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Abstract
Traditional knowledge distillation focuses on aligning the student’s

predicted probabilities with both ground-truth labels and the teacher’s

predicted probabilities. However, the transition to predicted proba-

bilities from logits would obscure certain indispensable information.

To address this issue, it is intuitive to additionally introduce a logit-

level loss function as a supplement to the widely used probability-

level loss function, for exploiting the latent information of logits.

Unfortunately, we empirically find that the amalgamation of the

newly introduced logit-level loss and the previous probability-level

loss will lead to performance degeneration, even trailing behind

the performance of employing either loss in isolation. We attribute

this phenomenon to the collapse of the classification head, which

is verified by our theoretical analysis based on the neural collapse
theory. Specifically, the gradients of the two loss functions exhibit

contradictions in the linear classifier yet display no such conflict

within the backbone. Drawing from the theoretical analysis, we

propose a novel method called dual-head knowledge distillation,
which partitions the linear classifier into two classification heads

responsible for different losses, thereby preserving the beneficial

effects of both losses on the backbone while eliminating adverse in-

fluences on the classification head. Extensive experiments validate

that our method can effectively exploit the information inside the

logits and achieve superior performance against state-of-the-art

counterparts
1
.

CCS Concepts
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1 Introduction
Despite the remarkable success of deep neural networks (DNNs)

in various fields, it is a significant challenge to deploy these large

models in lightweight terminals (e.g., mobile phones), particularly

under the constraint of computational resources or the requirement

of short inference time. To mitigate this problem, knowledge distil-

lation (KD) [11] is widely investigated, which aims to improve the

performance of a small network (a.k.a. the “student”) by leveraging

the expansive knowledge of a large network (a.k.a. the “teacher”)
to guide the training of the student network.

Traditional KD techniques focus on minimizing the disparity in

the predicted probabilities between the teacher and the student,

which are typically the outputs of the softmax function. Neverthe-

less, the transformation from logits to predictive probabilities via

the softmax function may lose some underlying information. As

shown in Figure 1(a), considering a 3-class classification problem,

even if the teacher model outputs two different logit vectors [2, 3, 4]
and [−2,−1, 0], the softmax function renders the same probability

vector [0.09, 0.24, 0.67]. However, different logit vectors may carry

different underlying information that would be further exploited by

the student, which could be lost due to the transformation process

carried out by the softmax function.

In order to properly leverage the information inside the logits,

we introduce a logit-level KD loss. Specifically, we use the sigmoid

function to formalize the pre-softmax output for each class into a

range of [0, 1] and deploy the Kullback-Leibler (KL) divergence to

perform the binary classification of each class. By aligning the pre-

softmax output of each class separately, this newly introduced loss

(denoted by BinaryKL) can adequately exploit the information in-

side the logits. However, it is interesting to show that combining the

logit-level BinaryKL loss with the probability-level cross-entropy
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(1) Only Cross-Entropy (2) Only BinaryKL

(3) Cross-Entropy + BinaryKL (4) Dual Head Knowledge Distillation

(b) An illustration of four settings we evaluate

Figure 1: The reason for introducing the BinaryKL loss and the incompatibility of the CE loss and the BinaryKL loss. Figure
1(a) shows that two different vectors may become the same through the softmax function, which means some information
would be lost during the transformation process carried out by the softmax function. Figure 1(b) shows four settings we
evaluate: (1) only cross-entropy (CE) loss; (2) only the BinaryKL loss; (3) CE + BinaryKL; (4) Our proposed Dual-Head Knowledge
Distillation (DHKD). The red cross over the third setting means that the student model trained under this setting will collapse.
The performance sorting of four settings is (4) > (1) > (2) ≫ (3), as shown in Figure 2.

(CE) loss results in poor performance of the student model, which

is even worse than the performance of employing either loss sepa-

rately. As illustrated in Figure 1(b), employing either loss separately

as the training loss can induce a high-performance student model,

but the model’s performance will be largely degraded when we

combine them together during the training process.

To identify the root cause of this abnormal phenomenon, in-

spired by the recent research on neural collapse [39], we analyze
the gradients of the model when using both losses. Specifically, by

dividing the gradients of the model into two parts, we find that the

gradients of the two loss functions contradict each other regarding

the linear classifier head but display no such conflict regarding the

backbone. As a consequence, while the BinaryKL loss can facilitate

the backbone in learning from the teacher model more precisely,

it prevents the linear classifier head from converging to a simplex

equiangular tight frame (see a detailed definition in Definition 1),

which is the ideal status that a well-trained linear classifier should

converge to. Therefore, the combination of these two loss functions

would cause the linear classifier to collapse, thereby degrading the

performance of the student model. Based on our theoretical analysis

that a single linear classifier is faced with the gradient contradic-

tion when being trained by both losses simultaneously, we propose

Dual-Head Knowledge Distillation (DHKD), which introduces an

auxiliary classifier head apart from the original linear classifier to

effectively circumvent the collapse of the linear classifier while

retaining the positive effects of the BinaryKL loss on the backbone.

Extensive experiments show the advantage of our proposed DHKD

method.

Our main contributions can be summarized as follows:

• We disclose an interesting phenomenon in the knowledge

distillation scenario: combining the probability-level CE loss

and the logit-level BinaryKL loss would cause a performance

drop of the student model, compared with using either loss

separately.

• We provide theoretical analyses to explain the discordance

between the BinaryKL loss and the CE loss. While the Bina-

ryKL loss aids in cultivating a stronger backbone, it harms

the performance of the linear classifier head.

• We propose a novel knowledge distillation method called

Dual-Head Knowledge Distillation (DHKD). Apart from the

linear classifier trained with the CE loss, DHKD specially

introduces an auxiliary classifier trained with the BinaryKL

loss.

Extensive experiments demonstrate the effectiveness of our pro-

posed method.

2 Related Work
2.1 Knowledge Distillation
Knowledge distillation (KD) [11] aims to transfer knowledge from

a large teacher network to a small student network. Existing works

can be roughly divided into two groups: feature-based methods and

logit-based methods.
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Feature-based methods focus on distilling knowledge from in-

termediate feature layers. FitNet [29] is the first approach to distill

knowledge from intermediate features by measuring the distance

between feature maps. RKD [26] utilizes the relations among in-

stances to guide the training process of the student model. CRD

[33] incorporates contrastive learning into knowledge distillation.

OFD [10] contains a new distance function to distill significant

information between the teacher and student using marginal ReLU.

ReviewKD [3] proposes a review mechanism that uses multiple

layers in the teacher to supervise one layer in the student. Other

papers [15, 17, 19, 21, 24, 27, 30, 35] enforce various criteria based

on features. Most feature-based methods can attain superior perfor-

mance, yet involving considerably high computational and storage

costs.

Logit-based methods mainly concentrate on distilling knowledge

from logits and softmax scores after logits. DML [43] introduces

a mutual learning method to train both teachers and students si-

multaneously. DKD [44] proposes a novel logit-based method to

reformulate the classical KD loss into two parts and achieves state-

of-the-art performance by adjusting weights for these two parts.

