
Deep Attentive Belief Propagation: Integrating
Reasoning and Learning for Solving Constraint

Optimization Problems

Yanchen Deng
School of Computer Science and Engineering

Nanyang Technological University
ycdeng@ntu.edu.sg

Shufeng Kong ∗

School of Software Engineering
Sun Yat-sen University

kongshf@mail.sysu.edu.cn

Caihua Liu
School of Artificial Intelligence

Guilin University of Electronic Technology
caihua.liu@alumni.uts.edu.au

Bo An
School of Computer Science and Engineering

Nanyang Technological University
boan@ntu.edu.sg

Abstract

Belief Propagation (BP) is an important message-passing algorithm for various
reasoning tasks over graphical models, including solving the Constraint Optimiza-
tion Problems (COPs). It has been shown that BP can achieve state-of-the-art
performance on various benchmarks by mixing old and new messages before
sending the new one, i.e., damping. However, existing methods of tuning a static
damping factor for BP not only are laborious but also harm their performance.
Moreover, existing BP algorithms treat each variable node’s neighbors equally
when composing a new message, which also limits their exploration ability. To
address these issues, we seamlessly integrate BP, Gated Recurrent Units (GRUs),
and Graph Attention Networks (GATs) within the message-passing framework
to reason about dynamic weights and damping factors for composing new BP
messages. Our model, Deep Attentive Belief Propagation (DABP), takes the factor
graph and the BP messages in each iteration as the input and infers the optimal
weights and damping factors through GRUs and GATs, followed by a multi-head
attention layer. Furthermore, unlike existing neural-based BP variants, we propose
a novel self-supervised learning algorithm for DABP with a smoothed solution
cost, which does not require expensive training labels and also avoids the common
out-of-distribution issue through efficient online learning. Extensive experiments
show that our model significantly outperforms state-of-the-art baselines.

1 Introduction

Belief Propagation (BP) [25, 34] is an important message-passing algorithm for various reasoning
tasks over graphical models, e.g., computing partition function of a Markov random field [49],
estimating the marginal distribution of a given set of random variables [1], and decoding LPDC codes
[30]. Constraint Optimization Problems (COPs) [31, 39] are a general mathematical paradigm for
modeling many real-world problems like transportation, supply chain, energy, finance, and scheduling
[6, 22, 23, 39]. When solving COPs, BP, also known as Min-sum message passing [15], seeks to
find a cost-optimal solution by propagating cost information over the corresponding factor graph.

∗Correspondence to: Shufeng Kong <kongshf@mail.sysu.edu.cn>

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

It is known that vanilla BP does not guarantee convergence on a factor graph containing loops and
thus, it often explores low-quality solutions on COPs with cyclic factor graphs due to excessive loopy
propagation. Therefore, considerable research efforts [7, 9, 36–38, 53] have been devoted to tackling
the convergence issue of loopy BP. Among them, Damped BP (DBP)1 [9] has drawn significant
attention recently. By mixing the new message composed in each iteration with the old message
composed in the previous iteration, i.e., damping, it has been shown that DBP with a suitable damping
factor will often converge and achieve state-of-the-art performance in practice. In fact, damping can
be considered as a degree of freedom to balance exploration and exploitation in BP [9].

Due to the significant impact of damping on BP [52], a damping factor is often treated as a hyperpa-
rameter and requires laborious case-by-case tuning. Besides, existing works often use a homogeneous
and static damping factor for all variable-nodes which limits DBP’s capability. Moreover, DBP
simply treats each variable-node’s neighbors equally when composing a new message, which fails to
explore optimal composition strategy. On the other hand, Deep Neural Networks (DNNs) have been
applied to boost the performance of BP [26, 41, 50]. However, existing DNN-based BP variants often
require supervised learning and expensive training labels and thus, they cannot be directly applied to
solve COPs when training labels are not available. They also manipulate or simulate the BP messages
with some black-box DNN components, which destroys the semantic of a BP message being the
weighted sum of cost functions’ marginalizations and thus, the variable decision-making rule of BP
for COPs is no longer applied (i.e., selecting the assignments with the minimum beliefs).

To address the above issues, we propose the first self-supervised DNN-based BP for solving COPs by
seamlessly integrating BP, Gated Recurrent Units (GRUs) [8], and Graph Attention Networks (GATs)
[45] within the massage-passing framework to reason about dynamic weights and damping factors
for composing new BP messages. Specifically, we make the following key contributions:

• We extend DBP by allowing dynamic damping factors and different neighbor weights for
each variable-node. Consequently, we have more fine-grained control for composing new
messages to trigger effective exploration without altering the semantic of BP messages.

• We infer the optimal damping factors and neighbor weights for each iteration automatically
by seamlessly integrating BP and DNNs. Our model, Deep Attentive Belief Propagation
(DABP)2, firstly embeds respectively the factor graph and BP messages with GATs and
GRUs, and infers damping factors and neighbor weights through a multi-head attention
[2, 43] layer; Then, BP runs with those updated factors and weights to compose and
propagate new messages, and so on. Note that integrating GRUs can capture the dynamics
of BP messages and avoid the gradient vanishing/exploding issue in long BP reasoning
sequences.

• We further equip our DABP with a novel self-supervised learning loss which is a smoothed
surrogate for the cost under BP decision-making rule. Therefore, unlike existing DNN-based
BP variants, we do not require expensive training labels which are often not available in
practice, and also our model can avoid out-of-distribution issue with efficient online learning.

• We conduct extensive experimental evaluations on four standard benchmarks. The results
show that our DABP achieves significantly higher convergence rate, where it successfully
converges on average 96.25% instances given 1000 iterations, and it also outperforms the
state-of-the-art baselines by considerable margins.

2 Related Work

Although COP is NP-hard in general [39], many algorithms have been proposed to solve it in the
last several decades, such as BP, local search [19], branch and bound [28], and bucket elimination
[11]. Among them, Min-sum BP is an effective approximate algorithm for solving COPs and
has been successfully applied to many real-world scenarios [15, 20, 29]. However, vanilla BP
offers no convergence guarantee and usually returns low-quality solutions on problems with cyclic
factor graphs. Rogers et al. proposed to ensure convergence and have a lower bound on solution
quality by relaxing the problem, i.e., removing edges to have acyclic factor graphs [36] through
minimization marginalization. Further, Rollon et al. improved the bounding scheme by considering

1The method is referred as “Damped Max-sum" in [9]. We use Damped BP for a coherent presentation.
2The implementation is publicly available at https://github.com/ycdeng-ntu/DABP

2

both minimization and maximization marginalization [37] and decomposing high-arity factors into
unary functions [38]. On the other hand, Zivan et al. proposed to avoid loopy message propagation by
strictly controlling the message-passing direction [53]. They also introduced the Value Propagation
(VP) scheme to enforce exploitation. To balance exploration and exploitation, a set of non-consecutive
VP strategies are proposed [7] as well. Recently, Damped BP (DBP) [9] has been proposed to enhance
convergence as well as solution quality in loopy BP by mixing the new messages composed in each
iteration with the old messages in previous iterations with a suitable damping factor. However,
selecting a good damping factor often requires expertise and laborious case-by-case tuning [52], and
DBP uses a static damping factor and treats each node’s neighbors equally when composing a new
message, which limits its exploration. Our DABP overcomes the aforementioned issues by learning
to attend neighbors with dynamic damping factors and neighbor weights when composing new BP
messages. Obviously, DABP generalizes DBP since DBP can be considered as a static version of
DABP. Moreover, equipped with a self-supervised learning algorithm, our DABP is able to infer the
optimal damping factors and weights to enhance the performance of DBP.

On the other hand, LP-based methods solve a COP by leveraging message-passing to solve a Linear
Program (LP) relaxation of the combinatorial problem. MPLP [17] is a simple BP variant that
solves the convex-dual of the LP relaxation via block gradient descent. Unfortunately, the global
convergence is not always guaranteed since coordinate descent may get stuck in suboptimal points.
Tree-reweighted belief propagation (TRBP) [47] and Fractional Belief Propagation [48] consider
respectively a linear combination of free energies defined on spanning trees of the factor graph
and a fractional free energy that generalizes the well-known Bethe free energy. Finally, Norm-
Product [18] provides a uniform framework that generalizes Max-product, Sum-product and their
TRBP counterpart. Unlike these methods, our DABP directly solve the problem by learning optimal
hyperparameters for DBP, and does not require any form of LP relaxation which may either induce
intractable number of constraints or only offer a lower bound [27].

