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Abstract

Large Language Models (LLMs) with inference-time scaling techniques show
promise for code generation, yet face notable efficiency and scalability challenges.
Construction-based tree-search methods suffer from rapid growth in tree size,
high token consumption, and lack of anytime property. In contrast, improvement-
based methods offer better performance but often struggle with uninformative
reward signals and inefficient search strategies. In this work, we propose ReLoc,
a unified local search framework which effectively performs step-by-step code
revision. Specifically, ReLoc explores a series of local revisions through four
key algorithmic components: initial code drafting, neighborhood code generation,
candidate evaluation, and incumbent code updating, each of which can be instanti-
ated with specific decision rules to realize different local search algorithms such
as Hill Climbing (HC) or Genetic Algorithm (GA). Furthermore, we develop a
specialized revision reward model that evaluates code quality based on revision
distance to produce fine-grained preferences that guide the local search toward
more promising candidates. Finally, our extensive experimental results demonstrate
that our approach achieves superior performance across diverse code generation
tasks, significantly outperforming both construction-based tree search as well as the
state-of-the-art improvement-based code generation methods. The code is available
at https://github.com/alphatogo/ReLoc.

1 Introduction

Large Language Models (LLMs) like GPT-4 (Achiam et al., 2023) and Claude (Wang et al., 2024a)
have demonstrated remarkable capabilities in code-related tasks, including code generation (Chen
et al., 2021; Austin et al., 2021), repair (Xia and Zhang, 2022; Jiang et al., 2023; Jin et al., 2023), and
optimization (Shypula et al., 2023; Cummins et al., 2023). However, when facing challenging tasks,
their auto-regressive token generation process prohibits the use of additional computational resources
to achieve better performance (Yao et al., 2023; Snell et al., 2024). To fully unleash the power of
LLMs, recent studies have focused on inference-time scaling techniques like construction-based tree-
search algorithms (Feng et al., 2023; Wang et al., 2024b), which incrementally build a high-quality
full response via exploring a tree of intermediate reasoning steps guided by a value model (Wang
et al., 2023) or a Process-based Reward Model (PRM) (Lightman et al., 2023).

Despite their potential, construction-based tree-search methods suffer from a rapid increase in tree
size and excessive token consumption as the number of reasoning steps grows, which inevitably leads
to insufficient exploration given a practical budget. Besides, these methods do not hold the anytime
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property (Zilberstein, 1996), since they cannot return a response until they find a reasoning path from
the root to a leaf in the search tree. In contrast, recent approaches (Li et al., 2024a; Light et al., 2024)
that utilize multi-turn improvements (Zheng et al., 2024) on complete responses for code generation
have shown promise. These multi-turn approaches explore a series of local revisions on the code
by feeding the execution feedback from public test cases (Xia et al., 2024) back to the LLM, which
mirrors how humans iteratively refine code drafts and enjoys the anytime property.

def s(w, v, W):
    n = len(v)
    d = [[0]*(n)]
    for j in range(W+1):
        if w[0] <= j:
            d[0][j] = v[0]
    for i in range(1, n):
        for j in range(W+1):
            if w[i] <= j:
                d[i][j] = max(d[i][j],
                           d[i][j-w[i]]+v[i])
    return d[n-1][W]

Code B: DP
def s(w, v, W):
    n = len(v)
    d = [[0]*(W+1) for _ in range(n)]
    for j in range(W+1):
        if w[0] <= j:
            d[0][j] = v[0]
    for i in range(1, n):
        for j in range(W+1):
            if w[i] <= j:
                d[i][j] = max(d[i-1][j],

   d[i-1][j-w[i]] + v[i])
    return d[n-1][W]

Correct Code
def s(w,v,W): 
    z=sorted(zip(w,v),
         lambda x:x[1]/x[0],
         reverse=1)
    if total < W: 
        return 0      
    for a,b in z:
        if W>=a:
            W-=a; r+=b
              r = min(r, total)      
return r

Code A: Greedy

Problem
0-1 Knapsack Problem...

Pass Rate: 0% Pass Rate: 0%

Code A: 7/10
Time-efficient...

Code B: 5/10
Higher complexity 

Code A: -1
Wrong approach, 

contains bugs

Code B: +1 
Correct approach,

minor errors.

LLM

Interpreter

Revision
Reward model

Figure 1: In the 0-1 Knapsack problem, the
LLM favors an efficient but incorrect greedy
solution (Code A) over a conceptually correct
yet buggy DP version (Code B). As the tied
pass rate offers no guidance, a revision reward
model instead prioritizes candidates that are
easier to revise into correct solutions.

However, the existing improvement-based ap-
proaches still face significant challenges in efficiently
finding high-quality codes (Olausson et al., 2023).
First, many of those methods rely on ad-hoc reward
functions (e.g., the pass rate on the public test cases or
simply an LLM’s self-evaluated score) to measure the
code quality, which may fail to provide informative
direction to guide the search process (cf. Figure 1).
In more detail, since the number of public test cases
is usually small (e.g., 2-3 test cases per task), the
pass rate often collapse to binary signals (i.e., 0% or
100%), offering little guidance in selecting promising
code revisions. LLM-based self-evaluation, on the
other hand, is prone to hallucinations (Zhang et al.,
2024a) and can mislead the search by inaccurately as-
sessing a code revision’s potential. Second, the ineffi-
cient code revision generation and search algorithms
exacerbate the token consumption. For example, the
agentic methods (Li et al., 2024a; Wang et al., 2024a)
exploit complex workflows which would consume a
large number of tokens even over a few improvement
iterations. Besides, search algorithms like Monte
Carlo Tree Search (MCTS) (Li et al., 2024b) often re-
quire a significant number of improvement iterations
to balance exploration and exploitation, leading to excessive computational overhead, e.g., running at
least 50 iterations for comparable performance which consumes over 20,000 tokens on a single task.
An extended discussion of related work is available in the Appendix.