DIST [12] relaxes the exact matching in previous KL divergence

loss with a correlation-based loss and performs better when the

discrepancy between the teacher and the student is large. TTM [45]

drops the temperature scaling on the student side, which causes an

inherent Renyi entropy term as an extra regularization term in the

loss function. Although logit-based methods require fewer compu-

tational and storage resources, they experience a performance gap

compared with feature-based methods.

2.2 Neural Collapse
Neural collapse is a phenomenon observed in the late stages of

training a deep neural network, which is especially evident in the

classification tasks [25]. As the training process approaches its

optimum, the feature representations of data points belonging to

the same class tend to converge to a single point, or at least become

significantly more similar to each other in the feature space. At

the same time, the class mean vectors tend to be equidistant and

form a simplex equiangular tight frame (see a detailed definition in

Definition 1).

Although the phenomenon is intuitive, its reason has not been en-

tirely understood, which inspires several lines of theoretical work

on it. Papyan et al. [25] prove that if the features satisfy neural

collapse, the optimal classifier vectors under the MSE loss will

also converge to neural collapse. Some studies turn to a simplified

model that only considers the last-layer features and the classi-

fier as independent variables, and they prove that neural collapse

emerges under the CE loss with proper constraints or regulariza-

tion [5, 13, 22, 36, 49]. Yang et al. [39] also use such a simplified

model and decompose the gradient into two parts to help build a

better classifier for class-imbalanced learning, which is the primary

technical reference for the theoretical analysis section of this article.

2.3 Decoupled Heads
Using multiple linear classifiers is a common strategy in various

fields. In object detection, to address the conflict between classifi-

cation and regression tasks, the decoupled head for classification

and localization is widely used in most one-stage and two-stage

detectors [6, 20, 37]. In multitask learning, it is common practice to

jointly train various tasks through the shared backbone [1, 14, 46].

In long-tailed learning, the Bilateral-Branch Network takes care of

both representation learning and classifier learning concurrently,

where each branch performs its own duty separately [47].

3 Dual-Head Knowledge Distillation
In this section, we firstly point out the incompatibility between the

CE loss and the BinaryKL loss in Section 3.1. Then we analyze its

theoretical foundation in Section 3.2. Finally, based on the theoreti-

cal analysis, we introduce our Dual-Head Knowledge Distillation

(DHKD) method in Section 3.3.

3.1 Incompatibility between CE and BinaryKL
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Figure 2: The test accuracy and test loss curves of the student
models during the training phase. We set resnet56 as the
teacher and resnet20 as the student on the CIFAR-100 dataset.

Traditional KD methods only minimize the difference in the

predicted probabilities (i.e., the outputs of the softmax function)

between the teacher and the student. However, some underlying

information may be lost when converting logits to predicted proba-

bilities using the softmax function. For example, in a 3-class classi-

fication problem in Figure 1(a), if the teacher model outputs logit

vectors [2, 3, 4] and [−2,−1, 0] for different instances, after being
processed by the softmax function, their predicted probabilities are

both [0.09, 0.24, 0.67]. Such differences in logits may carry different

hidden information that would be further utilized by the student

but could be lost because of the transformation process carried out

by the softmax function.

To fully exploit the information inside the logits, we introduce a

logit-level KD loss. Previous studies in various fields have delved

into some logit-level loss functions, such as the mean squared error

and the mean absolute error [16]. We explore a recently proposed

method called BinaryKL [38], which uses the sigmoid function to

formalize the pre-softmax output for each class into a range of [0, 1]
and deploys the Kullback-Leibler (KL) divergence as the binary

classification of each class. By aligning the pre-softmax output of

each class separately, the newly introduced loss can better exploit

the information inside the logits.

Formally, with the logits 𝒛S ∈ R𝐵×𝐾 and 𝒛T ∈ R𝐵×𝐾 of the

student model and the teacher model, where 𝐵 and 𝐾 denote batch

size and the number of classes respectively, the BinaryKL loss can
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(a) A simplex equiangular tight frame
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Figure 3: Gradient analysis based on the neural collapse theory. (a) An illustration of a simplex ETF when 𝑑 = 3 and 𝐾 = 4. The
“+” and “✩” with different colors refer to features and classifier vectors of different classes, respectively. (b) Gradient directions
about a certain 𝒉 (belongs to the 1-st class) w.r.t. all𝒘𝑖 , 𝑖 ∈ 1, 2, 3. (c) Gradient directions w.r.t. an 𝒉 (belongs to the 1-st class).

be formulated as follows:

LBinaryKL = 𝜏2
∑︁𝐵

𝑖=1

∑︁𝐾

𝑘=1
KL

( [
𝜎

(
𝑧T
𝑖,𝑘
/𝜏
)
, 1 − 𝜎

(
𝑧T
𝑖,𝑘
/𝜏
)]

∥
[
𝜎

(
𝑧S
𝑖,𝑘
/𝜏
)
, 1 − 𝜎

(
𝑧S
𝑖,𝑘
/𝜏
)] )

,

(1)

where 𝜎 (·) is the sigmoid function, [·, ·] is an operator used to

concatenate two scalars into a vector, and KL denotes the KL di-

vergence KL(𝑃 ∥𝑄) = ∑
𝑥∈X 𝑃 (𝒙) log (𝑃 (𝒙)/𝑄 (𝒙)), where 𝑃 and

𝑄 are two different probability distributions.

As shown in Figures 1 and 2, although the BinaryKL loss per-

forms well alone, it is incompatible with the CE loss. The student

model can achieve descent performance by training with either the

CE loss or the BinaryKL loss separately, but the performance will

be degraded severely when we combine them as follows:

L
overall

= LCE + 𝛼LBinaryKL . (2)

It seems that this problem can be addressed by decreasing the

balancing parameter 𝛼 , reducing the learning rate, or using clipping

the gradients, but our experiments show that these three solutions

either do not work or weaken the effects of the BinaryKL loss (see

more details in Appendix A).

3.2 Theoretical Analysis
To theoretically analyze the abnormal phenomenon above, we con-

duct gradient analyses by calculating the gradients of both the CE

loss and the BinaryKL loss w.r.t. the linear classifier and the feature.
Our gradient analyses reveal that the gradient of the BinaryKL loss

w.r.t. the linear classifier obstructs it from achieving the ideal state

posited by the neural collapse theory. Therefore, before delving into
the gradient analyses, we provide a brief introduction to the neural
collapse theory below.

Papyan et al. [25] revealed the neural collapse phenomenon,

where the last-layer features converge to their within-class means,

and the within-class means together with the classifier vectors

collapse to the vertices of a simplex equiangular tight frame (ETF)

at the terminal phase of training. According to Papyan et al. [25],

all vectors in a simplex ETF have an equal ℓ2 norm and the same

pairwise angle. An illustration of a simplex ETF is shown in Figure 3.