Recently, there has been increasing interest in applying DNNs to boost the performance of BP. The
most relevant works including: NEBP [41] learns to refine BP messages with some black-box DNN
components in each iteration and is applied to solve the error correction decoding task; In the same
vein, BPNN [26] uses damping layers to modify factor-to-variable messages and is applied to estimate
the partition function of Probabilistic Graphical Models (PGMs); FGNN [50] generalizes Graph
Neural Networks (GNNs) to represent Max-Product BP and is applied to find approximate Maximum
A Posteriori (MAP) assignment of a PGM. However, all these methods require supervised learning
and cannot be directly applied to solve COPs when training labels are not available; They also destroy
the semantic of a BP message being the weighted sum of cost functions’ marginalizations. Contrarily,
we only learn optimal dynamic factors and neighbor weights with DNNs to generalize DBP, which
preserves the semantic of the BP messages and also enables us using a self-supervised manner to
train our model. Therefore, our model does not require expensive training labels which are often not
available in practice due to the heavy computation of exact solvers; and also avoids out-of-distribution
issue and enjoys a nice anytime property [51] through efficient online learning.

Our method is also closely related to using DNNs to solve combinatorial problems [5, 13, 24, 32, 46].
In the context of COP solving, Neural RM-RRS [14] uses Multi-layer Perceptrons (MLPs) to
parameterize high-dimensional regret tables produced by context-based regret-matching. Similarly,
Deep Bucket Elimination (DBE) [35] uses MLPs to approximate the large bucket functions [11].
Recently, Deng et al. [13] proposed a pretrained cost model which predicts the optimal cost of a given
partially instantiated COP. The predicted cost is then used to construct heuristics for various COP
algorithms such as Large Neighborhood Search (LNS) [19] and backtracking search. These methods
either replace some heavy computation components of COP algorithms by a fast DNN approximation,
or learn effective heuristics (or hyperparameters) to boost the performance of COP algorithms, and
our method falls into the second category.

3 Backgrounds

In this section, we review the backgrounds of COPs, factor graphs, and Min-sum BP.

3

3.1 Constraint Optimization Problems and Factor Graph

A Constraint Optimization Problem (COP) [31] is defined by a triplet ⟨X,D,F ⟩, which corresponds
to the set of variables, domains, and constraint functions, respectively. Each variable xi ∈ X is
associated with a finite domain Di ∈ D. Each constraint function fℓ ∈ F with scope scp(fℓ) ⊆ X
specifies the cost for each possible assignment of the variables in its scope. The objective is to find a
solution τ∗ = (τ∗1 , . . . , τ

∗
|X|) ∈ Πxi∈XDi such that the total cost is minimized:

τ∗ = argmin
τ∈Πxi∈XDi

∑
fℓ∈F

fℓ(τ |scp(fℓ)), (1)

where τ |scp(fℓ) is the projection of τ on scp(fℓ). A COP can be represented by a factor graph which
is a bipartite graph consisting of variable-nodes and function-nodes. Variable-nodes correspond to
the variables, and function-nodes correspond to the constraint functions in a COP. An edge between a
variable-node and a function-node is established if the variable belongs to the scope of the function.

3.2 Min-sum Belief Propagation

Min-sum Belief Propagation (Min-sum BP) [15] is an important algorithm for COPs which performs
message-passing on factor graphs. More specifically, the message sent from a variable-node xi to its
neighbor fℓ in iteration t is a function µtxi→fℓ

: Di → R computed by

µtxi→fℓ
=

∑
fm∈Ni\{fℓ}

µt−1
fm→xi

, (2)

where Ni is the neighbors of xi in the factor graph, and µt−1
fm→xi

: Di → R is the message sent from
fm to xi in the previous iteration. Similarly, fℓ computes a message for its neighbor xi by

µtfℓ→xi
= min

Nℓ\{xi}

fℓ + ∑
xj∈Nℓ\{xi}

µt−1
xj→fℓ

 . (3)

Finally, variable-node xi makes a decision by choosing a value with minimum belief cost:

τ ti = argmin
τi∈Di

∑
fℓ∈Ni

µtfℓ→xi
(τi), (4)

where µtfℓ→xi
(τi) is the belief cost of assignment τi in the message µtfℓ→xi

.

However, vanilla Min-sum BP usually suffers from non-convergence and explores low-quality
solutions on cyclic COPs due to excessive loopy propagation. Damped BP (DBP) [9] attempts to
alleviate the issues by damping the messages sent from variable-nodes to function-nodes. Formally,

µtxi→fℓ
= λµt−1

xi→fℓ
+ (1− λ)

∑
fm∈Ni\{fℓ}

µt−1
fm→xi

. (5)

By choosing a suitable damping factor λ ∈ (0, 1], DBP can drastically increase the chance of
convergence as well as the performance of vanilla Min-sum BP.

4 Deep Attentive Belief Propagation

Although message damping has proved to be an effective technique to improve the performance
of BP on COPs [9], it still suffers from various issues. First, selecting a damping factor is largely
accomplished by empirical tuning, which could be laborious and the number of trials is limited
by computational resources and/or runtime. Second, using a homogeneous and static damping
factor for all variable-nodes may limit DBP’s capability. Finally, DBP simply treats each variable-
node’s neighbors equally when composing a new message, which fails to explore optimal message
composition strategy.

We address the above limitations by allowing dynamic damping factors and different neighbor weights
for each variable-node. More specifically, in our framework a variable-node xi computes a message
to function-node fℓ at iteration t by

µtxi→fℓ
= λti→ℓµ

t−1
xi→fℓ

+ (1− λti→ℓ)(|Ni| − 1)
∑

fm∈Ni\{fℓ}

wtm→i(ℓ)µ
t−1
fm→xi

, (6)

4

(a) Vanilla BP

(b) DBP

(c) DABP

Figure 1: Comparison of BP variants. Obviously, our DABP generalizes both vanilla BP and DBP.

where λti→ℓ ∈ [0, 1] and wtm→i(ℓ) ∈ [0, 1] are learnable damping factor and neighbor weights for the
message from xi to fℓ at iteration t, respectively. Particularly, we require

∑
fm∈Ni\{fℓ} w

t
m→i(ℓ) = 1

and use |Ni| − 1 to rescale the weighted sum of the messages from neighbors. Consequently, we
have more fine-grained control for composing new messages to trigger effective exploration without
altering the semantic of BP messages. Fig. 1 compares three different BP variants.

A key challenge of our framework is to determine the values of a large number of time-varying
damping factors and neighbor weights (cf. Eq. (6)). Given a factor graph with |X| variables and
maximum degree of d, running for T iterations would require to select O(T |X|d2) hyperparameters
from the continuous range of [0, 1], which obviously cannot be done by the traditional trial-based
hyperparameter tuning methods (e.g., grid search, evolutionary optimization).

Therefore, we propose to automatically infer the optimal hyperparameters for Eq. (6) in each iteration
by seamlessly integrating BP and DNNs within the parallel message-passing framework. Our model,
Deep Attentive Belief Propagation (DABP), directly outputs the optimal damping factors and weights
by learning to attend neighbors given the factor graph and the BP messages in each iteration:

wt,λt = Mθ

(
FG,µ1:t−1

x→f ,µ
1:t−1
f→x

)
, (7)

where FG is the factor graph, µ1:t−1
x→f and µ1:t−1

f→x are the BP messages from variable-nodes to
function-nodes and from function-nodes to variable-nodes in the previous iterations, respectively.

However, implementing such DNN-based model requires to perform inference along with BP
message-passing iterations (cf. Eq. (7)), which could incur a severe gradient vanishing or gradient
exploding problem in a long reasoning sequence. Moreover, obtaining optimal training labels can be
extremely expensive for COPs due to the heavy computation of exact solvers, making it impracticable
to perform supervised model training on large instances. In Sect. 4.1, we address the first problem by
introducing GRUs as a part of our encoder; while we design a novel self-supervised loss function and
an efficient online learning framework in Sect. 4.2 to address the second issue.

4.1 Model Architecture

Fig. 2 gives the overall architecture of our DABP. It consists of an encoder to embed the factor graph
and the BP messages, and an attention module to infer the dynamic optimal hyperparameters.

