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Abstract

Enabling machine learning classifiers to defer their decision to a downstream expert
when the expert is more accurate will ensure improved safety and performance.
This objective can be achieved with the learning-to-defer framework which aims to
jointly learn how to classify and how to defer to the expert. In recent studies, it has
been theoretically shown that popular estimators for learning to defer parameterized
with softmax provide unbounded estimates for the likelihood of deferring which
makes them uncalibrated. However, it remains unknown whether this is due to the
widely used softmax parameterization and if we can find a softmax-based estimator
that is both statistically consistent and possesses a valid probability estimator. In
this work, we first show that the cause of the miscalibrated and unbounded estimator
in prior literature is due to the symmetric nature of the surrogate losses used and
not due to softmax. We then propose a novel statistically consistent asymmetric
softmax-based surrogate loss that can produce valid estimates without the issue of
unboundedness. We further analyze the non-asymptotic properties of our method
and empirically validate its performance and calibration on benchmark datasets.

1 Introduction

As machine learning models get deployed in risk-critical tasks such as autonomous driving [18],
content moderation [27], and medical diagnosis [20], we have a higher urgency to prevent incorrect
predictions. To enable a safer and more accurate system, one solution is to allow the model to defer
to a downstream human expert when necessary. The Learning to Defer (L2D) paradigm achieves this
aim [28, 30, 31, 9, 44, 32, 33, 45, 3, 35, 15, 42] and enables models to defer to an expert, i.e., abstain
from giving a prediction and request a downstream expert for an answer when needed. L2D aims to
train an augmented classifier that can choose to defer to an expert when the expert is more accurate
or make a prediction without the expert. L2D can be formulated as a risk-minimization problem that
minimizes the 0-1-deferral risk [30], which incurs a cost of one when the classifier is incorrect or
when we defer to an expert who errs and incurs a cost of zero otherwise.

Despite being formulated straightforwardly, the risk minimization problem is NP-hard even in simple
settings [15, 32] due to the discontinuous and non-convex nature of the 0-1-deferral loss. To make the
optimization problem tractable, many efforts have been made to design a continuous surrogate loss
for the 0-1-deferral loss while guaranteeing statistical consistency, which means that the minimizer of
the surrogate risk is that of the 0-1-deferral risk. In Mozannar and Sontag [30], a cross-entropy-like
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(a) Unbounded Estimator [30] (b) Uncorrelated Estimator [44] (c) Proposed Estimator

Figure 1: Illustration of the proposed and previous estimators. Probability estimation in L2D aims to predict
both the class probabilities and the expert’s accuracy η × Pr(M = Y |X = x) ∈ ∆K × [0, 1], while only our
proposed estimator takes exactly the same range.

surrogate loss is proposed that is statistically consistent. Charusaie et al. [9] further generalized the
results in Mozannar and Sontag [30] and showed that all the losses that are consistent for ordinary
multi-class classification, i.e., classification-calibrated [38, 43, 6], are consistent for L2D with certain
reformulation, which makes L2D a more comprehensive framework. By minimizing the risk w.r.t.
consistent surrogate losses [30, 9], we can obtain a model that defers to who between the classifier and
expert is more accurate on an instance basis. However, we also need assessments of the uncertainty
of the classifier when it predicts and the uncertainty of the expert prediction when we defer. This
allows us to perform better triaging of samples and provide reliable estimates of uncertainty. Verma
and Nalisnick [44] pointed out that the previous estimator in [30] generates highly biased probability
estimates for the predictions due to its unboundedness. They then proposed a surrogate based on the
One-versus-All (OvA) strategy [52] to alleviate this problem, which allows both statistical consistency
and improved calibration compared to the previous softmax-based method [30].

Does the difference in performance between OvA and softmax-based methods indicate that softmax
parameterization is a sub-optimal choice in L2D? The cause of the unbounded probability estimation
in [30] is in fact still elusive, and we cannot simply attribute it to softmax parameterization. Fur-
thermore, notice that the softmax-based method [30] is only a specific implementation of applying
softmax in L2D. Meanwhile, softmax parameterization is also a more straightforward modeling of
multiclass posterior distributions: while the OvA strategy works by splitting a K-class classification
problem into K independent binary classification problems and thus induces K uncorrelated proba-
bility estimators for each class, softmax parameterization works by directly estimating class posterior
probabilities as a whole. Given the wide use and practical advantages of softmax parameterization
in classification tasks and the resemblance between L2D and multiclass classification, it is also
promising that the usage of the softmax function can result in competitive methods for L2D. Then a
natural question arises: can we design a softmax-based consistent surrogate loss for L2D without
triggering unbounded probability estimation enabling calibrated estimates?

In this paper, we give a positive answer to this question by providing a novel consistent surrogate
loss with asymmetric softmax parameterization, which can be seen as the combination of ordinary
softmax function and an additional probability estimator. This surrogate can also induce a non-trivial
bounded probability estimator for prediction probabilities and expert accuracy. To defend the use of
softmax parameterization, we show that it is not the cause of the failure but rather it is the symmetric
structure of the surrogates that leads to the unboundedness in probability estimation. Unlike the
unbounded estimator [30] that mixes up class probabilities and the expert’s accuracy and the OvA
estimator that treats each class and expert independently, our method models the class probabilities
as a whole with softmax and the expert’s accuracy independently with a normalized function, which
better reflects the structure of L2D with probability estimation. The differences between our work
and previous works are illustrated in Figure 1. We further analyze the limitation and broader impact
of our work in Appendix G. Our contributions are four-fold and summarized below:

• In Section 3, we prove that a non-trivial bounded probability estimator does not exist as long as
we are using symmetric loss functions.

• We propose an asymmetric formulation of softmax parameterization, and show that it can induce
both a consistent surrogate loss and a non-trivial bounded probability estimator. We further show
that the proposed asymmetric softmax-based method and OvA-based method [44] actually benefit
from their asymmetric structure.
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• We further study the regret transfer bounds of our proposed asymmetric surrogate and show that it
is compatible with both L2D and multi-class classification.

• Experiments on datasets with both synthetic experts and real-world experts are conducted to
demonstrate the usefulness of our method for both prediction and expert accuracy estimation.

2 Preliminaries

In this section, we review the problem setting of L2D and briefly introduce previous works.

2.1 Problem Setting

In this paper, we study the problem of learning to defer to an expert in the K-class classification
scenario. Let us denote by X and Y = {1, · · · ,K} the feature and label space respectively. Denote
by X×Y ×M ∈ X ×Y × Y the data-label-expert random variable triplet and x, y,m are their
realizations, which obeys an underlying distribution with density p(x, y,m). We have access to data
triplets {(xi, yi,mi)}ni=1 that are drawn independently and identically from the distribution. The
goal of L2D in the classification scenario is to obtain a classifier with deferral option f(·) : X → Y⊥,
where ⊥ is the option of deferral to the expert and Y⊥ is the augmented decision space Y ∪ {⊥}.