In light of this, we introduce a lightweight, unified local search framework for improvement-based
code generation with LLMs. The core idea behind our approach is to explore the neighborhood of
the incumbent code with simple-yet-effective decision rules. To this end, we first frame the iterative
improvement process within a local search framework with four key algorithmic components: initial
code drafting, neighborhood code generation, candidate evaluation and incumbent code updating.
Each component can be instantiated with a specific decision rule, allowing the development of
different local search algorithms for code generation with LLMs. Furthermore, to facilitate candidate
evaluation in each iteration, we develop a specialized revision reward model tailored for local search
which is trained to prefer the code with a smaller revision distance, i.e., the minimum number
of revision steps required to transform it into a corrected version. Intuitively, instead of solely
maximizing the pass rate on the public test cases which sometimes can be uninformative, our reward
model works directly on the textual space and guides the local search to explore the codes close to
the correct ones. Specifically, our main contributions are summarized as follows.

1) We propose ReLoc, a lightweight and unified local search framework for code generation.
ReLoc can be effectively instantiated into different local search algorithms such as Hill
Climbing (HC) (Russell and Norvig, 2016) and Genetic Algorithm (GA) (Mitchell, 1998)
by implementing each algorithmic component with a specific decision rule.

2) We develop a revision reward model trained with pairwise supervisions derived from revision
distance comparisons. By constructing win/loss pairs based on which candidate is closer to
the corrected code, we train the reward model using the Bradley–Terry framework (Bradley
and Terry, 1952) to produce fine-grained preferences that guide the local search toward
promising candidates, even when explicit correctness signals are uninformative.

3) We conduct extensive experimental evaluations on popular code generation benchmarks
including LiveCodeBench (Jain et al., 2024) and TACO (Li et al., 2023). The results demon-
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strate that our local search approaches consistently outperform both construction-based tree-
search methods and existing improvement-based approaches, achieving a 33.8%→38.4%
improvement in Pass@1 on LiveCodeBench and an 11.5%→15.3% gain on TACO over the
strongest baseline, while reducing token consumption by 37% (cf. Figure 4).

2 Preliminaries

Code generation tasks. A code generation task can be defined as a triple Ti = ⟨xi, ui, vi⟩ where
where xi is the problem statement given in natural language, ui is a set of public test cases, and vi is a
set of private test cases. A code sample a is deemed correct if it passes all test cases in both ui and vi.
Given a set of code generation tasks T = {T1, . . . , TN}, the performance of a code generation policy

π is measured by Pass@k = ETi∼T

[
1− (n−ci

k )
(nk)

]
, where n is the total number of codes sampled for

each task with policy π and ci is the number of correct code samples for task Ti (Chen et al., 2021).

Improvement-based code generation. The improvement-based code generation process can be
formalized as an episodic Partially Observable Markov Decision Process (POMDP), defined by the
tuple ⟨S,A,O, p, r, T ⟩. The state st ∈ S includes the code generation task Ti, the current code
sample at, the execution feedback from public test cases f(at;u) and the one from private test
cases f(at; v) for each time step t. Particularly, the initial state s0 = Ti. The action at ∈ A is a
token sequence which constitutes a code sample. The state transition function p : S × A → S
deterministically updates the state by evaluating the code sample at+1, yielding st+1. The observation
ot ∈ O is a subset of st, consisting of ⟨xi, ui⟩, at and f(at;u), as the LLM can only access public
test cases and the corresponding feedback. The reward function r assigns a reward of 1 if the
last time step code sample aT passes all test cases, where T is the time horizon. The history
τt = (o0, a1, o1, . . . , ot) captures the whole trajectory of actions and observations up to the t-th
time step. Finally, the policy π outputs code revision based on the history for each time step, i.e.,
at+1 ∼ π(·|τt).

Local search. Local search (Pirlot, 1996) is an important class of heuristic methods to solve compu-
tationally challenging optimization problems. Instead of systematically exploring the whole solution
space, local search iteratively improves an incumbent solution by exploring its local neighborhood
until a given termination condition is met. Local search naturally enjoys the anytime property
(Zilberstein, 1996), in the sense that it can return a solution at anytime and the solution quality is
monotonically non-decreasing over time by simply caching the best solution found so far.

3 Methodology

While existing improvement-based methods offer the advantage of iterative code revision through
multi-turn interactions, they suffer from two critical limitations: (1) inefficient exploration due to
complex revision workflows that consume excessive tokens, and (2) inaccurate reward functions
that provide limited guidance for selecting promising candidates. To address these challenges, we
introduce a lightweight and unified Revision Local Search (ReLoc) framework, which leverages
simple-yet-efficient decision rules to perform step-by-step code revision (cf. Figure 2). In Section 3.1,
we elaborate the essentials and key algorithmic components of ReLoc. To address the limitations of
prior ad-hoc evaluation heuristics, we further introduce a revision reward model trained to rank code
candidates according to their revision distance in Section 3.2. Finally, we show the flexibility and
expressiveness of our ReLoc framework by implementing two well-known local search algorithms
(i.e., Hill Climbing and Genetic Algorithm) in Section 3.3.

3.1 Local Search Framework

As shown in Algorithm 1, our ReLoc framework consists of four algorithmic components that can be
instantiated with different decision rules: (1) DRAFTCODE, which generates an initial code sample
population P0 based on the problem statement xi and public test cases ui of code generation task
Ti; (2) GENERATENEIGHBORHOOD, which constructs a set of neighborhood code samples Pt by
prompting the LLM π to propose new code revisions based on the history and the execution feedback
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Figure 2: (a) Overview of the ReLoc framework. Starting from an initial draft code, ReLoc
iteratively generates a neighborhood of candidate code samples around the current incumbent code.
Each candidate is assessed by the EVALUATECANDIDATES, which utilizes an interpreter and our
revision reward model. (b) Training the Revision Reward Model. A code tree is constructed
by iteratively revising an initial incorrect code. Each code sample in the tree is labeled with its
revision distance, i.e., the minimum number of revisions needed to reach a correct version. Pairwise
comparisons in local region create preference data.

from the public test cases; (3) EVALUATECANDIDATES, which assigns each candidate in current
neighborhood Pt with a score measuring its quality; and (4) UPDATEINCUMBENT, which implements
the move strategy by selecting the next incumbent solution at from the neighborhood Pt. Finally, we
maintain the best-so-far code sample a∗ with score e∗ to enforce the anytime property.