Encoder. The purpose of our encoder is to embed the factor graph given a sequence of BP mes-
sages (cf. Fig. 2(a-d)). Therefore, to capture the BP message dynamics and avoid gradient van-
ishing/exploding issue, we first use two GRUs to embed the BP messages from variable-nodes
to function-nodes and the ones from function-nodes to variable-nodes into q-dimensional vectors,
respectively (cf. Fig. 2(b)):

ht
x→f = GRUϕ1

(ht−1
x→f ,µ

t−1
x→f), ht

f→x = GRUϕ2
(ht−1

f→x,µ
t−1
f→x), (8)

where ht
x→f ,h

t
f→x ∈ Rr×q are the message hiddens for iteration t and r is the number of edges in

the factor graph.

To consider both the topology of a factor graph and the message dynamics, we insert a set of message
nodes that carry the message hiddens (i.e., the brown and green dots in Fig. 2(c)) and make the graph
directed to reflect the message-passing directions. Then the augmented factor graph is embedded
through G layers of GAT (cf. Fig. 2(d)). Formally, in the g ∈ {1, . . . , G}-th layer GATψg

, we

5

Figure 2: The overall architecture of DABP: (a) The BP messages from iteration t− 1; (b) To update
the message hidden vectors with the messages from iteration t− 1. Note that these message hidden
vectors capture the dynamics of a sequence of BP messages; (c) To insert message nodes with the
hidden vectors into the factor graph; (d) To embed the augmented factor graph; (e) To infer optimal
hyperparameters by using a multi-head attention layer (MHA); and (f) To compose and propagate
new messages with updated hyperparameters and compute training loss in iteration t.

compute the embedding et,(g)i for node i according to

e
t,(g)
i = LeakyReLU

∑
j∈Ni

α
(g)
ij W (g)e

t,(g−1)
j

 , α
(g)
ij =

exp(s
(g)
ij)∑

j′∈Ni
exp(s

(g)
ij′)

, (9)

where W (g) ∈ ψg is a learnable matrix, s(g)ij = a(g)(W (g)e
t,(g−1)
i ,W (g)e

t,(g−1)
j) is the attention

score between nodes i and j, and a(g) is a single-layer feed-forward neural network.

Attention Module. Given the embedding et,(G)
ℓ for each fℓ ∈ F , we update the damping factors

and neighbor weights by using a multi-head attention (MHA) layer [43] (cf. Fig. 2(e)), where queries
and keys are the embeddings of the target and corresponding neighboring function-nodes, respectively.
Specifically, for each variable-node xi and a target function-node fℓ ∈ Ni, we first compute an
attention score for each neighboring function-node fm ∈ Ni in k ∈ {1, . . . ,K}-th head Attζk by:

at,(k)m (ℓ) = σ
(
W

(k)
1

[
W

(k)
2 e

t,(G)
ℓ ||W (k)

3 et,(G)
m

])
, (10)

where σ is the Sigmoid function, || is the concatenation operation and W
(k)
1 ,W

(k)
2 ,W

(k)
3 ∈ ζk

are learnable matrices, respectively. Then the attention scores are normalized to compute neighbor
weights respect to target function-node fℓ:

w
t,(k)
m→i(ℓ) =

exp
(
a
t,(k)
m (ℓ)

)
∑
fm′∈Ni\{fℓ} exp

(
a
t,(k)
m′ (ℓ)

) , ∀fm ∈ Ni\{fℓ}. (11)

Similarly, the damping factor is computed by normalizing the attention score of fℓ w.r.t. the mean
attention score of the remaining neighboring function-nodes:

λ
t,(k)
i→ℓ =

exp
(
a
t,(k)
ℓ (ℓ)

)
exp

(
a
t,(k)
ℓ (ℓ)

)
+ exp

(
1

|Ni|−1

∑
fm′∈Ni\{fℓ} a

t,(k)
m′ (ℓ)

) (12)

Finally, both the neighbor weights and damping factors are normalized across different heads, i.e.,

λti→ℓ =

∑K
k=1 λ

t,(k)
i→ℓ

K
, wtm→i(ℓ) =

∑K
k=1 w

t,(k)
m→i(ℓ)

K
, ∀fm ∈ Ni\{fℓ}, (13)

and are plugged into Eq.(6) to compute new BP messages for iteration t (cf. Fig. 2(f)).

6

Algorithm 1 A self-supervised online learning algorithm for the DABP model Mθ

Input: A COP instance P = ⟨X,D,F ⟩, the number of restart R, the maximal iteration limit Tmax, the update
interval Tupd ≤ Tmax, and the number of effective iterations Teff ∈ {1, . . . , Tupd}

1: τ∗ ← nil; FG← factor graph of P
2: for rs = 1, . . . , R do
3: µ0

xi→fℓ
← 0, µ0

fℓ→xi
← 0,∀xi ∈ X, fℓ ∈ Ni

4: for t = 1, . . . , Tmax do
5: wt,λt ←Mθ

(
FG,µt−1

x→f ,µ
t−1
f→x

)
6: compute µt

xi→fℓ
according to Eq. (6) with hyperparameters wt,λt,∀xi ∈ X, fℓ ∈ Ni

7: compute µt
fℓ→xi

according to Eq. (3) ∀xi ∈ X, fℓ ∈ Ni

8: compute solution τ t = ⟨τ t
1, . . . , τ

t
|X|⟩ according to Eq. (4)

9: if cost(τ∗)>cost(τ t) then τ∗ ← τ t

10: if t % Tupd = 0 then
11: T ∗ ← select the best Teff iterations according to cost(τ t′), t− Tupd < t′ ≤ t
12: compute L(θ) according to Eq. (16), θ ←ADAM(θ,∇L(θ))
13: if BP messages converge then break

return τ∗

4.2 A Novel Self-supervised Learning Algorithm for Solving COPs

Recall that our objective is to find a cost-optimal solution (cf. Eq. (1)), a natural choice of the loss
function would be the cost of the solution induced by BP messages in each iteration. Unfortunately,
such loss function is not differentiable since variables are greedily assigned via argmin (cf. Eq. (4)).
Instead, we propose to use a smoothed cost as the surrogate objective. Formally, for each iteration t,
we consider the following self-supervised objective:

losst =
∑
fℓ∈F

 ∑
⟨τi1 ,...,τin ⟩∈Πxi∈scp(fℓ)

Di

fℓ(τi1 , . . . , τin)
∏
j=1:n

ptij (τij)

 , (14)

where pti(τi) is the probability of xi = τi under the current belief, i.e.,

pti(τi) =
exp(−bti(τi))∑

τ ′
i∈Di

exp(−bti(τ ′i))
, bti(τi) =

∑
fℓ∈Ni

µtfℓ→xi
(τi). (15)

Intuitively, an assignment τi is associated with a high probability if it has a low belief cost bti(τi),
which simulates the behavior of argmin in Eq. (4) and is in alignment with the objective in Eq. (1).

We now theoretically show the error bound of the smoothed cost. Proof is given in Appendix A.
Theorem 1. Let ∆ℓ = max⟨τi1 ,...,τin ⟩ fℓ(τi1 , . . . , τin)−min⟨τi1 ,...,τin ⟩ fℓ(τi1 , . . . , τin) be the max-
imum difference between cost values of each constraint function fℓ and τ t = ⟨τ t1, . . . , τ t|X|⟩ be the
assignment induced by Eq. (4). We have∣∣∣∣∣∣losst −

∑
fℓ∈F

fℓ(τ
t|scp(fℓ))

∣∣∣∣∣∣ ≤
∑
fℓ∈F

∆ℓ

1−
∏

xi∈scp(fℓ)

1

|Di|

 .

Given the smoothed objective for each iteration, we define the following loss function:

L(θ) = 1

|T ∗|
∑
t∈T∗

losst, (16)

where θ = {ϕ1, ϕ2, [ψ1, . . . , ψG], [ζ1, . . . , ζK]} is the model parameters and T ∗ is a selected subset
of iterations used for optimizing, respectively. Particularly, we rank each iteration t according to
the quality of solution τ t and select the best Teff iterations as effective iterations T ∗. This way, we
encourage exploration by considering only good-enough solutions.

Since our model is self-supervised by the smoothed cost, there is no need for costly label generation
for each instance and thus, DABP can be directly applied to solve COPs via online learning without

7

any pre-training procedure. That is, from an initial DABP model Mθ, we continuously improve it
by training on the instance multiple rounds (i.e., restart) on the COP to be solved and return the
best solution as the result. Therefore, our DABP avoids the out-of-distribution issue and has a nice
anytime property [51]. The procedure is detailed in Alg. 1.

