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Abstract

Designing efficient algorithms to compute a Nash Equilibrium (NE) in multiplayer
games is still an open challenge. In this paper, we focus on computing an NE
that optimizes a given objective function. For example, when there is a team of
players independently playing against an adversary in a game (e.g., several groups
in a forest trying to interdict illegal loggers in green security games), these team
members may need to find an NE minimizing the adversary’s utility. Finding an
optimal NE in multiplayer games can be formulated as a mixed-integer bilinear
program by introducing auxiliary variables to represent bilinear terms, leading
to a huge number of bilinear terms, making it hard to solve. To overcome this
challenge, we first propose a general framework for this formulation based on a set
of correlation plans. We then develop a novel algorithm called CRM based on this
framework, which uses Correlation plans with their Relations to restrict the feasible
solution space after the convex relaxation of bilinear terms while Minimizing the
number of correlation plans to reduce the number of bilinear terms. We show
that our techniques can significantly reduce the time complexity, and CRM can be
several orders of magnitude faster than the state-of-the-art baseline.

1 Introduction

One of the important problems in artificial intelligence is the design of algorithms for agents to make
decisions in interactive environments [33]. To this day, many results have been achieved in two-player
non-cooperative environments, for example, security games [39], the game of Go [38], and poker
games [6]. One of the most important solution concepts behind these results is the well-known
Nash Equilibrium (NE) [30]. Indeed, there are many efficient algorithms, e.g., algorithms based
on linear programs [42, 43, 37, 47, 48] or counterfactual regret minimization [56, 5], to compute
Nash equilibria (NEs) in two-player zero-sum games. However, there are fewer results on efficient
algorithms for NEs with theoretical guarantees in multiplayer games (see the discussion in [4]),
and most of these results are for games with particular structures (e.g., polymatrix games [7, 10]).
The main reason is that finding NEs in multiplayer games is hard — it is PPAD-complete even for
zero-sum three-player games [8]. Designing efficient algorithms to compute NEs in multiplayer
games is thus still an open challenge.
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In this paper, we focus on computing an optimal NE that optimizes a specific objective over the
space of NEs. In the real world, we may need to optimize our objective over the space of NEs [34].
Possible objectives [9] could be maximizing social welfare (the sum of the players’ expected utilities),
maximizing the expected utilities of one player or several players, maximizing the minimum utility
among players, minimizing the support sizes of the NE strategies, and so on. In addition, when there
is a team of players in a game, team members need to consider finding an equilibrium that optimizes
some objective [45, 12]. For example, in green security games where several heterogeneous groups
(e.g., local police, the Madagascar National Parks, NGOs, and community volunteers) try to protect
forests from illegal logging [26], the groups involved may need to find an NE that minimizes the
adversary’s utility1.

Unfortunately, the problems mentioned above are NP-hard [14, 9]. In two-player games, finding an
optimal NE can be formulated as a mixed-integer linear program [34]. In this formulation, finding an
optimal solution means optimizing an objective over the space of NEs, and this space is modeled
as the feasible solution space of the mixed-integer linear program. We can directly extend this
two-player formulation to find an optimal NE in multiplayer games by representing the space of NEs
as the feasible solution space of a mixed-integer bilinear program transformed from a multilinear
program by using auxiliary variables to represent bilinear terms. Then finding an optimal NE requires
solving a non-convex program. Unfortunately, such a formulation is not efficient because there
are exponentially many bilinear terms in the program. There are other approaches (e.g., [4]) that
guarantee finding an NE in multiplayer games. However, these approaches need to enumerate all
NEs to find an optimal NE, which is very inefficient [34] (see our experimental results) because there
can be exponentially many NEs [44].

To tackle this challenge, we first propose a general framework for transforming a multilinear program
for computing optimal NEs into a bilinear program based on a set of correlation plans, where each
correlation plan (i.e., a probability distribution over joint actions) corresponds to a set of auxiliary
variables representing a set of bilinear terms. We then develop a novel algorithm called CRM
based on this framework, which uses Correlation plans with their Relations to strictly reduce the
feasible solution space after the convex relaxation of bilinear terms while Minimizing the number
of correlation plans to reduce the number of bilinear terms. We show that our techniques can
significantly reduce the time complexity, and CRM can be several orders of magnitude faster than the
state-of-the-art baseline. To our best knowledge, CRM is the first algorithm to use a minimum set of
correlation plans to reformulate the program for computing optimal NEs in multiplayer games.

2 Preliminaries

Consider a normal-form game2 G = (N,A, u) [37]. We denote the set of players as N = {1, . . . , n};
the set of all players’ joint actions is A = ×i∈NAi, where Ai is the finite set of player i’s pure
strategies (actions) with ai ∈ Ai; and the set of all players’ payoff functions is u = (u1, . . . , un),
where ui : A→ R is player i’s payoff function. Let Umax = maxi∈N maxa∈A ui(a), and Umin =
mini∈N mina∈A ui(a). In addition, the set of (joint) mixed strategy profiles X = ×i∈NXi, where
Xi = ∆(Ai) (i.e., the set of probability distributions over Ai) is the set of mixed strategies of
player i, and xi(ai) is the probability that any action ai ∈ Ai is played. Let −i be the set of all
players excluding player i, i.e., −i = N \ {i}, and A−i be ×j∈N\{i}Aj . Generally, given N ′ ⊆ N ,
aN ′ ∈ AN ′ = ×i∈N ′Ai, aN ′(i) is the action of player i ∈ N ′ in the joint action aN ′ . For example,
if aN ′ = (a1, a3, a5) with N ′ = {1, 3, 5}, aN ′(3) = a3. If N ′ = N , we ignore the subscript, i.e.,
a = aN and A = AN . For each x ∈ X , player i’s expected payoff is:

ui(x) =
∑
a∈A

ui(a)
∏
j∈N

xj(a(j)),

and, if player i plays ai:

ui(ai, x−i) =
∑

a−i∈A−i

ui(ai, a−i)
∏
j∈−i

xj(a−i(j)).

1Here, if all team members play strategies according to an NE minimizing the adversary’s utility, the
adversary cannot deviate from the equilibrium strategy to obtain a higher utility.

2Our methods mostly apply to normal-form games including green security games mentioned in Section
1. Extensive-form games can be first converted to normal-form games to be solved, and exploiting their game
structure is the future work.
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In this paper, we consider multiplayer games, i.e., n > 2.

A Nash Equilibrium (NE, and NEs for Nash Equilibria) [30] is a stable strategy profile in which
no player has an incentive to change her strategy given other players’ strategies and always exists.
Formally, a strategy profile x∗ is an NE if, for each player i, x∗

i is a best response to x∗
−i, i.e.,

ui(x
∗
i , x

∗
−i) ≥ ui(xi, x

∗
−i),∀xi ∈ Xi, which is equivalent to ui(x

∗
i , x

∗
−i) ≥ ui(ai, x

∗
−i),∀ai ∈ Ai.

With the above condition of NEs, we could use a multilinear program to represent the space of NEs,
but it will involve the product of strategies in ui(x), whose degree is n and is higher than the product
of strategies in ui(ai, x−i). To reduce the degree of the program representing the space of NEs from
n to n− 1 (i.e., only the product of strategies in ui(ai, x−i) is required), in two-player games, the
previous work [34] exploited the following NE’s property, which can be used in multiplayer games
as well. For each strategy profile x ∈ X , the regret of an action ai is the difference in player i’s
expected utility between playing xi in x and playing ai, i.e., ui(x) − ui(ai, x−i). Obviously, a
strategy profile x ∈ X is an NE if and only if every action either has the regret 0, or is played with
the probability 0 in x. Then the space of NEs of a game can be formulated as the feasible solution
space of a mixed-integer program by using a binary variable bai to represent that any action ai either
has the regret 0, or is played with the probability 0:

ui(ai, x−i) =
∑

a−i∈A−i

ui(ai, a−i)
∏
j∈−i

xj(a−i(j)) ∀i, ai ∈ Ai (1a)

∑
ai∈Ai

xi(ai) = 1 ∀i ∈ N (1b)

1− bai ≥ xi(ai) ∀i ∈ N, ai ∈ Ai (1c)
ui(x) ≥ ui(ai, x−i) ∀i ∈ N, ai ∈ Ai (1d)
ui(x)− ui(ai, x−i) ≤ bai

(Umax − Umin) ∀i ∈ N, ai ∈ Ai, (1e)
ui(ai, x−i) ∈ [Umin, Umax], ui(x) ∈ [Umin, Umax] ∀i ∈ N, ai ∈ Ai, (1f)
xi(ai) ∈ [0, 1], bai

∈ {0, 1}, ∀i ∈ N, ai ∈ Ai, (1g)

where we use the notations of utility functions ui(x) and ui(ai, x−i) to represent the corresponding
variables in the program. Eq.(1c) ensures that binary variable bai is set to 0 when xi(ai) > 0 and
can be set to 1 only when xi(ai) = 0; and Eq.(1e) ensures that the regret of action ai equals 0 (i.e.,
ui(x) = ui(ai, x−i)), unless bai = 1 where the constraint ui(x) − ui(ai, x−i) ≤ (Umax − Umin)
always holds.

An optimal NE is an NE optimizing an objective function g(x) over the space of NEs, where g(x)
is a linear objective function3 and could be maximizing social welfare, maximizing the expected
utilities of one player or several players, maximizing the minimum utility among players, minimizing
the support sizes of the NE strategies, and so on. Unfortunately, finding an optimal NE optimizing
the above objectives is NP-hard [9].

3 Computing Optimal Nash Equilibria

The problem of finding an optimal NE in multiplayer games requires optimizing an objective over
the space of NEs. This space is represented by Eq.(1), which involves nonlinear terms in Eq.(1a)
to represent the strategies of players in −i, which is bilinear when n = 3 and is multilinear when
n ≥ 4. The multilinear program is usually transformed into a bilinear program to make the program
solvable using global optimization solvers, e.g., Gurobi [19]. Here, we propose a general framework
for this transformation based on a set of correlation plans for any binary collection of subsets of
players, where each set in this collection is divided into two disjoint sets, and each correlation plan
corresponds to a set of auxiliary variables representing a set of bilinear terms. However, there are two
challenges for solving this bilinear program: 1) this bilinear program usually involves a large number
of bilinear terms, and 2) an important step used by state-of-the-art algorithms to solve such bilinear
programs is to use convex relaxation to replace each bilinear term in the program [15, 18], which
significantly enlarges the feasible solution space. To overcome these challenges, we develop a novel
algorithm called CRM that uses Correlation plans with their Relations to strictly reduce the feasible

3If g(x) is nonlinear, we can use a variable (i.e., a linear function) v as the new objective with the constraint
such that v = g(x).
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solution space after the convex relaxation while Minimizing the number of correlation plans to reduce
the number of bilinear terms. Section 3.4 shows that our techniques can significantly reduce the time
complexity. The procedure of CRM is shown in Algorithm 2, which is illustrated in Appendix A.

3.1 A General Transformation Framework

A correlation plan is a probability distribution over the joint action space of a subset of players, and
we focus on correlation plans for certain special collections of subsets of players, which can be used
to transform a multilinear program for computing optimal NEs into a bilinear program.

Definition 1. A collection N of subsets of players is a binary collection if:

1. {−i | i ∈ N} ⊆ N ;

2. for each N ′ ∈ N , N ′ ⊂ N with |N ′| ≥ 2; and

3. for each N ′ ∈ N , there are two disjoint children N ′
l and N ′

r in {{i} | i ∈ N} ∪ N such
that N ′

l ∩N ′
r = ∅ and N ′ = N ′

l ∪N ′
r, i.e., N ′ is divided into two disjoint sets.

