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Abstract

Partial-label learning (PLL) is a multi-class classification problem, where each
training example is associated with a set of candidate labels. Even though many
practical PLL methods have been proposed in the last two decades, there lacks a
theoretical understanding of the consistency of those methods—none of the PLL
methods hitherto possesses a generation process of candidate label sets, and then it
is still unclear why such a method works on a specific dataset and when it may fail
given a different dataset. In this paper, we propose the first generation model of
candidate label sets, and develop two novel PLL methods that are guaranteed to be
provably consistent, i.e., one is risk-consistent and the other is classifier-consistent.
Our methods are advantageous, since they are compatible with any deep network
or stochastic optimizer. Furthermore, thanks to the generation model, we would be
able to answer the two questions above by testing if the generation model matches
given candidate label sets. Experiments on benchmark and real-world datasets
validate the effectiveness of the proposed generation model and two PLL methods.

1 Introduction

Unlike supervised learning and unsupervised learning, weakly supervised learning [52] aims to learn
with weak supervision. So far, various weakly supervised learning frameworks have been widely
studied. Examples include semi-supervised learning [5, 42, 32], multi-instance learning [1, 53],
positive-unlabeled learning [10, 29], complementary-label learning [24, 25], noisy-label learning [40,
20, 44], positive-confidence learning [26], similar-unlabeled learning [2], and unlabeled-unlabeled
learning [35, 36].

In recent years, another weakly supervised learning framework called partial-label learning (PLL)
[27, 9, 33, 7, 50, 13, 39] has gradually attracted attention from machine learning and data mining
communities. PLL aims to deal with the problem where each instance is provided with a set of
candidate labels, only one of which is the correct label. In some studies, PLL is also termed
as ambiguous-label learning [23, 49, 7, 6, 47] and superset-label learning [34, 33, 16]. Due to
the difficulty in collecting accurately labeled data in many real-world scenarios, PLL has been
successfully applied to a wide range of application domains, such as web mining [37], bird song
classification [34], and automatic face naming [49].

A number of methods [27, 41, 50, 12, 13] have been proposed to improve the practical performance
of PLL. On the theoretical side, some researchers have studied the statistical consistency [9] and
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learnability [33] of PLL. They made the same assumption on the ambiguity degree, which describes
the maximum co-occurring probability of the correct label with another false positive label. Although
they assumed that the data distribution for successful PLL should ensure a limited ambiguity degree, it
is still unclear what the explicit formulation of the data distribution would be. Besides, the consistency
of PLL methods would be hardly guaranteed without modeling the data distribution.

Motivated by the above observations, we for the first time present a novel statistical model to depict
the generation process of partially labeled data. Having an explicit data distribution not only helps us
to understand how partially labeled examples are generated, but also enables us to perform effective
empirical risk minimization. Our proposed data generation model is instance-independent, which
does not introduce any extra hidden variable. We verify that the proposed generation model satisfies
the key assumption of PLL that the correct label is always included in the set of candidate labels.

Based on the data generation model, we further derive a novel risk-consistent method and a novel
classifier-consistent method. Most of the existing PLL methods need to specially design complex
optimization objectives, which make the optimization process inefficient. In contrast, our proposed
PLL methods do not rely on specific classification models and can be easily trained with stochastic
optimization, thus can be naturally applied to complex models such as deep neural networks with
large-scale datasets. In addition, we theoretically derive an estimation error bound for each of the
methods, which demonstrates that the obtained empirical risk minimizer would converge to the true
risk minimizer as the number of training data tends to infinity. We show that the risk-consistent
method holds a tighter estimation error bound than the classifier-consistent method and empirically
validate that the risk-consistent method achieves better performance when deep neural networks are
used. We also use entropy to measure how well the given candidate label sets match our generation
model. We find that the candidate label sets with higher entropy better match our generation model,
and on such datasets, our proposed PLL methods achieve better performance. Extensive experiments
on benchmark as well as real-world partially labeled datasets clearly validate the effectiveness of our
proposed methods.

2 Formulations

In this section, we introduce some notations and briefly review the formulations of learning with
ordinary labels, learning with partial labels, and learning with complementary labels.