Specifically, each round of restart begins with resetting BP messages to zero vectors (line 3), followed
by a sequence of message-passing iterations (line 4-13). In each iteration, we query our DABP for the
damping factors and neighbor weights (line 5), perform BP message passing according to the updated
hyperparameters (line 6-7), and finally update the current best solution (line 8-9). Particularly, we
perform model update every Tupd iterations (line 10-12) and thus, we further alleviate the gradient
vanishing/exploding issue by restricting the maximum length of reasoning sequence to Tupd. Lastly,
we early stop each round whenever BP messages converge (line 13) and return the best solution.

5 Empirical Evaluations

In this section, we perform extensive empirical studies. We begin with introducing the details of
experiments and implementation. Then we analyze the impact of the number of selected effective
iterations in Alg. 1. Finally, we show the great superiority of our DABP over the state-of-the-arts.

Benchmarks & Baselines. We consider four types of standard benchmarks in our experiments, i.e.,
random COPs, scale-free networks, small-world networks, and Weighted Graph Coloring Problems
(WGCPs). For random COPs and WGCPs, constraints are randomly established according to graph
density p1 ∈ (0, 1]. For scale-free networks, we use the BA model [4] with parameters m0,m1 ∈ Z+

to generate constraints. Finally, we generate constraints for small-world networks by using Newman-
Watts-Strogatz model [33] with parameters k ∈ Z+, p ∈ [0, 1].

For baselines, we compare our DABP with the following state-of-the-art COP solvers: (1) DBP
with a damping factor of 0.9 and its splitting constraint factor graph version (DBP-SCFG) with a
splitting ratio of 0.95 [9]; (2) GAT-PCM-LNS with a destroy probability of 0.2 [13]; (3) Mini-bucket
Elimination (MBE) with an i-bound of 9 [12], and (4) Toulbar2 with timeout of 1200s [10].

All experiments are conducted on an Intel i9-9820X workstation with GeForce RTX 3090 GPUs and
384GB memory. We report the best solution cost for each run, and for each experiment we average
the results over 100 random problem instances. Due to the space constraint, we defer the details of
benchmarks and baselines to Appendix B.1 and B.2, respectively.

Implementation. Our DABP consists of two GRUs which embeds BP messages into 8-dimensional
hidden vectors, followed by G = 4 layers of GAT, each of them has 8 output channels and 4 attention-
heads. We then infer the optimal damping factors and neighbor weights by using a multi-head
attention layer with K = 4 attention-heads. Finally, we also adopt the SCFG scheme with the
splitting ratio of 0.95 [9]. Our model was implemented with the PyTorch Geometric framework
[16] and the model was trained with the Adam optimizer [21] using a learning rate of 10−4 and a
weight decay ratio of 5× 10−5. For each instance, we perform R = 20 restarts with iteration limit
Tmax = 1000 and update the model every Tupd = 20 iterations.

Performance Comparison. Table 1 compares the performance of different methods on the four
standard benchmarks. We observe that, although given a relatively high timeout (i.e., 20 minutes),
Toulbar2 still performs poorly on the most test cases. This is not surprising because it systematically
explores the whole solution space, which is often infeasible for large problem instances. Also, it
highlights the extreme difficulty of obtaining optimal labels with an exact solver for the existing DNN-
based BP variants. MBE, on the other hand, performs memory-bounded inference and thus runs much
faster than Toulbar. However, MBE fails to find good solutions and is strictly dominated by the other
algorithms. GAT-PCM-LNS performs iterative large neighborhood search with a machine-learned
repair heuristic and often outperforms DBP. However, GAT-PCM-LNS requires significant longer
runtime than DBP since it needs to perform multiple times of model inference in each iteration to
re-assign the destroyed variables. With a small modification in a factor graph, DBP-SCFG drastically
improves the performance of DBP but it is computationally heavier. That is because the number of
function-nodes in DBP-SCFG is doubled due to constraint function splitting.

8

Table 1: The performance of different methods. Costs are normalized by the number of constraints
|F |. Gap is the ratio of cost difference w.r.t. the best result. The best results are shown in bold.

Random COPs (p1 = 0.25)

|X| = 60 |X| = 80 |X| = 100
Methods Cost Gap Time Cost Gap Time Cost Gap Time

Toulbar2 29.26 7.88% 20m 32.49 8.23% 20m 34.36 7.23% 20m
MBE 32.04 18.11% 4m2s 34.85 16.10% 8m38s 36.76 14.72% 11m58s
GAT-PCM-LNS 28.00 3.21% 5m27s 30.80 2.59% 12m55s 32.78 2.31% 24m47s
DBP 27.86 2.72% 1m11s 30.79 2.58% 2m25s 33.06 3.17% 4m18s
DBP-SCFG 27.60 1.77% 52s 30.50 1.60% 2m6s 32.45 1.28% 3m59s

DABP (R = 5) 27.19 0.24% 1m4s 30.09 0.23% 1m20s 32.12 0.26% 1m49s
DABP (R = 10) 27.16 0.12% 2m2s 30.05 0.10% 2m41s 32.07 0.10% 3m37s
DABP (R = 20) 27.12 0.00% 4m 30.02 0.00% 5m20s 32.04 0.00% 7m20s

WGCPs (p1 = 0.25)

Toulbar2 0.18 0.00% 20m 1.23 41.06% 20m 2.11 42.09% 20m
MBE 1.98 1028.69% 0s 2.81 223.13% 0s 3.43 131.05% 1s
GAT-PCM-LNS 0.51 191.35% 57s 1.16 33.98% 2m40s 1.79 20.47% 5m56s
DBP 1.78 913.53% 29s 3.03 249.36% 1m4s 3.79 154.99% 1m55s
DBP-SCFG 0.40 130.39% 30s 1.04 19.77% 1m59s 1.69 13.97% 4m29s

DABP (R = 5) 0.32 80.52% 1m9s 0.89 2.39% 2m53s 1.57 5.50% 5m47s
DABP (R = 10) 0.30 73.80% 2m15s 0.88 0.92% 5m37s 1.50 0.69% 11m19s
DABP (R = 20) 0.29 67.12% 4m26s 0.87 0.00% 11m10s 1.49 0.00% 22m35s

Scale-free networks (m0 = m1 = 10)

Toulbar2 31.01 7.51% 20m 31.70 8.07% 20m 32.69 10.51% 20m
MBE 33.70 16.85% 4m8s 34.26 16.82% 5m43s 34.58 16.91% 7m9s
GAT-PCM-LNS 29.62 2.70% 6m25s 30.41 3.66% 10m55s 31.10 5.16% 17m7s
DBP 29.32 1.65% 1m16s 30.11 2.66% 2m8s 30.47 3.04% 2m57s
DBP-SCFG 29.27 1.46% 1m18s 29.76 1.47% 1m51s 30.01 1.48% 2m27s

DABP (R = 5) 28.93 0.30% 1m2s 29.43 0.32% 1m15s 29.67 0.33% 1m18s
DABP (R = 10) 28.87 0.10% 2m2s 29.38 0.17% 2m33s 29.62 0.15% 2m37s
DABP (R = 20) 28.84 0.00% 4m3s 29.33 0.00% 5m9s 29.58 0.00% 5m12s

Small-world networks (k = 10, p = 0.3)

Toulbar2 27.98 8.72% 20m 28.28 10.37% 20m 28.36 10.60% 20m
MBE 29.67 15.26% 2m46s 29.39 14.71% 3m39s 29.54 15.17% 4m50s
GAT-PCM-LNS 26.75 3.93% 4m 26.65 4.04% 6m19s 26.68 4.02% 9m12s
DBP 26.77 4.02% 1m 27.03 5.52% 1m23s 27.40 6.83% 1m50s
DBP-SCFG 26.30 2.17% 1m4s 26.09 1.83% 1m31s 26.13 1.90% 2m10s

DABP (R = 5) 25.84 0.39% 1m15s 25.70 0.33% 1m31s 25.73 0.34% 1m56s
DABP (R = 10) 25.78 0.15% 2m36s 25.65 0.14% 3m6s 25.70 0.20% 3m49s
DABP (R = 20) 25.74 0.00% 5m8s 25.62 0.00% 6m20s 25.65 0.00% 7m31s

Our DABP exhibits great superiority in various benchmarks. Specifically, given 5 times of restart,
DABP substantially outperforms DBP-SCFG, which is currently the strongest approximate solver for
COPs, on all test cases and the gap is widened with the increasing R. This demonstrates the merits
of our learned dynamic damping factors and neighbor weights over the static and homogeneous
counterpart. Importantly, although our DABP requires to perform online learning when solve
each instance, our DABP’s runtime results are still comparable to DBP-SCFG and also scales up
well to large problem instances, thanks to our seamlessly integration of BP and DNNs within the
message-passing framework which enables efficient parallel computation on GPUs. In fact, when
applied to scale-free networks, DABP (R = 5) requires less runtime for all configurations, and has
a much lower growing rate (∼23.81%) than DBP-SCFG (∼37.37%). Besides, equipped with the
self-supervised loss function for minimizing the smoothed cost, our DABP is able to infer the optimal
hyperparameters that foster fast convergence, which also improves our model’s efficiency.