Algorithm 1 ReLoc: Revision local search framework for code generation with LLMs

Input: Code generation task Ti, LLM π, iteration limit T
Output: Code sample a∗

1: P0 ← generate initial code sample population with DRAFTCODE
2: E0 ← evaluate code samples P0 with EVALUATECANDIDATES
3: a0 ← select a code sample from P0 with UPDATEINCUMBENT, a∗ ← a0, e∗ ← E0[a0]
4: for t = 1, . . . , T do
5: Pt ← generate neighborhood code samples with GENERATENEIGHBORHOOD
6: Et ← evaluate code samples Pt with EVALUATECANDIDATES
7: at ← select a code sample from Pt with UPDATEINCUMBENT
8: if Et[at] > e∗ then
9: a∗ ← at, e∗ ← Et[at]

10: return a∗

3.2 Revision Reward Model

A key question in implementing ReLoc is how to evaluate the quality of the generated code candidates
(cf. EVALUATECANDIDATES), which determines the search direction for each iteration. As we will
show in Section 4.2, simple heuristics like pass rate on public test cases or LLM-based self-evaluation
scores fail to effectively guide the search direction, since they often either collapse to binary signals or
are prone to hallucinations. Outcome-based reward model (Shen and Zhang, 2024), on the other hand,
solely focuses on the correctness of the code samples rather than how likely an incorrect candidate
will be revised into a correct code in future steps, which is also not applicable to our scenario.

Instead of directly assessing the correctness, we train a specialized revision reward model to rank code
samples according to their revision distance, i.e., the minimal number of revision steps required to
transform it into the correct version. This way, in addition to prioritizing correct code samples, we also
effectively differentiate incorrect ones and enable local search to focus on promising candidates with
smaller revision distance, thus guaranteeing the overall search efficiency even when the correctness
signals are uninformative (e.g., 0% pass rate on public test cases for all candidates).
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To train our reward model, given a training task Ti, we build a special code tree (cf. Figure 2(b))
where the root is an incorrect code a10 sampled from the LLM policy. Then we incrementally expand
the tree in a breadth-first fashion up to a depth limit dmax. That is, for each incorrect code sample
ajd−1 in the (d− 1)-th layer, we prompt the LLM π to generate K code revisions for d-th layer:

a
K(j−1)+k
d ∼ π

(
·|REV ISE_PT

(
xi, a

j
d−1, f(a

j
d−1;ui)

))
k ∈ {1, . . . ,K}, (1)

where REV ISE_PT is the prompt template instructing the LLM π to revise the code sample ajd−1

according to the problem statement xi and execution feedback f(ajd−1;ui) on public test cases, and

the generated code revision a
K(j−1)+k
d is then inserted to the tree as a child of ajd−1.

Once the code tree is built, we recursively label the revision distance of each code sample in the tree
according to the following rule:

γ(ajd) =


0, ajd is correct;
∞, ajd is incorrect ∧ Ch(ajd) = ∅;
1 + mina∈Ch(aj

d)
γ(a), otherwise,

(2)

where Ch(ajd) is the children of ajd in the code tree. Note that a code sample is considered correct if
and only if it passes all public test cases ui and private test cases vi. After that, we proceed to build
win/loss pairs of code samples and train our reward model with Bradley–Terry framework (Bradley
and Terry, 1952; Ouyang et al., 2022). Particularly, we confine the comparison within a small region
around a code sample in the code tree to reflect the locality of the local search. Specifically, for code
sample ajd, we consider the following neighborhood code samples:

N (ajd) = {Pa(ajd)} ∪ Ch(ajd) ∪ Sib(ajd), (3)

where Pa(ajd) is its parent and Sib(ajd) = {a|a ∈ Ch(Pa(ajd))∧a ̸= ajd} is the siblings of ajd. Then
for each code sample a′ ∈ N (ajd) with γ(ajd) < γ(a′), we model the preference probability as

P(ajd ≻ a′|xi) = σ
(
Rϕ(a

j
d|xi)−Rϕ(a

′|xi)
)
, (4)

where σ(·) is the sigmoid function and Rϕ(a|xi) represents the learned reward score for code samples
a given problem statement xi. The learning objective of the reward model is to maximize the expected
log-probability:

max
ϕ

E(xi,a,a′)∼D[logP(a ≻ a′|xi)], (5)

where the pair dataset D is constructed by collecting the pairs of code samples in each code tree.

3.3 Case Study

To demonstrate the flexibility and expressiveness of our ReLoc framework, we now present two
well-known local search algorithms, i.e., Hill Climbing (HC) (Russell and Norvig, 2016) and Genetic
Algorithm (GA) (Mitchell, 1998) for improvement-based code generation with LLMs by instantiating
each algorithmic component with specific decision rules.

DRAFTCODE. It is widely acknowledged that the quality of the initial solution has a significant
impact on the performance of local search (Lourenço et al., 2018). Therefore, to guarantee the quality
of the initial code sample population P0, we adopt a Plan-then-Generate paradigm by firstly prompting
the LLM to enumerate N diverse natural language plans that outline different algorithmic strategies.
Then for each plan, we prompt the LLM to synthesize a corresponding code implementation, forming
a candidate pool P0 = {a10, . . . , aN0 }.

GENERATENEIGHBORHOOD. For each iteration t, we generate neighborhood code samples Pt

according to the following rules.

