whole trading period.
• Maximum Drawdown (MDD) measures the largest loss
from any peak to show the worst case.
• Sharpe Ratio (SR) considers the amount of extra return
that a trader receives per unit of increase in risk. It is defined
axs: 𝑆𝑅 = 𝐸 [ret]/𝜎 [ret], where 𝐸 [.] is the expected value.
• Calmar Ratio (CR) is defined as 𝐶𝑅 =

𝐸 [ret]
𝑀𝐷𝐷

, which is the
expected return divided by the maximum drawdown.

5The dates are in the formats YY/MM/DD, where 12/09/01 indicates September 1st of
year 2012.
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• Sortino Ratio (SoR) applies downside deviation as the risk
measure. It is defined as: 𝑆𝑜𝑅 =

𝐸 [ret]
𝐷𝐷

.

5.4 Training Setup
We conduct all experiments on a Tesla V100 GPU. To build the
expert pool of AlphaMix, we apply grid search to train experts with
batch size in list [32, 64, 128, 256], hidden size in range [32, 64, 128],
and learning rate 𝛼 ∈ [5𝑒−5, 1𝑒−4, 5𝑒−4, 1𝑒−3]. In addition, we ex-
plore the number of experts in range 2 to 32. Adam is used as the
optimizer and we train AlphaMix for 10 epochs on all datasets.
It takes about 1.5 and 1.1 hours to train and test on ACL18 and
SZ50 datasets, respectively. As for other baselines, there are two
conditions: i) there are authors’ official or open-source library [53]
implementations, we apply the same hyperparameters for a fair
comparison6. ii) if there are no publicly available implementations,
we reimplement the algorithms and try our best to maintain con-
sistency based on the original papers.

5.5 Baselines
To provide a comprehensive comparison of AlphaMix, we select 11
state-of-the-art and representative stock prediction methods of 4
different types consisting of recurrent neural network (RNN), non-
recurrent neural network (NRNN), boosting decision tree (BDT)
and ensemble learning (ENS) methods. Descriptions of baselines
are as follows:
Recurrent Neural Network (RNN)

• ALSTM [34] adds an external attention layer into LSTM to
attentively aggregate information from all hidden states.
• LSTM [28] uses a two-layer vanilla LSTM network with
hidden size 32 to predict stock movement.
• SFM [55] is a state frequency memory recurrent network,
which decomposes prices into signals of different frequencies
via Discrete Fourier Transform.
• GRU [39] is a new version of recurrent networks with gated
recurrent units. We apply a two-layer GRU with hidden size
64 for stock movement.

Non-Recurrent Neural Network (NRNN)

• GTrans [6] is a novel hierarchical Gaussian transformer-
based model for stock prediction.
• MLP [27] applies multi-layer perceptron for stock move-
ment prediction with hidden size 128.

Boosting Decision Tree (BDT)

• LightGBM (LGB) [20] is an efficient implementation of
gradient boosting decision tree with gradient-based one-side
sampling and exclusive feature bundling.
• CatBoost (CatB) [33] is a gradient boosting toolkit with
ordered boosting and categorical feature processing.

Ensemble Learning Methods (ENS)

• DNNE [52] is a deep neural network ensemble method for
stock market prediction based on bagging.
• DeepEns [22] is a simple yet efficient ensemble method
with remarkable accuracy and robust uncertainty estimates.

6This condition fits for most baselines except GTrans and DNNE.

• HyperEns [45] builds ensembles that involve a random
search over different hyperparameters.