Further Performance Analysis. We further compare the solution quality of different methods
in each iteration and analyze the convergence rate of BP variants on the problem instances with
|X| = 803 in Fig. 3 and Fig. 4, respectively. We omit the cases of DABP with R = 10 and R = 20
in Fig. 4 since they are similar to the one of DABP (R = 5). It can be seen that DBP improves
slowly and fails to find good solutions within 1000 iterations, especially on WGCPs. DBP-SCFG

3The results for the instances with |X| = 60 and |X| = 100 can be found in Appendix B.4

9

0 200 400 600 800 1000
Iteration

30

31

32

33

34

35

No
rm

al
ize

d
co

st

MBE
Toulbar
GAT-PCM-LNS
DBP
DBP-SCFG
DABP (R=5)
DABP (R=10)
DABP (R=20)

(a) Random COPs

0 200 400 600 800 1000
Iteration

1.0

1.5

2.0

2.5

3.0

No
rm

al
ize

d
co

st

(b) WGCPs

0 200 400 600 800 1000
Iteration

30

31

32

33

34

No
rm

al
ize

d
co

st

(c) SF networks

0 200 400 600 800 1000
Iteration

26

27

28

29

No
rm

al
ize

d
co

st

(d) SW networks

Figure 3: Solution quality comparison. Shaded areas show the 95% confidence intervals.

50 100 250 500 1000
Iteration limit

0

20

40

60

80

100

Co
nv

er
ge

nc
e

ra
te

 (%
)

DBP
DBP-SCFG
DABP (R=5)

(a) Random COPs

50 100 250 500 1000
Iteration limit

0

20

40

60

80

100
Co

nv
er

ge
nc

e
ra

te
 (%

)

(b) WGCPs

50 100 250 500 1000
Iteration limit

0

20

40

60

80

100

Co
nv

er
ge

nc
e

ra
te

 (%
)

(c) SF networks

50 100 250 500 1000
Iteration limit

0

20

40

60

80

100

Co
nv

er
ge

nc
e

ra
te

 (%
)

(d) SW networks

Figure 4: Convergence rates under different iteration limits.

substantially improves the convergence as well as solution quality of DBP by introducing another
degree of freedom through asymmetric function splitting [9]. On the other hand, our DABP allows
more flexibility in composing BP messages by reasoning optimal dynamic hyperparameters through
seamlessly integrating BP and DNNs, and it also significantly outperforms and converges much faster
than both DBP and DBP-SCFG.

6 Conclusion

In this paper, we propose DABP, the first self-supervised DNN-based BP for solving COPs. By
allowing dynamic damping factors and different neighbor weights for each variable-node, our DABP
strictly generalizes the state-of-the-art DBP and has more fine-grained control for composing new
messages to trigger effective exploration without altering the semantic of BP messages. Moreover, by
seamlessly integrating BP, GRUs and GATs within the massage-passing framework, DABP is able
to infer the optimal hyperparameters automatically according to the BP message dynamics. Finally,
equipped with a novel self-supervised loss function, our DABP does not require expensive training
labels and can avoid out-of-distribution issue with efficient online learning. Extensive experiments
confirm the great superiority of our DABP over the state-of-the-art baselines.

Since it relies smoothed costs as the self-supervised loss function, our DABP is dedicated to solve
COPs and is not trivial to be adapted for other scenarios. Therefore, in future we will explore more
training paradigms to extend our model to solve other important reasoning tasks over graphical
models, e.g., computing partition function [49], and finding constrained most probable explanation
[40]. It is also interesting to further boost the performance of our model by incorporating popular
deep learning techniques such as contrastive learning [3] and transformer [44].

Acknowledgement

This research is supported by the National Research Foundation, Singapore under its Industry Align-
ment Fund – Pre-positioning (IAF-PP) Funding Initiative. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do not reflect the views of
National Research Foundation, Singapore. We sincerely thank Professor Rina Dechter at University
of California, Irvine for her helpful discussions and suggestions.

10

References
[1] Srinivas M Aji and Robert J McEliece. The generalized distributive law. IEEE Transactions on

Information Theory, 46(2):325–343, 2000.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In ICLR, 2015.

[3] Junwen Bai, Shufeng Kong, and Carla P Gomes. Gaussian mixture variational autoencoder
with contrastive learning for multi-label classification. In ICML, pages 1383–1398, 2022.

[4] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

[5] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial
optimization: A methodological tour d’horizon. European Journal of Operational Research,
290(2):405–421, 2021.

[6] Dimitri P Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Academic
Press, 2014.

[7] Ziyu Chen, Yanchen Deng, Tengfei Wu, and Zhongshi He. A class of iterative refined max-
sum algorithms via non-consecutive value propagation strategies. Autonomous Agents and
Multi-Agent Systems, 32(6):822–860, 2018.

[8] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-
decoder for statistical machine translation. In EMNLP, pages 1724–1734, 2014.

[9] Liel Cohen, Rotem Galiki, and Roie Zivan. Governing convergence of max-sum on DCOPs
through damping and splitting. Artificial Intelligence, 279:103212, 2020.

[10] S. de Givry D. Allouche and T. Schiex. Toulbar2, an open source exact cost function network
solver. Technical report, INRA, 2010.

[11] Rina Dechter. Bucket elimination: A unifying framework for probabilistic inference. Learning
in Graphical Models, 89:75–104, 1998.

[12] Rina Dechter and Irina Rish. Mini-buckets: A general scheme for bounded inference. Journal
of the ACM, 50(2):107–153, 2003.

[13] Yanchen Deng, Shufeng Kong, and Bo An. Pretrained cost model for distributed constraint
optimization problems. In AAAI, pages 9331–9340, 2022.

[14] Yanchen Deng, Runsheng Yu, Xinrun Wang, and Bo An. Neural regret-matching for distributed
constraint optimization problems. In IJCAI, pages 146–153, 2021.

[15] Alessandro Farinelli, Alex Rogers, Adrian Petcu, and Nicholas R Jennings. Decentralised
coordination of low-power embedded devices using the Max-sum algorithm. In AAMAS, pages
639–646, 2008.

[16] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[17] Amir Globerson and Tommi S. Jaakkola. Fixing max-product: Convergent message passing
algorithms for MAP LP-relaxations. In NIPS, pages 553–560, 2007.

[18] Tamir Hazan and Amnon Shashua. Norm-product belief propagation: Primal-dual message-
passing for approximate inference. IEEE Transactions on Information Theory, 56(12):6294–
6316, 2010.

[19] Khoi D Hoang, Ferdinando Fioretto, William Yeoh, Enrico Pontelli, and Roie Zivan. A large
neighboring search schema for multi-agent optimization. In CP, pages 688–706, 2018.

[20] Yoonheui Kim, Michael Krainin, and Victor Lesser. Effective variants of the max-sum algorithm
for radar coordination and scheduling. In WI/IAT, pages 357–364, 2011.

11

[21] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[22] Shufeng Kong, Jae Hee Lee, and Sanjiang Li. A deterministic distributed algorithm for reasoning
with connected row-convex constraints. In AAMAS, pages 203–211, 2017.

[23] Shufeng Kong, Jae Hee Lee, and Sanjiang Li. Multiagent simple temporal problem: The
arc-consistency approach. In AAAI, volume 32, 2018.

[24] Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
ICLR, 2019.

[25] Frank R Kschischang, Brendan J Frey, and H-A Loeliger. Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory, 47(2):498–519, 2001.

[26] Jonathan Kuck, Shuvam Chakraborty, Hao Tang, Rachel Luo, Jiaming Song, Ashish Sabharwal,
and Stefano Ermon. Belief propagation neural networks. In NeurIPS, pages 667–678, 2020.

[27] Akshat Kumar and Shlomo Zilberstein. MAP estimation for graphical models by likelihood
maximization. In NIPS, pages 1180–1188, 2010.