• Hill Climbing. Given the incumbent code sample at−1 and the feedback f(at−1;ui) from
public test cases ui, we generate the neighborhood code revisions by first prompting the
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LLM to propose K natural language revision strategies Qt = {q1t , . . . , qKt } (e.g., “fix
condition logic”, “refactor loop”). Then for each strategy qkt , we prompt the LLM π to
generate a candidate code revision:

Pt = {a1t , . . . , aKt }, akt ∼ π
(
· | HC_PT

(
xi, at−1, f(at−1;ui), q

k
t

))
, (6)

where HC_PT is the prompt template instructing the LLM to generate a code revision
based on problem statement xi, previous code at−1, execution feedback f(at−1;ui) and
revision strategy qkt .

• Genetic Algorithm. For each iteration t > 1, we select two parent code samples a, a′

from the history (a0, . . . , at−1) according to their fitness, i.e., the scores evaluated by
EVALUATECANDIDATES. Particularly, we select parent code samples from P0 when t = 1.
Then we prompt the LLM to generate K new candidates:

Pt = {a1t , . . . , aKt }, akt ∼ π (· | GA_PT (xi, a, f(a;ui), a
′, f(a′;ui))) , (7)

where GA_PT is the prompt template2 instructing the LLM to generate a code revision by
combining the strengths or addressing the shared weaknesses of the parent code samples.
To maintain diversity, we also implement an aging mechanism where each code sample is
disqualified from being selected as a parent after it has been used in this role 3 times.

EVALUATECANDIDATES. To evaluate the candidate code samples Pt, we propose a synergistic
approach that leverages both public test cases and the learned revision reward model. Let Ppass =
{a ∈ Pt | f(a;ui) = pass} be the subset of candidates that pass all public test cases. Then, the
evaluation score of candidate a is defined as:

Et[a] =


Rϕ(a|xi), if Ppass = ∅;
Rϕ(a|xi), if a ∈ Ppass;

−∞, otherwise.
(8)

That is, when no candidate passes all public tests, we fall back to using the reward model Rϕ to score
all candidates. If there are successful candidates, we score them using Rϕ, while assigning the rest
with a score of −∞. This way, we provide fine-grained preferences that guide the local search toward
promising candidates by explicitly differentiating the candidates with the same correctness signal.

UPDATEINCUMBENT. Given the current code samples Pt and the corresponding evaluation scores,
UPDATEINCUMBENT aims to select a code sample as the incumbent solution for iteration t. Tech-
nically, decision rules like ϵ-greedy, Boltzmann distribution (Landau and Lifshitz, 2013) or more
complex simulated annealing acceptance rule (Delahaye et al., 2018) can be applied. Here we choose
to greedily select the one with the maximum evaluation score for simplicity and efficiency, i.e.,
at = argmaxa∈Pt Et[a], where ties are broken alphabetically.

4 Experiments

In this section, we present extensive empirical evaluations to demonstrate our superiority across
diverse code-related tasks. Our experiments aim to answer the following research questions:

• RQ1: How well do our local search methods perform on code-related tasks compared to
state-of-the-art construction-based and improvement-based approaches?

• RQ2: Can our proposed revision reward model provide more effective guidance for local
search than heuristic rewards or outcome-based reward model?

• RQ3: How does the performance of our local search methods scale with increasing token
budgets at inference time?

• RQ4: What are the individual contributions of planning, revision strategies, and execution
feedback to the overall performance of our local search methods?

2All prompt templates are provided in the Appendix.
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Table 1: Pass@1 accuracy (%) of different methods on the LiveCodeBench and TACO benchmarks.
All methods are evaluated under the same token budget (7K) to ensure fair comparison. Methods are
categorized as construction-based (Con.) or improvement-based (Imp.), and further distinguished by
reward functions: PRM (Ô), self-evaluation (Æ), pass rate (�), and revision reward model (/).

Methods Cat. Rew. LiveCodeBench TACO
Code gen Code repair Code gen Code repair

RAP Con. Ô 22.9 21.2 5.4 4.1
TOT Con. Ô 25.6 20.4 6.8 3.7

Code Tree Imp. Æ 27.7 24.1 8.2 5.6
Reflexion Imp. Æ 25.6 23.9 7.1 6.1
Plan Search Imp. Æ 32.7 31.3 11.2 8.2

BoN Imp. � 30.2 30.5 10.8 6.3
SFS Imp. � 32.1 27.3 10.5 8.1
ORPS Imp. � 28.8 26.6 9.8 7.8

ReLoc_HC (Ours) Imp. / 38.4 33.4 13.3 9.7
ReLoc_GA (Ours) Imp. / 35.7 29.9 15.3 11.5

4.1 Experimental Setup

Benchmarks. We evaluate our methods on two benchmarks: LiveCodeBench (Jain et al., 2024),
using 511 problems from May 2023–May 2024 for training and 268 problems from Jul 2024–Jan
2025 for testing; and TACO (Li et al., 2023), which aggregates problems from CodeContests, APPS
(Hendrycks et al., 2021), and other sources. From TACO’s original 25,443 training and 1,000 test
problems, we randomly sample 4,000 and 200 respectively due to computational constraints. Both
datasets provide 2–3 public test cases per problem. For code repair, we construct a buggy-code
dataset by sampling incorrect solutions from diverse models (Qwen2.5-7B/32B/70B, GPT-4o) to
ensure a range of error types and complexities.

Figure 3: Distribution of 872K training pairs
by revision distance difference (γ(loss) −
γ(win)).

Implementation details. Our base model through-
out the experiments is Qwen2.5-32B-Instruct.
During training, we use the training splits of Live-
CodeBench and TACO to construct code revision
pairs as described in Section 3.2, where we expand
code trees via breadth-first search up to a maximum
depth of dmax = 5, with K = 3 revisions per node.
These pairs are used to train a specialized revision
reward model based on Qwen2.5-7B-Instruct, fol-
lowing the reward modeling procedure from (von
Werra et al., 2020). The distribution of pairwise com-
parisons is shown in Figure 3. For inference, we
adopt decoding settings consistent with (Jain et al.,
2024), using a temperature of 0.2 and top-p of 0.95.
To ensure fair comparison across all methods, we fix
the token budget to 7K tokens per problem. Additional implementation and training details are
provided in the Appendix.