The problem evaluation is the following 0-1-deferral loss ℓ⊥01
2, which is a generalized version of the

zero-one loss ℓ01(f(x), y) = [[f(x) ̸= y]], which takes the value of 1 if we use the output of the
classifier when it predicts an incorrect label ([[f(x) ∈ Y and f(x) ̸= y]]) or defer to the expert when
they are incorrect ([[f(x) = ⊥ andm ̸= y]]), where [[·]] is the Iverson bracket notation suggested by
Knuth [22]. Then we aim to minimize the risk w.r.t. to this loss:

minf R
⊥
01(f) = Ep(x,y,m)

[
ℓ⊥01(f(x), y,m)

]
. (1)

Denote by f∗ the minimizer of the risk R⊥
01(f), i.e., the Bayes optimal solution, and η(x) =

{Pr(Y = y|X = x)}Ky=1. Mozannar and Sontag [30] provide a characterization of the form of the
Bayes optimal solution as:

Definition 1. (Bayes optimality of L2D) A classifier with deferral option f∗ → Y⊥ is the minimizer
of Rc01(f) if and only if it meets the following condition almost surely:

f∗(x) =

{
⊥, maxy ηy(x) < Pr(M = Y |X = x),

argmaxy ηy(x), else.

The form of the optimal solution is intuitive: we should defer to the expert if they have a higher
probability of being correct than the optimal classifier which follows the most likely label class given
the input x. This optimal solution can also be seen as the generalized version of Chow’s rule in
learning to reject [10], where a fixed cost in [0, 1] serves as the known accuracy of an expert.

2.2 Consistent Surrogate Losses for L2D

Although we know the form of the Bayes optimal solution, practically the risk minimization problem
above faces computational difficulties: the minimization of the discontinuous and non-convex
problem (1) is NP-hard [32]. A widely used strategy for tackling this difficulty is to substitute the
original loss function which is discontinuous with a continuous surrogate, which has been applied
in many areas including ordinary classification [52, 6, 43, 39, 16, 37], multi-label classification
[17, 23, 51, 47], AUC optimization [17, 23, 29], cost-sensitive learning [41, 11], top-K classification
[25, 48], adversarially robust classification [4, 2, 1], and learning to reject [12, 13, 5, 49, 34, 8, 7].
Denote by g : X → RK+1 the learnable scoring function that induces our decision function for L2D
f : X → Y⊥ with the following transformation φ : RK+1 → Y⊥:

φ(g(x)) =

{
⊥, gK+1(x) > maxy∈Y gy(x)

argmaxy∈Y gy(x), else.

2Though the formulation introduced here is not its most general version, we only study this one and its induced
surrogates (4) since previous works on the design of surrogate losses for L2D [30, 9, 44] also concentrated on it.
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We consider a continuous surrogate function Φ : RK+1×Y×Y → R+ and the surrogate risk below:

ming R
⊥
Φ(g) = Ep(x,y,m) [Φ(g(x), y,m)] . (2)

Assuming we find a surrogate function that overcomes the computational optimization challenges, we
need to verify the consistency of Φ w.r.t. ℓ⊥01, i.e., any minimizer of the surrogate risk also minimizes
the original risk: (2):

φ ◦ g∗ ∈ argminf R
⊥
01(f), ∀g∗ ∈ argming R

⊥
Φ(g).

The first consistent surrogate [30] w.r.t. ℓ⊥01 is proposed by modifying the softmax cross-entropy loss:

LCE(g(x), y,m) = − logψsm
y (g(x))− [[m = y]] logψsm

K+1(g(x)), (3)

where ψsm is the softmax function ψsm
y (u) = exp(uy)/

∑d
y′=1 exp(uy′), where d is the dimension-

ality of the input. Inspired by the risk formulation above, Charusaie et al. [9] further generalized the
family of consistent surrogate for ℓ⊥01 by considering the following consistent surrogate reformulation:

Lϕ(g(x), y,m) = ϕ(g(x), y) + [[m = y]]ϕ(g(x),K + 1). (4)

It is known from Proposition 2 in Charusaie et al. [9] that surrogates take the form above are consistent
w.r.t. ℓ⊥01 if ϕ is a classification-calibrated multi-class loss [43, 6]. Using this result, we can directly
make use of any statistically valid surrogate loss in ordinary classification with a simple modification.

2.3 Problems with Probability Estimation for L2D

While prior literature has established how to construct consistent surrogates for L2D, it is less well-
known whether such surrogates can actually provide calibrated estimates of classifier and deferral
probabilities. As mentioned before, we are also interested in the true probability of the correctness of
our prediction, i.e., the value of η(x) (label being Y ) and Pr(M = Y |X = x) (expert is correct). To
achieve this goal of probability estimation, the commonly used method is to combine the obtained
scoring function g∗ with a transformation function ψ to make the composite function ψ ◦ g∗ a
probability estimator η̂ψ(g(x)). For example, the softmax function is frequently used as ψ in
ordinary multi-class classification to map the scoring function from RK to ∆K . So far, we have not
discussed whether these probability estimates are valid.

In the task of L2D for classification, we aim to estimate both η(x) ∈ ∆K and Pr(M = Y |X =
x) ∈ [0, 1] with a K + 1-dimensional estimator, where its y-th dimension is the estimate of ηy(x)
for y ∈ Y and K + 1-th dimension is the estimate of Pr(M = Y |X = x). Correspondingly, the
transformation ψ should be from RK+1 to a range P that contains ∆K × [0, 1]. It was shown in
Theorem 1 of Mozannar and Sontag [30] that a probability estimator η̂sm with the softmax output of
scorer function g and an extra fractional transformation guarantees to recover class probabilities and
expert accuracy at g∗ ∈ argming RLCE (g), which is formulated as:

η̂smy (g(x)) = ψsm
y (g(x))/

(
1− ψsm

K+1(g(x))
)
, ∀y ∈ Y ∪ {K + 1}, (5)

It is noticeable that the range of this estimator is η̂sm ∈ ∆K × [0,+∞]: the estimate of expert
accuracy η̂smK+1 is unbounded above and will approach +∞ if ψsm

K+1(u) → 1. Verma and Nalisnick
[44] pointed out that the unboundedness can hurt the performance of this probability estimator: if
ψsm
K+1(g(x)) > 1/2, the estimated expert accuracy will be greater than 1 and thus meaningless.

Experimental results also show the frequent occurrence of such meaningless results due to the
overconfidence of deep models [19]. We further illustrate such miscalibration in Figure 2.

To mitigate this problem, a new OvA-based surrogate loss that can induce a bounded probability
estimator while remaining consistent is proposed in [44], which has the following formulation:

LOvA(g(x), y,m)=ξ(gy(x))+
∑K+1

y′ ̸=y
ξ(−gy′(x))+[[m = y]](ξ(gK+1(x))−ξ(−gK+1(x))), (6)

where ξ is a binary proper composite [46, 40] loss. Its induced probability estimator η̂OvA is:

η̂OvA
y (g(x)) = ψξ(gy(x)), ∀y ∈ Y ∪ {K + 1}, (7)

where ψξ is a mapping to [0, 1] determined by the binary loss, which makes η̂OvA bounded. It is also
experimentally shown that the η̂OvA outperformed η̂sm [30] in the task of probability estimation.
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Figure 2: Illustration of the miscalibration of estimator (5) on a binary classification with deferral problem.
The unbounded estimator (5) first estimates [η(x);Pr(M=Y |X=x)]

1+Pr(M=Y |X=x)
that takes value in the 2-D probability simplex

denoted by the left triangle and then obtain the final estimate with the fractional transformation (5). However,
when over-confidence occurs in the 2-D simplex, i.e., the softmax output lies in the invalid region thatψsm

3 > 1/2,
(5) will magnify the calibration error of the estimates and clipping it to a valid estimate cannot solve this problem.