[28] Eugene L Lawler and David E Wood. Branch-and-bound methods: A survey. Operations
Research, 14(4):699–719, 1966.

[29] Kathryn S. Macarthur, Ruben Stranders, Sarvapali D. Ramchurn, and Nicholas R. Jennings.
A distributed anytime algorithm for dynamic task allocation in multi-agent systems. In AAAI,
pages 701–706, 2011.

[30] David JC MacKay and David JC Mac Kay. Information theory, Inference and Learning
Algorithms. Cambridge University Press, 2003.

[31] Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo. ADOPT: Asynchronous
distributed constraint optimization with quality guarantees. Artificial Intelligence, 161(1-2):149–
180, 2005.

[32] Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov,
Brendan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al.
Solving mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

[33] Mark EJ Newman and Duncan J Watts. Renormalization group analysis of the small-world
network model. Physics Letters A, 263(4-6):341–346, 1999.

[34] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan kaufmann, 1988.

[35] Yasaman Razeghi, Kalev Kask, Yadong Lu, Pierre Baldi, Sakshi Agarwal, and Rina Dechter.
Deep bucket elimination. In IJCAI, pages 4235–4242, 2021.

[36] Alex Rogers, Alessandro Farinelli, Ruben Stranders, and Nicholas R Jennings. Bounded
approximate decentralised coordination via the max-sum algorithm. Artificial Intelligence,
175(2):730–759, 2011.

[37] Emma Rollon and Javier Larrosa. Improved bounded max-sum for distributed constraint
optimization. In CP, pages 624–632, 2012.

[38] Emma Rollon and Javier Larrosa. Decomposing utility functions in bounded max-sum for
distributed constraint optimization. In CP, pages 646–654, 2014.

[39] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Programming.
Elsevier Science Inc., USA, 2006.

[40] Sara Rouhani, Tahrima Rahman, and Vibhav Gogate. A novel approach for constrained
optimization in graphical models. In NeurIPS, pages 11949–11960, 2020.

12

[41] Victor Garcia Satorras and Max Welling. Neural enhanced belief propagation on factor graphs.
In AISTATS, pages 685–693, 2021.

[42] Paul Shaw. Using constraint programming and local search methods to solve vehicle routing
problems. In CP, pages 417–431, 1998.

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, pages 5998–6008,
2017.

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[45] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

[46] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In NeurIPS, pages
2692–2700, 2015.

[47] Martin J Wainwright, Tommi S Jaakkola, and Alan S Willsky. Tree-reweighted belief propa-
gation algorithms and approximate ml estimation by pseudo-moment matching. In AISTATS,
pages 308–315, 2003.

[48] Wim Wiegerinck and Tom Heskes. Fractional belief propagation. In NIPS, pages 438–445,
2002.

[49] Jonathan S Yedidia, William T Freeman, and Yair Weiss. Constructing free-energy approxima-
tions and generalized belief propagation algorithms. IEEE Transactions on Information Theory,
51(7):2282–2312, 2005.

[50] Zhen Zhang, Fan Wu, and Wee Sun Lee. Factor graph neural networks. In NeurIPS, pages
8577–8587, 2020.

[51] Shlomo Zilberstein. Using anytime algorithms in intelligent systems. AI Magazine, 17(3):73–73,
1996.

[52] Roie Zivan, Omer Lev, and Rotem Galiki. Beyond trees: Analysis and convergence of belief
propagation in graphs with multiple cycles. In AAAI, pages 7333–7340, 2020.

[53] Roie Zivan, Tomer Parash, Liel Cohen, Hilla Peled, and Steven Okamoto. Balancing exploration
and exploitation in incomplete min/max-sum inference for distributed constraint optimization.
Autonomous Agents and Multi-Agent Systems, 31(5):1165–1207, 2017.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Sect. 4 and Sect. 5.
(b) Did you describe the limitations of your work? [Yes] We have described our limitation

in Sect. 6.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our work

is theoretical and we do not see any potential negative societal impacts.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Theorem 1
in page 7.

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix A.
3. If you ran experiments...

13

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See the Github
URL in page 2.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See the Implementation paragraph in page 8.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We display the box-plot or the 95% confidence intervals
when presenting cost performance.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See the Benchmarks & Baselines
paragraph.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

A Proof of Theorem 1

Proof.∣∣∣∣∣∣losst −
∑
fℓ∈F

fℓ(τ
t|scp(fℓ))

∣∣∣∣∣∣ =
∑
fℓ∈F

∣∣∣∣∣∣fℓ(τ t|scp(fℓ))−
∑

⟨τi1 ,...,τin ⟩∈Πxi∈scp(fℓ)
Di

fℓ(τi1 , . . . , τin)
∏
j=1:n

ptij (τij)

∣∣∣∣∣∣
=

∑
fℓ∈F

∣∣∣∣∣∣
∑

⟨τi1 ,...,τin ⟩∈Πxi∈scp(fℓ)
Di

(
fℓ(τ

t|scp(fℓ))− fℓ(τi1 , . . . , τin)
) ∏
j=1:n

ptij (τij)

∣∣∣∣∣∣
≤

∑
fℓ∈F

∑
⟨τi1 ,...,τin ⟩∈Πxi∈scp(fℓ)

Di

⟨τi1 ,...,τin ⟩̸=τt|scp(fℓ)

∆ℓ

∏
j=1:n

ptij (τij)

=
∑
fℓ∈F

∆ℓ

1−
∏

xi∈scp(fℓ)

pi(τ
t
i)

According to Eq. (4) and Eq. (15), for each xi ∈ X it must be the case that τ ti = argminτi∈Di

bti(τi)

and hence τ ti = argmaxτi∈Di
pti(τi). We now show that pti(τ

t
i) ≥ 1

|Di| . Assume by contradiction
that pti(τ

t
i) <

1
|Di| . Since τ ti has the highest probability,∑

τi∈Di

pti(τi) ≤
∑
τi∈Di

pti(τ
t
i) = |Di|pti(τ ti) < 1,

which contradicts to the fact that pti is a probability distribution over Di. Therefore,∣∣∣∣∣∣losst −
∑
fℓ∈F

fℓ(τ
t|scp(fℓ))

∣∣∣∣∣∣ ≤
∑
fℓ∈F

∆ℓ

1−
∏

xi∈scp(fℓ)

pi(τ
t
i)

 ≤
∑
fℓ∈F

∆ℓ

1−
∏

xi∈scp(fℓ)

1

|Di|

 .

B Additional Experimental Details and Results

In this section, we present additional experimental details and results.

B.1 Benchmarks

We consider four types of benchmarks in our experiments, i.e., random COPs, scale-free networks,
small-world networks, and Weighted Graph Coloring Problems (WGCPs). For random COPs and
WGCPs, given |X| variables and density of p1 ∈ (0, 1), we randomly create a constraint for a pair
of variables with probability p1. For scale-free networks, we use the BA model [4] with parameter
m0 and m1 to generate constraints: starting from a connected graph with m0 vertices, a new vertex
is connected to m1 vertices with a probability which is proportional to the degree of each existing
vertex in each iteration. For small-world networks, we generate problem topology according to
Newman-Watts-Strogatz model [33]: starting from a ring of |X| vertices, each vertex is connected to
its k nearest neighbors, and for each edge underlying the ring with k nearest neighbors, we create a
new shortcut by randomly selecting another vertex with a probability p. Finally, for each variable and
constraint in the benchmarks except WGCPs, we set domain size to 15 and uniformly sample a cost
from [0, 100] for each possible assignment combination, respectively. Differently, for WGCPs each
variable has a domain of 5 values, and for any pair of constrained variables, we uniformly sample a
cost from [1, 100] for an unanimous variable assignment and otherwise, a zero cost.

B.2 Baselines

Since BPNN [41] and NEBP [26] are proposed for partition function estimation and error correction
decoding, respectively, it is not trivial to adopt them for solving COPs. Although FGNN [50] can be
applied to solve COPs, all of these existing DNN-based BP variants require expensive supervised

15

learning and optimal labels which are not available in our experimental settings because we consider
large-scale problems and it is not practical to obtain optimal labels using heavy exact solvers.
Therefore, to be fair and practical, we do not consider existing DNN-based BP variants.