The neural collapse phenomenon [25] can be characterized by four

manifestations: (1) the variability of the last-layer features in the

same class collapses to zero; (2) the class means of different classes’

last-layer features converge to a simplex ETF; (3) the linear classifier

vectors collapse to the class means; (4) the task of predicting for

classification can be simplified into finding out the nearest class

center of the last-layer feature. The detailed definition of a simplex

ETF and the features of the neural collapse phenomenon can be

found in Appendix B.1.

From the above analysis, we can find that a well-trained linear

classifier would collapse into a simplex ETF, which implies that

any factor that hinders the linear classifier from forming a sim-

plex ETF can adversely affect the training of the linear classifier

and thus detrimentally impact the overall training of the student

model. It is noteworthy that although the last-layer features in the

same class tend to collapse into their mean value as well, this is

not the ideal status of a well-trained linear classifier, and such a

phenomenon is mainly called over-fitting. Inspired by Yang et al.

[39], we decompose the gradients of LCE and LBinaryKL to figure

out their effects on the linear classifier and the feature extracted

by the backbone. First, we decompose the gradients w.r.t. the lin-
ear classifier. Let 𝒉𝑘,𝑖 be the feature of the 𝑖-th item in the 𝑘-th

class extracted by the backbone and𝒘 be the linear classifier where

𝒘 = [𝒘1, . . . ,𝒘𝐾 ] ∈ R𝑑×𝐾 . Let 𝑛𝑘 be the number of instances in

the 𝑘-th class in a certain batch. We denote the 𝑘-th class output

through the softmax function as 𝑝𝑘 (·) and the 𝑘-th class output

through the sigmoid function as 𝑞𝑘 (·). The detailed definitions of

𝑝𝑘 (·) and 𝑞𝑘 (·) can be found in Appendix B.2.1.
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Figure 4: An illustration of Dual-Head Knowledge Distillation (DHKD). DHKD decouples the original linear classifier into a duo.
We can evade conflicts between two losses by introducing an Adaptive Auxiliary Classifier customized according to the models’
architectures. The right side shows the gradient alignment method on CIFAR-100. When the angle between two gradients is
larger than 90

◦, we will project the gradient of the BinaryKL loss to the orthogonal direction of the gradient of the CE loss.

Proposition 1. The gradient of L
overall

w.r.t. the linear classifier
can be formulated as follows:

𝜕L
overall

𝜕𝒘𝑘
= −(𝑭CE𝒘-pull + 𝛼𝑭

BinaryKL

𝒘-pull ) − (𝑭CE𝒘-push + 𝛼𝑭
BinaryKL

𝒘-push ),
(3)

where

𝑭CE𝒘-pull =
∑︁𝑛𝑘

𝑖=1
(1 − 𝑝𝑘 (𝒉S𝑘,𝑖 ))𝒉

S
𝑘,𝑖
,

𝑭
BinaryKL

𝒘-pull = 𝜏
∑︁𝑛𝑘

𝑖=1
(𝑞𝑘 (𝒉T𝑘,𝑖 ) − 𝑞𝑘 (𝒉

S
𝑘,𝑖
))𝒉S

𝑘,𝑖
,

𝑭CE𝒘-push = −
∑︁𝐾

𝑘 ′≠𝑘

∑︁𝑛𝑘′

𝑗=1
𝑝𝑘 (𝒉S𝑘 ′,𝑖 )𝒉

S
𝑘 ′, 𝑗 ,

𝑭
BinaryKL

𝒘-push = −𝜏
∑︁𝐾

𝑘 ′≠𝑘

∑︁𝑛𝑘′

𝑗=1
(𝑞𝑘 (𝒉S𝑘,𝑖 ) − 𝑞𝑘 (𝒉

T
𝑘,𝑖
))𝒉S

𝑘 ′, 𝑗 . (4)

The proof of Proposition 1 is provided in Appendix B.2.1. The

gradient w.r.t.𝒘𝑘 can be decomposed into four terms. As Figure 3(b)

shows, on one hand, the “pull” terms 𝑭CE
𝒘-pull

and 𝑭
BinaryKL

𝒘-pull
pull𝒘𝑘

towards feature directions of the same class, i.e., 𝒉𝑘,𝑖 ; on the other

hand, the “push” terms 𝑭CE
𝒘-push

and 𝑭
BinaryKL

𝒘-push
push𝒘𝑘 away from

the feature directions of the other classes, i.e., 𝒉𝑘 ′,𝑖 , for all 𝑘′ ≠ 𝑘 .
The terms w.r.t. the CE loss keep the signs unchanged, which means

each coefficient of 𝒉𝑘,𝑖 in 𝑭CE
𝒘-pull

is positive and each coefficient of

𝒉𝑘 ′, 𝑗 in 𝑭CE
𝒘-push

is negative.

However, this does not hold for the terms w.r.t. the BinaryKL
loss. The coefficients of 𝒉𝑘,𝑖 in 𝑭

BinaryKL

𝒘-pull
may be negative and the

coefficients of 𝒉𝑘 ′, 𝑗 in 𝑭
BinaryKL

𝒘-push
may be positive. Such coefficients

can reduce the absolute values of the gradients in the optimization

direction. In the worst-case scenario, suppose the absolute values

of these coefficients are larger than those of the CE loss coefficients

but have the opposite signs, these coefficients can even guide the

optimization to the opposite direction. Hence, the BinaryKL loss

may obstruct the linear classifier’s learning process. Because a well-

trained linear classifier will become a simplex ETF, the terms w.r.t.
the BinaryKL loss will harm the training of the linear classifier

when their corresponding coefficients have the contrary sign to the

terms w.r.t. the CE loss.

Then, we decompose the gradients w.r.t. the feature extracted by

the backbone. Suppose the instance 𝒙 has a feature 𝒉 and belongs

to the 𝑐-th class. Similar to the gradients w.r.t. the linear classifier,
we can calculate the gradients w.r.t. the features.

Proposition 2. The gradient of L
overall

w.r.t. the features can be
formulated as follows:

𝜕L
overall

𝜕𝒉
= −(𝑭CE𝒉-pull + 𝛼𝑭

BinaryKL

𝒉-pull ) − (𝑭CE𝒉-push + 𝛼𝑭
BinaryKL

𝒉-push ),
(5)

where

𝑭CE𝒉-pull = (1 − 𝑝𝑐 (𝒉S))𝒘S
𝑐 ,

𝑭
BinaryKL

𝒉-pull = 𝜏 (𝑞𝑐 (𝒉T ) − 𝑞𝑐 (𝒉S))𝒘S
𝑐 ,

𝑭CE𝒉-push = −
∑︁𝐾

𝑘≠𝑐
𝑝𝑘 (𝒉S)𝒘S

𝑘
,

𝑭
BinaryKL

𝒉-push = −𝜏
∑︁𝐾

𝑘≠𝑐
(𝑞𝑘 (𝒉S) − 𝑞𝑘 (𝒉T ))𝒘S

𝑘
. (6)

The proof of Proposition 2 is provided in Appendix B.2.2. The

gradients w.r.t. 𝒉 are decomposed into four terms. As Figure 3(c)

shows, the “pull” terms 𝑭CE
𝒉-pull

and 𝑭
BinaryKL

𝒉-pull
pull 𝒉 towards the

directions of the corresponding class vector, i.e.,𝒘𝑐 , while the “push”
terms 𝑭CE

𝒉-push
and 𝑭

BinaryKL

𝒉-push
push 𝒉 away from the directions of the

other class vectors, i.e.,𝒘𝑘 , for all 𝑘 ≠ 𝑐 . Unlike the linear classifier,

a well-trained backbone will not let the features of the same class

collapse into a specific vector. The differences among the features

of the same class contain essential information from the teacher

model. Thus, the terms w.r.t. the BinaryKL loss will provide more
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detailed information about the knowledge learned by the teacher

model. As a result, the backbone of the student model can benefit

from the terms w.r.t. the BinaryKL loss.