Given the success of the OvA-based loss, can we assert that softmax parameterization is inferior to
the OvA strategy in probability estimation for L2D? We argue in this paper that such a conclusion
should not be drawn so quickly. We should not discourage the use of softmax parameterization based
solely on the specific implementation (3), since there may be other implementations of softmax
that can resolve the issues with η̂sm. Furthermore, the great success of softmax parameterization
in deep learning models suggests that this potential implementation could also achieve outstanding
performance. In this paper, we focus on finding such an implementation and show its superiority both
theoretically and experimentally.

3 Problem with Symmetric Losses for L2D with Probability Estimation

Before beginning the search for a suitable implementation of softmax parameterization for L2D, it
is important to determine the cause of the unboundedness of η̂sm. Is it due to the use of softmax
parameterization or some other factor? If the reason is the former one, any attempts to create a
bounded probability estimator with a softmax function for L2D will be in vain. Therefore, it is crucial
to identify the root cause of the unboundedness before proceeding with further efforts.

Surprisingly, we find that such unboundedness is not a particular problem of softmax parameterization
and is a common one shared by many loss functions. Recall that the loss (3) with unbounded estimator
η̂sm is a special case of the consistent surrogate (4) by setting the multi-class loss ϕ to softmax
cross-entropy loss. We show that even if we use other losses beyond the softmax function and choose
other losses such as the standard OvA losses ((14) in Zhang [52]), the induced probability estimators
are still inevitably unbounded (or bounded but induced from an unbounded one) as long as we are
using ϕ with symmetric structure:
Theorem 1. (Impossibility of non-trivial bounded probability estimator with symmetric losses)
If a surrogate loss Lϕ defined as (4) has probability estimators and is induced from a symmetric
consistent multi-class loss ϕ such that that Pϕ(u) = ϕ(Pu), where P is any permutation matrix,
it must have an unbounded probability estimator η̂: let g∗ ∈ argminRLϕ(g), we have that ∀η̂(·)
where η̂(g∗(x)) = [η(x); Pr(M = Y |X = x)], η̂ is not bounded above. Furthermore, any bounded
probability estimator η̂′ for Lϕ must be a piecewise modification of the unbounded estimator η̂:
denote by U = ∪β argminu

∑K+1
y=1 βyLϕ(u, y) for all β ∈ ∆K × [0, 1], we have that η̂′ is equal to

η̂ on U .

The proof is provided in Appendix A. Intuitively, the existence of such an unbounded estimator
is caused by the fact that symmetric loss induced Lϕ neglects the asymmetric structure of the
probabilities to be estimated by modeling [η(x);Pr(M=Y |X=x)]

1+Pr(M=Y |X=x) directly. Furthermore, all potential
bounded probability estimators are piecewise modifications of the unbounded estimator sharing the
same values on U with η̂, which means that they are generated by substituting the invalid values
of the unbounded estimator with a valid one, e.g., we can obtain a bounded estimator based on the
unbounded one (5) by clipping it to 1 if its estimated expert accuracy is larger than 1.

5



However, such modifications to make an unbounded estimator bounded are not very useful. Due to
the training process’s complexity and the distribution’s arbitrariness, it is hard to design an appropriate
modification of an unbounded estimator. For example, though we can bound the expert accuracy
of (5) by 1 when it generates an invalid value that is larger than 1, it is still an overly confident
estimation. Meanwhile, we do not know how to upper bound it by a value lower than 1 without
prior knowledge of Pr(M = Y |X = x). Overall, training with Lϕ in Theorem 1 can easily lead to
a model that generates invalid probability estimation with an unbounded estimator η̂, while most
modified bounded estimators cannot efficiently solve this problem. We will experimentally verify
this point in Section 5.

This result shows that the consistent surrogate framework [9] does not directly provide us a solution
for solving the unboundedness problem since most multi-class losses we use, e.g., CE loss, OvA loss,
Focal loss [26], are symmetric. This motivates the design of surrogates with bounded probability
estimators for L2D in our work. Based on Theorem 1, we have the following findings: firstly
unboundedness of probability estimators is not necessarily caused by the softmax parameterization, as
the induced estimator of any symmetric loss, e.g., standard softmax-free symmetric OvA losses [52],
exhibits unboundedness too. Secondly, due to the fact that the OvA strategy for L2D (6) successfully
gets rid of the unboundedness issue, we can reasonably deduce that a modified softmax function
can also present similar outcomes. In the following section, we propose a novel modification of the
softmax parameterization that overcomes these issues and reveals that both the previous OvA-based
work [44] and our current work benefit from the use of asymmetric losses.

4 Consistent Softmax-Based Surrogate with Bounded Probability Estimator

In this section, we find a softmax parameterization that is a feasible solution in L2D for the construc-
tion of surrogate loss with a bounded probability estimator. We first propose a cross-entropy-like
surrogate loss but with an asymmetric transformation that resembles the ordinary softmax function
for its first K elements but processes the K + 1-th coordinate in a special way. Then we show that
such a transformation has useful properties for both classification and probability estimation, and
then provide consistency analysis for both the loss function and its induced bounded probability
estimator. Finally, we show that our proposed loss and the OvA loss [44] are connected to the
consistent surrogate formulation (4) with the use of asymmetric multi-class losses, which indicates
the helpfulness of asymmetry and shed light on the future study of consistent surrogates for L2D with
bounded estimators.

4.1 Consistent Surrogate Formulation with Asymmetric Bounded Softmax Parameterization

Before searching for a softmax-parameterization that is capable of L2D with probability estimation,
we need to better understand the failure of (3) for inducing a bounded probability estimator. By
inspecting the proof of consistency in Theorem 1 of Mozannar and Sontag [30], we can learn that the
cross-entropy-like surrogate (3) works by fitting a K + 1 class posterior distribution: ψsm(g∗) =

η̃(x) = [ η1(x)
1+Pr(M=Y |x) , · · · ,

ηK(x)
1+Pr(M=Y |x) ,

Pr(M=Y |x)
1+Pr(M=Y |x) ]. Though we can check that the φ ◦ g∗ is

exactly a Bayes optimal solution of R⊥
01(f) due to the monotonicity of the softmax function and the

form of η̃, to get [η(x); Pr(M = Y |X = x)] we need to perform an extra inverse transformation
should be exerted on ψsm. This is caused by the following dichotomy: the class probabilities and
expert accuracy we aim to estimate are in the range of ∆K × [0, 1], while the standard softmax-
parameterization of (3) maps the K + 1 dimensional scoring function g into ∆K+1.