Let N ′
l and N ′

r be the left child and the right child of N ′ ∈ N , respectively. For each N ′ in any
binary collection N , a correlation plan of N ′ is a probability distribution xN ′ over AN ′: given
xN ′(aN ′) ∈ [0, 1] (∀aN ′ ∈ AN ′ , N ′ ∈ N ),∑

aN′∈AN′

xN ′(aN ′) = 1 ∀N ′ ∈ N . (2)

For simplification, let i be equivalent to {i} for each i ∈ N . That is, xi is a special correlation plan
x{i} (i.e., xi = x{i}), ai ∈ Ai is a special joint action a{i} ∈ A{i} (i.e., ai = a{i}). Each element
N ′ in a binary collectionN has the binary division, i.e., it is divided into two disjoint sets N ′

l and N ′
r.

Based on this binary division, any joint action aN ′ ∈ AN ′ can be divided into two sub-joint actions
aN ′

l
∈ AN ′

l
and aN ′

r
∈ AN ′

r
such that aN ′ = (aN ′

l
, aN ′

r
). Then we can use this binary division to

ensure that
∏

j∈N ′ xj(aN ′(j)) = xN ′(aN ′) for the correlation plan xN ′ , as shown in Example 1.

Example 1. {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2}, {1, 3}, {2, 3}, {1, 4}, {3, 4}, {2, 4}} is
a binary collection for a four-player game. For N ′ = {1, 2, 3} in this collection with N ′

l = {1, 2}
(having two children {1} and {2}) and N ′

r = {3}, we have aN ′ = (a1, a2, a3) = (a{1,2}, a3) ∈ AN ′

and a{1,2} = (a1, a2) ∈ A{1,2}. Then we can have a chain of bilinear constraints (equalities):
xN ′(aN ′) = x{1,2}(a{1,2})x3(a3) and x{1,2}(a{1,2}) = x1(a1)x2(a2), which guarantees that
xN ′(aN ′) = x1(a1)x2(a2)x3(a3). In other words, we use x{1,2}(a{1,2}) and xN ′(aN ′) as the
auxiliary variables to represent bilinear terms x1(a1)x2(a2) and x{1,2}(a{1,2})x3(a3), respectively.

This property of correlation plans of a binary collection N can be used to transform the multilinear
Program (1) into a bilinear program. First, we use the binary division of each element N ′ in N to
connect correlation plans, i.e., for any N ′ ∈ N with its children N ′

l and N ′
r:

xN ′(aN ′)=xN ′
l
(aN ′

l
)xN ′

r
(aN ′

r
) ∀aN ′=(aN ′

l
, aN ′

r
)∈AN ′ (3a)

xN ′(aN ′) ∈ [0, 1] ∀aN ′ ∈ AN ′ . (3b)

Second, we replace
∏

j∈−i xj(a−i(j)) in Eq.(1a) with x−i(a−i):

ui(ai, x−i)=
∑

a−i∈A−i

ui(ai, a−i)x−i(a−i) ∀i ∈ N, ai ∈ Ai. (4)

In the above transformation, each correlation plan corresponds to a set of auxiliary variables (e.g.,
xN ′(aN ′)) representing a set of bilinear terms (e.g., xN ′

l
(aN ′

l
)xN ′

r
(aN ′

r
)). Eq.(3) guarantees that∏

j∈N ′ xj(aN ′(j)) = xN ′(aN ′), and then the feasible solution space of Eqs.(1b)-(1g), (3), and (4)
represents the space of NEs.

Theorem 1. The feasible solution space of mixed strategies (i.e., xi(ai) for each i ∈ N , ai ∈ Ai) in
Eqs.(1b)-(1g), (3), and (4) is the space of NEs. (Proofs are in Appendix B.)
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We can then compute an optimal NE by solving the following mixed-integer bilinear program
according to any binary collection N :

max
x

g(x) (5a)

s.t. Eqs.(1b)− (1g), (3), (4). (5b)

It is straightforward to solve Program (5) by using the vanilla binary collection N that includes all
non-singleton proper subsets of N , i.e., N = {N ′ | N ′ ⊂ N, |N ′| ≥ 2}, where, for each N ′ ∈ N ,
N ′

l is N ′ \ {j} and N ′
r is {j = maxi∈N ′ i}. Example 1 provides an example of N .

3.2 Exploit Correlation Plans with Their Relations

In this section, we use correlation plans with their relations to restrict the feasible solution space after
the convex relaxation. The common convex relaxation technique [27, 35, 18] before searching for the
optimal solution is: each bilinear term xN ′(aN ′) = y1y2 with y1, y2 ∈ [0, 1] is represented by the
following constraints including four linear constraints:

max{0, y1 + y2 − 1} ≤ xN ′(aN ′) ≤min{y1, y2}, (6)

which significantly enlarges the feasible solution space. We now show the motivation to use correlation
plans with their relations to reduce this feasible solution space.
Example 2. Given N ′ = {2, 4} ⊂ N with two actions for each player (i.e., Ai = {ai, a′i}) in a game
G, by Eq.(6), bilinear terms (e.g., xN ′(a2, a4) = x2(a2)x4(a4)) are relaxed according to Eq.(6), e.g.,
max{0, x2(a2) + x4(a4)− 1} ≤ xN ′(a2, a4) ≤min{x2(a2), x4(a4)}. With additional constraints
by Eq.(1b) (e.g., x4(a4) + x4(a

′
4) = 1), the following assignment could be a feasible solution:

xN′(a2, a4) = xN′(a′
2, a4) = xN′(a2, a

′
4) = xN′(a′

2, a
′
4)

=x2(a2) = x2(a
′
2) = x4(a4) = x4(a

′
4) = 0.5.

(7)

Obviously, in Eq.(7), xN ′(a2, a4) is not equal to x2(a2)x4(a4). In fact, based on Eq.(2), we have:

xN ′(a2, a4) + xN ′(a′2, a4) + xN ′(a2, a
′
4) + xN ′(a′2, a

′
4) = 1, (8)

which will make the solution in Eq.(7) infeasible. Moreover, the following assignment is a feasible
solution after the relaxation and satisfies Eq.(8):

xN ′(a2, a4) = xN ′(a′2, a4) = xN ′(a2, a
′
4) = 0.2,

xN ′(a′2, a
′
4)= 0.4, x2(a2) = x4(a4) = 0.5.

(9)

However, in Eq.(9), xN ′(a2, a4) is still not equal to x2(a2)x4(a4). Actually, we have:

xN ′(a2, a4) + xN ′(a′2, a4) = x4(a4),

xN ′(a2, a
′
4) + xN ′(a′2, a

′
4) = x4(a

′
4),

(10)

which will make the solution in Eq.(9) infeasible.

This above example shows that we can use the definition of a correlation plan (i.e., Eq.(2)) and the
relation of correlation plans to reduce the feasible solution space after the relaxation.

Each element N ′ in any binary collection N is defined by N ′
l and N ′

r, which actually defines
relations between correlation plans for elements in {{i} | i ∈ N} ∪ N . In Example 2, Eq.(10)
actually represents a relation between the correlation plan xN ′ and the mixed strategy x4 (i.e., the
special correlation plan x{4}). Formally, for any N ′ ∈ N and i ∈ N ′:∑

aN′∈AN′ ,aN′ (i)=ai

xN ′(aN ′)= xi(ai) ∀ai ∈ Ai, (11)

where aN ′(i) is the action of player i ∈ N ′ in the joint action aN ′ . Similarly, let aN ′(N ′′) be the
sub-joint action of player N ′′ ⊂ N ′ in the joint action aN ′ . Then, for any N ′ ∈ N with its children
N ′

l and N ′
r, and N ′′ ∈ {N ′

l , N
′
r}:∑

aN′∈AN′ ,aN′ (N ′′)=aN′′

xN ′(aN ′)= xN ′′(aN ′′) ∀aN ′′ ∈AN ′′ (12)
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Algorithm 1 Generate N
1: Build a full binary tree T−n with the height ⌈log2(n− 1)⌉ for −n with the set of internal nodes
NT−n

and |NT−n
| = n− 2

2: for each i in {1, . . . , n− 1} do
3: Search T−n to replace i with n in each node including i to form a binary tree T−i with the set

of internal nodes NT−i

4: end for
5: N ← ∪i∈NNT−i .

where we could add |N ′′| > 1 to ensure that Eq.(11) and Eq.(12) do not generate the same constraints.
Appendix A shows some examples of these constraints. Eq.(11) represents the relation between the
correlation plan xN ′ and the mixed strategy xi (i.e., the special correlation plan x{i}) for each i ∈ N ′,
and Eq.(12) represents the relation between the correlation plan xN ′ and the correlation plan xN ′

l
or

xN ′
r
. Equivalently, Eqs.(2), (11), and (12) represent the marginalization constraints that independent

probability distributions ought to obey, where xN ′ is the joint distribution (represented by Eq.(2)) of
independent distributions xi for all i ∈ N ′ (represented by Eq.(11)) or independent distributions xN ′

r

and xN ′
l

(represented by Eq.(12)).

We now show the effectiveness of our correlation plans by showing our method strictly reduces
the feasible solution space after the relaxation. Reducing the feasible solution space will make the
program efficiently solvable, as shown in the experiments. LetM be the original feasible solution
space for the original multilinear program that is transformed into a bilinear program according to N ,
i.e.,M is particularly constrained by Eqs.(1b), (3a), and (3b). We define the convex relaxation space
R as using Eq.(6) to represent each bilinear term in Eq.(3a), i.e., R is particularly constrained by
Eqs.(1b), (6), and (3b). We define our tight relaxation space T based on our correlation plans, i.e., T
is particularly constrained by Eqs.(1b), (2), (11), (12), and (3b). (Proofs are in Appendix B.)

Theorem 2. M⊂ T ⊂ R, i.e., T is strictly smaller thanR but still includesM.

The propertyM⊂ T ⊂ R means that: i) we can use T to strictly reduce the feasible solution space
after the relaxation, and ii) restricting the feasible solution space to T does not reduce the space of
NEs and then guarantees optimality for the original program. We now explicitly restrict the feasible
solution space to T by adding Eqs.(2), (11), and (12) to Program (5) for any binary collection N :

max
x

g(x) (13a)

s.t. Eqs.(1b)− (1g), (2), (3), (4), (11), (12). (13b)

Theorem 3. The optimal solution of Program (13) maximizes g(x) over the space of NEs.

Using the bilinear constraint Eq.(3a) in Program (13) is necessary for computing an optimal NE by
solving Program (13) becauseM ≠ T . Appendix C shows that, after removing Eq.(3a) in Program
(13), the inefficiency can be arbitrarily large, and the resulting strategy profile may not be an NE.

3.3 Minimum-Height Binary Trees

In Program (13), we need to add a set of linear constraints and bilinear constraints for each correlation
plan corresponding to each element in any binary collection N . The size of the vanilla binary
collection N is 2n − (n+ 2), which grows exponentially with the number of players. In this section,
we propose building minimum-height binary trees to obtain a minimum binary collection. Our binary
collection gives us a minimum set of correlation plans, which requires significantly fewer bilinear
terms than N .