6 RESULTS AND ANALYSIS
6.1 Comparison with Baselines
We compare AlphaMix7 with 11 state-of-the-art baselines in terms
of 7 financial criteria in Table 3. We observe that AlphaMix con-
sistently generates significantly higher performance than other
baselines on one profit and three risk-adjusted profit metrics across
both US and China markets. In the US market, AlphaMix outper-
forms the second best by 12%, 17%, 58%, 5% in terms of TR, SR,
CR, and SoR. As for the China market, AlphaMix outperforms the
second best by 30%, 27%, 116%, 17% in terms of TR, SR, CR, and SoR.
For risk metrics, AlphaMix performs the best in MDD, which shows
its resistance to drawdown. For VOL and DD, AlphaMix achieves
1st and 2nd places on the US market that demonstrates its stellar
performance on risk control. As for the China market, AlphaMix
comes up with higher VOL and DD due to the trade-off between
fluctuation and return in developing stock markets. In general, en-
semble learning methods perform better than single deep learning
methods (RNN and NRNN), as they combine multiple submodels
for more robust and profitable investment decisions. We postulate
that both RNN and NRNN methods have the potential to capture
the internal patterns of financial data since both RNN and NRNN
methods achieve decent performance on the two datasets. Boosting
decision tree models tend to overfit to the noise in training data
and generalize poorly in test data with the lowest profitability. In
addition, we observe that DeepEns is the most powerful baseline
with at least the second best performance on 7 out of 14 metrics.
MLP achieves robust performance on both markets and CatBoost
performs particularly well for risk control in the China market.

6.2 Ablation
We conduct ablation studies on AlphaMix’s performance benefits
from different ensemble construction mechanisms. There are four
variants of AlphaMix: i) AlphaMix-V is a vanilla version that simply
averages the prediction of each group of expert; ii) AlphaMix-R
trains extra as-needed routers (Sec 4.1); iii) AlphaMix-W uses the
heuristic with-replacement selection (Sec 4.2) and iv) AlphaMix-
S applies model soup (Sec 4.3). We note that AlphaMix-V and
AlphaMix-S can be considered as an enhanced version of [43, 47]
and outperform the original version in our preliminary experiments.
In this subsection, we compare them with the three ensemble base-
lines in Table 4. First, we observe that AlphaMix outperforms the
three ensemble baselines in most cases (red indicates worse than
baselines). The AlphaMix-V is one simple yet efficient choice on
bothmarkets.With extra training of as-needed routers, AlphaMix-R
performs the best. For AlphaMix-W, it outperforms AlphaMix-V in
terms of profit, but the MDD is higher. For AlphaMix-S with model
soup, it does not perform as well as it is in computer vision [47]
due to the low signal-to-noise ratio of stock markets. In summary,
we recommend AlphaMix-V or AlphaMix-R for users, who prefer
simple yet robust methods or best performance, respectively.

7We report the experiment results of AlphaMix with as-needed routers in this Section
if not particularly pointed out.
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Profit Risk-Adjusted Profit Risk Metrics
Market Type Model TR(%)↑ SR↑ CR↑ SoR↑ VOL(%)↓ DD(%)↓ MDD(%)↓

ACL18

RNN

ALSTM 9.9±8.1 0.76±0.61 1.76±1.91 1.14±0.99 0.82±0.03 0.56±0.04 6.88±1.43
LSTM 19.5±4.3 1.49±0.34 3.31±1.15 2.30±0.59 0.82±0.02 0.54±0.04 6.21±1.26
SFM 15.1±3.0 1.25±0.23 1.86± 0.48 1.94± 0.32 0.76±0.02 0.49±0.04 8.40± 1.58
GRU 14.1±7.9 1.06±0.61 2.27±1.92 1.52±0.96 0.84±0.02 0.61±0.05 7.96± 2.59

NRNN GTrans 19.8±9.1 1.52 ±0.67 3.45 ±2.37 2.42±1.16 0.81±0.06 0.52±0.06 7.08 ±2.57
MLP 22.1±6.3 1.87±0.57 3.69±1.77 2.52±0.88 0.75±0.03 0.57±0.07 6.82±2.15

BDT LGB 4.8 0.4 0.70 0.53 0.81 0.57 6.76
CatB 9.3±3.3 0.70±0.25 1.31±0.55 1.00±0.37 0.83±0.03 0.59±0.03 7.33±0.91

ENS
DNNE 23.3±9.4 1.68±0.72 3.76±2.52 2.73±1.24 0.90±0.14 0.56±0.09 7.99±3.37
DeepEns 22.4 2.10 4.79 3.42 0.69 0.42 5.53
HyperEns 23.3±3.2 1.96±0.28 3.39±0.78 2.67±0.42 0.74±0.02 0.54±0.02 6.88±0.97