Learning with Ordinary Labels. For ordinary multi-class learning, let the feature space be X ∈
Rd and the label space be Y = [k] (with k classes) where [k] := {1, 2, . . . , k}. Let us clearly define
that x denotes an instance and (x, y) denotes an example including an instance x and a label y. When
ordinary labels are provided, we usually assume each example (x, y) ∈ X × Y is independently
sampled from an unknown data distribution with probability density p(x, y). Then, the goal of
multi-class learning is to obtain a multi-class classifier f : X → Rk that minimizes the following
classification risk:

R(f) = Ep(x,y)[L(f(x), y)], (1)

where Ep(x,y)[·] denotes the expectation over the joint probability density p(x, y) and L : Rk ×Y →
R+ is a multi-class loss function that measures how well a classifier estimates a given label. We say
that a method is classifier-consistent if the learned classifier by the method is infinite-sample consistent
to argminf∈F R(f), and a method is risk-consistent if the method possesses a classification risk
estimator that is equivalent to R(f) given the same classifier f . It is worth noting that a risk-
consistent method is also classifier-consistent [45]. However, a classifier-consistent method may not
be risk-consistent.

Learning with Partial Labels. For learning with partial labels (i.e., PLL), each instance is provided
with a set of candidate (partial) labels, only one of which is correct. Suppose the partially labeled
dataset is denoted by D̃ = {(xi, Yi)}ni=1 where Yi is the candidate label set of xi. Since each
candidate label set should not be the empty set nor the whole label set, we have Yi ∈ C where
C = {2Y \ ∅ \ Y}, 2Y denotes the power set, and |C| = 2k − 2. The key assumption of PLL lies in
that the correct label yi of xi must be in the candidate label set, i.e.,

p(yi ∈ Yi | xi, Yi) = 1, ∀(xi, yi) ∈ X × Y, ∀Yi ∈ C. (2)
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Given such data, the goal of PLL is to induce a multi-class classifier f : X → Rk that can make
correct predictions on test inputs. To this end, many methods [34, 50, 51, 16, 13, 39] have been
proposed to improve the performance of PLL. However, to the best of our knowledge, there is
only one method [9] that possesses statistical consistency by providing a classifier-consistent risk
estimator. However, it not only requires the assumption that the data distribution should ensure a
limited ambiguity degree, but also relies on some strict conditions (e.g., convexity of loss function
and dominance relation [9]). It is still unclear what the explicit formulation of the data distribution for
successful PLL would be. Besides, it is also unknown whether there exists a risk-consistent method
that possesses a statistical unbiased estimator of the classification risk R(f).

Learning with Complementary Labels. There is a special case of partial labels, called comple-
mentary labels [24, 48, 25]. Each complementary label specifies one of the classes that the example
does not belong to. Hence a complementary label y can be considered as an extreme case where all
k− 1 classes other than the class y are taken as candidate (partial) labels. Existing studies on learning
with complementary labels make the assumption on the data generation process. The pioneering
study [24] assumed that each complementarily labeled example (x, y) is independently drawn from
the probability distribution with density p(x, y), where p(x, y) is defined as p(x, y) =

∑
y 6=y p(x, y).

Based on this data distribution, several risk-consistent methods [24, 25] have been proposed for
learning with complementary labels. However, in many real-world scenarios, multiple complementary
labels would be more widespread than a single complementary label. Hence a recent study [14] fo-
cused on learning with multiple complementary labels. Suppose each training example is represented
by (x, Y ) where Y denotes a set of multiple complementary labels, and (x, Y ) is assumed to be
independently sampled from the probability distribution with density p(x, Y ), which is defined as

p(x, Y ) =
∑k−1

j=1 p(s = j)p(x, Y | s = j), (3)

where

p(x, Y | s = j) :=

{
1(

k−1
j

) ∑
y/∈Y p(x, y) if |Y | = j,

0 otherwise.
(4)

Here, the variable s denotes the size of the complementary label set. Supplied with this data
distribution, a risk-consistent method [14] was proposed. It is worth noting that following the
distribution of complementarily labeled data, although we can obtain partial labels by regarding
all the complementary labels as non-candidate labels, the resulting distribution of partially labeled
data is not explicitly formulated. It would be natural to ask whether there also exists an explicit
formulation of the partially labeled data distribution that enables us to derive a novel classifier-
consistent method or a novel risk-consistent method that possesses statistical consistency. In this
paper, we will give an affirmative answer to this question. Specifically, we will show that based on
our proposed data generation model, a novel risk-consistent method (the first one for PLL) and a
novel classifier-consistent method can be derived accordingly.