There are different ways to divide a subset of players, which determines different binary collections.
For example, N ′ = {1, 2, 3, 4} can be divided into {1, 2} and {3, 4} or {1} and {2, 3, 4}, which will
lead to different binary collections. Therefore, for obtaining a minimum binary collection N , the
challenge is how to effectively divide each element in N .
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Algorithm 2 CRM

1: Input: A game G = (N,A, u) and an objective function g(x)
2: A binary collection N ← The output of Algorithm 1
3: Create Eqs.(1b)-(1g)
4: Create Eqs.(3), (2), (4), (11), and (12) according to N
5: x∗ ← An optimal solution by solving Program (13) based on N , i.e., maxx g(x) s.t. Eqs.(1b)−

(1g), (2), (3), (4), (11), (12)
6: Output: An optimal NE x∗.

{3,4}

{1} {2} {3} {4}
(a)

{1,2}

{1,2,3,4}

{5,4}

{1} {2} {5} {4}
(b)

{1,2}

{1,2,5,4}

Figure 1: Binary trees for −5 and −3

To overcome this challenge, we propose building
a minimum-height binary tree for each element
in {−i | i ∈ N} and ensuring that the number
of internal nodes in these binary trees is the min-
imum. The binary division for each element in a
binary collection N creates a binary tree for each
element in {−i | i ∈ N}. For example, Figure 1(a) is a binary tree for −5 = {1, 2, 3, 4}, and Figure
1(b) is a binary tree for−3 = {1, 2, 5, 4} in five-player games. Each binary tree for−i is a full binary
tree, i.e., each internal node has two children, with n− 2 internal nodes and n− 1 leaf nodes, where
the height is the number of internal nodes on the longest path from the root to a leaf (e.g., the height
in Figure 1(a) is 2). Details for these binary trees are shown in Appendix D. We can then build a
full binary tree T−n with the minimum height ⌈log2(n− 1)⌉ for −n and then replace i with n in the
nodes of T−n to obtain T−i for each i ∈ −n = {1, . . . , n− 1}. That creates n full binary trees for
{−i | i ∈ N}. This procedure is shown in Algorithm 1 (details are shown in Appendix D), generating
our minimum binary collection N including all internal nodes in these trees. For example, Figure
1(a) builds a binary tree T−5, and Figure 1(b) obtains T−3 by replacing 3 with 5 in T−5. Generally,
we only need to create at most ⌈log2(n− 1)⌉ new internal nodes to build a minimum-height binary
tree for each −i with i ∈ −n. Then |N | is at most n− 2 + (n− 1)⌈log2(n− 1)⌉, i.e., O(n log n).
Theorem 4. N generated by Algorithm 1 is a binary collection, and O(n log n) for the size of N is
the minimum size of all binary collections of a game G. (Proofs are in Appendix B.)

|N | only grows sub-quadratically with n and is much smaller than |N | = 2n − (n+ 2) for N . Then
N requires fewer bilinear terms than N when n > 3. For example, in a seven-player game with two
actions for each player, by using N with |N | = 21 correlation plans, the number of bilinear terms
is 564, which is much smaller than 2044 by using N with |N | = 119 correlation plans. Table 3 of
Appendix G shows more examples. Note that Algorithm 1 cannot reduce the number of internal
nodes when n = 3 because each element in {−i | i ∈ N} includes only two players in three-player
games. Our algorithm, CRM, is solving Program (13) based on N , which is shown in Algorithm 2
and is illustrated in Appendix A.

3.4 Complexity

The problem of finding an optimal NE is NP-hard [9], and our algorithm, CRM, i.e., Program (13)
based on N generated by Algorithm 1, is a mixed-integer bilinear program, whose scalability is
mainly affected by the number of bilinear terms and integer variables. Generally, the problem of
solving a linear integer program is NP-hard, and the time complexity is O(I2(EC2)2E+3) [32],
where I is the number of integer variables, E is the number of constraints containing integer variables,
and C is the maximum value among constants and the range of integer variables in these constraints.
Theoretically, each bilinear term can be represented by a mixed-integer linear program by introducing
a new set of constraints and binary integer variables [21]. Suppose each bilinear term introduces I ′

integer variables and E′ constraints, and each player has m actions. Program (5) based onN has mn
binary integer variables with mn constraints and the following number of bilinear terms:∑

N ′∈N

∏
i∈N ′

|Ai| ≤ (2n − n− 2)mn−1 ≤ 2nmn−1.

Then the time complexity for solving the Program (5) based on N is O(I21 (E1C
2)2E1+3) where

I1 = 2nmn−1I ′ + mn and E1 = 2nmn−1E′ + mn. Program (13) based on N has mn binary
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Table 1: Part of experimental results (more results are in Tables 4 and 5 of Appendix H). The format is:
Average Runtime ± 95% Confidence Interval (Percentage of Games not Solved within the Time Limit) (Utility
Gap). Note that the unit of the runtime is second, the case that all games have been solved with the time limit
should be (0%) and is omitted, we only need to care about the utility gap (a larger gap means losing more) for
EXCLUSION, and the utility gap ∞ represents EXCLUSION cannot return a solution within the time limit.

Random Game Runtime ± 95% Confidence Interval (Percentage of Games not Solved) (Utility Gap)
Vary (n,m) CRM MIBP ENUMPOLY EXCLUSION

n
(3, 2) 0.01 ± 0 0.02 ± 0 0.03 ± 0.01 31 ± 41 (gap:15%)
(5, 2) 0.2 ± 0.1 0.5 ± 0.4 11 ± 4 753 ± 148 (73%) (gap:64%)
(7, 2) 25 ± 17 429 ± 131 (20%) 1000 ± 0 (97%) 835 ± 119 (80%) (gap:53%)

m
(3, 5) 0.2 ± 0.03 0.3 ±0.1 1000 ± 0 (100%) 1000 ± 0 (100%) (gap:67%)
(3, 8) 4 ± 3 247 ± 140 (17%) 1000 ± 0 (100%) 1000 ± 0 (100%) (gap:∞)
(3, 10) 9 ± 9 334 ± 167 (30%) 1000 ± 0 (100%) 1000 ± 0 (100%) (gap:∞)
(3, 13) 38 ± 21 342 ± 151 (27%) 1000 ± 0 (100%) 1000 ± 0 (100%) (gap:∞)

GAMUT Game CRM MIBP ENUMPOLY EXCLUSION
Random LEG 2 ± 1 1000 ± 0 (100%) 1000 ± 0 (100%) 986 ± 27 (97%) (gap:11%)

Random graphical 0.1 ± 0.1 803 ± 140 (83%) 50 ± 30 971 ± 55 (97%) (gap:32%)
Uniform LEG 2.2 ± 1 1000 ± 0 (100%) 1000 ± 0 (100%) 986 ± 26 (97%) (gap:11%)

Table 2: Ablation study (more results are in Table 6 of Appendix H). Note that N (in CR and C) and N (in CRM,
CM, and M) result in the same bilinear terms in three-player games because each element in {−i | i ∈ {1, 2, 3}}
includes only two players such that Algorithm 1 cannot reduce the number of internal nodes to reduce the
number of bilinear terms, and then CR and CRM (or C and CM) have the same performance. The unit of the
runtime is second.

Runtime ± 95% Confidence Interval (Percentage of Games not Solved)
Game CRM CR CM C M
(8, 2) 156± 83 (3%) 612± 129 (33%) 190 ± 102 (7%) 763 ± 120 (60%) 1000 ± 0 (100%)
(7, 2) 25 ± 17 89 ± 51 36 ± 28 408 ± 157 (30%) 488 ± 111 (10%)
(3, 15) 167± 86 (3%) 167 ± 86 (3%) 317 ± 137 (17%) 317 ± 137 (17%) 558 ± 150 (40%)
(3, 17) 231±122 (10%) 231 ±122 (10%) 326 ± 134 (20%) 326 ± 134 (20%) 784 ± 102 (53%)
Random graphical 0.1 ± 0.1 0.4 ± 0.1 0.2 ± 0.1 0.6 ± 0.4 814 ± 134 (80%)
Uniform LEG 2.2 ± 1 5 ± 4 2.5 ± 2 5 ± 5 999 ± 2 (97%)

integer variables with mn constraints and the following number of biliear terms:∑
N ′∈N

∏
i∈N ′

|Ai| ≤ |N |mn−1,

i.e., O((n log n)mn−1) bilinear terms (this size is the minimum because O(n log n) is the min-
imum size of binary collections by Theorem 4) and . Then the time complexity for solv-
ing Program (13) based on N is O(I22 (E2C

2)2E2+3) where I2 = (n log n)mn−1I ′ + mn and
E2 = (n log n)mn−1E′+mn, and thus O(n log n) of Algorithm 1 can be ignored. Therefore, CRM
dramatically reduces the time complexity (i.e., the term 2n in I1 and E1 is changed to the term n log n
in I2 and E2).

4 Experiments

Following prior work for NEs [34, 4, 13], we evaluate our approach on two sets of games: randomly
generated games (i.e., (n,m) with n players and m actions for each player) and six-player three-
action games that are generated by GAMUT [31]. Payoffs are generated from the interval between 0
and 100 (other ranges (e.g., [0, 1]) do not affect the result). Details are shown in Appendix F. We
show the game size in terms of the number of bilinear terms and integer variables in Appendix G,
e.g., the number of bilinear terms in the game (9, 2) is 19152 based on N but is 2512 based on N .

Baselines: We compare our CRM4 shown in Algorithm 2, i.e., solving Program (13) based on our
N , to the state-of-the-art algorithms: i) MIBP [34, 13]: the equivalent of solving Program (5) based
on N ; ii) EXCLUSION [4]: the first implemented algorithm guarantees to converge to an NE
by using a tree-search based method by splitting the continuous probability space of the solution;
and iii) ENUMPOLY [28]: an algorithm in the well-known game-solving package Gambit which

4Codes are available at https://github.com/Youzhi333/optimalNE.
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tries to find all NEs by enumerating all the supports which could be the support of an NE and then
searching for an equilibrium on that support. They represent approaches to solving a nonlinear
program, finding an NE, and enumerating all Nash equilibria, respectively. There are some other
algorithms in Gambit [28] for finding an NE in a multiplayer game, including: i) GNM [16]: a global
Newton method approach; ii) IPA [17]: an iterated polymatrix approximation approach; iii) LIAP:
a function minimization approach; iv) SIMPDIV [41]: a simplicial subdivision approach; and v)
LOGIT [29, 40]: a quantal response method. However, they cannot guarantee finding an NE [4].
Therefore, they are not suitable for finding an optimal NE. In fact, we show in Appendix I that all of
them fail to solve many games and even run significantly slower than CRM in many games. Note
that these Gambit algorithms only achieve some NE if the game is solved, which may not be optimal.

Algorithm Setting and Metric: We set a time limit of 1000 seconds for each case unless stated
otherwise. Our optimality gap for EXCLUSION is significantly smaller than 0.001 in [4] (we verified
that, with the same optimality gap, our result for EXCLUSION is almost the same as the one in [4]).
We mainly use the runtime and the percentage of games that are not solved within the time limit to
measure the performance of our approach. Details are shown in Appendix F (also caption of Table 1).

Result: Part of results are shown in Table 1, and more results are in Tables 4 and 5 of Appendix
H. They show that the runtime of our CRM steadily increases with the game size. Note that the
runtime of CRM includes the runtime for our Algorithm 1, which is extremely small (see Appendix
E). Moreover, CRM is significantly faster than the baselines and is two or three orders of magnitude
faster than the state-of-art baselines MIBP, ENUMPOLY, and EXCLUSION in most games. The
reasons are that: 1) MIBP with too many bilinear terms and large feasible solution space after the
relaxation cannot perform well without CRM’s novel techniques in Section 3, where each of these
techniques significantly boosts the performance (see the ablation study); and 2) the exponentially
many NEs and the large search space caused by splitting the continuous probability space make
ENUMPOLY and EXCLUSION, respectively, hard to scale up. EXCLUSION always has large utility
gaps, which means that we will lose large utilities if we use EXCLUSION for our problem. The result
that CRM runs significantly faster than EXCLUSION means that CRM is a faster algorithm not only
for computing an optimal NE but also for just computing an NE. Furthermore, the gap between CRM
and any of the baselines increases with the number of players or actions. In games with a large gap
between CRM and baselines, the real gap should be larger because these baselines have not solved all
of them within the time limit, while CRM solved all of them. Overall, CRM significantly overcomes
the limitation of baselines.