3.3 Our Proposed Method
As demonstrated in our theoretical analysis, the BinaryKL loss

facilitates the backbone in learning a better backbone but impedes

the linear classifier from achieving an Equiangular Tight Frame

status. To fully leverage the positive effects of the BinaryKL loss

while mitigating its negative impact, we propose a novel method

called Dual-Head Knowledge Distillation (DHKD), which restricts

the effects of the BinaryKL loss to the backbone, excluding the

original linear classifier.

For a given input 𝒙 , we can get a feature 𝒉 = 𝑓 (𝒙) through the

backbone 𝑓 (·). Just as Figure 4 shows, we use two classifiers for

different losses: 𝑔(·) for the CE loss and 𝑔′ (·) for the BinaryKL

loss. The original BinaryKL loss suffers from a problem: when the

student output falls into a small neighborhood of the teacher output

(which means it is close to the optimization goal), the derivative of

the BinaryKL loss at the student output also depends on the value

of the teacher output. As a result, the optimization progress cannot

be synchronized among distinct teacher outputs with the same 𝜏 .

Although using different 𝜏 in different settings can lead to state-of-

the-art performance, it would introduce more hyper-parameters.

To mitigate this issue, we use a variant of the BinaryKL loss. To

unify the gradients at the outputs of the teacher model, we choose

to narrow the distance between zero and the difference between the

teacher and student. The modified loss (we call it BinaryKL-Norm)

can be formulated as follows:

LBinaryKL-Norm = 𝜏2
∑︁𝐵

𝑖=1

∑︁𝐾

𝑘=1
KL

( [
1

2

,
1

2

]



[
𝜎

((
𝑧S
𝑖,𝑘

− 𝑧T
𝑖,𝑘

)
/𝜏
)
, 1−𝜎

((
𝑧S
𝑖,𝑘

− 𝑧T
𝑖,𝑘

)
/𝜏
) ] )

. (7)

It is worth noting that the modification of the loss function does not

affect the correctness of our theoretical analysis. The theoretical

analysis of the modified loss can be found in Appendix B.3. Given

the challenges of aligning logits between models with different

architectures, we relax the constraint on the auxiliary classifier𝑔′ (·).
Instead of utilizing a linear layer, we employ a one-hidden-layer

neural network, which provides additional flexibility and capacity

for themodel to align the logits effectivelywhen the studentmodel’s

architecture diverges from the teacher’s.

To further improve the stability of the training phase for the

CIFAR-100 dataset, we introduce the gradient alignment technique

[40], which was widely used to handle the conflicts among diverse

targets [8, 28, 48]. We denote

𝜕LBinaryKL-Norm

𝜕𝒘𝑘
as GBKL and

𝜕LCE

𝜕𝒘𝑘
as

GCE, respectively. The relations between GBKL and GCE are two-

fold. (1) Their angle is smaller than 90
◦
, which indicates that the

optimization direction of the BinaryKL loss does not conflict with

the CE loss. In this case, we simply set the updated gradient direc-

tion of the auxiliary classifier as GBKL; (2) Their angle is larger than

90
◦
, indicating that the BinaryKL loss conflicts with the CE loss. In

other words, optimizing the neural network following the BinaryKL

loss will weaken the performance of classification. In this case, we

project the GBKL to the orthogonal direction of GCE to optimize

the model by the BinaryKL-Norm loss, which avoids increasing

the loss for classification. The modified gradient is mathematically

formulated as follows:

Gproj

BKL
=

{
GBKL, if GBKL · GCE ≥ 0,

GBKL − GBKL ·GCE

∥GCE ∥2 GCE, otherwise.
(8)

By decoupling the linear classifier and doing gradient alignment,

we can preserve the positive effects of the BinaryKL-Norm loss on

the backbone and simultaneously avoid its negative impacts on the

classifier head. The classifier head is only trained with the CE loss

without being aligned with the teacher model because we want to

induce it into an ideal simplex ETF.

4 Experiments
Information about the comparing methods and implementation

details can be found in Appendices C and D. More experimental

results can be found in Appendices A, E and F.

4.1 Main Results
CIFAR-100 image classification. The validation accuracy onCIFAR-

100 is reported in Table 1 for cases where teachers and students

share the same architecture and in Table 2 for cases where they have

different architectures. It can be observed that DHKD achieves re-

markable improvements over the vanilla KD on all teacher-student

pairs. Compared with the SOTA logit-based methods, our method

can achieve better performance inmost settings. Furthermore, when

combined with one of the SOTA feature-based methods ReviewKD,

our method can achieve the best performance, showing that our

method is compatible with feature-based methods.

ImageNet image classification. The top-1 and top-5 validation

accuracy on ImageNet is reported in Table 3 for cases where teach-

ers and students share the same architecture and in Table 4 for

cases where they have different architectures. We can find that our

DHKD achieves comparable or even better performance than the

existing methods. The success on the large-scale dataset further

proves the effectiveness of our method.

4.2 Ablation Studies
To further analyze how our proposed method improves distillation

performance, Table 5 reports the results of the ablation studies

on CIFAR-100. We choose one pair of models with the same ar-

chitecture and another pair with different architectures. It can be

observed that most of the performance improvement comes from

using our DHKD. Introducing a nonlinear auxiliary classifier helps

the pair with different architectures achieve better performance,

but it harms the performance of the pair with the same architecture,

which confirms the rationality of our selective use of a nonlinear

auxiliary classifier. By incorporating these components together,

the fusing method achieves the best performance and significantly

outperforms the other methods. These results demonstrate that

all components are of great importance to the performance of our

proposed DHKD.

4.3 t-SNE Visualization of the Features
t-SNE (t-distributed Stochastic Neighbor Embedding) [34] is a fa-

mous unsupervised non-linear dimensionality reduction technique
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Table 1: Results on the CIFAR-100 validation. Teachers and students are in the same architectures. The best performance of a
single method is highlighted with a star ∗, and the best logits-based performance is highlighted in bold. The combination of
DHKD and ReviewKD always achieves the best performance and is highlighted with gray backgrounds.