We compare our DABP with the following state-of-the-art COP solvers: (1) DBP with a damping
factor of 0.9 and its splitting constraint factor graph version (DBP-SCFG) with a splitting ratio
of 0.95 [9]; (2) GAT-PCM-LNS with a destroy probability of 0.2 [13], which is a local search
method combining the LNS framework [19, 42] with neural-learned repair heuristics; (3) Mini-bucket
Elimination (MBE) with an i-bound of 9 [12], which is a memory-bounded inference algorithm; (4)
Toulbar2 with timeout of 1200s [10], which is a highly optimized exact solver written in C++. The
hyperparameters for DBP and GAT-PCM-LNS are set according to the original papers, while the
memory budget for MBE and timeout for Toulbar2 are set based on our computational resources.

All experiments are conducted on an Intel i9-9820X workstation with GeForce RTX 3090 GPUs
and 384GB memory. We terminate DBP(-SCFG) and GAT-PCM-LNS whenever convergence or the
maximum iteration limit (Tmax = 1000) reaches. Finally, we report the best solution cost for each
run, and for each experiment we average the results over 100 random problem instances.

B.3 Parameter Tuning

In this subsection, we empirically study the impact of damping factor λ on the performance of DBP
and DBP-SCFG, and the impact of the number of effective iterations on the performance of our
DABP, respectively.

0 200 400 600 800 1000
Iteration

27.5

28.0

28.5

29.0

29.5

No
rm

al
ize

d
co

st

DBP(=0.5)
DBP-SCFG(=0.5)
DBP(=0.6)
DBP-SCFG(=0.6)
DBP(=0.7)
DBP-SCFG(=0.7)
DBP(=0.8)
DBP-SCFG(=0.8)
DBP(=0.9)
DBP-SCFG(=0.9)
DABP (R=10)

(a) Random COPs

0 200 400 600 800 1000
Iteration

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

No
rm

al
ize

d
co

st

(b) WGCPs

0 200 400 600 800 1000
Iteration

29.0

29.2

29.4

29.6

29.8

30.0

No
rm

al
ize

d
co

st

(c) SF networks

0 200 400 600 800 1000
Iteration

26.00

26.25

26.50

26.75

27.00

27.25

27.50

27.75

28.00

No
rm

al
ize

d
co

st

(d) SW networks

Figure 5: Solution quality comparison with different λ (|X| = 60)

0 200 400 600 800 1000
Iteration

30.5

31.0

31.5

32.0

32.5

No
rm

al
ize

d
co

st

DBP(=0.5)
DBP-SCFG(=0.5)
DBP(=0.6)
DBP-SCFG(=0.6)
DBP(=0.7)
DBP-SCFG(=0.7)
DBP(=0.8)
DBP-SCFG(=0.8)
DBP(=0.9)
DBP-SCFG(=0.9)
DABP (R=10)

(a) Random COPs

0 200 400 600 800 1000
Iteration

1.0

1.5

2.0

2.5

3.0

3.5

4.0

No
rm

al
ize

d
co

st

(b) WGCPs

0 200 400 600 800 1000
Iteration

29.4

29.6

29.8

30.0

30.2

30.4

30.6

30.8

31.0

No
rm

al
ize

d
co

st

(c) SF networks

0 200 400 600 800 1000
Iteration

26.0

26.5

27.0

27.5

28.0

No
rm

al
ize

d
co

st

(d) SW networks

Figure 6: Solution quality comparison with different λ (|X| = 80)

0 200 400 600 800 1000
Iteration

32.5

33.0

33.5

34.0

34.5

35.0

No
rm

al
ize

d
co

st

DBP(=0.5)
DBP-SCFG(=0.5)
DBP(=0.6)
DBP-SCFG(=0.6)
DBP(=0.7)
DBP-SCFG(=0.7)
DBP(=0.8)
DBP-SCFG(=0.8)
DBP(=0.9)
DBP-SCFG(=0.9)
DABP (R=10)

(a) Random COPs

0 200 400 600 800 1000
Iteration

1.5

2.0

2.5

3.0

3.5

4.0

4.5

No
rm

al
ize

d
co

st

(b) WGCPs

0 200 400 600 800 1000
Iteration

29.75

30.00

30.25

30.50

30.75

31.00

31.25

31.50

No
rm

al
ize

d
co

st

(c) SF networks

0 200 400 600 800 1000
Iteration

26.0

26.5

27.0

27.5

28.0

28.5

No
rm

al
ize

d
co

st

(d) SW networks

Figure 7: Solution quality comparison with different λ (|X| = 100)

16

Impact of Damping Factor λ. We vary λ from 0.5 to 0.9 with a step size of 0.1, and Fig.5-7 present
the solution quality performance of DBP and DBP-SCFG under different damping factors. It can be
observed that the performance of DBP varies a lot with different λ while DBP-SCFG is relatively less
sensitive to the damping factor. In more detail, DBP with a small λ (e.g., λ = 0.5 or λ = 0.6) trends
to produce low-quality solutions, which is due to the fact that a small damping factor usually cannot
eliminate the effect of the costs accumulated before the final periodical of the BP process [52]. On
the other hand, a large damping factor (e.g., λ = 0.9) can also lead to poor results, since it requires
significantly more iterations to update the beliefs before finding a high-quality solution.

60 80 100
|X|

0

200

400

600

800

1000

Ac
cu

m
. r

un
tim

e
(s

)

DBP
DBP-SCFG
DABP (R=10)

(a) Random COPs

60 80 100
|X|

0

200

400

600

800

1000

Ac
cu

m
. r

un
tim

e
(s

)

(b) WGCPs

60 80 100
|X|

0

100

200

300

400

500

600

700

Ac
cu

m
. r

un
tim

e
(s

)

(c) SF networks

60 80 100
|X|

0

100

200

300

400

500

Ac
cu

m
. r

un
tim

e
(s

)

(d) SW networks

Figure 8: Accumulated runtime comparison

However, it can be extremely tedious and time-consuming to tune the damping factor. Fig. 8 presents
the accumulated runtime of tuning damping factor in DBP and DBP-SCFG, and the one of DABP
with 10 times of restart. It can be seen that both DBP and DBP-SCFG require significantly higher
runtime if we tune the damping factor. In fact, the runtime is generally proportional to the number of
damping factors we have attempted. On the other hand, to obtain high-quality solutions one needs to
perform extensive tuning (e.g., by using a smaller step size or a wider range), which substantially
increases the overall runtime overhead. In contrast, our DABP automatically infers the optimal
hyperparameters from the BP messages in the previous iterations, eliminating the need of notoriously
laborious tuning procedure and finding better solutions in all test cases with much smaller runtime.

1 2 4 8 16
Teff

29.8

29.9

30.0

30.1

30.2

30.3

No
rm

al
ize

d
co

st

(a) Random COPs

1 2 4 8 16
Teff

0.75

0.80

0.85

0.90

0.95

No
rm

al
ize

d
co

st

(b) WGCPs

Figure 9: Solution quality when varying Teff (i.e., the number of effective iterations in Alg. 1).

Impact of the Number of Effective Iterations Teff. We train our DABP with different Teff on
the Random COPs and WGCPs with 80 variables and p1 = 0.25. Fig. 9 presents the solution
quality when varying Teff. It can be seen that a large Teff usually produces inferior solutions. In such
scenario, T ∗ may contain many suboptimal iterations and their solutions are relatively easy to be
improved. Consequently, DABP is more exploitative and thus, it is prone to get trapped in local
optima. In contrast, a small Teff forces DABP to improve only good-enough solutions and encourages
exploration. In our experiments, we use Teff = 2 due to its better solution quality.