Ablation Study: We evaluate each component of CRM by using the following variants: i) CR:
solving Program (13) based on N ; ii) CM: solving Program (13) based on N without the relation
constraints Eqs.(11) and (12); iii) C: solving Program (13) based onN without the relation constraints
Eqs.(11) and (12); and iv) M: solving Program (5) based onN . Part of results are in Table 2, and more
results are in Table 6 of Appendix H. We can see that each component of our approach significantly
boosts its performance.

5 Related Work

Existing works define a correlation plan as a probability distribution over the joint action space of
all players, and use it to formulate constraints for a correlated equilibrium [37, 1]. However, the
constraints for the space of correlated equilibria cannot be used in our program due to the following
two reasons. First, there are no correlation plans for coordinating all players in our program after the
convex relaxation because our formulation based on [34] has reduced the degree of the multilinear
program for the space of NEs in order to significantly reduce the number of bilinear terms. Second,
our correlation plans are different from the correlation plan for correlated equilibria because our
correlation plans are only for subsets of the players. Recently, the correlation plan [49] based on a
decomposition of the extensive-form game into public states has been used to compute correlated
equilibria. However, their approach is not suitable for our problem because our game is not extensive-
form and then does not have the property of their problem. Then our approach exploiting the relations
of correlation plans and minimizing the number of correlation plans is novel.

Several recent efforts have developed relatively efficient algorithms to find an NE that maximizes
the utility of a team of players in zero-sum games [45, 50, 51, 52, 11, 24, 53]. However, these
algorithms cannot be used in games where team members have different utility functions. Existing

9



works transforming multilinear terms into bilinear terms only focus on special cases. For example,
the transformation in [13] is equivalent to our transformation based on N , which is only a special
case of our transformation framework. They [13] then directly solves the bilinear program based on
this special transformation for finding an NE, which is equivalent to our baseline MIBP. Experiments
show that our approach with novel techniques in Section 3 significantly outperforms [13]. Similar to
the formulation in [34], there are other formulations [2, 3] for finding an optimal NE for two players
under the problem of computing a leader-follower (Stackelberg) equilibrium for a single leader and
two followers after a mixed strategy is committed by the leader. These formulations are different
from ours because of the difference between the NE and the Stackelberg equilibrium. For example,
the leader will commit a strategy to the followers in a Stackelberg equilibrium, i.e., the followers
know the leader’s strategy, but this cannot happen in an NE as all players move simultaneously.
Moreover, after dropping the dependences of the followers to the leader’s strategies in these bilinear
programming formulations, the problem boils down to computing an optimal NE in two-player games
because they only consider two followers in their formulations, which results in the same two-player
formulation of [34].

For the existing general optimization techniques, e.g., Reformulation-Linearization Technique (RLT)
[35, 25, 36], they add linear constraints by multiplying linear constraints with a single variable to
reduce the feasible solution space of the convex relaxation and the number of bilinear terms if they
can be represented by linear constraints (i.e., variants of original linear constraints). However, these
operations are not very effective for our problem because the bilinear terms cannot be represented by
those linear constraints (i.e., variants of original linear constraints), and simply multiplying linear
constraints with a single variable cannot effectively represent the relation between auxiliary variables
and nonlinear terms. Indeed, RLT is implemented in Gurobi [18, 19], but its performance (see MIBP
in Table 1) is not good enough for large games in experiments. Moreover, our approach significantly
outperforms the state-of-the-art optimization solver Gurobi (see results for CRM versus MIBP in
Table 1) in experiments.

6 Limitations

Similarly to the previous literature [34, 4, 13], to efficiently evaluate the algorithms, we set a time
limit of 1000 seconds for each case unless stated otherwise. It means that we may need 30,000
seconds (almost 8 hours) to run an algorithm for each game setting (e.g., the game (6, 3)) with 30
cases. We totally run 13 algorithms for 21 different game settings, whose total runtime is more than
2,000 hours if each algorithm needs 30,000 seconds for each game setting. A higher time limit means
more runtime. For example, if the time limit is 10,000s, we may need 20, 000 hours (more than 800
days), which is not reasonable for a personal computer. Increasing the game size will cause a similar
problem as well. Our goal is only to show that our proposed algorithm runs faster than baselines.
Therefore, as a proof of concept, our time limit and game size are reasonable and practical.

Our algorithm CRM is significantly faster than the state-of-the-art baseline, and it can solve many
real-world games: e.g., (1) multiplayer hand games using only the hands of the players (https:
//en.m.wikipedia.org/wiki/Hand_game), including the rock-paper-scissors games, Morra games, and
their variants; and (2) the matching pennies game with several players and only two actions for
each player. However, we cannot handle extremely large games now because we are handling a
very hard problem, and then it is unrealistic to expect that our exact algorithm CRM could run
very fast in large games. Our algorithm is an attempt to make this computation of optimal NEs
feasible, and our algorithm framework can be built on by further innovative heuristics to improve
the computation of optimal NEs. That is, for games with more players or actions, we can exploit the
auxiliary speed-up techniques: the multiagent learning framework—Policy-Spaced Response Oracles
(PSRO) [22, 54, 55, 51, 46, 23], the abstraction techniques [47], or only considering approximate
NEs. Specifically, our algorithm CRM could be used as the meta-solver in PSRO.

7 Conclusion

This paper proposes a novel algorithm (CRM) for computing optimal NEs based on our transformation
framework. CRM uses correlation plans with their relations to strictly reduce the feasible solution
space after the convex relaxation while minimizing the number of correlation plans to significantly
reduce the number of bilinear terms. Experiments show that CRM significantly outperforms baselines.
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Appendix
A Illustration of CRM

In four-player games,

N = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2}, {1, 3}, {2, 3}, {1, 4}, {3, 4}, {2, 4}}.

By Algorithm 1 in CRM, we have:

N = {{1, 2, 3}, {4, 2, 3}, {1, 4, 3}, {1, 2, 4}, {1, 2}, {4, 2}, {1, 4}},

i.e., N = {−4, −1,−2,−3, {1, 2}, {2, 4}, {1, 4}}. To obtain this set, we first have a full binary
tree T−4 with the set of internal nodes NT−4 = {{1, 2, 3}, {1, 2}}. Then, for each element in
NT−4 , we replace 1 with 4 to obtain NT−1 = {{4, 2, 3}, {4, 2}}; replace 2 with 4 to obtain NT−2 =
{{1, 4, 3}, {1, 4}}; and replace 3 with 4 to obtain NT−3 = {{1, 2, 4}, {1, 2}}. Then N = NT−1 ∪
NT−2 ∪NT−3 ∪NT−4 .

In three-player games, Algorithm 1 cannot reduce the number of internal nodes because each element
in {−i | i ∈ {1, 2, 3}} includes only two players. Then N = N = {{1, 2}, {1, 3}, {2, 3}}, which
means that N and N will result in the same set of bilinear terms in three-player games.

To be simplified, we show how to formulate the program according to Algorithm 2 (i.e., CRM) in
a three-player game G = (N,A, u) with N = {1, 2, 3}, Ai = {ai, a′i} first. In three-player games,
−1 = {2, 3}, and N = {−1,−2,−3} = {{2, 3}, {1, 3}, {1, 2}}.
Note that A−1 = A2,3 = A2 × A3 = {(a2, a3), (a2, a′3), (a′2, a3), (a′2, a′3)} with N ′ = −1 =
{2, 3}, N ′

l = {2}, N ′
r = {3}. We show the constraints related to player 1 here: We first show player

1’s constraints in the Nash equilibria space based on Eqs.(1b)-(1e):

x1(a1) + x1(a
′
1) = 1 (based on Eqs.(1b))

1− ba1
≥ x1(a1), 1− ba′

1
≥ x1(a

′
1) (based on Eq.(1c))

u1(x)≥u1(a1, x−1), u1(x)−u1(a1, x−1)≤ba1(Umax − Umin) (based on Eqs.(1d)) and (1e))
u1(x)≥u1(a

′
1, x−1), u1(x)−u1(a

′
1, x−1)≤ba′

1
(Umax − Umin) (based on Eqs.(1d) and (1e))

The above constraints include player 1’s expected utility variables u1(a1, x−1) and u1(a
′
1, x−1),

which are represented by the following constraints based on Eq.(4):

u1(a1, x−1) = u1(a1, a2, a3)x−1(a2, a3) + u1(a1, a2, a
′
3)x−1(a2, a

′
3)

+ u1(a1, a
′
2, a3)x−1(a

′
2, a3) + u1(a1, a

′
2, a

′
3)x−1(a

′
2, a

′
3) (based on Eq.(4))

u1(a
′
1, x−1) = u1(a

′
1, a2, a3)x−1(a2, a3) + u1(a

′
1, a2, a

′
3)x−1(a2, a

′
3)

+ u1(a
′
1, a

′
2, a3)x−1(a

′
2, a3) + u1(a

′
1, a

′
2, a

′
3)x−1(a

′
2, a

′
3) (based on Eq.(4)) ,

where the correlation plan x−1 of −1 over A−1, based on Eq.(2), is defined by:

x−1(a2, a3) + x−1(a2, a
′
3) + x−1(a

′
2, a3) + x−1(a2, a

′
3) = 1 (the plan of −1 based on Eq.(2)).

In the above correlation plan x−1, x−1(a2, a3), x−1(a2, a
′
3), x−1(a

′
2, a3), x−1(a

′
2, a

′
3) represent the

following four bilinear terms (constraints):

x−1(a2, a3) = x2(a2)x3(a3) (the bilinear constraint based on Eq.(3a)) with
a−1 = (a2, a3) = (aN ′

l
, aN ′

r
), aN ′

l
= (a2), aN ′

r
= (a3)

x−1(a2, a
′
3) = x2(a2)x3(a

′
3) (the bilinear constraint based on Eq.(3a)) with

a−1 = (a2, a
′
3) = (aN ′

l
, aN ′

r
), aN ′

l
= (a2), aN ′

r
= (a′3)

x−1(a
′
2, a3) = x2(a

′
2)x3(a3) (the bilinear constraint based on Eq.(3a)) with

a−1 = (a′2, a3) = (aN ′
l
, aN ′

r
), aN ′

l
= (a′2), aN ′

r
= (a3)

x−1(a
′
2, a

′
3) = x2(a

′
2)x3(a

′
3) (the bilinear constraint based on Eq.(3a)) with

a−1 = (a′2, a
′
3) = (aN ′

l
, aN ′

r
), aN ′

l
= (a′2), aN ′

r
= (a′3),
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where, based on the binary division in N , any joint action aN ′ ∈ AN ′ can be divided into two
sub-joint actions aN ′

l
∈ AN ′

l
and aN ′

r
∈ AN ′

r
such that aN ′ = (aN ′

l
, aN ′

r
). Note that x2 and x3 are

special correlation plans with that 2 is set to be equivalent to {2} and 3 is set to be equivalent to {3}
for simplification. Correlation plans x−1 and x2 (or x3) have the following relation:

x−1(a2, a3) + x−1(a2, a
′
3) = x2(a2) (the relation of correlation plans x−1 and x2 based on Eq.(11)),

∀aN ′ ∈ {(a2, a3), (a2, a′3)} ⊆ A−1, aN ′(2) = a2, i.e., a2 is player 2’s action in aN ′

x−1(a
′
2, a3) + x−1(a

′
2, a

′
3) = x2(a

′
2) (the relation of correlation plans x−1 and x2 based on Eq.(11)),

∀aN ′ ∈ {(a′2, a3), (a′2, a′3)} ⊆ A−1, aN ′(2) = a′2, i.e., a′2 is player 2’s action in aN ′

x−1(a2, a3) + x−1(a
′
2, a3) = x3(a3) (the relation of correlation plans x−1 and x3 based on Eq.(11)),

∀aN ′ ∈ {(a2, a3), (a′2, a3)} ⊆ A−1, aN ′(3) = a3, i.e., a3 is player 3’s action in aN ′

x−1(a2, a
′
3) + x−1(a

′
2, a

′
3) = x3(a

′
3) (the relation of correlation plans x−1 and x3 based on Eq.(11)),

∀aN ′ ∈ {(a2, a′3), (a′2, a′3)} ⊆ A−1, aN ′(3) = a′3, i.e., a′3 is player 3’s action in aN ′

Constraints related to other players are created similarly. As shown in Algorithm 2 (i.e., CRM), after
creating all of these constraints in the bilinear program for the Nash equilibria space, we can solve
the program to optimize an objective function by using a global optimization solver, e.g., Gurobi.