Ours AlphaMix 26.1 2.45 7.59 3.59 0.67 0.45 3.43
% Improvement over SOTA 12% 17% 58% 5% 3% - 61%

SZ50

RNN

ALSTM 23.2±7.0 1.07±0.26 1.59±0.48 1.34±0.33 1.38±0.09 1.10±0.08 14.74±1.89
LSTM 20.7±7.8 1.01±0.33 1.57±0.52 1.28±0.42 1.30±0.07 1.03±0.05 13.02±0.85
SFM 17.3±2.3 0.79±0.08 1.16±0.15 1.04±0.11 1.40±0.17 1.07±0.15 14.95±2.17
GRU 36.5±27.9 1.26±0.76 2.00±1.35 1.74±1.14 1.66±0.39 1.22±0.22 16.81±2.96

NRNN GTrans 16.8±22.2 0.59±0.77 0.85±1.19 0.80±1.08 1.90±0.28 1.44±0.21 25.41±6.97
MLP 43.5±7.3 1.82±0.15 2.87±0.30 2.46±0.24 1.53±0.15 1.13±0.09 15.36±3.23

BDT LGB 15.3 0.67 0.85 0.85 1.48 1.16 17.91
CatB 21.0±1.8 1.06±0.08 1.72±0.23 1.43±0.12 1.27±0.11 0.95±0.10 12.28±0.72

ENS
DNNE 40.8±8.1 1.66±0.35 3.25±0.90 2.27±0.56 1.58±0.05 1.17±0.08 12.82±1.43
DeepEns 48.2 1.79 3.13 2.39 1.73 1.29 15.57
HyperEns 44.3±7.9 1.83±0.31 2.92±0.56 2.51±0.46 1.51±0.06 1.10±0.08 15.32±1.68

Ours AlphaMix 62.6 2.34 7.04 2.95 1.72 1.37 8.89
% Improvement over SOTA 30% 27% 116% 17% - - 38%

Table 3: Performance comparison (mean and standard deviation of 10 individual runs) on ACL18 (US) and SZ50 (China) stock
markets with 11 baselines including recurrent network (RNN), non-recurrent network (NRNN), boosting decision tree (BDT)
and ensemble (ENS) learning methods. LightGBM (LGB), DeepEns and AlphaMix are three deterministic methods without the
performance standard deviation. Results in pink, green and blue show best, second best and third best results on each dataset.

ACL18 (US) SZ50 (China)
Models TR(%)↑ SR↑ MDD↓ TR(%)↑ SR↑ MDD↓
DNNE 23.3 1.68 7.99 40.8 1.66 12.82
DeepEns 22.4 2.10 5.53 48.2 1.79 15.57
HyperEns 23.3 1.97 6.88 44.3 1.83 15.32
AlphaMix-V 24.5 2.39 3.95 53.7 2.08 11.19
AlphaMix-R 26.1 2.45 3.43 62.6 2.34 8.89
AlphaMix-W 26.7 2.54 5.83 61.0 2.24 12.10
AlphaMix-S 26.0 2.31 6.64 52.7 2.04 13.80

Table 4: Ablation studies over the effectiveness of different
routing mechanisms of AlphaMix on US and China markets.
Red indicatesworse than either DNNE, DeepEns orHyperEns.
Bold shows the best results.

Figure 6: AlphaMix and several other methods on China
market. AlphaMix achieves the best trade-off among perfor-
mance (↑) and time & memory (↓) costs.

6.3 Computational Cost
We show AlphaMix is an efficient ensemble method that addresses
the extensive computation cost overhead of traditional ensemble
methods. Figure 6 displays results on China market in term of per-
formance (TR & SR) and cost (time & memory). Although DeepEns
and HyperEns slightly outperform the vanilla single model, their
computation cost is much higher. For AlphaMix, it significantly
outperforms all three other methods (over 20% improvement) with
much less computation overhead. The poor performance of DNNE
further shows that straightforward applications of traditional en-
semble methods are not enough in financial markets.