Teacher

resnet56 resnet110 resnet32×4 WRN-40-2 WRN-40-2 VGG13

72.34 74.31 79.42 75.61 75.61 74.64

Student

resnet20 resnet32 resnet8×4 WRN-16-2 WRN-40-1 VGG8

69.06 71.14 72.50 73.26 71.98 70.36

f
e
a
t
u
r
e
s

FitNet 69.21 71.06 73.50 73.58 72.24 71.02

RKD 69.61 71.82 71.90 73.35 72.22 71.48

CRD 71.16 73.48 75.51 75.48 74.14 73.94

OFD 70.98 73.23 74.95 75.24 74.33 73.95

ReviewKD 71.89 73.89 75.63 76.12 75.09 74.84

SimKD 71.02 73.89 78.04
∗

75.48 75.21 74.83

CAT-KD 71.62 73.62 76.91 75.60 74.82 74.65

l
o
g
i
t
s KD 70.66 73.08 73.33 74.92 73.54 72.98

DKD 71.97∗ 74.11∗ 76.32 76.24 74.81 74.68

DHKD 71.19 73.92 76.54 76.36∗ 75.25∗ 74.84∗

DHKD + ReviewKD 73.14 75.21 78.29 77.97 76.56 76.27

Table 2: Results on the CIFAR-100 validation. Teachers and students are in different architectures. The best performance of a
single method is highlighted with a star ∗, and the best logits-based performance is highlighted in bold. The combination of
DHKD and ReviewKD always achieves the best performance and is highlighted with gray backgrounds.

Teacher

resnet32×4 WRN-40-2 VGG13 ResNet-50 resnet32×4
79.42 75.61 74.64 79.34 79.42

Student

ShuffleNet-V1 ShuffleNet-V1 MBN-V2 MBN-V2 ShuffleNet-V2

70.50 70.50 64.60 64.60 71.82

f
e
a
t
u
r
e
s

FitNet 73.59 73.73 64.14 63.16 73.54

RKD 72.28 72.21 64.52 64.43 73.21

CRD 75.11 76.05 69.73 69.11 75.65

OFD 75.98 75.85 69.48 69.04 76.82

ReviewKD 77.45 77.14 70.37
∗

69.89 77.78

SimKD 77.18 77.23 69.45 71.12 78.39

CAT-KD 78.26
∗

77.35
∗

69.13 71.36
∗

78.41
∗

l
o
g
i
t
s KD 74.07 74.83 67.37 67.35 74.45

DKD 76.45 76.70 69.71 70.35 77.07

DHKD 76.78 77.25 70.09 71.08 77.99

DHKD + ReviewKD 78.35 78.22 71.01 71.51 78.83

Table 3: Top-1 and top-5 accuracy (%) on the ImageNet validation. We set ResNet-34 as the teacher and ResNet-18 as the student.

distillation manner features logits

Metric Teacher Student AT OFD CRD ReviewKD SimKD CAT-KD KD DKD DIST DHKD

top-1 73.31 69.75 70.69 70.81 71.17 71.61 71.59 71.26 70.66 71.70 72.07 72.15
top-5 91.42 89.07 90.01 89.98 90.13 90.51 90.48 90.45 89.88 90.41 90.42 90.89

for visualizing high-dimensional data. We use t-SNE to visualize the

features (the outputs of the models’ backbones) learned by different

models: vanilla student without distillation, models trained by KD,

DHKD, and the teacher model.
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Table 4: Top-1 and top-5 accuracy (%) on the ImageNet validation. We set ResNet-50 as the teacher and MobileNet as the student.

distillation manner features logits

Metric Teacher Student AT OFD CRD ReviewKD SimKD CAT-KD KD DKD DIST DHKD

top-1 76.16 68.87 69.56 71.25 71.37 72.56 72.25 72.24 68.58 72.05 73.24 72.99

top-5 92.86 88.76 89.33 90.34 90.41 91.00 90.86 91.13 88.98 91.05 91.12 91.45

Table 5: Ablation studies on CIFAR-100. We choose one pair of models with the same architecture and another pair with
different architectures. For the former pair, we set resnet32×4 as the teacher and resnet8×4 as the student; for the latter pair,
we set ResNet-50 as the teacher and MobileNet-V2 as the student.

CE

BinaryKL

-Norm Dual Head

Gradient

Alignment

Nonlinear

Auxiliary Head

resnet32×4
resnet8×4

ResNet-50

MBN-V2

✓ 72.50 64.60

✓ 75.15 68.52

✓ ✓ N.A. N.A.

✓ ✓ ✓ 76.16 70.16

✓ ✓ ✓ ✓ 76.54 69.97

✓ ✓ ✓ ✓ ✓ 74.38 71.08

(a) Vanilla (b) KD

(c) DHKD (d) Teacher

Figure 5: t-SNE visualization of features learned by different
methods. We do the visualization on the test set of CIFAR-
100. We set resnet32×4 as the teacher and resnet8×4 as the
student.

The t-SNE results show that the features of KD are more separa-

ble than the vanilla student model, and the features of DHKD are

more separable than KD but are less than the ones of the teacher

model. We attribute this to the restriction of the model capacity.

The t-SNE results prove that DHKD improves the discriminability

of deep features.

4.4 Difference of Correlation Matrices
We compute the differences between the correlation matrices of

the teacher’s and student’s logits for three different students: the

vanilla student without distillation and the students trained by

0.3

0.2

0.1

0.0

0.1

0.2

0.3

(a) Vanilla

0.3

0.2

0.1

0.0

0.1

0.2

0.3

(b) DKD

0.3

0.2

0.1

0.0

0.1

0.2

0.3

(c) DHKD Aux

0.3

0.2

0.1

0.0

0.1

0.2

0.3

(d) DHKD

Figure 6: The difference between the correlation matrices
of the teacher’s and student’s logits. “DHKD Aux” is short
for DHKD’s auxiliary head. The test set is CIFAR-100, with
resnet32×4 as the teacher and resnet8×4 as the student. The
performance sorting of four classifier heads is DHKD (76.54)
> DKD (76.37) > DHKD’s Aux (76.20) > Vanilla (72.17).

DKD and DHKD. Notably, the student model trained by DHKD

has two classifier heads, thus having two sets of logits. We do the

visualization for both heads. It can be found that the auxiliary head

of DHKD captures the most correlation structure in the logits, as

shown by the smallest differences between the teacher and the

student. However, the original head of DHKD shows the biggest

differences between the teacher and the student, even bigger than

the vanilla student model. We attribute this phenomenon to the

fact that we only align the output of the auxiliary classifier with
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the teacher in DHKD and the logits output by the original classifier

is never aligned with the teacher.