In three-player games, x−1(a−1) just represents a bilinear term, and then a chain of bilinear con-
straints (equalities) to transform a multilinear term into bilinear terms is not explicit. In four-player
games, a chain of bilinear constraints (equalities) to transform a multilinear term into bilinear terms
is more explicit. For example, in a game G = (N,A, u) with N = {1, 2, 3, 4}, Ai = {ai, a′i}, and
N = {−4, −1,−2,−3, {1, 2}, {2, 4}, {1, 4}}, based on Eq.(3a), we have:

x−1(a2, a3, a4) = x2,4(a2, a4)x3(a3), x2,4(a2, a4) = x2(a2)x4(a4) (a chain of bilinear constraints),

where N ′ = −1 = {2, 3, 4}, N ′
l = {2, 4} and N ′

r = {3} based onN . That is, a−1 = (a2, a3, a4) =
(aN ′

l
, aN ′

r
) with aN ′

l
= (a2, a4), aN ′

r
= (a3) (i.e., joint action a−1 is divided into two sub-joint

actions aN ′
l

and aN ′
r

such that a−1 = (aN ′
l
, aN ′

r
)) based on N , and then we can have the above

chain of bilinear constraints for it. Each joint action in A−1 = A2 × A3 × A4 = AN ′
l
× AN ′

r
=

{(a2, a3, a4),(a2, a3, a′4), (a2, a′3, a4),(a2, a′3, a′4),(a′2, a3, a4),(a′2, a3, a′4),(a′2, a′3, a4),(a′2, a′3, a′4)}
is divided into two disjoint sets similarly, and then we can have a chain of bilinear constraints for it.

In three-player games, each element in {−i | i ∈ {1, 2, 3}} includes only two players, and then
the resulting program does not include the constraints for the relation of correlation plans based on
Eq.(12). To show the constraints based on Eq.(12), we consider four-player games. The following
constraints are player 1’s constraints based on Eq.(12) for solving a game G = (N,A, u) with
N = {1, 2, 3, 4}, Ai = {ai, a′i}:

x−1(a2, a3, a4)+x−1(a2, a
′
3, a4)=x2,4(a2, a4) (based on Eq.(12)) with aN ′

l
= (a2, a4),

∀aN ′ ∈ {(a2, a3, a4), (a2, a′3, a4)} ⊆ A−1, aN ′(N ′
l ) = (a2, a4),

i.e., (a2, a4) is N ′
l ’s sub-joint action in aN ′

x−1(a2, a3, a
′
4)+x−1(a2, a

′
3, a

′
4)=x2,4(a2, a

′
4) (based on Eq.(12)) with aN ′

l
= (a2, a

′
4),

∀aN ′ ∈ {(a2, a3, a′4), (a2, a′3, a′4)} ⊆ A−1, aN ′(N ′
l ) = (a2, a

′
4),

i.e., (a2, a4) is N ′
l ’s sub-joint action in aN ′

x−1(a
′
2, a3, a4)+x−1(a

′
2, a

′
3, a4)=x2,4(a

′
2, a4) (based on Eq.(12)) with aN ′

l
= (a′2, a4),

∀aN ′ ∈ {(a′2, a3, a4), (a′2, a′3, a4)} ⊆ A−1, aN ′(N ′
l ) = (a′2, a4),

i.e., (a2, a4) is N ′
l ’s sub-joint action in aN ′

x−1(a
′
2, a3, a

′
4)+x−1(a

′
2, a

′
3, a

′
4)=x2,4(a

′
2, a

′
4) (based on Eq.(12)) with aN ′

l
= (a′2, a

′
4),

∀aN ′ ∈ {(a′2, a3, a′4), (a′2, a′3, a′4)} ⊆ A−1, aN ′(N ′
l ) = (a′2, a

′
4),

i.e., (a′2, a
′
4) is N ′

l ’s sub-joint action in aN ′ ,

where N ′ = −1 = {2, 3, 4}, N ′
l = {2, 4} and N ′

r = {3} based on N . The we can divide the
joint actions in A−1, e.g., a−1 = (a2, a3, a4) = (aN ′

l
, aN ′

r
) with aN ′

l
= (a2, a4), aN ′

r
= (a3). For

elements in {N ′
l , N

′
r}, we only consider constraints based on Eq.(12) for N ′

l because |N ′
l | = 2 > 1
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and |N ′
r| = 1. We could use Eq.(11) to generate constraints for N ′

r = {3} for the relation between
x−1 and x3, e.g., for a3 ∈ A3,

x−1(a2, a3, a4) + x−1(a
′
2, a3, a4) + x−1(a2, a3, a

′
4) + x−1(a

′
2, a3, a

′
4) = x3(a3),

where, for each aN ′ ∈ {(a2, a3, a4), (a′2, a3, a4), (a2, a3, a′4), (a′2, a3, a′4)} ⊆ A−1, aN ′(3) = a3,
i.e., a3 is player 3’s action in aN ′ .

Other constraints for four-player games are created similarly to the above creation of constraints for
three-player games.

B Proofs

Theorem 1. The feasible solution space of mixed strategies (i.e., xi(ai) for each i ∈ N , ai ∈ Ai) in
Eqs.(1b)-(1g), (3), and (4) is the space of NEs.

Proof. Eq.(1) describing the space of NEs and Eqs.(1b)-(1g), (3), and (4) both include Eqs.(1b)-(1g),
which describe the condition of NEs. Then we only need to show that Eq.(4) is equivalent to Eq.(1a).
That is, we need to show

∏
j∈−i xj(a−i(j)) = x−i(a−i) for each i ∈ N and a−i ∈ A−i. To

achieve this result, we show
∏

j∈N ′ xj(aN ′(j)) = xN ′(aN ′) for each N ′ ∈ N and aN ′ ∈ AN ′ . We
show that this statement holds by induction. For any N ′ ∈ N with |N ′| = 2, we obviously have∏

j∈N ′ xj(aN ′(j)) = xN ′(aN ′) for each aN ′ ∈ AN ′ by Eq.(3). Suppose, for any N ′ ∈ N with
|N ′| = k ≥ 2, the statement holds. Now for any N ′ ∈ N with |N ′| = k + 1 and its two children N ′

l
and N ′

r, we have: for any aN ′ ∈ AN ′ ,
xN ′(aN ′) = xN ′

l
(aN ′

l
)xN ′

r
(aN ′

r
)

=
∏
i∈N ′

l

xi(aN ′
l
(i))

∏
j∈N ′

r

xj(aN ′
r
(j))

=
∏
j∈N ′

xj(aN ′(j)),

where the second “=" is based on the assumption that, for any N ′ ∈ N with |N ′| = k ≥ 2, the
statement holds. Then

∏
j∈N ′ xj(aN ′(j)) = xN ′(aN ′) for each N ′ ∈ N and aN ′ ∈ AN ′ . Therefore,

the theorem holds.

Theorem 2. M⊂ T ⊂ R, i.e., T is strictly smaller thanR but still includesM.

Proof. (i) We first show that T ⊂ R. Given any x{i,j}(ai, aj) = xi(ai)xj(aj), in T , we have
x{i,j}(ai, aj) ≤ min{xi(ai), xj(aj)} according to Eq.(11). Suppose xi(ai) + xj(aj) − 1 >
x{i,j}(ai, aj). According to Eqs.(11) and (1b), we have the following contradiction:

xi(ai)

=
∑

a′
j∈Aj

x{i,j}(ai, a
′
j)

< xi(ai) + xj(aj)− 1 +
∑

a′
j∈Aj ,a′

j ̸=aj

x{i,j}(ai, a
′
j)

≤ xi(ai)− 1 +
∑

aj∈Aj

xj(aj)

= xi(ai),

where the first “=” is according to Eq.(11), “<” is according to the assumption, “≤” is according
to Eq.(11), and the last “=” is according to Eq.(1b). This contradiction implies that xi(ai) +
xj(aj)− 1 ≤ x{i,j}(ai, aj), i.e., max{0, xi(ai) + xj(aj)− 1} ≤ x{i,j}(ai, aj). Similarly, for any
xN ′(aN ′) = xN ′

l
(aN ′

l
)xN ′

r
(aN ′

r
) with two children N ′

l and N ′
r of N ′, in T , we have:

max{xN ′
l
(aN ′

l
) + xN ′

r
(aN ′

r
)− 1, 0}

≤xN ′(aN ′)

≤min{xN ′
l
(aN ′

l
), xN ′

r
(aN ′

r
)}.
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Therefore, T ⊆ R.

Given any x{i,j}(a1, a2) = x1(a1)x2(a2) and x{i,j}(a
′
1, a2) = x1(a

′
1)x2(a2), by Eq.(6), we can

have a feasible solution such that:

x{i,j}(a1, a2) = min{x1(a1), x2(a2)}
x{i,j}(a

′
1, a2) = min{x1(a

′
1), x2(a2)}.

Then x{i,j}(a1, a2) + x{i,j}(a
′
1, a2) > x2(a2) when 0 < x2(a2) < min{x1(a1), x1(a

′
1)} < 1.

However, in T ,
x{i,j}(a1, a2) + x{i,j}(a

′
1, a2) ≤ x2(a2).

ThenR ⊈ T . Therefore, T ⊂ R, i.e., T is strictly smaller thanR.

(ii) Now we show thatM⊂ T . InM, for each aN ′ ∈ AN ′ , N ′ ∈ N with two children N ′
l and N ′

r
of N ′, there is a bilinear constraint xN ′(aN ′) = xN ′

l
(aN ′

l
)xN ′

r
(aN ′

r
) based on aN ′ = (aN ′

l
, aN ′

r
),

where xN ′(aN ′) = xi(ai) for N ′ = {i}. We first showM ⊆ T for Eq.(2) by induction. For any
N ′ = (i, j) ∈ N , byM, we have:∑

(ai,aj)∈A{i,j}

x{i,j}(ai, aj) =
∑

ai∈Ai

xi(ai)
∑

aj∈Aj

xj(aj) = 1.

Suppose, for any N ′ ∈ N with |N ′| = k and k ≥ 2,∑
aN′∈AN′

xN ′(aN ′) = 1.