To solve this issue, a promising approach is to modify the softmax function to make it a transformation
that can directly cast the scoring function g into the target range ∆K × [0, 1]. Since the target range
is not symmetric, the modified softmax should also be asymmetric. This idea is given a concrete form
in the following asymmetric softmax parameterization:

Definition 2. (Asymmetric softmax parameterization) ψ̃ is called a asymmetric softmax function that
for any K > 1 and u ∈ RK+1:

ψ̃y(u) =


exp(uy)∑K

y′=1
exp(uy′ )

, y ̸= K + 1,

exp(uK+1)∑K+1

y′=1
exp(uy′ )−maxy′∈{1,··· ,K} exp(uy′ )

, else.
(8)
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At first glance, the proposed asymmetric function appears to be the standard softmax function, which
excludes the K + 1-th input of u for y ̸= K + 1. However, the last coordinate of the function takes
on a quite different form. This special asymmetric structure is designed to satisfy the following
properties:

Proposition 1. (Properties of ψ̃) For any u ∈ RK+1:
(i). (Boundedness) ψ̃(u) ∈ ∆K × [0, 1],
(ii). (Maxima-preserving) argmaxy∈{1,··· ,K+1} ψ̃y(u) = argmaxy∈{1,··· ,K+1} uy .

It can be seen that the proposed asymmetric softmax ψ̃ is not only bounded but also successfully
maps g into the desired target range, which indicates that ψ̃ may directly serve as the probability
estimator η̂ψ̃(g(x)) = ψ̃(g(x)). Furthermore, the maxima-preserving property guarantees that the
estimator is also capable of discriminative prediction: if a scoring function g′ can recover the true
probability, i.e., η̂ψ̃(g′(x)) = [η(x); Pr(M = Y |X = x)], then φ ◦ g′ must also be the Bayes
optimal solution of R⊥

01(g). Based on the asymmetric softmax function, we propose the following
surrogate loss for L2D:

Definition 3. (Asymmetric Softmax-Parameterized Loss) The proposed surrogate for L2D with
asymmetric softmax parameterization Lψ̃(u, y,m) : RK+1 × Y × Y is formulated as:

Lψ̃(u, y,m)=− log(ψ̃y (u))− [[m ̸= y]] log(1− ψ̃K+1(u))− [[m = y]] log(ψ̃K+1(u)). (9)

The proposed loss takes an intuitive form, which can be seen as the combination of the cross-entropy
loss (the first term) and a modified version of binary logistic loss (the last two terms). This formulation
is inspired by the structure of our problem, where the expert accuracy is not directly related to class
probabilities while the class probabilities should fulfill that η(x) ∈ ∆K . In fact, the proposed
surrogate is not a simple summation of two independent losses and they are indirectly related by
the asymmetric softmax function: according to Definition 2, the two counterparts share the same
elements [g1, · · · , gK ]. This correlation serves as a normalization for ψ̃K+1 that brings the property
of maxima-preserving, which is crucial for the following consistency analysis:

Theorem 2. (Consistency of Lψ̃ and bounded probability estimator η̂ψ̃)
The proposed surrogate Lψ̃ is a consistent surrogate for L2D, i.e., φ◦g∗ ∈ argminf R

⊥
01(f), ∀g∗ ∈

argming R
⊥
Φ(g). The bounded probability estimator can also recover the desired class probabilities

and expert accuracy: η̂ψ̃(g∗(x)) = [η(x); Pr(M = Y |X = x)] , ∀x ∈ X . Furthermore, if there
exists other probability estimators for Lψ̃ , they must also be bounded.

The proof can be found in Appendix C. According to the theorem above, we showed that our proposed
asymmetric softmax function induces a consistent surrogate and a bounded probability estimator. We
also showed that there does not exist an unbounded probability estimator for Lψ̃, which guarantees
that our proposed bounded estimator is never the modification of an unbounded one. This result
enriches the toolbox for L2D with probability estimation and theoretically justifies the use of softmax
parameterization in L2D. In fact, we can further substitute the cross-entropy-like counterpart with
any strictly proper loss [46] to get the same consistency result. In the following subsection, we will
discuss the relationship between our method and the general consistent surrogate framework [9].

4.2 Connection with Consistent Surrogate Framework [9]: Asymmetry Can Help

In the previous section, we showed that there exists an implementation of softmax ψ̃ that can induce
both a consistent loss and a valid probability estimator for L2D. Given the theoretical successes of
our proposed softmax-based method and the previous OvA strategy, we may further expect them to
provide more insights into the design of surrogates and probability estimators for L2D. Recalling
the consistent surrogate formulation (4) proposed in Charusaie et al. [9] that allows the use of all
consistent multi-class losses for constructing L2D surrogates, it is an instinctive idea that our proposed
consistent surrogates (9) and the previous work [44] can be included in this framework. However,
this idea may not be easily confirmed: Theorem 1 implies that the two surrogates are not the trivial
combinations of commonly used symmetric losses and formulation (4) since they can both induce
bounded probability estimators. The following corollary shows that the two surrogates are included in
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(a) S-SM (b) S-OvA (c) A-OvA (d) A-SM (Proposed)

Figure 3: Distributions of the true and estimated accuracy of baselines and proposed method on CIFAR10H.

the family of consistent surrogate formulation (4), but induced from two novel asymmetric multi-class
surrogates.
Corollary 1. We can get the consistent surrogates Lψ̃ (9) and LOvA (6) by setting ϕ in the consistent
loss formulation (4) to specific consistent and asymmetric multi-class losses.

Due to page limitations, we present the formulation of the asymmetric multi-class losses and the
proof in the Appendix D. Although this conclusion reveals the connection between the two consistent
surrogates and the general framework (4), it is important to note that it does not necessarily imply
that the results in Verma and Nalisnick [44] and this paper are trivial. Since asymmetric losses
are seldom used in ordinary multi-class classification, it is hard to obtain Lϕ̃ and LOvA by simply
selecting ϕ from known consistent multi-class losses. According to this corollary and theorem 1, we
can determine that a multi-class loss ϕ with asymmetric structure is a necessity if we aim to design
consistent L2D surrogates with bounded probability estimators based on the general formulation (4).
Based on this insight, it is promising to discover more surrogates with bounded probability estimators
for L2D by focusing on the design of asymmetric multi-class surrogates.

4.3 Regret Transfer Bounds

In this section, we further study the regret transfer bounds of our proposed surrogate (9) to characterize
the effect of minimizing surrogate riskRLψ̃ (g) on both the target riskR⊥

01(g) and the misclassification
error of the classifier. Denoted by gclass = g1:K the classifier counterpart of our model and R01(g)
is its misclassification error, we can show that:

Theorem 3. max
(
R01(gclass)−R∗

01, R
⊥
01(g)−R⊥∗

01

)
≤

√
2
(
RLψ̃ (g)−R∗

Lψ̃

)
.

The proof can be found in Appendix E. This theorem shows that we can use the excess risk of our
proposed surrogate to upper-bound those of our concerned targets, and its proof is conducted by
applying Pinsker’s inequality and zooming.