3 Data Generation Model

3.1 Partially Labeled Data Distribution

We assume each partially labeled example (x, Y ) is independently drawn from a probability distribu-
tion with the following density:

p̃(x, Y ) =
∑k

i=1 p(Y | y = i)p(x, y = i), where p(Y | y = i) =

{
1

2k−1−1 if i ∈ Y,
0 if i /∈ Y. (5)

In Eq. (5), we assume p(Y | x, y) = p(Y | y), which means, given the correct label y, the candidate
label set Y is independent of the instance x. This assumption is similar to the conventional modeling
of label noise [19] where the observed noisy label is independent of the instance, given the correct
label. In addition, there are in total 2k−1 − 1 possible candidate label sets that contain a specific label
y. Hence, Eq. (5) describes the probability of each candidate label set being uniformly sampled, given
a specific label. Here, we show that our assumed data distribution is a valid probability distribution
by the following theorem.
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Theorem 1. The equality
∫
C
∫
X p̃(x, Y )dx dY = 1 holds.

The proof is provided in Appendix A.1. Given the assumed data distribution in Eq. (5), it would be
natural to ask whether our assumed data distribution meets the key assumption of PLL described
in Eq. (2), i.e., whether the correct label y is always in the candidate label set Y for every partially
labeled example (x, Y ) sampled from p̃(x, Y ). The following theorem provides an affirmative
answer to this question.

Theorem 2. For any partially labeled example (x, Y ) independently sampled from the assumed data
distribution in Eq. (5), the correct label y is always in the candidate label set Y , i.e., p(y ∈ Y |
x, Y ) = 1, ∀(x, Y ) ∼ p̃(x, Y ).

The proof is provided in Appendix A.2. Theorem 2 clearly demonstrates that our assumed data
distribution in Eq. (5) satisfies the key assumption of PLL.

3.2 Motivation

Here, we provide a motivation why we derived the above data generation model. Generally, a large
number of high-quality samples are notably helpful to machine learning or data mining. However,
it is usually difficult for our labelers to directly identify the correct label for each instance [52].
Nonetheless, it would be easier to collect a set of candidate labels that contains the correct label.
Suppose there is a labeling system that can uniformly sample a label set Y from C. For each instance
x, the labeling system uniformly samples a label set Y and asks a labeler whether the correct label y
is in the sampled label set Y . In this case, the collected examples whose correct label y is included
in the proposed label set Y follow the same distribution as Eq. (5). In order to justify that, we first
introduce the following lemma.

Lemma 1. Given any instance x with its correct label y, for any unknown label set Y that is
uniformly sampled from C, the equality p(y ∈ Y | x) = 1/2 holds.

It is quite intuitive to verify that Lemma 1 indeed holds. Specifically, if we do not have any information
of Y , we may randomly guess with even probabilities whether the correct y is included in an unknown
label set Y or not. A rigorous mathematical proof is provided in Appendix A.3. Based on Lemma 1,
we have the following theorem.

Theorem 3. In the above setting, the distribution of the collected data whose correct label y ∈ Y
is included in the label set Y ∈ C is the same as Eq. (5), i.e., p(x, Y | y ∈ Y ) = p̃(x, Y ) where
p̃(x, Y ) is defined in Eq. (5).

The proof is provided in Appendix A.4.

4 Consistent Methods

In this section, based on our assumed partially labeled data distribution in Eq. (5), we present a novel
risk-consistent method and a novel classifier-consistent method and theoretically derive an estimator
error bound for each of them. Both methods are agnostic in specific classification models and can be
easily trained with stochastic optimization, which ensures their scalability to large-scale datasets.