5 Conclusion
This paper studied the problem of knowledge distillation. We pro-

vided the attempt to combine the BinaryKL loss with the CE loss,

while our empirical findings indicated that merging the two losses

results in degraded performance, even falling below the perfor-

mance of using either loss independently. Inspired by previous

research on neural collapse, we theoretically demonstrated that

while the BinaryKL loss improves the efficacy of the backbone, it

conflicts with the CE loss at the level of the linear classifier, thereby

leading the model to a sub-optimal situation. To address this is-

sue, we proposed a novel method called Dual-Head Knowledge

Distillation, which separates the linear classifier into two distinct

parts, each responsible for a specific loss. Experimental results on

benchmark datasets confirmed the effectiveness of our proposed

method.
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A Dual Head is the Only Way
As mentioned in Section 3.1, we have tried many other methods

before introducing the auxiliary head, including decreasing the

balancing parameter 𝛼 , reducing the learning rate, and using a

gradient clipping method.

We cannot even give a table for decreasing the balancing param-

eter 𝛼 because the training will collapse unless 𝛼 is less than 0.1,

leading to a result even worse than the vanilla KD.

More results about reducing the learning rate and using a gradi-

ent clipping method can be found in Table 6 and Table 7. Reducing

the learning rate from 0.1 to 1𝑒 − 2, 5𝑒 − 3, 1𝑒 − 3, the student model

still collapses during the training phase most of the time. The only

student model that does not collapse has an accuracy of only 39.56%,

far below the normally-trained model.

As for the gradient clipping method, even though we change the

Maximum Gradient Norm Value (MGNV) in a small step size, the

model still cannot achieve comparable performance with the model

trained with only the CE loss.

B Supplementary Material about Neural
Collapse

B.1 Detailed Definition of ETF and Neural
Collapse

Definition 1 (Simplex Eqiangular Tight Frame [25]). A
collection of vectors m𝑖 ∈ R𝑑 , 𝑖 = 1, 2, · · · , 𝐾 , 𝑑 ≥ 𝐾 − 1, is said to be
a simplex equiangular tight frame if:

M =

√︂
𝐾

𝐾 − 1

U
(
I𝐾 − 1

𝐾
1𝐾1⊤𝐾

)
, (9)

whereM = [m1, · · · ,m𝐾 ] ∈ R𝑑×𝐾 , U ∈ R𝑑×𝐾 allows a rotation and
satisfies U⊤U = I𝐾 , I𝐾 is the identity matrix, and 1𝐾 is an all-ones
vector.

Theorem 1 (Papyan et al. [25]). All vectors in a simplex Equian-
gular Tight Frame (ETF) have an equal ℓ2 norm and the same pair-wise
angle, i.e.,

m⊤
𝑖 m𝑗 =

𝐾

𝐾 − 1

𝛿𝑖, 𝑗 −
1

𝐾 − 1

,∀𝑖, 𝑗 ∈ [1, 𝐾], (10)

where 𝛿𝑖, 𝑗 equals to 1 when 𝑖 = 𝑗 and 0 otherwise. The pairwise angle
− 1

𝐾−1 is the maximal equiangular separation of the 𝐾 vectors in R𝑑 .

Then, according to [25], the neural collapse (NC) phenomenon

can be formally described as:

(NC1)Within-class variability of the last-layer features collapse:

Σ𝑊 → 0, and Σ𝑊 := Avg𝑖,𝑘 {(𝒉𝑘,𝑖 − 𝒉𝑘 ) (𝒉𝑘,𝑖 − 𝒉𝑘 )⊤}, where 𝒉𝑘,𝑖
is the last-layer feature of the 𝑖-th sample in the 𝑘-th class, and

𝒉𝑘 = Avg𝑖 {𝒉𝑘,𝑖 } is the within-class mean of the last-layer features

in the 𝑘-th class;

(NC2) Convergence to a simplex ETF:
˜𝒉𝑘 = (𝒉𝑘 − 𝒉𝐺 )/| |𝒉𝑘 −

𝒉𝐺 | |, 𝑘 ∈ [1, 𝐾], satisfies Eq. (10), where 𝒉𝐺 is the global mean of

the last-layer features, i.e., 𝒉𝐺 = Avg𝑖,𝑘 {𝒉𝑘,𝑖 };
(NC3) Convergence to self duality:

˜𝒉𝑘 = 𝒘𝑘/| |𝒘𝑘 | |, where𝒘𝑘 is

the classifier vector of the 𝑘-th class;

(NC4) Simplification to the nearest class center prediction: argmax𝑘 ⟨𝒉,𝒘𝑘 ⟩ =
argmin𝑘 | |𝒉 − 𝒉𝑘 | |, where 𝒉 is the last-layer feature of a sample to

predict for classification.

B.2 Proof of Propositions
B.2.1 Proof of Proposition 1. According to [39], the negative gra-

dients of L𝐶𝐸 on this batch can be calculated as follows:

− 𝜕L𝐶𝐸
𝜕𝒘𝑘

=

𝑛𝑘∑︁
𝑖=1

(
1 − 𝑝𝑘

(
𝒉S
𝑘,𝑖

))
𝒉S
𝑘,𝑖︸                        ︷︷                        ︸

𝑭CE

𝒘-pull

+ ©­«−
𝐾∑︁

𝑘 ′≠𝑘

𝑛𝑘′∑︁
𝑗=1

𝑝𝑘

(
𝒉S
𝑘 ′, 𝑗

)
𝒉S
𝑘 ′, 𝑗

ª®¬︸                              ︷︷                              ︸
𝑭CE

𝒘-push

,

(11)

where 𝑝𝑘 (𝒉) is the predicted probability that 𝒉 belongs to the

𝑘-th class. It is calculated by the softmax function and takes the

following form in the CE loss:

𝑝𝑘 (𝒉) =
exp(𝒉⊤𝒘𝑘 )∑𝐾

𝑘 ′=1 exp(𝒉⊤𝒘𝑘 ′ )
, 1 ≤ 𝑘 ≤ 𝐾. (12)

Similarly, we can calculate the negative gradients of LBinaryKL

as follows:

−
𝜕LBinaryKL

𝜕𝒘𝑘
=
∑︁𝑛𝑘

𝑖=1
𝜏 (𝑞𝑘 (𝒉T𝑘,𝑖 ) − 𝑞𝑘 (𝒉

S
𝑘,𝑖
))𝒉S

𝑘,𝑖︸                                     ︷︷                                     ︸
𝑭
BinaryKL

𝒘-pull

+ (13)

(
−
∑︁𝐾

𝑘 ′≠𝑘

∑︁𝑛𝑘′

𝑗=1
𝜏 (𝑞𝑘 (𝒉S𝑘 ′, 𝑗 ) − 𝑞𝑘 (𝒉

T
𝑘 ′, 𝑗 ))𝒉

S
𝑘 ′, 𝑗

)
︸                                                           ︷︷                                                           ︸

𝑭
BinaryKL

𝒘-push

,

(14)

where 𝑞𝑘 (𝒉) is the binary predicted probability that 𝒉 has a

positive label on the 𝑘-th class. It is calculated by the sigmoid

function and takes the following form in the BinaryKL loss:

𝑞𝑘 (𝒉) =
1

1 + 𝑒−𝒉⊤𝒘𝑘/𝜏
. (15)

Based upon Equation 11, 13, we can prove Proposition 1.