This theorem shows that as long as we reach a low risk w.r.t. the proposed surrogate (approximately
optimal), we can obtain a model with satisfying performances for both L2D and classification. This
conclusion is not trivial: according to the characterization of R⊥

01’s Bayes optimality in Definition 1,
the classifier counterpart is not guaranteed to classify accurately on the deferred samples. We will
further experimentally demonstrate the efficacy of our surrogate for L2D and classification in the
next section.

5 Experiments

In this section, we compare our proposed asymmetric softmax estimator and its induced surrogate
loss with the estimators and losses in previous works. Detailed setup can be found in Appendix F.

Datasets and Models. We evaluate the proposed method and baselines on widely used benchmarks
with both synthetic and real-world experts. For synthetic experts, we conduct experiments on the
CIFAR100 [24]. Following the previous works, the expert has a chance of p to generate correct labels
on the first k ∈ {20, 40, 60} classes and at random otherwise. We set p = 94% as in Mozannar
and Sontag [30] and 75% as in Verma and Nalisnick [44] to simulate experts of high and medium
accuracy. For real-world experts, we use CIFAR10H, HateSpeech, and ImageNet-16H [36, 14, 21]
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Table 1: Experimental results on CIFAR100 with for 5 trials. We report the mean(%)(standard error(%)) of related
statistics.The best and comparable methods based on t-test at significance level 5% are highlighted in boldface.

Method Expert Error Coverage ECE Budgeted Error

10% 20% 30%

Expert Accuracy = 94%

S-SM
20 24.58(0.13) 77.72(0.31 4.86(0.11) 31.68(0.39) 25.00(0.24) 24.59(0.13)
40 21.92(0.32) 57.89(0.54) 9.22(0.38) 46.69(0.63) 38.50(0.60) 29.94(0.62)
60 18.69(0.88) 40.34(6.28) 11.10(0.72) 59.44(4.95) 51.36(5.08) 42.77(5.09)

S-OvA
20 27.00(1.91) 85.40(0.91) 5.15(0.31) 28.42(2.26) 27.00(1.91) 27.00(1.91)
40 27.33(1.50) 68.47(1.59) 9.38(0.46) 39.95(2.35) 32.93(2.30) 27.92(2.06)
60 18.44(0.64) 58.18(1.55) 7.70(0.24) 42.52(1.74) 33.67(1.72) 25.74(1.75)

A-OvA
20 25.63(0.97) 90.40(0.89) 4.35(0.29) 25.65(0.99) 25.63(0.97) 25.63(0.97)
40 23.23(0.42) 80.46(0.51) 6.81(0.33) 27.44(0.62) 23.23(0.42) 23.23(0.42)
60 19.64(1.10) 70.44(2.73) 7.34(0.38) 31.90(2.73) 24.75(2.73) 20.05(1.62)

A-SM
(Proposed)

20 24.54(0.06) 98.16(0.03) 4.63(0.11) 24.54(0.06) 24.54(0.06) 24.54(0.06)
40 22.17(0.36) 92.20(0.32) 6.58(0.22) 22.17(0.36) 22.17(0.36) 22.17(0.36)
60 19.30(0.58) 84.72(0.30) 5.96(0.44) 22.91(0.42) 19.30(0.58) 19.30(0.58)

Expert Accuracy = 75%

S-SM
20 25.49(0.20) 86.46(0.52) 5.07(0.21) 26.09(0.23) 25.48(0.20) 25.49(0.20)
40 25.13(0.44) 74.65(0.48) 12.82(0.29) 32.82(0.66) 26.99(0.59) 25.13(0.44)
60 24.05(0.43) 60.25(1.21) 18.70(0.55) 42.30(0.98) 36.18(0.99) 29.47(1.10)

S-OvA
20 26.53(0.86) 90.06(2.92) 5.57(0.54) 26.83(1.20) 26.53(0.86) 26.53(0.86)
40 26.89(1.78) 77.69(5.82) 7.14(1.41) 32.30(4.92) 28.33(3.11) 26.90(1.78)
60 25.29(0.69) 69.08(1.35) 7.47(0.12) 36.67(1.45) 30.44(1.33) 25.70(1.15)

A-OvA
20 25.94(0.52) 93.05(0.43) 4.78(0.29) 25.94(0.52) 25.94(0.52) 25.94(0.52)
40 25.73(1.07) 83.29(2.19) 5.75(0.80) 27.75(1.39) 25.73(1.07) 25.73(1.07)
60 22.81(0.52) 79.76(1.96) 6.10(0.32) 27.19(1.64) 23.08(0.87) 22.81(0.52)

A-SM
(Proposed)

20 24.58(0.12) 98.90(0.75) 4.34(0.31) 24.58(0.12) 24.58(0.12) 24.58(0.12)
40 24.29(0.35) 96.53(0.21) 5.58(0.13) 24.29(0.35) 24.29(0.35) 24.29(0.35)
60 22.48(0.32) 92.63(0.33) 5.58(0.17) 22.48(0.32) 22.48(0.32) 22.48(0.32)

datasets, where the expert’s prediction is generated using the provided auxiliary expert information.
More experimental results of real-world experts can be found in Appendix F.

For CIFAR-100, HateSpeech, and ImageNet-16H, we report the misclassification error, coverage,
and the ECE of the expert accuracy estimates. We also report the error of our model with the deferral
budget as in Figure 4 of Verma and Nalisnick [44] to further evaluate the performance of the obtained
classifier. For CIFAR10H, we plot the distribution of the true and estimated expert accuracy in Figure
3 to illustrate the performance of baselines and our method on fitting Pr(M = Y |X = x). The
experiments on CIFAR-100 is conducted with 28-layer WideResNet [50] and SGD as in previous
works [30, 44], and those on datasets with real-world experts are conducted using pre-trained
models/embedding.

Baselines. We compare our Asymmetric SoftMax based method (A-SM) with the previously proposed
Symmetric SoftMax-based (S-SM) method [30] and Asymmetric OvA (A-OvA) based method [44].
We also combined the Symmetric OvA logistic loss (S-OvA) with (4) to further evaluate the effect
of symmetric loss and its induced unbounded estimator. For unbounded probability estimators in
S-SM and S-OvA, we clip their estimates into [0, 1] to make them valid. We directly use the output of
baselines and our method without post-hoc techniques [19, 33] to better reflect their own performance.

Experimental Results. By observing Figure 3, we can find that the distributions of bounded method
A-OvA and our proposed A-SM have markedly more overlap with the true distribution compared
with the symmetric and unbounded ones, which directly shows that the bounded estimators can better
estimate of expert accuracy. As can be seen from the experimental results reported in Table 1 and
2, our proposed A-SM is always better than or comparable to all the baselines w.r.t. classification
accuracy. We can also see that the coverage of our method is always significantly higher than
the baselines, which shows that our surrogate can induce ideal models for L2D. Though S-SM
is comparable to A-SM with a high-accuracy expert, it has a significantly lower coverage and is

9



Table 2: Experimental results on HateSpeech and ImageNet-16H with noise type "095" for 5 trials. We report
the mean(%)(standard error(%)) of related statistics.The best and comparable methods based on t-test at significance
level 5% are highlighted in boldface.