4.1 Risk-Consistent Method

For the risk-consistent method, we employ the importance reweighting strategy [17] to rewrite the
classification risk R(f) as

R(f) = Ep(x,y)[L
(
f(x), y

)
] =

∫
x

∑k
i=1 p(y = i | x)L

(
f(x), i

)
p(x)dx

=
∫
x

∑k
i=1

1
|C|
∑

Y ∈C p(Y | x)
p(y=i|x)
p(Y |x) L

(
f(x), i

)
p(x)dx

= 1
|C|
∫
x

∑
Y ∈C p(Y |x)

[∑k
i=1

p(y=i|x)
p(Y |x) L(f(x), i)

]
p(x)dx

= 1
2k−2Ep̃(x,Y )

[∑k
i=1

p(y=i|x)
p(Y |x) L

(
f(x), i

)]
= Rrc(f). (6)
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Here, p(Y | x) can be calculated by

p(Y | x) =
∑k

j=1 p(Y | y = j)p(y = j | x) = 1
2k−1−1

∑
j∈Y p(y = j | x), (7)

where the last equality holds due to Eq. (5). By substituting Eq. (7) into Eq. (6), we obtain

Rrc(f) =
1
2Ep̃(x,Y )

[∑k
i=1

p(y=i|x)∑
j∈Y p(y=j|x)L

(
f(x), i

)]
. (8)

In this way, its empirical risk estimator can be expressed as

R̂rc(f) =
1
2n

∑n
o=1

(∑k
i=1

p(yo=i|xo)∑
j∈Yo p(yo=j|xo)L

(
f(xo), i

))
, (9)

where {xo, Yo}no=1 are partially labeled examples drawn from p̃(x, Y ). Note that p(y = i | x) is
not accessible from the given data. Therefore, we apply the softmax function on the model output
f(x) to approximate p(y = i | x), i.e., p(y = i | x) = gi(x) where gi(x) is the probability of
label i being the true label of x, which is calculated by gi(x) = exp(fi(x))/

∑k
j=1 exp(fj(x)), and

fi(x) is the i-th coordinate of f(x). Note that the non-candidate labels can never be the correct label.
Hence we further correct p(y = i | x) by setting the confidence of each non-candidate label to 0, i.e.,

p(y = i | x) = gi(x) if i ∈ Y, otherwise p(y = i | x) = 0, ∀(x, Y ) ∼ p̃(x, Y ). (10)
As shown in Eq. (9), our risk-consistent method does not rely on specific loss functions, hence
we simply adopt the widely-used categorical cross entropy loss for practical implementation. The
pseudo-code of the Risk-Consistent (RC) method is presented in Algorithm 1. It is worth noting that
the algorithmic process of RC surprisingly coincides with that of PRODEN [38]. However, they are
derived in totally different manners. Besides, PRODEN does not hold any theoretical guarantee while
we show that our proposed RC method is consistent.

Here, we establish an estimation error bound for our RC method to demonstrate its learning con-
sistency. Let f̂rc = minf∈F R̂rc(f) be the empirical risk minimizer and f? = minf∈F R(f)
be the true risk minimizer. Besides, we define the function space Hy for the label y ∈ Y as
{h : x 7→ fy(x) | f ∈ F}. Let Rn(Hy) be the expected Rademacher complexity [3] of Hy with
sample size n, then we have the following theorem.
Theorem 4. Assume the loss function L(f(x), y) is ρ-Lipschitz with respect to f(x) (0 < ρ <∞)
for all y ∈ Y and upper-bounded by M , i.e., M = supx∈X ,f∈F,y∈Y L(f(x), y). Then, for any
δ > 0, with probability at least 1− δ,

R(f̂rc)−R(f?) ≤ 4
√
2ρ
∑k

y=1 Rn(Hy) +M

√
log 2

δ

2n ,

The proof of Theorem 4 is provided in Appendix B. Generally, Rn(Hy) can be bounded by CH/
√
n

for a positive constant CH [36, 45, 15]. Hence Theorem 4 shows that the empirical risk minimizer
frc converges to the true risk minimizer f? as n→∞.