Baselines. We compare our methods with the following approaches. (1) Construction-based
approaches like ToT (Yao et al., 2023) and RAP (Hao et al., 2023), which build solutions via search
(BFS or MCTS); (2) Improvement-based methods with self-evaluation, which leverage internal
assessment mechanisms to guide search, such as CodeTree (Li et al., 2024a) and Reflexion (Shinn
et al., 2023), which use multi-agent evaluation or test case generation with reflective learning; and
Plan-and-Search (Wang et al., 2024c), which prompts LLMs to search among candidate solution
plans expressed in natural language. (3) Improvement-based methods with pass rate, which utilize
performance on public test cases to provide reward signals, including Best-of-N (BoN) (Cobbe et al.,
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2021), which randomly samples N solutions and filters according to the pass rate; SFS (Light et al.,
2024), which employs MCTS to revise code using pass rate as the reward function; and OPRS (Yu
et al., 2024), which combines self-scoring and pass rate to guide beam search.

4.2 Empirical Results

Performance comparison. We systematically compare our local search methods against state-
of-the-art baselines and present the results in Table 1. It can be concluded that ReLoc consistently
outperforms all baseline methods across both LiveCodeBench and TACO benchmarks on the Pass@1
metric. Specifically, ReLoc_HC achieves the best performance of 38.4% and 33.4% on Live-
CodeBench, while ReLoc_GA reaches 15.3% and 11.5% on TACO. It is interesting to find that
ReLoc_HC outperforms ReLoc_GA on the easier LiveCodeBench benchmark, while the reverse is
observed on the more challenging TACO tasks. This phenomenon highlights the distinct merits of
each algorithm: ReLoc_HC is particularly effective for straightforward tasks where the underlying
solution is relatively obvious and the primary challenge lies in fixing minor bugs or syntax errors,
while ReLoc_GA excels in more complex scenarios by strategically integrating the advantages from
parent code samples to discover non-trivial solutions for conceptually challenging tasks in TACO.

Compared to construction-based methods like ToT and RAP, ReLoc exhibits significantly superior
performance under the same computational budget, thanks to the anytime property of local search
algorithms. On the other hand, improvement-based methods with self-evaluation often are prone
to hallucinations, leading to unreliable assessments of code quality. While such methods can be
somewhat effective for guiding high-level search, as evidenced by Plan Search, they cannot fully
leverage the detailed execution feedback. Unlike Plan Search that explores high-level strategies in an
abstract plan space, ReLoc implements fine-grained planning and code-level revision, achieving an
average improvement of 4.9% over Plan Search on Code gen tasks.

Finally, the improvement-based techniques using pass rates from public test cases struggle with
sparse or binary reward signals, which also offer insufficient guidance for search. SFS-based MCTS
methods require extensive exploration with high computational costs, while ORPS employing beam
search suffers from low exploration efficiency, unable to select the most promising code candidates.
ReLoc adeptly navigates these challenges through lightweight decision rules, guided by a revision
reward model, achieving an average improvement of 5.6% over pass rate-based methods across
different tasks.

Effectiveness of revision reward model. To evaluate the effectiveness of our revision reward model
when guiding local search, we conduct controlled experiments on LiveCodeBench and TACO on
ReLoc_HC with different reward functions. Specifically, we compare revision reward model against
five baselines: public test case pass rate, LLM-generated test case pass rate, LLM self-evaluation,
Skywork-27B reward model (Liu et al., 2024), and ORM-7B, i.e., an outcome-based reward model
trained with the same architecture as the revision reward model (Qwen2.5-7B).

As shown in Table 2, pass rate and self-evaluation heuristics offer weak guidance. That is not
surprising because execution-based scores are often coarse or binary, while self-evaluated scores
often suffer from hallucinations, leading to unreliable rankings. In contrast, methods using a reward
model perform better, with our revision reward model outperforming ORM by 35.9%→38.4% and
9.7%→13.3% on LiveCodeBench and TACO. We attribute this to the ability of the revision reward
model to differentiate incorrect candidates based on their likelihood of future correction, which is a
property the ORM lacks due to its exclusive focus on code correctness.

Inference-time scaling law. To further evaluate the scaling performance of ReLoc_HC with
increasing computational resources, we vary the token budget from 1K to 15K. We compare our
method against three representative baselines: BoN, ORPS, and ToT. Figure 4 illustrates the scaling
behavior of different methods on the LiveCodeBench and TACO benchmarks. Notably, as the token
budget increases, ReLoc_HC demonstrates a faster improvement in terms of Pass@1, highlighting
the benefit of guided local search and our learned revision reward model. This is particularly evident
in the LiveCodeBench, where ReLoc_HC reaches over 40% Pass@1 under a 15K token budget,
outperforming the BoN with the same budget by a significant margin.
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Table 2: Pass@1 accuracy of ReLoc_HC with different reward functions under a 7K token budget.
Our revision reward model achieves the highest Pass@1 on both LiveCodeBench and TACO, demon-
strating strong inference-time performance without relying on test case generation or self-evaluation.

Reward Function Gen Test
Case

Self
Score

Reward
Model

LiveCodeBench TACO

Pass Rate ✗ ✗ ✗ 33.5 10.3
w/ Gen Test case ✓ ✗ ✗ 29.0 8.4

Self Evaluation ✓ ✓ ✗ 29.3 9.2
Skywork-27B ✗ ✗ ✓ 31.9 9.4
ORM-7B ✗ ✗ ✓ 35.9 9.7
Revision Reward Model (Ours) ✗ ✗ ✓ 38.4 13.3

Figure 4: Scaling Law. Pass@1 accuracy of ReLoc_HC (Ours) compared to baselines (BoN, ORPS,
ToT) on LiveCodeBench and TACO benchmarks as token budget increases from 1K to 15K.