Method Error Coverage ECE Budgeted Error

10% 20% 30%

HateSpeech

S-SM 8.65(0.14) 70.19(1.50) 3.95(0.48) 25.48(0.49) 16.80(0.44) 8.97(0.33)

S-OvA 8.65(0.14) 69.90(0.53) 1.77(0.07) 24.19(0.25) 15.89(0.34) 8.78(0.31)

A-OvA 9.64(0.32) 77.2(0.42) 1.73(0.26) 16.525(0.28) 8.80(0.25) 8.56(0.29)

A-SM 8.06(0.40) 81.98(0.58) 1.53(0.26) 15.07(0.35) 8.06(0.40) 8.06(0.40)

ImageNet-16H

S-SM 15.08(1.19) 26.41(1.78) 22.92(2.59) 68.58(1.30) 60.33(1.19) 51.27(1.94)

S-OvA 15.15(1.50) 23.08(2.39) 11.68(0.53) 68.91(2.51) 60.08(1.82) 51.50(2.05)

A-OvA 14.17(0.58) 21.56(2.13) 11.57(1.50) 71.14(2.10) 62.39(2.10) 53.95(2.27)

A-SM 12.59(0.79) 39.48(2.50) 8.13(1.33) 57.75(1.37) 49.66(1.18) 40.85(1.51)

outperformed by A-SM with an expert of lower accuracy, which indicates that it is suffering from the
problem of deferring more samples than necessary. This problem is also observed in learning with
rejection [8]. Though S-OvA can mitigate this problem, its coverage is still consistently lower than
A-SM. Notice that when there exist deferral budget requirements, all the unbounded baselines are
outperformed by A-OvA, and A-OvA is further outperformed by A-SM, which indicates that our
method can also efficiently generate a classifier. Meanwhile, the ECE of our estimated expert accuracy
is also comparable to or better than A-OvA, while those of the unbounded ones all have significantly
higher ECE, which further shows the efficacy of our method in estimating expert accuracy.

6 Conclusion

In this paper, we provide a novel consistent surrogate loss based on an asymmetric softmax function
for learning to defer that can also provide calibrated probability estimates for the classifier and
for expert correctness. We reveal that the root cause of the previous unbounded and miscalibrated
probability estimators for L2D is not softmax but the intrinsic symmetry of the used loss function. We
solve this problem by designing an asymmetric softmax function and using it to induce a consistent
surrogate loss and a bounded probability estimator. We further give the regret transfer bounds of
our method for both L2D and classification tasks. Finally, we evaluate our method and the baseline
surrogate losses and probability estimators on benchmark datasets with both synthetic and real-world
experts and show that we outperform prior methods. While we provide a consistent multi-expert
extension of our proposed surrogate in Appendix H, it is still a promising future direction to generalize
the multi-expert surrogates [45] to all the consistent multiclass losses as in Charusaie et al. [9].
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A Proof of Theorem 1

We first prove that if there is an L2D probability estimator η̂ for Lϕ, then we can reconstruct a
probability estimator η̃ for multiclass classification with ϕ if η is in ∆̃K+1, which is the collection of
all the elements β ∈ ∆K+1 with βK+1 ≤ 1

2 . Then we show that according to the symmetry of ϕ, we
can extend this estimator to ∆K+1, and then construct an unbounded L2D probability estimator for
Lϕ.

Proof. Denote by RLϕ(u,η(x),Pr(M = Y |X = x)) =
∑K
y=1 η(x)yϕ(u, y) + Pr(M = Y |X =

x)ϕ(u,K+1) the conditional risk for L2D. Denote by η̂ a probability estimator for Lϕ that η̂(u∗) =
[η(x); Pr(M = Y |X = x)] for all u∗ ∈ argminuRLϕ(u,η(x),Pr(M = Y |X = x)), we can
learn that ∆K × [0, 1] is in the range of η̂. Then it is easy to verify that η̃(u) = η̂(u)

1+η̂K+1(u) ∈ ∆̃K+1

is a valid probability estimator for K + 1-class multiclass classification with ϕ if the posterior
probabilities [p(y|x)]K+1

y=1 is in ∆̃K+1.

Then we construct a valid estimator for ∆K+1 based on η̃. Denote by P a permutation matrix that
exchanges the value of a vector’s first and last dimension, then we have the following estimator η̃′:

η̃′(u) =

{
η̃(u), uK+1 ̸= maxy uy,

P η̃(Pu), else.

We then prove that it is a valid estimator. Denote by ∆K+1
+ the set of all the β ∈ ∆K+1 that

βK+1 ̸= maxy βy, we can learn that ∆K+1
+ ∈ ∆̃K+1. Then for any β ∈ ∆K+1

+ , denote by u∗

the minimizer of conditional risk w.r.t. β and ϕ, we can learn that u∗K+1 ̸= maxy u
∗
y due to the

consistency of ϕ and thus η̃′(u∗) = η̃(u∗) = β.

For any β ̸∈ ∆K+1
+ , we can learn that Pβ ∈ ∆K+1

+ . Denote by u∗ the minimizer of conditional
risk w.r.t. β and ϕ, then we can learn that Pu∗ must be the minimizer of Pβ according to the
symmetry of ϕ. Then we have that η̃(Pu∗) = Pβ. Furthermore, notice that PPβ = β, then we
have η̃′(u∗) = P η̃(Pu∗) = PPβ = β.

Combining the two paragraphs above, we can learn that η̃′ is a valid multiclass probability estimator
for ϕ. Then we can construct an unbounded L2D estimator as in (3), which indicates the existence of
an unbounded probability estimator. Furthermore, since the loss function is unchanged, the collection
of all the minimizers of RLϕ(u,η(x),Pr(M = Y |X = x)) are also unchanged, and thus the all the
values should have the same value on U .

B Proof of Proposition 1

Proof. The boundedness of the first K dimensions is straightforward. The K + 1th dimension’s
boundedness can also be directly proved by reformulating it as

exp(uK+1)

exp(uK+1)+
∑K
y′=1

exp(uy′ )−maxy′∈{1,··· ,K} exp(uy′ )
.

Then we begin to prove its maxima-preserving. Denote by y1 = argmaxy∈{1,··· ,K} uy . It is easy to
verify that ψ̃y1(u) > ψ̃y(u) for any y ∈ {1, · · · ,K}/{y1} due to the property of softmax function.
Then we focus on the relation between ψ̃y1(u) and ψ̃K+1(u). We can learn that:

exp(uK+1)

exp(uK+1)+
∑K
y′=1

exp(uy′ )−exp(uy1 )
= 1

1+

∑K
y′=1

exp(u
y′ )−exp(uy1

)

exp(uK+1)

,

exp(uy1 )∑K
y′=1

exp(uy′ )
= 1

1+

∑K
y′=1

exp(u
y′ )−exp(uy1

)

exp(uy1
)

.