4.2 Classifier-Consistent Method

For the classifier-consistent method, we start by introducing a transition matrix Q that describes the
probability of the candidate label set given an ordinary label. Specifically, the transition matrix Q
is defined as Qij = p(Y = Cj | y = i) where Cj ∈ C (j ∈ [2k − 2]) is a specific label set. By
further taking into account the assumed data distribution in Eq. (5), we can instantiate the transition
matrix Q as Qij = 1

2k−1−1 if i ∈ Cj , otherwise Qij = 0. Let us introduce qj(x) = p(Y =

Cj | x) and gi(x) = p(y = i | x), then we can obtain q(x) = Q>g(x) with the assumption
p(Y | x, y) = p(Y | y). Given each partially labeled example (x, Y ) sampled from p̃(x, Y ), the
proposed classifier-consistent risk estimator is presented as

Rcc(f) = Ep̃(x,Y )[L(q(x), ỹ)], where Y = Cỹ. (11)
In this formulation, we regard the candidate label set Y as a virtual label ỹ if Y is a specific label
set Cỹ. Since there are 2k − 2 possible label sets, we denote by Ỹ the virtual label space where
Ỹ = [2k − 2] and ỹ ∈ Ỹ . It is worth noting that the transition matrix Q has full rank, because all
rows of Q are linearly independent by the definition of Q. Then, in order to prove that this method is
classifier-consistent, we introduce the following lemma.
Lemma 2. If certain loss functions are used (e.g., the softmax cross entropy loss or mean squared
error), by minimizing the expected risk R(f), the optimal mapping g? satisfies g?i (x) = p(y = i | x).

The proof is provided in Appendix C.1. The same proof can also be found in [48, 38].
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Algorithm 1 RC Algorithm
Input: Model f , epoch Tmax, iteration Imax, par-
tially labeled training set D̃ = {(xi, Yi)}ni=1.

1: Initialize p(yi = j | xi) = 1,∀j ∈ Yi, oth-
erwise p(yi = j | xi) = 0;

2: for t = 1, 2, . . . , Tmax do
3: Shuffle D̃ = {(xi, Yi)}ni=1;
4: for j = 1, . . . , Imax do
5: Fetch mini-batch D̃j from D̃;
6: Update model f by R̂rc in Eq. (9);
7: Update p(yi | xi) by Eq. (10);
8: end for
9: end for Output: f .

Algorithm 2 CC Algorithm
Input: Model f , epoch Tmax, iteration Imax, par-
tially labeled training set D̃ = {(xi, Yi)}ni=1;

1: for t = 1, 2, . . . , Tmax do
2: Shuffle the partially labeled training set
D̃ = {(xi, Yi)}ni=1;

3: for j = 1, . . . , Imax do
4: Fetch mini-batch D̃j from D̃;
5: Update model f by minimizing the

empirical risk estimator R̂cc in Eq. (12);
6: end for
7: end for
Output: f .

Theorem 5. When the transition matrix Q has full rank and the condition in Lemma 2 is satisfied,
the minimizer fcc = argminf∈F Rcc(f) is also the true minimizer f? = argminf∈F R(f), i.e.,
fcc = f? (classifier-consistency).

The proof is provided in Appendix C.2.

As suggested by Lemma 2, we adopt the cross entropy loss in our classifier-consistent risk estimator
(i.e., Eq. (11)) for practical implementation. In this way, we have the following empirical risk
estimator:

R̂cc(f) = − 1
n

n∑
i=1

( 2k−2∑
j=1

I(Yi = Cj) log(qj(xi))
)
= − 1

n

n∑
i=1

2k−2∑
j=1

I(Yi = Cj) log
(
Q[:, j]>g(x)

)
= − 1

n

n∑
i=1

log
(

1
2k−1−1

∑
y∈Yi gy(x)

)
= − 1

n

n∑
i=1

log
(

1
2k−1−1

∑
y∈Yi

exp(fy(x))∑
j exp(fj(x))

)
, (12)

where I[·] is the indicator function. For the expected risk estimator Rcc(f), it seems that the transition
matrix Q ∈ Rk×(2k−2) is indispensable. Unfortunately, it would be computationally prohibitive,
since 2k − 2 is an extremely large number if the number of classes k is large. However, for practical
implementation, Eq. (12) shows that we do not need to explicitly calculate and store the transition
matrix Q, which brings no pain to optimization. The pseudo-code of the Classifier-Consistent (CC)
method is presented in Algorithm 2.