Now for any N ′ ∈ N with |N ′| = k + 1, with two children N ′
l and N ′

r of N ′, by M and the
assumption of Nk, we have:∑

aN′∈AN′

xN ′(aN ′) =
∑

aN′
l
∈AN′

l

xN ′
l
(aN ′

l
)

∑
aN′

r
∈AN′

r

xN ′
r
(aN ′

r
)

= 1.

Therefore, Eq.(2) is implied byM. Similarly, for each N ′ ⊂ N , we have
∑

aN′∈AN′ xN ′(aN ′) = 1.

For any N ′ = (i, j) ∈ N , byM, we have: for any ai ∈ Ai,∑
aj∈Aj

x{i,j}(ai, aj) = xi(ai)
∑

aj∈Aj

xj(aj) = xi(ai);

and for any aj ∈ Aj ,
∑

ai∈Ai
x{i,j}(ai, aj) = xj(aj)

∑
ai∈Ai

xi(ai) = xj(aj). For any N ′ ∈ N
with |N ′| > 2, byM, we have: for any i ∈ N ′, and ai ∈ Ai, with Nk = N ′ \ {i},∑

aN′∈AN′ ,aN′ (i)=ai

xN ′(aN ′) = xi(ai)
∑

aNk
∈ANk

xNk
(aNk

)

= xi(ai).

Therefore, Eq.(11) is implied byM.

Now for any N ′ ∈ N , with two children N ′
l and N ′

r of N ′, byM, for each aN ′
l
∈ AN ′

l
, we have:∑

aN′=(aN′
l
,aN′

r
)∈AN′

xN ′(aN ′)

= xN ′
l
(aN ′

l
)

∑
aN′

r
∈AN′

r

xN ′
r
(aN ′

r
)

= xN ′
l
(aN ′

l
),
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where the condition aN ′ = (aN ′
l
, aN ′

r
) ∈ AN ′ represents that aN ′ ∈ AN ′ , aN ′(N ′

l ) = aN ′
l
. For each

aN ′
r
∈ AN ′

r
, we have: ∑

aN′=(aN′
l
,aN′

r
)∈AN′

xN ′(aN ′)

= xN ′
r
(aN ′

r
)

∑
aN′

l
∈AN′

l

xN ′
l
(aN ′

l
)

= xN ′
r
(aN ′

r
).

Therefore, Eq.(12) is implied byM. ThenM⊆ T .

Given any four bilinear terms:

x{1,2}(a1, a2) = x1(a1)x2(a2)

x{1,2}(a
′
1, a2) = x1(a

′
1)x2(a2)

x{1,2}(a1, a
′
2) = x1(a1)x2(a

′
2)

x{1,2}(a
′
1, a

′
2) = x1(a

′
1)x2(a

′
2).

The following solution is in T :

x{1,2}(a1, a2) = 0

x{1,2}(a
′
1, a2) = 2/3

x{1,2}(a1, a
′
2) = 1/3

x{1,2}(a
′
1, a

′
2) = 0

x1(a1) = 1/3, x1(a
′
1) = 2/3

x2(a2) = 2/3, x2(a
′
2)=1/3.

However, the above solution is not in M because: x1(a1) = 1/3 and x2(a2) = 2/3 imply that
x{1,2}(a1, a2) = 2/9, which contradicts x{1,2}(a1, a2) = 0 in the above solution. Therefore,
T ̸⊆ M. That is,M⊂ T .

Theorem 3. The optimal solution of Program (13) maximizes g(x) over the space of NEs.

Proof. By Theorem 2, T includesM, i.e., T does not reduce the space of NEs. Program (13) is
obtained after we explicitly restrict the feasible solution space to T by adding Eqs.(2), (11), and (12)
to Program (5). The optimization solver will search this feasible solution space after the relaxation to
find the optimal solution for the original bilinear program. Therefore, by solving Program (13), we
obtain an optimal NE.

Theorem 4. N generated by Algorithm 1 is a binary collection, and O(n log n) for the size of N is
the minimum size of all binary collections of a game G.

Proof. First, it is clear that N generated by Algorithm 1 is a binary collection of G. Then {−i | i ∈
N} ⊆ N .

The number of internal nodes in each binary tree with n− 1 leaves of −i for each i ∈ N is n− 2
[20]. To obtain the minimum number of internal nodes in these binary trees for {−i | i ∈ N}, we
can minimize the difference between binary trees. Given a binary tree T−n for −n and a binary tree
T−i for −i with i ∈ −n, the difference between T−n and T−i at least includes the path from the
root to the node {i} in T−n and the path from the root to the node {n} in T−i. Then the number of
different internal nodes (i.e., nodes that are not in T−n) in these binary trees for {−i | i ∈ N} is at
least equal to the total path length in T−n. Algorithm 1 ensures that the number of different internal
nodes in these binary trees for {−i | i ∈ N} is equal to the total path length in T−n, and the total
path length in T−n by Algorithm 1 is at most (n− 1)⌈log2(n− 1)⌉. Given a binary tree with k − 1
internal nodes, the minimum total path length is O(k log k) [20]. Therefore, O(n log n) for the size
of N is the minimum size of all binary collections of G.
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Algorithm 3 Generate N : full details of Algorithm 1

1: Build(−n)
2: for each i in {1, . . . , n− 1} do
3: −i: replace i with n in −n
4: N ′ ← −n
5: N ← N ∪ {−i}
6: while |N ′| > 2 do
7: {N1, N2} ← Ch(N ′) with i ∈ N1

8: N ′′: replace i with n in N ′ ;
9: N ′

1: replace i with n in N1

10: Ch(N ′′)← {N ′
1, N2}

11: if |N1| > 1 then
12: N ← N ∪ {N ′

1}
13: end if
14: N ′ ← N1

15: end while
16: end for

C The Necessity of Eq.(3a) in Program (13)

Now we show the necessity of Eq.(3a) in Program (13). We denote Program T as the resulting
program after removing Eq.(3a) in Program (13). We use the optimization gap between the optimal
objective value g∗ in Program (13) and the objective value g obtained from the players’ strategies
after solving Program T (i.e., g is the real objective value after playing the strategies obtained from
solving Program T) to measure the inefficiency of Program T, i.e., g∗ − g. Note that, by Theorem 2,
the optimal objective value of Program T is just an upper bound of the optimal objective value of
Program (13), which may not be achieved by playing the strategies obtained from solving Program
T. The following theorem shows that g∗ − g can be arbitrarily large, i.e., Program T is not suitable
to be used for computing optimal NEs. In addition, the resulting strategy profile by solving Program
T may not be an NE.5

Theorem 5. g∗ − g can be arbitrarily large, and the resulting strategy profile x′ by solving Program
T may not be an NE.

Proof. Consider a game with three players, A1 = {a1, a′1}, A2 = {a2, a′2} and A3 = {a3, a′3, a′′3},
and the following utility function for three players, respectively, with k ≥ 1:

u = (u1, u2, u3) : (a1, a2, a3)→ (0.5k, 0.5k,−k);
u = (u1, u2, u3) : (a

′
1, a

′
2, a

′
3)→ (0.5k, 0.5k,−k);

u = (u1, u2, u3) : (a1, a
′
2, a3)→ (0.125k, 0.125k,−0.25k);

u = (u1, u2, u3) : (a1, a
′
2, a

′
3)→ (0.125k, 0.125k,−0.25k);

u = (u1, u2, u3) : (a1, a
′
2, a

′′
3)→ (0.1k, 0.15k,−0.25k);

u = (u1, u2, u3) : other joint actions→ (0, 0, 0).

The objective function is g = u1(x1, x2, x3) + u2(x1, x2, x3). By solving Program T, we obtain
x′
1 with x′

1(a1) = 2/3 and x′
1(a

′
1) = 1/3, x′

2 with x′
2(a2) = 1/3 and x′

2(a
′
2) = 2/3, and x′

3
with x′

3(a3) = 1/2 = x′
3(a

′
3), and x′

3(a
′′
3) = 0. If players 1 and 2 play x′

1 and x′
2, respectively,

u3(x
′
1, x

′
2, a3) = −k/3 = u3(x

′
1, x

′
2, a

′
3), and u3(x

′
1, x

′
2, a

′′
3) = −k/9. That is, player 3 will play

the pure strategy a′′3 to respond to x′
1 and x′

2, which will result in g = k/9. Then the resulting strategy
profile x′ is not an NE.

5To find an optimal NE, this paper only considers programs guaranteeing exact NEs, and designing programs
with approximate NEs is the future work.
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It is clear that (x∗
1, x

∗
2, x

∗
3) with x∗

1(a1) = 1, x∗
2(a

′
2) = 1, and x∗

3(a
′′
3) = 1 is an NE, which also is an

output of solving Program (13) with the objective value g∗ = k/4.

Therefore, g∗ − g = 5k/36, which is arbitrarily large when k is arbitrarily large.

Algorithm 4 Build(N ′): Build a minimum-height binary tree for N ′

1: h← ⌈log(|N ′|)⌉
2: if 2h = |N ′| then
3: Lower set N ′

1 ← {{i} | i ∈ N ′}
4: for k ∈ {1, . . . , ⌈log(|N ′|)⌉} do
5: Upper set N ′

2 ← ∅
6: for j ∈ {1, . . . , |N ′

1|/2} do
7: N1 ← N ′

1[j × 2 − 1] ∪ N ′
1[j × 2]: the union of the (j × 2 − 1)-th element and the

(j × 2)-th element in N ′
1.

8: N ′
2 ← N ′

2 ∪ {N1}
9: Ch(N1)← {N ′

1[j × 2− 1],N ′
1[j × 2]}

10: end for
11: Lower set N ′

1 ← N ′
2

12: N ← N ∪N ′
2

13: end for
14: else
15: N ′

1 ← {N ′[1], . . . , N ′[2h−1]}
16: N ′

2 ← N ′ \N ′
1

17: if 3× 2h−2 <= |N ′| then
18: Lower set N ′

1 ← {{i} | i ∈ N ′
1}

19: for k ∈ {1, . . . , ⌈log(|N ′
1|)⌉} do

20: Repeat Lines 5-12.
21: end for
22: Build(N ′

2)
23: N ← N ∪ {N ′}
24: Ch(N ′)← {N ′

1, N
′
2}

25: else
26: Lower set N ′

1 ← {{i} | i ∈ N ′
1}

27: for k ∈ {1, . . . , ⌈log(|N ′
1|)⌉ − 1} do

28: Repeat Lines 5-12.
29: end for
30: Build(N ′

2)
31: N1 ← N ′

1[2] ∪N ′
2

32: N ← N ∪ {N1}
33: Ch(N1)← {N ′

1[2], N
′
2}

34: N ← N ∪ {N ′}
35: Ch(N ′)← {N ′

1[1], N1}
36: end if
37: end if

D Binary Trees and Details of Algorithm 1

We consider a special binary tree (full binary tree), which includes two kinds of nodes: nodes with
two children (internal nodes) and nodes without children (leaf nodes). A binary tree TN ′ of N ′ ⊆ N
with |N ′| ≥ 2 is that: 1) its root is N ′; 2) its nodes are {N ′′ | N ′′ ⊆ N ′}; 3) each of its leaf nodes is
a singleton; and 4) each of its internal nodes N ′′ has two children N ′′

l and N ′′
r with N ′′

l ∩N ′′
r = ∅

and N ′′ = N ′′
l ∪N ′′

r , i.e., N ′′ is divided into two disjoint sets. Let Ch(N ′′) = {N ′′
l , N

′′
r } be the set

of N ′′’s children in TN ′ , and Ch(N ′′) = ∅ if N ′′ is a singleton. LetNTN′ be the set of internal nodes
in TN ′ .