6.4 Diversity Analysis
To evaluate diversity, we use the predictive disagreement metric
from [13]. This metric is based on the average of the pairwise
comparisons of the predictions across the ensemble members. For
a given pair of members, it is zero when they are making identical
predictions, and one when all their predictions differ. We report the
diversity of AlphaMix-V and two baselines in Table 5. The diversity
of AlphaMix is significantly better than other two baselines as
it utilizes two sources of diversity: hyperparameter (H) level and
initialization (I) level.

6.5 Reduce Uncertainty with AlphaMix
We conduct experiments to show a single neural network is sensi-
tive to random seedswith high uncertainty andAlphaMix can tackle
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Diversity Ens Size ACL18 (US) SZ50 (China)
DeepEns I 4 0.4194 0.2832
HyperEns H 4 0.3454 0.3992
AlphaMix I & H 4 0.5947 0.6124

Table 5: Diversity comparison of the predictive disagreement.
AlphaMix performs the best by utilizing two sources of di-
versity: hyperparameter (H) level and initialization (I) level.
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Figure 7: Trading days vs. total return curve. AlphaMix
achieves higher return with much lower standard deviation.

this issue with mixture-of-experts. We train a popular two-layer
GRU [39] model and our AlphaMix for stock movement prediction
and generate investment decisions with the classic top-4 buy &
hold trading strategy with 10 independent runs. The trading days
vs. total return curve (mean and standard deviation) of the two mod-
els is reported in Figure 7. AlphaMix achieves higher return with
much lower standard deviation, which makes investment decisions
from AlphaMix more reliable. To analysis the potential reason of
this phenomenon, we plot the confidence score (largest logits after
softmax) for stock movement prediction (binary classification) in
Figure 8. The confidence score of GRU is quite low (between 0.5
and 0.6 for most samples) that indicates one single predictor is not
enough. We observe that AlphaMix achieves much higher confi-
dence score with mixture-of-experts. It is reasonable that higher
confidence score leads to lower performance variance.
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Figure 8: Confidence histogram to showAlphaMix has higher
decision certainty comparing to GRU.

6.6 Parameter Analysis: Probing Sensitivity
Number of selected top 𝑘 stocks.We analyze AlphaMix’s perfor-
mance (TR & SR) variation with the number of selected top stocks
on ACL18 and SZ50 in Figure 9. We find that AlphaMix performs
consistently well in terms of TR and SR on both datasets, which
shows AlphaMix’s robustness and suitability to strategies with
different risk taking appetites. We pick 𝑘 = 4 in practice.

Number of experts 𝑒.We analyze AlphaMix’s performance (TR
& SR) variation with the number of experts 𝑒 on ACL18 and SZ50
in Figure 10. We observe that AlphaMix performs the best when
𝑒 is relatively small. Then, the performance drops a lot with the
increase of expert number. In addition, when the number of experts
goes to very large (e.g., 32). The performance increases again. This
indicates that it is better to make investment decision based on the
discussion of a few elite or a large population of experts. Decisions
form medium size experts may lead to worse decisions.
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Figure 9: The impact of the number of top 𝑘 stocks on Al-
phaMix in terms of TR and SR on ACL18 and SZ50.
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Figure 10: The impact of the number of experts on AlphaMix
in terms of TR and SR on ACL18 and SZ50.

7 CONCLUSION
In this paper, we propose AlphaMix, a novel three-stage mixture-
of-experts framework, to mimic the efficient bottom-up workflow
in real-world trading firms for quantitative investment. Specifically,
we introduce an efficient ensemble learning method to train multi-
ple trading experts with personalised market understanding and
trading styles. Later on, we conduct model augmentation to con-
struct a pool of diversified trading experts. Finally, we leverage three
different mechanisms, namely as-needed router, integrated soup
and with-replacement selection, to further improve performance
by dynamically routing experts from the expert pool. Extensive
experiments on both China and US stock markets demonstrate that
AlphaMix significantly outperforms many strong baselines. Abla-
tion studies show the effectiveness of the proposed components.
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