Table 3: Ablation study of ReLoc. We evaluate the impact of core components in both ReLoc_HC
and ReLoc_GA. Removing natural language plans, revision strategies, or execution feedback.

Method LiveCodeBench TACO

Pass@1 (%) Tokens (1K) Pass@1 (%) Tokens (1K)

ReLoc_HC 38.4 7.1 13.3 7.6
w/o Natural Language Plans 36.9 6.5 13.7 7.1
w/o Revision Strategies 35.9 4.7 11.7 5.5
w/o Execution Feedback 34.8 7.5 11.4 7.7

ReLoc_GA 35.7 6.8 15.3 7.7
w/o Natural Language Plans 34.3 4.9 12.9 6.6
w/o Execution Feedback 34.6 5.8 13.5 6.8

Ablation study. We conduct an ablation study on both ReLoc_HC and ReLoc_GA to assess
the importance of each design choice. As shown in Table 3, removing natural language plans
during initialization and replacing them with randomly sampled code reduces performance. Notably,
eliminating revision strategies significantly reduces the number of generated tokens (e.g., from 7.1K
to 4.7K in ReLoc_HC). However, this also limits the diversity of candidate code samples explored
during the search, ultimately resulting in inferior performance. Furthermore, execution feedback
plays a particularly crucial role, as it enables precise and targeted revision in each iteration, improving
the overall Pass@1 accuracy by 2.1%.
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5 Conclusion

In this work, we present ReLoc, a lightweight and unified local search framework for improvement-
based code generation with LLMs. Unlike computationally expensive construction-based inference-
time scaling methods like ToT and MCTS, ReLoc finds high-quality solutions and enjoys the anytime
property by exploring a series of local revisions of an established code sample. Besides, compared
to the existing improvement-based methods, ReLoc leverages simple yet effective decision rules to
navigate the search space. Furthermore, a specialized revision reward model effectively differentiates
code samples based on the potential of each code sample being corrected in future steps, which
provides fine-grained preferences when the correctness signal is uninformative. Finally, we show the
flexibility and expressiveness of ReLoc by developing two well-known local search algorithms, i.e.,
Hill Climbing and Genetic Algorithm. Extensive experiments on benchmarks like LiveCodeBench
and TACO validate the effectiveness of ReLoc in significantly improving code generation performance
while reducing computational cost.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Both the abstract and introduction sections outline our research scope, method-
ology, motivations, experimental findings, and key contributions. Refer to Section 1

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: In our work on ReLoc, due to limited resources, we did not utilize more
powerful models like Qwen2.5-32B-instruct to train the revision reward model. Additionally,
we only explored two different local search algorithms. Please refer to the appendix for
more details.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper does not include assumptions and proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We introduce all details of our method in Section 4.1 and appendix.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We submit our code and data as supplemental materials. We provide instruc-
tions that contain the exact command and environment needed to reproduce the results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all demonstration selection and test details in the Section 4.1. The
full details can be found in our code, which be provided as supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report average results and standard deviation to illustrate the statistical
significance of our method in Figure 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Detailed compute resource specifications are provided in the appendix.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that our work fully complies with the NeurIPS Code of Ethics in
all respects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This research aims to advance the fields of large language models and code
generation. While our work may have various societal implications, we have chosen not to
emphasize any specific impacts within the scope of this paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The models and datasets presented in this paper are publicly accessible via
HuggingFace and GitHub

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper that produced the code package or dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This work does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: : Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLMs for developing our core idea and methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Work

Code Generation with Large Language Models. Recent advances in large language models (LLMs)
have significantly boosted code generation by leveraging pretraining on large-scale code corpora
(Lu et al., 2021; Christopoulou et al., 2022; Guo et al., 2024; Hui et al., 2024). At inference time,
two main strategies have emerged to further enhance performance. Construction-based methods
generate solutions step-by-step, often guided by value models (Yao et al., 2023; Wang et al., 2024b),
process-based reward models (Lightman et al., 2023), or planning techniques like Monte Carlo Tree
Search (Hao et al., 2023; Zhou et al., 2023). In contrast, improvement-based approaches iteratively
refine full code drafts using multi-turn updates, agentic workflows (Wang et al., 2024a; Zhong et al.,
2024; Zhang et al., 2024b), and test-time feedback, sometimes with multi-agent collaboration (Li
et al., 2024a; Zan et al., 2024). While effective, many of these methods are resource-intensive and
complex. Our work introduces a lightweight local search framework that streamlines key components
into an efficient and scalable loop.

Reward Models. Reward models play a central role in RLHF (Ouyang et al., 2022), providing
learning signals for policy optimization. To reduce dependence on human-labeled data, RLAIF
(Lee et al., 2023) proposed an automated reward data pipeline. More recently, reward models have
been extended to reasoning tasks. Math-Shepherd (Wang et al., 2023) and others (Zhang et al.,
2025) trained process-based reward models to guide inference-time strategies, while outcome-based
models have supported tree search (Jiang et al., 2024). Generative Reward Models (GRMs) (Mahan
et al., 2024; McAleese et al., 2024; Zhang et al., 2024c; Chen et al., 2025) further leverage CoT-
based self-critique for scoring outputs. Distinct from these paradigms, we propose a reward model
trained to estimate revision distance, capturing the minimal steps needed to reach a correct solution.
This enables more efficient candidate evaluation and improves the effectiveness of iterative code
refinement.

B Experimental Setup.

B.1 Revision Reward Model

This section outlines the hyperparameters and settings used during the training phase of the revision
reward model. We trained the revision reward model on Qwen2.5-7B-Instruct using the TRL
library (von Werra et al., 2020) with DeepSpeed ZeRO Stage 2 on 4 NVIDIA H100 GPUs. The
training was conducted for one epoch on a combined dataset of LiveCodeBench and TACO. Table 4
details the training configuration.