Our binary tree for −i is a full binary tree, i.e., each internal node has two children, which has k − 1
internal nodes if there are k leaf nodes [20]. For example, Figure 1(a) has 3 internal nodes and 4 leaf
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nodes. The length of the path from the root to a leaf is the number of internal nodes on this path in a
binary tree. The height of a binary tree is the maximum path length, and the total path length is the
sum of the lengths of the paths from the root to each leaf node in a binary tree. For example, the path
length from the root to each leaf node in Figure 1(a) is 2, the height is 2, and the total path length is
2× 4 = 8.

To obtain the minimum number of internal nodes in these binary trees for {−i | i ∈ N}, we can
minimize the difference between binary trees. Given the binary tree T−n for −n and the binary tree
T−i for −i with i ∈ −n, the difference between T−n and T−i at least includes the path from the
root to the leaf node {i} in T−n and the path from the root to the leaf node {n} in T−i. Then the
number of different internal nodes (i.e., internal nodes that are not in T−n) in these binary trees for
{−i | i ∈ N} is at least equal to the total path length in T−n. Now we propose an algorithm ensuring
that the number of different internal nodes in these binary trees for {−i | i ∈ N} is equal to the total
path length in T−n, which is the minimum total path length. To do that, we first build a binary tree
for −n with the minimum height (a full binary tree with the minimum height may not be balanced).
Note that there are at most 2h leaf nodes in a binary tree with the height h, and there are n− 1 leaf
nodes and n − 2 internal nodes in a binary tree for −n. Then we can build a full binary tree T−n

with the height ⌈log2(n− 1)⌉ for −n and then replace i with n in the nodes of T−n to obtain T−i for
each i ∈ −n = {1, . . . , n− 1}. That creates n full binary trees for {−i | i ∈ N}. This procedure is
shown in Algorithm 1, generating our minimum binary collection N . Figure 1(a) builds a binary tree
T−5, and Figure 1(a) obtains T−3 by replacing 3 with 5 in T−5.

The full details of Algorithm 1 are shown in Algorithm 3. Line 1 builds a binary tree with the height
⌈log2(n− 1)⌉ for −n = {1, . . . , n− 1}, whose details are shown in Algorithm 4. At Lines 2-16, for
each i in {1, . . . , n− 1}, we search the binary tree for −n from the root and replace i with n in each
node including i to form a new tree for −i. And we only need to add new internal nodes to N .

Algorithm 4 builds a binary tree with the height ⌈log2(|N ′|)⌉ for N ′. If the size of N ′ is 2⌈log2(|N
′|)⌉

(note that each element in N ′ corresponds to a leaf node, and there are at most 2h leaf nodes in a binary
tree with the height h), then we can build a complete binary tree, where all leaf nodes are at the lowest
level. That is, we combine two nodes at the lower level to form a node at the upper level, as shown at
Lines 3-12. If the size of N ′ is not 2⌈log2(|N

′|)⌉, and it is larger than 3×2⌈log2(|N
′|)⌉−2, then we build

a complete binary tree for the subset N ′
1 (Line 15) with the height ⌈log2(|N ′

1|)⌉ = ⌈log2(|N ′|)⌉ − 1
(Lines 18-20) and then build a binary tree for the remaining subset (Line 22). Finally, we combine
both binary trees together to form a binary tree for N ′ (Line 24). If the size of N ′ is not 2⌈log2(|N

′|)⌉,
and it is less than 3 × 2⌈log2(|N

′|)⌉−2, we build a complete binary tree for the subset N ′
1 (Line 28)

with the height ⌈log2(|N ′
1|)⌉ = ⌈log2(|N ′|)⌉−1. However, at the last step of building the binary tree

for N ′
1, we do not combine two nodes to form a root. We keep both two nodes within N ′

1 by setting
k ≤ ⌈log(|N ′

1|)⌉ − 1 = ⌈log(|N ′|)⌉ − 2 at Line 26. Then we build a binary tree for the remaining
subset N ′

2 (Line 30). After that, we combine the root of the binary tree for N ′
2 and two nodes in N ′

1
to form a binary tree for N ′ (Line 31-35). This step is to try to reduce the total path length because
the number of nodes in the binary tree for N ′

2 is less than the number of nodes of the binary tree for
any node in N ′

1, and we can reduce the total path length by combining the root of the binary tree for
N ′

2 and any node in N ′
1 to form a node first.

E Runtime for Algorithm 1

Table 3 shows the runtime of Algorithm 1, which is extremely small and then can be ignored,
compared to the runtime of CRM shown in Tables 4 and 5.

F Experiment Setting

Games: we evaluate our approach on two sets of games: randomly generated games and games that
are generated by GAMUT [31]. Payoffs are generated from the interval between 0 and 100 (other
ranges (e.g., [0, 1]) do not affect the result). We vary the number of players (i.e., n) and the number
of actions (i.e., m) for each player for random games (i.e., (n,m)). For GAMUT games, we use
the variants with six players and three actions (i.e., the game (6, 3)), which are much larger than the
three-player three-action games (i.e., the game (3, 3)) used in prior work [4, 13]. We show the game
size in terms of the number of bilinear terms and integer variables in Appendix G, e.g., the number of
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Table 3: Game size and runtime of Algorithm 1.

Integer variables Bilinear terms Correlation Plans Algorithm 1
(n,m) Size Based on N Based on N |N | |N | Runtime
(3, 2) 6 12 12 3 3 <0.0001s
(5, 2) 10 200 104 25 11 0.0001s
(7, 2) 14 2044 564 119 21 0.0002s
(3, 3) 9 27 27 3 3 <0.0001s
(4, 3) 12 162 135 10 7 <0.0001s
(5, 3) 15 765 459 25 11 0.0001s
(4, 2) 8 56 44 10 7 <0.0001s
(4, 3) 12 162 135 10 7 <0.0001s
(4, 4) 16 352 304 10 7 <0.0001s
(4, 5) 20 650 575 10 7 <0.0001s
(3, 5) 15 75 75 3 3 <0.0001s
(3, 8) 24 24 24 3 3 <0.0001s
(3, 10) 30 300 300 3 3 <0.0001s
(3, 13) 39 507 507 3 3 <0.0001s
(3, 15) 45 675 675 3 3 <0.0001s
(3, 17) 51 867 867 3 3 <0.0001s
(6, 3) 18 3348 1620 56 16 0.0001s
(8, 2) 16 6288 1172 246 26 0.0003s
(9, 2) 18 19152 2512 501 31 0.0003s

Table 4: Results for random games: (n,m) represents the game with n players and m = |Ai| actions for each
player. The format for each result is: Average Runtime ± 95% Confidence Interval (Percentage of Games not
Solved within the Time Limit) (Utility Gap). Note that the unit of the runtime is second, and the case that all
games have been solved with the time limit should be (0%) and is omitted, we only need to care about the utility
gap for EXCLUSION, and the utility gap ∞ represents EXCLUSION cannot return a solution within the time
limit. For example, for the random games (7, 2), CRM solves 100% of them by using 25s with a 95% interval
17s, but 80% of them are not solved by EXCLUSION within the time limit, and EXCLUSION has a utility gap
53%.

Runtime ± 95% Confidence Interval (Percentage of Games not Solved) (Utility Gap)
Vary (n,m) CRM MIBP ENUMPOLY EXCLUSION

n
(3, 2) 0.01 ± 0 0.02 ± 0 0.03 ± 0.01 31 ± 41 (gap:15%)
(5, 2) 0.2 ± 0.1 0.5 ± 0.4 11 ± 4 753 ± 148 (73%) (gap:64%)
(7, 2) 25 ± 17 429 ± 131 (20%) 1000 ± 0 (97%) 835 ± 119 (80%) (gap:53%)

n
(3, 3) 0.1 ± 0 0.1 ± 0 51 ± 59 252 ± 140 (20%) (gap:34%)
(4, 3) 0.3 ± 0.1 1 ± 0.3 1000 ± 0 (100%) 773 ± 125 (67%) (gap:58%)
(5, 3) 22 ± 9 239 ± 87 (7%) 1000 ± 0 (100%) 974 ± 50 (97%) (gap:62%)

m
(4, 2) 0.1 ± 0.01 0.1 ± 0.01 0.2 ± 0.1 246 ± 126 (13%) (gap:23%)
(4, 3) 0.3 ± 0.1 1 ± 0.3 1000 ± 0 (100%) 773 ± 125 (67%) (gap:58%)
(4, 4) 2.8 ± 1 42 ± 12 1000 ± 0 (100%) 1000 ± 0 (100%) (gap:73%)
(4, 5) 64 ± 42 862 ± 91 (77%) 1000 ± 0 (100%) 1000 ± 0 (100%) (gap:75%)

m
(3, 5) 0.2 ± 0.03 0.3 ±0.1 1000 ± 0 (100%) 1000 ± 0 (100%) (gap:67%)
(3, 8) 4 ± 3 247 ± 140 (17%) 1000 ± 0 (100%) 1000 ± 0 (100%) (gap:∞)
(3, 10) 9 ± 9 334 ± 167 (30%) 1000 ± 0 (100%) 1000 ± 0 (100%) (gap:∞)
(3, 13) 38 ± 21 342 ± 151 (27%) 1000 ± 0 (100%) 1000 ± 0 (100%) (gap:∞)

bilinear terms in the game (9, 2) is 19152 based on N but is 2512 based on N . For each setting, we
generated 30 games on MacBook Pro, where the seeds are i ∈ {1, . . . , 30} for the GAMUT games
and 20201125 + i · 10 for random games. Results in this section are hence averaged over 30 cases.

Algorithm Setting: The objective function used in the experiments maximizes the expected utility of
player n. We verified that results for optimizing other objectives (e.g., maximizing social welfare) are
similar. We use the non-convex solver of Gurobi 9.5 to solve all mixed-integer bilinear programs with
the optimality gap set to 0.0001 (the default setting). EXCLUSION uses this optimality gap as well,
which is significantly smaller than 0.001 in [4] (we verified that, with the same optimality gap, our
result for EXCLUSION is almost the same as the one in [4]). Experiments are run on an eight-core
Intel Core I9 machine at 2.3 GHz with 16GB of RAM. Similarly to the previous literature [34, 4, 13],
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Table 5: Results for six-player three-action GAMUT games.

Runtime ± 95% Confidence Interval (Percentage of Games not Solved) (Utility Gap)
Game CRM MIBP ENUMPOLY EXCLUSION
Bidirectional LEG 1.6 ± 1 972 ± 54 (97%) 1000 ± 0 (100%) 1000 ± 0 (100%) (gap:13%)
Collaboration 1 ± 0.2 967 ± 63 (97%) 1000 ± 0 (100%) 1000 ± 0 (100%) (gap:81%)
Covariant r = 0.5 5 ± 6 1000 ± 0 (100%) 1000 ± 0 (100%) 963 ± 59 (93%) (gap:73%)
PolyMatrix 26 ± 44 194 ± 74 (3%) 867 ± 116 (87%) 1000 ± 0 (100%) (gap:17%)
Random LEG 2 ± 1 1000 ± 0 (100%) 1000 ± 0 (100%) 986 ± 27 (97%) (gap:11%)
Random graphical 0.1 ± 0.1 803 ± 140(83%) 50 ± 30 971 ± 55 (97%) (gap:32%)
Uniform LEG 2.2 ± 1 1000 ± 0 (100%) 1000 ± 0 (100) 986 ± 26 (97%) (gap:11%)

Table 6: Ablation study. No time limit for CRM, CR, and CM in games (8, 2). We can see that each component
of our approach significantly boosts its performance. Note that N (in CR, C, and MIBP) and N (in CRM, CM,
and M) result in the same bilinear terms in three-player games because each element in {−i | i ∈ {1, 2, 3}}
includes only two elements such that Algorithm 1 cannot reduce the number of internal nodes to reduce the
number of bilinear terms, where CR and CRM (or C and CM, or MIBP and M) have the same performance. For
one case in the game (9, 2), which CRM and CM cannot solve within 1000s, after removing the time limit for it,
CRM solves it by using 1198s, but CM solves it by using 12751s. The unit of the runtime is second.