Here, we also establish an estimation error bound for the classifier-consistent method. Let f̂cc =

argminf∈F R̂cc(f) be the empirical minimizer and f? = argminf∈F R(f) be the true minimizer.
Besides, we define the function space Hy for the label y ∈ Y as {h : x 7→ fy(x) | f ∈ F}. Then,
we have the following theorem.
Theorem 6. Assume the loss function L(q(x), ỹ) is ρ′-Lipschitz with respect to f(x) (0 < ρ <∞)
for all ỹ ∈ Ỹ and upper-bounded by M , i.e., M = supx∈X ,f∈F,ỹ∈Ỹ L(q(x), ỹ). Then, for any
δ > 0, with probability at least 1− δ,

Rcc(f̂cc)−Rcc(f
?) ≤ 4

√
2ρ′
∑k

y=1 Rn(Hy) + 2M

√
log 2

δ

2n .

The proof is provided in Appendix D. Theorem 6 demonstrates that the empirical risk minimizer f̂cc
converges to the true risk minimizer f? as n→∞.

Theoretical Comparison Between RC and CC. There exists a clear difference between the
estimation error bounds in Theorem 4 and Theorem 6, especially in the last term. If we assume
that ρ for RC and ρ′ for CC hold the same value, we can find that the estimation error bound in
Theorem 6 would be looser than that in Theorem 4. Therefore, we could expect that RC may have
better performance than CC. In addition, RC needs to estimate the prediction confidence of each
example. Intuitively, complex models like deep neural networks normally provide more accurate
estimation than linear models. Therefore, we speculate that when more complex models are used,
the superiority of RC would be more remarkable. We will demonstrate via experiments that RC is
generally superior to CC when deep neural networks are used.
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Table 1: Test performance (mean±std) of each method using neural networks on benchmark datasets.
ResNet is trained on CIFAR-10, and MLP is trained on the other three datasets.

MNIST Kuzushiji-MNIST Fashion-MNIST CIFAR-10

RC 98.00±0.11% 89.38±0.28% 88.38±0.16% 77.93±0.59%
CC 97.87±0.10%• 88.83±0.40%• 87.88±0.25%• 75.78±0.27%•
GA 96.37±0.13%• 84.23±0.19%• 85.57±0.16%• 72.22±0.19%•
NN 96.75±0.08%• 82.36±0.41%• 86.25±0.14%• 68.09±0.31%•
Free 88.48±0.37%• 70.31±0.68%• 81.34±0.47%• 17.74±1.20%•
PC 92.47±0.13%• 73.45±0.20%• 83.37±0.31%• 46.53±2.01%•

Forward 97.64±0.11%• 87.64±0.13%• 86.73±0.15%• 71.18±0.92%•
EXP 97.81±0.04%• 88.48±0.29%• 87.96±0.06%• 73.22±0.66%•
LOG 97.86±0.11%• 88.24±0.08%• 88.31±0.26% 75.38±0.34%•
MAE 97.82±0.11%• 88.43±0.32%• 87.83±0.22%• 66.91±3.08%•
MSE 96.95±0.14%• 85.16±0.44%• 85.72±0.26%• 66.15±2.13%•
GCE 96.71±0.08%• 85.19±0.39%• 86.88±0.16%• 68.39±0.71%•

Phuber-CE 95.10±0.34%• 80.66±0.41%• 85.33±0.23%• 58.60±0.95%•

Table 2: Test performance (mean±std) of each method using neural networks on benchmark datasets.
DenseNet is trained on CIFAR-10, and LeNet is trained on the other three datasets.

MNIST Kuzushiji-MNIST Fashion-MNIST CIFAR-10

RC 99.04±0.03% 94.00±0.30% 89.48±0.15% 78.53±0.46%
CC 98.99±0.08% 93.86±0.18% 88.98±0.20%• 75.71±0.18%•
GA 98.68±0.05%• 90.39±0.26%• 87.95±0.12%• 71.85±0.19%•
NN 98.51±0.08%• 89.60±0.34%• 88.47±0.15%• 71.98±0.35%•
Free 80.48±2.06%• 71.18±1.38%• 74.02±3.88%• 45.94±0.83%•
PC 95.03±0.16%• 79.62±0.11%• 83.98±0.20%• 54.18±2.10%•

Forward 98.80±0.04%• 93.87±0.14% 88.72±0.17%• 73.56±1.47%•
EXP 98.82±0.03%• 92.69±0.31%• 88.99±0.25%• 75.02±1.02%•
LOG 98.88±0.08%• 93.97±0.25% 88.75±0.28%• 75.54±0.59%•
MAE 98.88±0.05%• 93.04±0.52%• 87.30±3.16%• 67.74±0.89%•
MSE 98.38±0.05%• 88.37±0.55%• 88.18±0.08%• 70.66±0.59%•
GCE 98.63±0.06%• 91.27±0.30%• 88.66±0.16%• 72.09±0.51%•

Phuber-CE 96.92±0.18%• 82.24±2.45%• 87.02±0.09%• 66.47±0.35%•

5 Experiments

In this section, we conduct extensive experiments on various datasets to validate the effectiveness of
our proposed methods.