When uK+1 > uy1 , we can learn that
∑K
y′=1

exp(uy′ )−exp(uy1 )

exp(uK+1)
<

∑K
y′=1

exp(uy′ )−exp(uy1 )

exp(uy1)
, then

ψ̃K+1(u) > ψ̃y1(u). Based on the formulations above, it is also easy to verify the cases when
uy1 ≥ uK+1. Combining the discussions above and we can conclude the proof.
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C Proof of Theorem 2

Proof. The consistency can be directly obtained by recovering the class probability and expert
accuracy according to the maxima-preserving, then we first focus on how our proposed estimator
recovers the posterior probabilities.

According to the property of log loss, it is easy to learn that ψ̃y(g∗(x)) = p(y|x) for y ∈ {1, · · · ,K}.
When y = K + 1, we can learn from the range of our estimator and the property of binary log loss
that ψ̃y(g∗(x)) = Pr(M = Y |X = x). Then we can conclude that ψ̃(g∗(x)) = η(x)× Pr(M =
Y |X = x).

Then we begin to prove that there is no unbounded probability estimator by contradiction. Suppose
there exists an unbounded estimator ψ. For any g, it must be the solution of a distribution and expert
whose posterior probability is ψ̃(g(x)) for each point x. However, for a g that there exists x that
ψ(g(x)) ̸∈ ∆K × [0, 1], we can learn that it cannot be the solution of any distribution and expert
according to the definition of probability estimator. We can learn from this contradiction that ψ is not
a probability estimator as long as its range is not ∆K × [0, 1].

D Proof of Corollary 1

Proof. We can set the multi-class loss to ϕψ̃ to get our proposed loss:

ϕψ̃ (u, y) =


− log

(
exp(uy)∑K′−1

y′=1
exp(uy′ )

)
− log

(
1− exp(uK′ )∑K′

y′=1
exp(uy′ )−maxy′∈[1,K′−1] expu

y′

)
, y ̸= K ′,

− log

(
exp(uK′ )∑K′

y′=1
exp(uy′ )−maxy′∈[1,K′−1] expu

y′

)
+ log

(
1− exp(uK′ )∑K′

y′=1
exp(uy′ )−maxy′∈[1,K′−1] expu

y′

)
, else.

A similar result can be deduced for the OvA-based surrogate by considering the following consistent
multi-class loss with a strictly proper binary composite loss ξ:

ϕOvA (u, y) =

{
ξ(uy) +

∑
y′ ̸=y ξ(−uy′), y ̸= K ′,

ξ(uK′)− ξ(−uK′), else.

We then begin to prove their consistency. It is easy to verify that ϕψ̃ is minimized when ψ̃(g(x)) =
p(y|x)

1−p(K′|x) , and we can conclude its consistency using the maxima-preserving property of ψ̃.

For ϕOvA, denote by ψOvA the inverse link of ξ. We can learn that g∗(x) = ψOvA(
p(y|x)

1−p(K′|x) ), and
we can learn the consistency since ξ is strictly proper and thus ψOvA is increasing.

E Proof of Theorem 3

Proof. We first apply Pinsker’s inequality. We can learn that:

RLψ̃ (g)−R∗
Lψ̃

≥ Ep(x)
[
1

2
∥ψ̃1:K(g(x))− η(x)∥21 + 2(ψ̃K+1(g(x)− Pr(M = Y |X = x))2

]
.

We can learn that RLψ̃ (g)− R∗
Lψ̃

≥ Ep(x)
[
1
2∥ψ̃1:K(g(x))− η(x)∥21

]
immediately and learn that

the bound for R01 following the analysis of cross-entropy loss in ordinary classification. Then we
move to analyze the 0-1-deferral risk. We can further learn that :

RLψ̃ (g)−R∗
Lψ̃

≥ Ep(x)
[
1

2
∥ψ̃1:K(g(x))− η(x)∥21 + 2(ψ̃K+1(g(x))− Pr(M = Y |X = x))2

]
≥ 1

2
Ep(x)

[
∥ψ̃1:K(g(x))− η(x)∥21 + (ψ̃K+1(g(x))− Pr(M = Y |X = x))2

]
For any x, when g(x) can induce the Bayes optimal solution for it, the excess risk is zero and the
bound holds naturally. When it is not optimal, denote by ηK+1(x) = Pr(M = Y |X = x). y′ is the
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Table 2: Experimental results on CIFAR10H with for 5 trials. We report the mean(%)(standard error(%)) of related
statistics.The best and comparable methods based on t-test at significance level 5% are highlighted in boldface.

Method Error Coverage ECE Budgeted Error

10% 20% 30%

S-SM 3.82(0.02) 41.28(0.14) 6.64(0.22) 50.25(0.57) 41.00(0.81) 31.47(0.37)

S-OvA 4.30(0.12) 37.08(1.36) 2.46(0.48) 52.75(0.40) 43.31(0.58) 33.23(0.72)

A-OvA 4.00(0.11) 92.75(0.24) 0.95(0.16) 4.00(0.11) 4.00(0.11) 4.00(0.11)

A-SM 3.65(0.09) 94.20(0.37) 0.94(0.17) 3.65(0.09) 3.65(0.09) 3.65(0.09)

Table 3: Experimental results on ImageNet-16H with for 5 trials. We report the mean(%)(standard error(%)) of related
statistics.The best and comparable methods based on t-test at significance level 5% are highlighted in boldface.

Method Error Coverage ECE Budgeted Error

10% 20% 30%

Image Noise Type = “080”

S-SM 10.63(1.34) 22.59(1.59 18.31(3.22) 66.58(3.91) 60.41(2.98) 53.33(2.79)

S-OvA 10.48(0.64) 21.88(2.75) 12.79(0.33) 70.50(3.78) 61.58(4.64) 51.22(3.37)

A-OvA 10.36(1.09) 25.86(3.56) 8.69(0.63) 70.83(1.25) 61.32(1.70) 52.26(0.95)

A-SM 7.94(0.85) 37.32(2.72) 7.39(0.23) 54.24(2.89) 45.33(2.91) 34.11(1.65)

dimension with the largest value of g(x) and that of η(x) is y′′. Then we can learn that:
1

2

(
∥ψ̃1:K(g(x))− η(x)∥21 + (ψ̃K+1(g(x))− Pr(M = Y |X = x))2

)
≥ 1

2

(
ψ̃y′(g(x))− ηy′(x)− ψ̃y′′(g(x)) + ηy′′(x)

)2

≥ 1

2
(ηy′(x)− ηy′′(x))

2

The last step is obtained according to the maxima-preserving property. Further generalizing y′ and
y′′ to be instance-dependent (y′(x) and y′′(x)), we can learn the following inequality using Jensen’s
inequality:

RLψ̃ (g)−R∗
Lψ̃

≥ 1

2
(Ep(x)[|ηy′(x)− ηy′′(x)|])2,

which concludes the proof since the second expectation term is R⊥
01(g)−R⊥∗

01

F Details of Experiments

Details of Model and Optimizer: For methods on CIFAR-10, we use the 28-layer WideResNet
that is the same as those used in Mozannar and Sontag [30], Charusaie et al. [9]. The optimizer is
SGD with cosine annealing, where the learning rate is 1e-1 and weight decay is 5e-4. We conduct the
experiments on 8 NVIDIA GeForce 3090 GPUs and the batch size is 1024 (128 on each GPU). The
training epoch on CIFAR100 is set to 200.