Runtime ± 95% Confidence Interval (Percentage of Games not Solved)
Game CRM CR CM C M MIBP
(9, 2) 658±128 (50%) 988 ± 23 (97%) 782±113 (63%) 1000± 0 (100%) 1000 ± 0 (100%) 1000 ± 0 (100%)
(8, 2) 166± 97 2334± 1742 278± 207 763 ± 120 (60%) 1000 ± 0 (100%) 1000 ± 0 (100%)
(7, 2) 25 ± 17 89 ± 51 36 ± 28 408 ± 157 (30%) 488 ± 111 (10%) 429 ± 131 (20%)
(3, 15) 167± 86 (3%) 167 ± 86 (3%) 317± 137 (17%) 317 ± 137 (17%) 558 ± 150 (40%) 558 ± 150 (40%)
(3, 17) 231±122 (10%) 231 ±122 (10%) 326± 134 (20%) 326 ± 134 (20%) 784 ± 102 (53%) 784 ± 102 (53%)
Bidirectional LEG 1.6 ± 1 5.4 ± 4 2.2 ± 2 86 ± 3 991 ± 18 (97%) 972 ± 54 (97%)
Collaboration 1 ± 0.2 2 ± 0.2 1 ± 0.1 2 ± 0.4 867 ± 122 (87%) 967 ± 63 (97%)
Covariant r = 0.5 5 ± 6 12 ± 10 5 ± 6 18 ± 18 1000 ± 0 (100%) 1000 ± 0 (100%)
PolyMatrix 26 ± 44 33 ± 25 36 ± 64 (3%) 17 ± 21 267 ± 97 (10%) 194 ± 74 (3%)
Random LEG 2 ± 1 6 ± 5 2.5 ± 2 5 ± 5 1000 ± 0 (100%) 1000 ± 0 (100%)
Random graphical 0.1 ± 0.1 0.4 ± 0.1 0.2 ± 0.1 0.6 ± 0.4 814 ± 134(80%) 803 ± 140(83%)
Uniform LEG 2.2 ± 1 5 ± 4 2.5 ± 2 5 ± 5 999 ± 2 (97%) 1000 ± 0 (100%)

to efficiently evaluate the algorithms, we set a time limit of 1000 seconds for each case unless stated
otherwise.

Metric: We use the runtime and the percentage of games that are not solved within the time limit
to measure the performance of our approach. In addition to the average runtime, we show a 95%
confidence interval. CRM and MIBP guarantee finding an optimal NE. For algorithms that can
enumerate all NEs, we can choose an optimal NE from the output for all NEs. We then compare
ENUMPOLY to our approach only in the runtime. For algorithms that only guarantee to converge to
an NE, we may need to use them to enumerate all NEs. However, it is unclear whether algorithms
like EXCLUSION can enumerate all NEs. Therefore, we compare EXCLUSION to our approach in
the runtime and the utility gap. The utility gap is the relative distance between the optimal objective
value (g∗) in our problem (returned by CRM) and the objective value (g0) in the Nash equilibrium
returned by EXCLUSION, i.e., |g∗ − g0|/|g0| × 100%. In some cases, a solution is returned even
if it has not reached the given accuracy within the time limit, which is still used as a solution of
EXCLUSION. A larger gap means that we will lose more while using EXCLUSION.

G Game Size

Table 3 shows the number of integer variables, bilinear terms, and correlation plans for the games we
used in experiments. Note that the used GAMUT games have six players and three actions. Also,
note that we do not reduce the number of bilinear terms and correlation plans in games with only
three players.

H Details of Experimental Results

The details of experimental results are in Tables 4, 5, and 6.

Specially, CR is solving Program (13) based on N , and CRM is solving Program (13) based on N .
We discussed the difference between N and N in Section 3.3. Basically, N and N are the same in
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Table 7: Results on more Gambit algorithms for random games. The format for each result is: Average Runtime
± 95% Confidence Interval (Percentage of Games not Solved within the Time Limit). Note that, these Gambit
algorithms only achieve some NE if the game is solved, which may not be optimal. Even so, these algorithms
fail to solve many games, and even run significantly slower than our CRM (see Table 4) in many games.

Runtime ± 95% Confidence Interval (Percentage of Games not Solved)
(n,m) GNM IPA LIAP SIMPDIV LOGIT
(3, 2) 0.03 ± 0.02 567 ± 177 (57%) 0.06 ± 0.02 (77%) 0.07 ± 0.06 0.04 ± 0.02 (100%)
(5, 2) 0.04 ± 0.01 (3%) 867 ± 122 (87%) 0.45 ± 0.04 (100%) 1000 ± 0 (100%) 0.02 ± 0 (100%)
(7, 2) 333 ± 169 (53%) 400 ± 175 (37%) 6 ± 0.4 (100%) 79.4 ± 78.6 0.05 ± 0.05 (100%)
(3, 3) 0.03 ± 0 (3%) 933 ± 89 (93%) 0.16 ± 0.02 (100%) 300 ± 163 (30%) 0.04 ± 0.02 (100%)
(4, 3) 0.17 ± 0.11 (3%) 500 ± 179 (50%) 0.76 ± 0.08 (100%) 500 ± 179 (50%) 0.02 ± 0 (100%)
(5, 3) 0.15 ± 0.03 (30%) 773 ± 158 (73%) 6.3 ± 0.3 (100%) 900 ± 107 (90%) 0.02 ± 0.01 (100%)
(4, 2) 0.03 ± 0.01 (3%) 667 ± 169 (63%) 0.13 ± 0.02 (97%) 733 ± 158 (73%) 0.02 ± 0 (100%)
(4, 3) 0.17 ± 0.11 (3%) 500 ± 179 (50%) 0.76 ± 0.08 (100%) 500 ± 179 (50%) 0.02 ± 0 (100%)
(4, 4) 800 ± 143 (80%) 367 ± 172 (33%) 4.9 ± 0.4 (100%) 867 ± 121 (87%) 0.07 ± 0.07 (100%)
(4, 5) 0.33 ± 0.07 (37%) 833 ± 133 (83%) 16 ± 1 (100%) 900 ± 107 (90%) 0.04 ± 0.03 (100%)
(3, 5) 600 ± 175 (63%) 767 ± 151 (77%) 1.5 ± 0.1 (100%) 933 ± 89 (93%) 0.06 ± 0.09 (100%)
(3, 8) 0.76 ± 0.26 (17%) 506 ± 177 (50%) 11 ± 0.7 (100%) 867 ± 122 (87%) 0.02 ± 0 (100%)
(3, 10) 334 ± 168 (53%) 767 ± 153 (77%) 37 ± 3 (100%) 867 ± 121 (87%) 0.02 ± 0 (100%)
(3, 13) 3.8 ± 1.1 (47%) 1000 ± 0 (100%) 132 ± 11 (100%) 805 ± 140 (80%) 0.03 ± 0 (100%)

Table 8: Results on more Gambit algorithms for six-player three-action GAMUT games. The format for each
result is: Average Runtime ± 95% Confidence Interval (Percentage of Games not Solved within the Time Limit).
Note that, these Gambit algorithms only achieve some NE if the game is solved, which may not be optimal.
Even so, these algorithms fail to solve many games, and even run significantly slower than our CRM (see Table
5) in many games.

Runtime ± 95% Confidence Interval (Percentage of Games not Solved)
Game GNM IPA LIAP SIMPDIV LOGIT
Bidirectional LEG 167 ± 133 (63%) 10 ± 17 8 ± 0.6 (100%) 667 ± 169 (67%) 0.03 ± 0 (100%)
Collaboration 34 ± 64 (3%) 0.03 ± 0 24 ± 2 (100%) 0.03 ± 0 0.03 ± 0 (100%)
Covariant r = 0.5 100 ± 107 (17%) 0.04 ± 0 21 ± 2 (100%) 367 ± 172 (37%) 0.04 ± 0.03 (100%)
PolyMatrix 0.13 ± 0.03 (7%) 8.3 ± 8 9 ± 0.8 (100%) 24 ± 27 0.05 ± 0.05 (100%)
Random LEG 0.19 ± 0.04 (47%) 0.04 ± 0 7.5 ± 0.6 (100%) 777 ± 146 (77%) 0.03 ± 0 (100%)
Random graphical 0.05 ± 0 (3%) 1000 ± 0 (100%) 9 ± 1 (100%) 0.05 ± 0.03 0.04 ± 0.02 (100%)
Uniform LEG 0.16 ± 0.04 (47%) 0.04 ± 0 7.3 ± 0.6 (100%) 776 ± 146 (77%) 0.02 ± 0 (100%)

3-player games, so CR and CRM have the same performance in 3-player games shown in Table 6.
When the number of players increases, the size of N is larger and larger than N , and then CRM’s
advantage over CR is more significant. This statement is verified by our result: game (7, 2): CRM
with 25 ± 17 and CR with 89 ± 51; and game (8, 2): CRM with 156 ± 83 (3%) and CR with 612 ±
129 (33%) (see Table 2). However, from the game (7, 2) to the game (8, 2), the trend that CRM’s
advantage over CR is more significant is not very clear based on the above data due to the time limit
in the game (8, 2). To show this trend clearly, we remove the time limit for CRM and CR in the game
(8, 2) and obtain: CRM with 166 ± 97 and CR with 2334± 1742, which is shown in Table 6. Then
from the game (7, 2), where CRM is about 3 times faster than CR, to the game (8, 2), where CRM is
about 13 times faster than CR, we can clearly see the trend that CRM’s advantage over CR is more
significant when the number of players increases. The difference between N and N also explains
that CR is slower than CM in the game (8, 2).

I Results on More Gambit Algorithms

Results in Tables 7 and 8 show that Gambit algorithms, i.e., GNM, IPA, LIAP, SIMPDIV, and LOGIT,
cannot guarantee finding an NE, i.e., fail to solve many games, and even run significantly slower than
our CRM (see Tables 4 and 5) in many games:

• GNM fails to solve many large games: GNM stops without output in some of these cases,
and cannot stop within the time limit in other cases. GNM runs significantly slower than our
CRM in many games, e.g., random games (7, 2), (4, 4), (3, 5), (3, 10), and GAMUT games
Bidirecttional LEG, Collaboration, Covariant.

• IPA fails to solve many large games: IPA cannot stop within the time limit in most of
these games. IPA runs significantly slower than our CRM in most random games, and the
GAMUT game Random graphical.
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• LIAP can only solve several games in small random games (3, 2) and (4, 2), and fails to
solve all of the other games: LIAP stops without output in these games. Even so, LIAP runs
significantly slower than our CRM in most games.

• SIMPDIV fails to solve many large games: SIMPDIV cannot stop within the time limit
in almost all of these games. SIMPDIV runs significantly slower than our CRM in most
games.

• LOGIT fails to solve all of these games: LOGIT stops without output in all of these games.
LOGIT may not work properly in this latest GAMBIT version. Even so, LOGIT runs
significantly slower than our CRM in the random game (3, 2).
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