B.2.2 Proof of Proposition 2. The definitions of 𝑝𝑘 (𝒉) and 𝑞𝑘 (𝒉)
are the same as Equation 12 and 15.

Then the negative gradients of L𝐶𝐸 w.r.t. the features on this

batch can be calculated as follows:

− 𝜕L𝐶𝐸
𝜕𝒉

= (1 − 𝑝𝑐 (𝒉S))𝒘S
𝑐︸               ︷︷               ︸

𝑭CE

𝒉-pull

+ (−
∑︁𝐾

𝑘≠𝑐
𝑝𝑘 (𝒉S)𝒘S

𝑘
)︸                      ︷︷                      ︸

𝑭CE

𝒉-push

. (16)

The negative gradients of LBinaryKL can be calculated as follows:

−
𝜕LBinaryKL

𝜕𝒘𝑘
=𝜏 (𝑞𝑐 (𝒉T ) − 𝑞𝑐 (𝒉S))𝒘S

𝑐︸                         ︷︷                         ︸
𝑭
BinaryKL

𝒉-pull

+ (17)

(
−𝜏

∑︁𝐾

𝑘≠𝑐
(𝑝𝑘 (𝒉S) − 𝑝𝑘 (𝒉T ))𝒘S

𝑘

)
︸                                         ︷︷                                         ︸

𝑭
BinaryKL

𝒉-push

. (18)

Based upon Equation 16, 17, we can prove Proposition 2.
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Table 6: Some attempts that change the learning rate. Top-1 accuracy on CIFAR-100 is given in the table. For elements that are
“N.A.”, we give the ordinal number of the epoch when the models collapse during the training phase. It can be observed that
almost all the student models collapse. As the learning rate decreases, the time for model collapse is delayed.

Same Architecture Different Architectures

teacher resnet56 resnet110 resnet32×4 resnet32×4 VGG13 ResNet-50

student resnet20 resnet32 resnet8×4 ShuffleNet-V1 MBN-V2 MBN-V2

lr=1e-2 N.A.(8) N.A.(6) N.A.(5) N.A.(8) N.A.(44) N.A.(34)

lr=5e-3 N.A.(8) N.A.(8) N.A.(11) N.A.(16) N.A.(48) N.A.(69)

lr=1e-3 N.A.(35) N.A.(29) N.A.(27) N.A.(50) N.A.(126) 39.56

Table 7: Some attempts using gradient clipping (GC) method. We change the Maximum Gradient Norm Value (MGNV) in a
small step size, and the student model still cannot achieve comparable performance with the model trained with only the CE
loss. We set resnet56 as the teacher and resnet20 as the student. All the experiments are done on CIFAR-100.

MGNV 0.01 0.1 0.3 0.5 0.7 1.0 Pure CE No GC

Test Accuracy 1.95 23.63 59.11 65.16 N.A. N.A. 69.06

Table 8: The parameter sensitivity analysis on CIFAR-100. We set resnet32×4 as the teacher and resnet8×4 as the student.

𝛼 0.2 0.5 1 2 5

Top-1 Accuracy 75.66 75.85 76.24 76.54 67.56

Table 9: Comparison between DHKD and “dual head + vanilla KD”.

Teacher Student without distillation vanilla KD dual head + vanilla KD DHKD

WRN-40-2 WRN-16-2 73.26 74.92 75.24 76.36

ResNet50 MBN-V2 64.60 67.35 68.76 71.08

B.3 Propositions for the Modified Loss
We can rewrite the L

overall
in the following form:

L
overall

= L𝐶𝐸 + 𝛼LBinaryKL-Norm, (19)

where

LBinaryKL-Norm = 𝜏2
∑︁𝐵

𝑖=1

∑︁𝐾

𝑘=1
KL

( [
1

2

,
1

2

]



𝜎 ©­«
𝑧S
𝑖,𝑘

− 𝑧T
𝑖,𝑘

𝜏

ª®¬ , 1 − 𝜎 ©­«
𝑧S
𝑖,𝑘

− 𝑧T
𝑖,𝑘

𝜏

ª®¬

)
, (20)

as defined in Equation 7.

Define an auxiliary function𝑤 (·, ·) as below:

𝑤𝑘 (𝒉1,𝒉2) =
1

1 + 𝑒−(𝒉⊤
1
𝒘𝑘−𝒉⊤2 𝒘𝑘 )/𝜏

. (21)

Before proving Proposition 3, we need to prove a lemma:

Lemma 1. For all 𝑘′ ∈ {1, · · · , 𝐾} and 𝑗 ∈ {1, · · · , 𝑛𝑘 ′ },[
( 1
2

−𝑤𝑘 (𝒉S𝑘 ′, 𝑗 ,𝒉
T
𝑘 ′, 𝑗 )) (𝒉

S
𝑘 ′, 𝑗 − 𝒉T

𝑘 ′, 𝑗 )
]⊤

𝒘𝑘 ≤ 0. (22)

Proof. If (𝒉S
𝑘 ′, 𝑗

− 𝒉T
𝑘 ′, 𝑗

)⊤𝒘𝑘 > 0, then 𝑤𝑘 (𝒉S𝑘 ′, 𝑗 ,𝒉
T
𝑘 ′, 𝑗

) > 1

2
. If

(𝒉S
𝑘 ′, 𝑗

− 𝒉T
𝑘 ′, 𝑗

)⊤𝒘𝑘 ≤ 0, then 𝑤𝑘 (𝒉S𝑘 ′, 𝑗 ,𝒉
T
𝑘 ′, 𝑗

) ≤ 1

2
. So, in both con-

ditions, we have the following inequality:

[(
1

2

−𝑤𝑘 (𝒉S𝑘 ′, 𝑗 ,𝒉
T
𝑘 ′, 𝑗 )

) (
𝒉S
𝑘 ′, 𝑗 − 𝒉T

𝑘 ′, 𝑗

)]⊤
𝒘𝑘

= ( 1
2

−𝑤𝑘 (𝒉S𝑘 ′, 𝑗 ,𝒉
T
𝑘 ′, 𝑗 ))

[
(𝒉S
𝑘 ′, 𝑗 − 𝒉T

𝑘 ′, 𝑗 )
⊤𝒘𝑘

]
≤ 0. (23)

Then, we can get the propositions for the modified loss.

Proposition 3. The gradients ofL
overall

w.r.t. the linear classifier
can be formulated as follows:

𝜕L
overall

𝜕𝒘𝑘
= −(𝑭CE𝒘-pull + 𝑭CE𝒘-push) − 𝛼𝑭

BinaryKL-Norm
𝒘−obstacle , (24)

where
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𝑭CE𝒘-pull =

𝑛𝑘∑︁
𝑖=1

(1 − 𝑝𝑘 (𝒉S𝑘,𝑖 ))𝒉
S
𝑘,𝑖
,𝑭CE𝒘-push = −

𝐾∑︁
𝑘 ′≠𝑘

𝑛𝑘′∑︁
𝑗=1

𝑝𝑘 (𝒉S𝑘 ′,𝑖 )𝒉
S
𝑘 ′, 𝑗 ,

𝑭
BinaryKL-Norm
𝒘−obstacle = 𝜏

𝐾∑︁
𝑘 ′=1

𝑛𝑘′∑︁
𝑗=1

( 1
2

−𝑤𝑘 (𝒉S𝑘 ′, 𝑗 ,𝒉
T
𝑘 ′, 𝑗 )) (𝒉

S
𝑘 ′, 𝑗 − 𝒉T

𝑘 ′, 𝑗 ).