For methods on CIFAR-10H, we train the same WideResNet on the fully-label CIFAR-10 dataset
and then train the linear layer using the CIFAR-10H dataset. The optimizer is AdamW [] and the
learning rate, batch size, epoch number are 1e-4, 128, 200. For methods on HateSpeech, we use a
384-dimension embedding and linear model in the experiment. The optimizer is SGD with cosine
annealing and the learning rate, batch size, epoch number is 0.1, 128, 50. For methods on ImageNet-
16H, we use the embedding generated by the pretrained DenseNet and linear model. The optimizer is
Adam and the learning rate, batch size, epoch number is 1e-3, 1e-1, 100.
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The extra result on ImageNet with noise type "080" and the exact statistics for CIFAR-10H are shown
in the tables in the appendix.

Details of Evaluation Metrics: The reported Error is the sample mean of ℓ⊥01, and Coverage is the
ratio of undeferred samples. The ECE of expert accuracy is defined below:

ECE =

N∑
i=1

bi|pi − ci|,

where bi is the ratio of predictions whose confidences fall into the ith bin. pi is the average confidence
and ci is the average accuracy in this bin. We set the bin number to 15. The budgeted error is
calculated as below: if the coverage is lower than 1 − x%, we will use the classifier’s prediction
instead of the expert’s for those samples whose estimated expert accuracy is lower to make the
coverage equal to 1− x%.

G Limitations and Broader Impact

Limitations: This work is designed for L2D without extra constraints on the number of expert
queries. We believe that combining it with selective learning, i.e., adding explicit constraints on the
ratio of deferred samples, can be a promising future direction.

Broader Impact: When applied in real-world applications, the frequency of expert queries may
be imbalanced due to the performance differences of the expert among samples. This is a common
impact shared by all the L2D methods. We believe that introducing fairness targets into L2D can be
another promising direction.

H Consistent Multi-Expert Extension

We provide a direct extension of our loss for the multi-expert setting and provide consistency analysis:
Denote by the expert advicem = [m1, · · · ,mM ] ∈ Y × · · · × Y . We first define an extended ASM:

Definition 4. (Multi-expert asymmetric softmax parameterization) ψ̃ is called a multi-expert asym-
metric softmax function that for any K > 1 and u ∈ RK+M :

ψ̃My (u) =


exp(uy)∑K

y′=1
exp(uy′ )

, y ̸∈ [K + 1,K +M ],

exp(uy)∑K+1

y′=1
exp(uy′ )+exp(y)−maxy′∈{1,··· ,K} exp(uy′ )

, else.
(10)

We can directly extend the property of single-expert ASM to this case:

Proposition 2. (Properties of ψ̃M ) For any u ∈ RK+M :
(i). (Boundedness) ψ̃M (u) ∈ ∆K × [0, 1]M ,
(ii). (Maxima-preserving) argmaxy∈{1,··· ,K+M} ψ̃

M
y (u) = argmaxy∈{1,··· ,K+M} uy .

Then we give the following extension:

Definition 5. (Multi-expert extension)

Lψ̃M (u, y,m)=− log(ψ̃My (u))−
M∑
i=1

(
[[mi ̸= y]] log(1− ψ̃MK+i(u))− [[mi = y]] log(ψ̃MK+i(u))

)
.

According to the position, we can simply give the characterization of Lψ̃M ’s optimal solution:

ψ̃M∗
y (u) =

{
p(y|x), y ̸∈ [K + 1,K +M ],

Pr(My−K |x), else.
(11)

According to the maxima-preserving, we can directly learn the consistency of our multiclass extension.
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I Estimation Error Bound

In this section, we give a routine analysis of our method’s estimation error bound. Our proof of the
estimation error bound is based on Rademacher complexity:
Definition 6. (Rademacher complexity) Let Z1, . . . , Zn be n i.i.d. random variables drawn from a
probability distribution µ,H = {h : Z → R} be a class of measurable functions. Then the expected
Rademacher complexity of H is defined as

Rn(H) = EZ1,...,Zn∼µEσ

[
sup
h∈H

1

n

n∑
i=1

σih (Zi)

]
where σ = {σ1, . . . , σn} are Rademacher variables taking the value from {−1,+1} with even
probabilities.

First, let G ⊂ X → RK+1 be the model class and each of its dimension is constructed by Gy ⊂ X →
R. Then, we define the following scoring function space for L2D task:

L ◦ G = {h : (x, y,m) 7→ Lψ̃(g(x), y,m)|g ∈ G}
So the Rademacher complexity of L ◦ G given n i.i.d. samples drawn from distribution with density
p(x, y,m) can be defined as

Rn(L ◦ G) = Ep(x,y,m)Eσ

[
sup
g∈G

1

n

n∑
i=1

σih(xi, yi,mi)

]
.

Denote by R̂Lψ̃ (g) =
1
n

∑n
i=1 Lψ̃(g(xi), yi,mi) the empirical risk and ĝ the empirical risk mini-

mizer. We have the following theorem:
Lemma 1.

RLψ̃ (ĝ)−RLψ̃ (g
∗) ≤ 2 sup

g∈G
|R̂Lψ̃ (g)−RLψ̃ (g)|

Proof.

RLψ̃ (ĝ)−RLψ̃ (g
∗) = RLψ̃ (ĝ)− R̂Lψ̃ (ĝ) + R̂Lψ̃ (ĝ)−RLψ̃ (g

∗)

≤ RLψ̃ (ĝ)− R̂Lψ̃ (ĝ) + R̂Lψ̃ (g
∗)−RLψ̃ (g

∗)

≤ 2 sup
g∈G

∣∣∣R̂Lψ̃ (g)−RLψ̃ (g)
∣∣∣

which completes the proof.

Then it is routing to get the estimation error bound with Rademacher complexity and McDiarmid’s
inequality:
Theorem 4. Suppose Lψ̃(g(x), y,m) ≤M and Lψ̃ is L−Lipschitz w.r.t. g(x), then with probability
at least 1− δ:

RLψ̃ (ĝ)−RLψ̃ (g
∗) ≤ 4

√
2L

K+1∑
y=1

Rn(Gy) + 4M

√
ln(2/δ)

2n

Proof. We will only discuss a one-sided bound on supg∈G

(
R̂(g)−R(g)

)
that holds with probabil-

ity at least 1− δ
2 . Altering (x[i], yi,mi) to (x′

[i], y
′
i,m

′
i) and we can get a perturbed empirical risk

R̂′(g). We can learn that

| sup
g∈G

(
R̂′(g)−R(g)

)
− sup

g∈G

(
R̂(g)−R(g)

)
| ≤ | sup

g∈G

(
R̂′(g)− R̂(g)

)
| ≤ M

n
.

Then we can use Mcdiarmids’ inequality and vector-valued Talagrand inequality to learn:

sup
g∈G

∣∣∣R̂Lψ̃ (g)−RLψ̃ (g)
∣∣∣ ≤ 2

√
2L

K+1∑
y=1

Rn(Gy) + 2M

√
ln(2/δ)

2n
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Using the lemma 1 and we can conclude our proof.
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