Table 4: Revision reward model training Configuration
Parameter Value
Mixed Precision bf16
Batch Size per Device 8
Number of Epochs 1
Gradient Checkpointing True
Learning Rate 5.0e-6
Logging Steps 25
Evaluation Strategy Steps
Evaluation Interval Every 500 steps
Save Interval Every 3000 steps
Max Sequence Length 2048
Push to Hub False
Optimizer paged_adamw_32bit
Warmup Ratio 0.05
Learning Rate Scheduler Cosine
Number of GPUs 4 × NVIDIA H100
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B.2 Local Search Hyperparameters

We use Qwen2.5-32B-Instruct as the inference model throughout all experiments, with a decoding
temperature of 0.2 and a top-p value of 0.95. All algorithms are run under a fixed token budget of
7,000 tokens per task.

For Hill Climbing (HC), we initialize with 5 draft codes and expand 3 neighbors for each candidate
during each improvement iteration.

For the Genetic Algorithm (GA), we similarly maintain a population of 5 draft codes. In each
iteration, we select 2 codes from the candidate pool as parent codes, with each code allowed to be
selected as a parent up to 3 times.

C Additional Evaluation on GPT-4o

To further validate the effectiveness of RELOC, we conduct experiments on the closed-source model
gpt-4o-2024-1120. Specifically, we evaluate RELOC and several baselines, including the state-of-
the-art Plan Search algorithm and Best of N sampling, on the LIVECODEBENCH benchmark. For
RELOC, we employ the revision reward model trained as described in Section B.1 to guide the search
process.

In our evaluation, the revision reward model guiding RELOC’s local search was trained entirely on
data sampled from the open-source Qwen2.5-32B-Instruct model, a setting that differs in both
distribution and model family from the target inference model, GPT-4o. Remarkably, as shown in
Table 5, RELOC achieves the highest Pass@1 score (44.2%) while consuming only 8.7K tokens on
average—representing a 52% reduction in token usage compared to Plan Search. This underscores
the efficiency of RELOC’s local search mechanism.

More importantly, these results demonstrate that the revision reward model, trained on Qwen-
generated code trajectories, generalizes robustly to guide search on GPT-4o. This transferability is non-
trivial: GPT-4o may exhibit different stylistic tendencies, error patterns, and semantic representations
compared to Qwen2.5-32B. Yet, the reward model still provides reliable signals for ranking candidate
revisions, suggesting that it captures model-agnostic features of code quality—such as syntactic
closeness to correct solutions, functional coherence, and local editability.

Such robustness to distributional shifts suggests broader applicability of our approach. It indicates
that RELOC, and particularly its reward model component, can serve as a plug-and-play module to
improve inference-time performance across diverse LLMs, without the need for costly re-annotation
or model-specific retraining. This is particularly valuable for deployment in scenarios involving
closed-source or frequently updated models, where direct supervision signals or fine-tuning access
are unavailable.

Table 5: Performance comparison on GPT-4o (gpt-4o-2024-1120).

Methods Rew. Pass@1 (%) Tokens (1K)
Plan Search self-evaluation 42.7 16.7
BoN Pass Rate 41.8 12.2
ReLoc_HC (Ours) Revision Reward Model 44.2 8.7
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D Prompts

Table 6: Write diverse observations based on the problem to guide the generation of draft code.
Attribute Description
DRAFTCODE You are an expert Python programmer. You will be given a competitive

programming question (problem specification). You will return 5 useful,
non-obvious, and correct observations about the problem, like hints to solve
the problem. You will NOT return any code. Be as creative as possible,
going beyond what you think is intuitively correct. For each observation
should be between tag [OBSERVATION] and [/OBSERVATION].

Outputs [OBSERVATION]
Observation 1: A permutation can be fixed with at most one swap if and
only if it has at most 2 inversions.
[/OBSERVATION]
[OBSERVATION]
Observation 2: Only 3-cycles (like "bca" and "cab") cannot be solved with a
single swap operation.
[/OBSERVATION]
...

Table 7: ReLoc_HC generates diverse modification strategies for incumbent code
Attribute Description
HC_NEIGHBOR You are an expert in debugging Python code. You will be provided with

a code snippet that requires debugging, along with a revision history for
reference. Your task is to begin by writing a brief textual explanation of
the current code—summarize its intended behavior and any evident issues
between [explanation] and [/explanation]. Next, propose three refinement
directions that could help improve the code. Please put each direction
between tag [direction] and [/direction]. Important: Do not include any
Python code in your response—only the explanation and the three refinement
directions.

Outputs [explanation]
The feedback indicates that the main issue is the function returns only the
first element of min-k and max-k, instead of the entire lists.
[/explanation]
[direction]
Modify the return statement to return the full min-k and max-k lists.
[/direction]
[direction]
Include input validation to ensure K is a non-negative integer.
[/direction]
...
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Table 8: ReLoc_HC revises code according to different strategies
Attribute Description
HC_NEIGHBOR You are a helpful programming assistant and an expert in Python. The user

has written code that contains errors. You will be provided with a Python
programming problem, the user’s code, revision history, an explanation,
and directions for refinement. Your task is to debug and revise the code to
correctly solve the problem. Generate a corrected version of the complete
program, incorporating the explanation, refinement directions, and revision
history. Output only one corrected program enclosed within a single pair of
code delimiters. Do not include any additional commentary or text.

Outputs
def minimumBoxes(apple_packs , box_capacities):

for box_capacity in box_capacities:
current_capacity += box_capacity
boxes_used += 1
if current_capacity >= total_apples:

return boxes_used
return boxes_used

apple_packs = [1, 3, 2]
box_capacities = [4, 3, 1, 5, 2]
print(minimumBoxes(apple_packs , box_capacities))

apple_packs = [5, 5, 5]
box_capacities = [2, 4, 2, 7]
print(minimumBoxes(apple_packs , box_capacities))

Table 9: ReLoc_GA directly prompts LLM to generate neighborhood by referencing parent code
Attribute Description
GA_NEIGHBOR You are a helpful programming assistant and an expert in Python. The user

has written code that contains errors. You will be provided with a Python
programming problem and the user’s code intended to solve it. Your task
is to refer to the input code and revise it to correctly solve the problem.
Generate a corrected version of the complete program. Output only one
corrected program enclosed within a single pair of code delimiters. Do not
include any additional commentary or text.