(25)

Proof. The definition of 𝑝𝑘 (𝒉) is the same as Equation 12. The

negative gradients ofLBinaryKL-Norm on this batch can be calculated

as follows:

−
𝜕LBinaryKL-Norm

𝜕𝒘𝑘
=

𝐾∑︁
𝑘 ′=1

𝑛𝑘′∑︁
𝑗=1

𝜏 ( 1
2

−𝑤𝑘 (𝒉S𝑘 ′, 𝑗 ,𝒉
T
𝑘 ′, 𝑗 )) (𝒉

S
𝑘 ′, 𝑗 − 𝒉T

𝑘 ′, 𝑗 )

(26)

According to Lemma 1, each term above has an opposite direction

with𝒘𝑘 , which would obstruct the learning of the linear classifier.

Consequently, we can denote it as 𝑭
BinaryKL-Norm

𝒘−obstacle .

Based upon Equation 11, 26, we can prove Proposition 3.

Remark The form of Proposition 3 differs a lot from Proposi-

tion 1, but Proposition 3 shows that the BinaryKL-Norm loss has

stronger negative effects over the linear classifier the BinaryKL loss:

it hinders the training of the linear classifier all the time without

deploy any positive effect.

Proposition 4. The gradients of L
overall

w.r.t. the features can
be formulated as follows:
𝜕L

overall

𝜕𝒉
= −(𝑭CE𝒉-pull+𝛼𝑭

BinaryKL-Norm
𝒉-pull )−(𝑭CE𝒉-push+𝛼𝑭

BinaryKL-Norm
𝒉-push ),

(27)

where

𝑭CE𝒉-pull = (1 − 𝑝𝑐 (𝒉S))𝒘S
𝑐 ,

𝑭
BinaryKL-Norm
𝒉-pull = 𝜏 ( 1

2

−𝑤𝑐 (𝒉S,𝒉T ))𝒘S
𝑐 ,

𝑭CE𝒉-push = −
∑︁𝐾

𝑘≠𝑐
𝑝𝑘 (𝒉S)𝒘S

𝑘
,

𝑭
BinaryKL-Norm
𝒉-push = 𝜏

∑︁𝐾

𝑘≠𝑐
(𝑤𝑘 (𝒉S,𝒉T ) −

1

2

)𝒘S
𝑘
.

(28)

Proof. The definition of 𝑝𝑘 (𝒉) is the same as Equation 12. The

negative gradients of LBinaryKL-Norm can be calculated as follows:

−
𝜕LBinaryKL-Norm

𝜕𝒘𝑘
=𝜏 ( 1

2

−𝑤𝑐 (𝒉S,𝒉T ))𝒘S
𝑐︸                       ︷︷                       ︸

𝑭
BinaryKL-Norm

𝒉-pull

+

(
−𝜏

∑︁𝐾

𝑘≠𝑐
(𝑤𝑘 (𝒉S,𝒉T ) −

1

2

)𝒘S
𝑘

)
︸                                       ︷︷                                       ︸

𝑭
BinaryKL-Norm

𝒉-push

. (29)

Based upon Equation 16, 29, we can prove Proposition 4.

C Comparing Methods
Comparing methods are FitNet [29], RKD [26], CRD [33], OFD [10],

ReviewKD [3], DKD [44], SimKD [2] CAT-KD [7], and DIST [12].

D Implementation Details
We perform experiments on two benchmark datasets: CIFAR-100

[18] and ImageNet [4]. CIFAR-100 covers 100 categories. It contains

50,000 images in the train set and 10,000 images in the test set.

ImageNet covers 1,000 categories of images. It contains 1.28 million

images in the train set and 50,000 images in the test set.

CIFAR-100: Teachers and students are trained for 240 epochs

with SGD, and the batch size is 64. The learning rates are 0.01 for

ShuffleNet [23, 42] and MobileNet-V2 [31], and 0.05 for the other

series (e.g. VGG[32], ResNet [9] and WRN [41]). The learning rate

is divided by 10 at the 150th, 180th, and 210th epochs. The weight

decay and the momentum are set to 5e-4 and 0.9. The weight for

the CE loss is set to 1.0, and the temperature is set to 2 for all

experiments. 𝛼 is set as 0.1 for (resnet56→resnet20, resnet110→
resnet32) and is chosen from {0.5, 1, 2} for all other experiments.

We choose a linear classifier as the auxiliary classifier for students

having the same architectures as their teachers. A one-hidden-layer

MLP with 200 hidden neurons is deployed as the auxiliary classifier

for students with different architectures from their teachers. We
do not use the gradient alignment method when combining
DHKD with ReviewKD because it would seriously slow down

the training speed, and we can still achieve the SOTA performance

without it. All the experiments on CIFAR-100 are conducted on

GeForce RTX 3090 GPUs.

ImageNet: Our implementation for ImageNet follows the stan-

dard practice. We train the models for 100 epochs. The batch size

is 256, and the learning rate is initialized to 0.1 and divided by 10

for every 30 epochs. Weight decay is 1e-4, and the weight for the

CE loss is set to 1.0. We set the temperature as 2 and 𝛼 as 0.1 for all

experiments. We only use the BinaryKL loss in the first 50 epochs

of the training phase, which means that we set 𝛼 = 0 for the last

50 epochs.We do not use the gradient alignment method on
ImageNet because it would seriously slow down the training speed,

and we can still achieve the SOTA performance without it. Strictly

following [44], for distilling networks of the same architecture, the

teacher is ResNet-34 model, the student is ResNet-18; for different

series, the teacher is ResNet-50 model, the student is MobileNet-

V1. All the experiments on ImageNet are conducted on H100 PCIe

GPUs.

E Parameter Sensitivity Analysis
We study the influence of hyper-parameters in this section. In all of

our experiments, the temperature parameter 𝜏 is fixed at 2. There-

fore, the only adjustable hyperparameter is 𝛼 . Table 8 illustrates

the performance of DHKD as the value of 𝛼 changes among 0.2, 0.5,

1, 2, 5 on CIFAR-100. From the table, it can be observed that the

performance of DHKD is not very sensitive to the parameter 𝛼 .

F The Performance of “dual head + vanilla KD”
In this section, we conduct the experiments of comparing DHKD

and “dual head + vanilla KD”. The results are shown in Table 9,

illustrating that our dual-head strategywith KL loss on the predicted

probability provides only a slight improvement. As a result, only

adding a new classifier cannot bring the improvement as much as

our method, which does not undermine our contribution.
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