B.4 Results on the Instances with 60 and 100 Variables

Fig. 10-13 present solution quality in each iteration and convergence rate on the instances with
|X| = 60 and |X| = 100. Our DABP outperforms the other baselines by considerable margins
on a wide range of benchmarks. The only exception happens on WGCPs with 60 variables, where
Toulbar2 exhibits the best performance. That is because the variables in WGCPs have a relatively

17

0 200 400 600 800 1000
Iteration

28

29

30

31

32

No
rm

al
ize

d
co

st

MBE
Toulbar
GAT-PCM-LNS
DBP
DBP-SCFG
DABP (R=5)
DABP (R=10)
DABP (R=20)

(a) Random COPs

0 200 400 600 800 1000
Iteration

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

No
rm

al
ize

d
co

st

(b) WGCPs

0 200 400 600 800 1000
Iteration

29

30

31

32

33

No
rm

al
ize

d
co

st

(c) SF networks

0 200 400 600 800 1000
Iteration

26

27

28

29

30

No
rm

al
ize

d
co

st

(d) SW networks

Figure 10: Solution quality comparison (|X| = 60)

50 100 250 500 1000
Iteration limit

0

20

40

60

80

100

Co
nv

er
ge

nc
e

ra
te

 (%
)

DBP
DBP-SCFG
DABP (R=5)

(a) Random COPs

50 100 250 500 1000
Iteration limit

0

20

40

60

80

100

Co
nv

er
ge

nc
e

ra
te

 (%
)

(b) WGCPs

50 100 250 500 1000
Iteration limit

0

20

40

60

80

100

Co
nv

er
ge

nc
e

ra
te

 (%
)

(c) SF networks

50 100 250 500 1000
Iteration limit

0

20

40

60

80

100

Co
nv

er
ge

nc
e

ra
te

 (%
)

(d) SW networks

Figure 11: Convergence rates under different iteration limits (|X| = 60)

0 200 400 600 800 1000
Iteration

32

33

34

35

36

No
rm

al
ize

d
co

st

MBE
Toulbar
GAT-PCM-LNS
DBP
DBP-SCFG
DABP (R=5)
DABP (R=10)
DABP (R=20)

(a) Random COPs

0 200 400 600 800 1000
Iteration

1.5

2.0

2.5

3.0

3.5

No
rm

al
ize

d
co

st

(b) WGCPs

0 200 400 600 800 1000
Iteration

30

31

32

33

34

No
rm

al
ize

d
co

st

(c) SF networks

0 200 400 600 800 1000
Iteration

26

27

28

29

No
rm

al
ize

d
co

st

(d) SW networks

Figure 12: Solution quality comparison (|X| = 100)

50 100 250 500 1000
Iteration limit

0

20

40

60

80

100

Co
nv

er
ge

nc
e

ra
te

 (%
)

DBP
DBP-SCFG
DABP (R=5)

(a) Random COPs

50 100 250 500 1000
Iteration limit

0

20

40

60

80

100

Co
nv

er
ge

nc
e

ra
te

 (%
)

(b) WGCPs

50 100 250 500 1000
Iteration limit

0

20

40

60

80

100

Co
nv

er
ge

nc
e

ra
te

 (%
)

(c) SF networks

50 100 250 500 1000
Iteration limit

0

20

40

60

80

100

Co
nv

er
ge

nc
e

ra
te

 (%
)

(d) SW networks

Figure 13: Convergence rates under different iteration limits (|X| = 100)

18

small domain size (i.e., 5) and the constraint functions are highly structured, which allows effective
pruning and enumeration for exact methods like Toulbar2. It also can be concluded that our DABP
converges much faster than DBP and DBP-SCFG. Notably, when solving WGCPs with 100 variables
(cf. Fig. 13(b)), DBP-SCFG has a poor convergence rate and, even worse, DBP entirely fails to
converge, while our DABP still achieve convergence on the most of instances, which demonstrates
the virtues of our learned dynamic hyperparameters.

B.5 Ablation Study

To demonstrate the necessity of heterogeneous hyperparameters of Eq. (6), we conduct extensive
ablation studies by (1) fixing neighbor weights wtm→i(ℓ) to 1

|Ni|−1 and inferring only heterogeneous
damping factor λti→ℓ (referred as DABP_Heter_λ), and (2) fixing neighbor weights wtm→i(ℓ) to

1
|Ni|−1 and inferring a homogeneous damping factor λt by averaging all the damping factors computed
by Eq. (12) (referred as DABP_Homo_λ). It is noteworthy that DABP_Heter_λ and DABP_Homo_λ
reduce the number of hyperparameters from O(T |X|d2) to O(T |X|d) and O(T), respectively.

Fig. 14-16 present the results on solution quality. It can be observed that without heterogeneous
neighbor weights DABP_Heter_λ often converges to the solutions inferior to the ones found by DABP,
given the same number of restarts. DABP_Homo_λ, on the other hand, performs significantly worse
than DABP_Heter_λ and DABP, which highlights the merits and necessity of learning heterogeneous
hyperparameters in belief propagation for COPs. Nonetheless, equipped with learnable deep neural
networks, DABP_Homo_λ still substantially outperforms DBP-SCFG which relies solely on a single
static damping factor in terms of both solution quality and convergence speed.

0 200 400 600 800 1000
Iteration

27.2

27.3

27.4

27.5

27.6

27.7

No
rm

al
ize

d
co

st

DBP-SCFG
DABP_Homo_ (R=5)
DABP_Heter_ (R=5)
DABP (R=5)
DABP_Homo_ (R=10)
DABP_Heter_ (R=10)
DABP (R=10)
DABP_Homo_ (R=20)
DABP_Heter_ (R=20)
DABP (R=20)

(a) Random COPs

0 200 400 600 800 1000
Iteration

0.30

0.32

0.34

0.36

0.38

0.40

No
rm

al
ize

d
co

st

(b) WGCPs

0 200 400 600 800 1000
Iteration

28.9

29.0

29.1

29.2

29.3

29.4

No
rm

al
ize

d
co

st

(c) SF networks

0 200 400 600 800 1000
Iteration

25.8

25.9

26.0

26.1

26.2

26.3

26.4

No
rm

al
ize

d
co

st

(d) SW networks

Figure 14: Ablation results on the instances with |X| = 60

0 200 400 600 800 1000
Iteration

30.1

30.2

30.3

30.4

30.5

30.6

No
rm

al
ize

d
co

st

DBP-SCFG
DABP_Homo_ (R=5)
DABP_Heter_ (R=5)
DABP (R=5)
DABP_Homo_ (R=10)
DABP_Heter_ (R=10)
DABP (R=10)
DABP_Homo_ (R=20)
DABP_Heter_ (R=20)
DABP (R=20)

(a) Random COPs

0 200 400 600 800 1000
Iteration

0.90

0.95

1.00

1.05

1.10

1.15

1.20

No
rm

al
ize

d
co

st

(b) WGCPs

0 200 400 600 800 1000
Iteration

29.4

29.5

29.6

29.7

29.8

29.9

No
rm

al
ize

d
co

st

(c) SF networks

0 200 400 600 800 1000
Iteration

25.7

25.8

25.9

26.0

26.1

26.2

No
rm

al
ize

d
co

st

(d) SW networks

Figure 15: Ablation results on the instances with |X| = 80

B.6 Memory Footprint

Table 2 presents the GPU memory footprint of our DABP. We do not include CPU memory usage
since DABP has a similar CPU memory footprint of 4.3GB on all test cases, It can be observed
that the GPU memory footprint on random COPs (whose domain size is 15) is similar to the one
on WGCPs (whose domain size is 5), which indicates that the GPU memory usage of our DABP is
insensitive to the domain size. Besides, on highly-structured problems like scale-free networks and
small-world networks, our DABP trends to consume less memory than uniform problems.

19

0 200 400 600 800 1000
Iteration

32.1

32.2

32.3

32.4

32.5

32.6

No
rm

al
ize

d
co

st

DBP-SCFG
DABP_Homo_ (R=5)
DABP_Heter_ (R=5)
DABP (R=5)
DABP_Homo_ (R=10)
DABP_Heter_ (R=10)
DABP (R=10)
DABP_Homo_ (R=20)
DABP_Heter_ (R=20)
DABP (R=20)

(a) Random COPs

0 200 400 600 800 1000
Iteration

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85

1.90

No
rm

al
ize

d
co

st

(b) WGCPs

0 200 400 600 800 1000
Iteration

29.6

29.7

29.8

29.9

30.0

30.1

No
rm

al
ize

d
co

st

(c) SF networks

0 200 400 600 800 1000
Iteration

25.2

25.3

25.4

25.5

25.6

25.7

No
rm

al
ize

d
co

st

(d) SW networks

Figure 16: Ablation results on the instances with |X| = 100

Table 2: GPU memory footprint of DABP (in GB)
Random COPs WGCPs SF Nets SW Nets

|X| = 60 6.54 6.53 8.34 6.14
|X| = 80 12.22 12.16 11.44 7.01
|X| = 100 20.41 20.34 18.74 8.31

20

	Introduction
	Related Work
	Backgrounds
	Constraint Optimization Problems and Factor Graph
	Min-sum Belief Propagation

	Deep Attentive Belief Propagation
	Model Architecture
	A Novel Self-supervised Learning Algorithm for Solving COPs

	Empirical Evaluations
	Conclusion
	Proof of Theorem 1
	Additional Experimental Details and Results
	Benchmarks
	Baselines
	Parameter Tuning
	Results on the Instances with 60 and 100 Variables
	Ablation Study
	Memory Footprint