Datasets. We collect four widely used benchmark datasets including MNIST [31], Kuzushiji-
MNIST [8], Fashion-MNIST [46], and CIFAR-10 [30], and five datasets from the UCI Machine
Learning Repository [30]. In order to generate candidate label sets on these datasets, following the
motivation in Section 3.2, we uniformly sample the candidate label set that includes the correct
label from C for each instance. In addition, we also use five widely used real-world partially labeled
datasets, including Lost [9], BirdSong [4], MSRCv2 [34], Soccer Player [49], Yahoo! News [18].
Since our proposed methods do not rely on specific classification models, we use various base models
to validate the effectiveness of our methods, including linear model, three-layer (d-500-k) MLP,
5-layer LeNet, 34-layer ResNet [21], and 22-layer DenseNet [22]. The detailed descriptions of these
datasets with the corresponding base models are provided in Appendix E.1.

Compared Methods. We compare with six state-of-the-art PLL methods including SURE [13],
CLPL [9], IPAL [50], PLSVM [11], PLECOC [51], PLKNN [23]. Besides, we also compare with
various complementary-label learning (CLL) methods for two reasons: 1) We can directly use CLL
methods on partially labeled datasets by regarding non-candidate labels as complementary labels. 2)
Existing CLL methods can be applied to large-scale datasets. The compared CLL methods include
GA, NN, and Free [25], PC [24], Forward [48], the unbiased risk estimator [14] with bounded losses
MAE, MSE, GCE, Phuber-CE, and the surrogate losses EXP and LOG. For all the above methods,
their hyper-parameters are specified or searched according to the suggested parameter settings by
respective papers. The detailed information of these compared methods is provided in Appendix
E.2. For our proposed methods RC (Algorithm 1) and CC (Algorithm 2), we only need to search
learning rate and weight decay from {10−6, . . . , 10−1}, since there are no other hyper-parameters
in our methods. Hyper-parameters are selected so as to maximize the accuracy on a validation set
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Table 3: Test performance (mean±std) of each method using linear model on UCI datasets.
Texture Yeast Dermatology Har 20Newsgroups

RC 99.24±0.14% 59.89±1.27% 99.41±1.00% 98.03±0.09% 75.99±0.53%
CC 98.02±2.91%• 59.97±1.57% 99.73±0.85% 98.10±0.18% 75.97±0.54%

SURE 95.38±0.28%• 54.39±1.32%• 97.48±0.32%• 97.43±0.24%• 69.82±0.26%•
CLPL 91.93±0.97%• 54.58±2.11%• 99.62±0.85% 97.48±0.18%• 71.44±0.55%•

PLECOC 69.69±4.82%• 37.37±9.73%• 87.84±5.30%• 96.97±0.29%• 15.32±7.86%•
PLSVM 49.38±9.99%• 45.70±8.01%• 80.00±7.53%• 91.64±1.43%• 32.59±8.91%•
PLKNN 96.78±0.31%• 47.79±2.41%• 80.54±5.06%• 94.17±0.59%• 27.18±0.65%•

IPAL 99.45±0.23% 48.99±3.84%• 98.65±2.27%• 96.55±0.40%• 48.36±0.85%•

Table 4: Test performance (mean±std) of each method using linear model on real-world datasets.
Lost MSRCv2 BirdSong Soccer Player Yahoo! News

RC 79.43±3.26% 46.56±2.71% 71.94±1.72% 57.00±0.97% 68.23±0.83%
CC 79.29±3.19% 47.22±3.02% 72.22±1.71% 56.32±0.64% 68.14±0.81%