Outputs
def minimumBoxes(apple_packs , box_capacities):

for box_capacity in box_capacities:
current_capacity += box_capacity
boxes_used += 1
if current_capacity >= total_apples:

return boxes_used
return boxes_used

apple_packs = [1, 3, 2]
box_capacities = [4, 3, 1, 5, 2]
print(minimumBoxes(apple_packs , box_capacities))

apple_packs = [5, 5, 5]
box_capacities = [2, 4, 2, 7]
print(minimumBoxes(apple_packs , box_capacities))
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E Step by Step Revisions

Below, we demonstrate how ReLoc guides Qwen2.5-32B-Instruct step by step to revise com-
pletely incorrect draft code into correct code.

from typing import List
class Solution:
    def canSplitArray(self, nums: List[int], m: int) -> bool:
        n = len(nums)
        if n <= 2:
            return True
        prefix_sum = [0] * (n + 1)
        for i in range(n):
            prefix_sum[i + 1] = prefix_sum[i] + nums[i]
        dp = [[False] * n for _ in range(n)]
        for i in range(n - 1):
            dp[i][i + 1] = (prefix_sum[i + 2] - prefix_sum[i] >= m) or (nums[i] >= m) or 
(nums[i + 1] >= m)
        for length in range(3, n + 1):
            for i in range(n - length + 1):
                j = i + length - 1
                for k in range(i, j):
                    left_sum = prefix_sum[k + 1] - prefix_sum[i]
                    right_sum = prefix_sum[j + 1] - prefix_sum[k + 1]
                    if (left_sum >= m or k - i + 1 == 1) and (right_sum >= m or j - k == 1):
                        dp[i][j] = dp[i][j] or (dp[i][k] and dp[k + 1][j])
        return dp[0][n - 1]Did not use Dynamic Programming (DP) structure, instead used recursion, 

extremely inefficient and may result in timeout.

No memoization of intermediate states, leading to repeated calculations of 
subproblems.

Split logic lacks DP state transition control, unable to effectively construct 
solutions from small intervals to large intervals.

Missing dp[i][i] initialization, confused logic, low 
efficiency

from typing import List
class Solution:
    def canSplitArray(self, nums: List[int], m: int) -> bool:
        def can_split(segment: List[int], m: int) -> bool:
            if len(segment) <= 2:
                return True
            for i in range(1, len(segment)):
                left, right = segment[:i], segment[i:]
                if (sum(left) >= m or len(left) == 1) and (sum(right) >= m or len(right) == 1):
                    if can_split(left, m) and can_split(right, m):
                        return True
            return False
        return can_split(nums, m)

Use recursion, without DP (Dynamic Programming), without 
pruning

LLM

LLM

Revision strategie

LLM

LLM Using prefix sum is somewhat redundant; the correct version directly uses 
sum(nums[i:j]).

Failed to initialize dp[i][i] = True: missing basic state definition.

Initial interval checking logic is not rigorous: correct code adds more accurate 
judgment for two elements (nums[i] + nums[i+1] >= m).

Revision strategie

DraftCode
Step 1

from typing import List
class Solution:
    def canSplitArray(self, nums: List[int], m: int) -> bool:
        n = len(nums)
        if n <= 2:
            return True
        dp = [[False] * n for _ in range(n)]
        for i in range(n):
            dp[i][i] = True
        for i in range(n - 1):
            dp[i][i + 1] = (nums[i] >= m) or (nums[i + 1] >= m) or (nums[i] + nums[i + 1] >= 
m)
        for length in range(3, n + 1):
            for i in range(n - length + 1):
                j = i + length - 1
                for k in range(i, j):
                    left_sum = sum(nums[i:k+1])
                    right_sum = sum(nums[k+1:j+1])
                    if (dp[i][k] and (k - i + 1 == 1 or left_sum >= m)) and \
                       (dp[k+1][j] and (j - k == 1 or right_sum >= m)):
                        dp[i][j] = True
                        break
        return dp[0][n - 1]

from typing import List
class Solution:
    def canSplitArray(self, nums: List[int], m: int) -> bool:
        n = len(nums)
        if n <= 2:
            return True
        prefix_sum = [0] * (n + 1)
        for i in range(n):
            prefix_sum[i + 1] = prefix_sum[i] + nums[i]
        dp = [[False] * n for _ in range(n)]
        for i in range(n - 1):
            dp[i][i] = True
            dp[i][i + 1] = (prefix_sum[i + 2] - prefix_sum[i] >= m) or (nums[i] >= m) or 
(nums[i + 1] >= m)
        for length in range(3, n + 1):
            for i in range(n - length + 1):
                j = i + length - 1
                for k in range(i, j):
                    left_sum = prefix_sum[k + 1] - prefix_sum[i]
                    right_sum = prefix_sum[j + 1] - prefix_sum[k + 1]
                    if (left_sum >= m or k - i + 1 == 1) and (right_sum >= m or j - k == 1):
                        dp[i][j] = dp[i][j] or (dp[i][k] and dp[k + 1][j])
        return dp[0][n - 1]

Unnecessary use of prefix sum: correct version reverts to sum(nums[i:j]) for 
clearer logic.

Although dp[i][i] = True was added, initialization is incomplete (should be for all 
i, not just first n-1).

Still missing break statement - should immediately exit when dp[i][j] = True, 
otherwise efficiency is poor.

Correct Code

Use recursion, without DP (Dynamic Programming), without 
pruning

LLM

LLM

Revision strategie

LLM

Step3 Step 4

Figure 5: ReLoc step-by-step revise incorrect code
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