SURE 71.33±3.57%• 46.88±4.67% 58.92±1.28%• 49.41±086%• 45.49±1.15%•
CLPL 74.87±4.30%• 36.53±4.59%• 63.56±1.40%• 36.82±1.04%• 46.21±0.90%•

PLECOC 49.03±8.36%• 41.53±3.25%• 71.58±1.81% 53.70±2.02%• 66.22±1.01%•
PLSVM 75.31±3.81%• 35.85±4.41%• 49.90±2.07%• 46.29±0.96%• 56.85±0.91%•
PLKNN 36.73±2.99%• 41.36±2.89%• 64.94±1.42%• 49.62±0.67%• 41.07±1.02%•

IPAL 72.12±4.48%• 50.80±4.46%◦ 72.06±1.55% 55.03±0.77%• 66.79±1.22%•

(10% of the training set) of partially labeled data. We implement them using PyTorch [43] and use
the Adam [28] optimizer with the mini-batch size set to 256 and the number of epochs set to 250.

Experimental Results. We run 5 trials on the four benchmark datasets and run 10 trials (with
90%/10% train/test split) on UCI datasets and real-world partially labeled datasets, and record the
mean accuracy with standard deviation (mean±std). We also use paired t-test at 5% significance
level, and •/◦ represents whether the best of RC and CC is significantly better/worse than other
compared methods. Besides, the best results are highlighted in bold. Table 1 and Table 2 report the
test performance of each method using neural networks on benchmark datasets. We also provide the
transductive performance of each method in Appendix E.3. From the two tables, we can observe that
RC always achieves the best performance and significantly outperforms other compared methods in
most cases. In addition, we record the test accuracy at each training epoch to provide more detailed
visualized results in Appendix E.4. Table 3 and Table 4 report the test performance of each method
using linear model on UCI datasets and real-world partially labeled datasets, respectively. We can
find that RC and CC generally achieve superior performance against other compared methods on
both UCI datasets and real-world partially labeled datasets.

Performance Comparison Between RC and CC. It can be seen that when linear model is used,
RC and CC achieve similar performance. However, RC significantly outperforms CC when deep
neural networks are used. These observations clearly accord with our conjecture that the superiority
of RC would be more remarkable when more complex models are used.

Effectiveness of Generation Model. We use entropy to measure how well given candidate label
sets match the proposed generation model. By this measure, we could know ahead of model training
whether to apply our proposed methods or not on a specific dataset. We expect that the higher the
entropy, the better the match, thus the better the performance of our proposed methods. To verify
our conjecture, we generate various candidate labels sets by different generation models, and the
experimental results agree with our conjecture. We further show via experiments that even when given
candidate label sets do not match our proposed generation model well, our methods still significantly
outperform other compared methods. These experimental results are provided in Appendix F.

6 Conclusion

In this paper, we for the first time provided an explicit mathematical formulation of the partially
labeled data generation process for PLL. Based on our data generation model, we further derived a
novel risk-consistent method and a novel classifier-consistent method. To the best of our knowledge,
we provided the first risk-consistent PLL method. Besides, our proposed methods do not reply on
specific models and can be easily trained with stochastic optimization, which ensures their scalability
to large-scale datasets. In addition, we theoretically derived an estimation error bound for each of the
proposed methods. Finally, extensive experimental results clearly demonstrated the effectiveness of
the proposed generation model and two PLL methods.
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Broader Impact

A potential application of our proposed partial-label learning methods would be data privacy. For
example, when we collect some survey data, we may ask respondents to answer some extremely
private questions. It would be difficult for us to directly obtain the ground-truth answer (label) to the
question. However, it would be easier for us to obtain a set of candidate labels that contains the true
label, since it is mentally less demanding for respondents to remove several obviously wrong labels.
In this case, our proposed partial-label learning methods can be used.

There may also exist some negative impacts of our proposed methods. For example, an adversary
might deliberately ask a person to give some candidate choices or remove some improper choices
to specially designed questions, so that high-quality partially labeled data could be collected. The
adversary may apply the proposed partial-label learning methods to learn from the collected partially
labeled data. As a consequence, some extremely private data of the person would be divulged or
leveraged by the adversary. In addition, if partial-label learning methods are very effective and
prevalent, the need for accurately annotated data would be significantly reduced. As a result, the rate
of unemployment for data annotation specialists might be increased.
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