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ABSTRACT
Online recommendation services recommend multiple commodi-

ties to users. Nowadays, a considerable proportion of users visit

e-commerce platforms by mobile devices. Due to the limited screen

size of mobile devices, positions of items have a significant influence

on clicks: 1) Higher positions lead to more clicks for one commodity.

2) The ‘pseudo-exposure’ issue: Only a few recommended items are

shown at first glance and users need to slide the screen to browse

other items. Therefore, some recommended items ranked behind

are not viewed by users and it is not proper to treat this kind of

items as negative samples. While many works model the online

recommendation as contextual bandit problems, they rarely take

the influence of positions into consideration and thus the estima-

tion of the reward function may be biased. In this paper, we aim

at addressing these two issues to improve the performance of on-

line mobile recommendation. Our contributions are four-fold. First,

since we concern the reward of a set of recommended items, we

model the online recommendation as a contextual combinatorial

bandit problem and define the reward of a recommended set. Sec-

ond, we propose a novel contextual combinatorial bandit method

called UBM-LinUCB to address two issues related to positions by

adopting the User Browsing Model (UBM), a click model for web

search. Third, we provide a formal regret analysis and prove that

our algorithm achieves sublinear regret independent of the num-

ber of items. Finally, we evaluate our algorithm on two real-world

datasets by a novel unbiased estimator. An online experiment is

also implemented in Taobao, one of the most popular e-commerce

platforms in the world. Results on two CTR metrics show that our

algorithm outperforms the other contextual bandit algorithms.

CCS CONCEPTS
• Applied computing→ Online shopping; • Information sys-
tems → Recommender systems.
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1 INTRODUCTION
With the popularization of e-commerce platforms, a considerable

proportion of users visit e-commerce platforms like Amazon and

TaoBao by mobile devices. In typical recommendation scenarios

of these platforms, a list of items is recommended online based on

the features of items and the profiles of users. Due to the limited

screen size of mobile devices, only the first few items of the list

are displayed on users’ mobile devices at first glance. To view the

rest of the list, a user needs to slide the screen to go to the next

page. In this process, the user can click an item that attracts him.

After viewing the details of the item, he can return to the list to

browse other items and make multiple clicks. If none of these items

attracts the user in one or two pages, he is likely to quit from the

recommendation scenario or the application.

In the aforementioned process, positions of items have a signifi-

cant influence on clicks, since the probability of examination (a user

views an item) is normally larger if the rank of an item is higher,

which is called position bias. Moreover, it is possible that the user

leaves the scenario without browsing all items and this phenome-

non is called pseudo-exposure. For example, if we recommend a list

of items to a user, he clicks the first item to view the details of it, and

then returns to the recommended list to browse two commodities at

position 2 and 3. The rest of commodities are not viewed. However,

due to the cost of data transmission and limited computation in

mobile devices, it is tricky to accurately know which items are

viewed. In many cases, we only know that he clicks the first one.

Items behind position 3 are viewed as negative samples leading to

biased rewards, since most of the existing bandit researches assume

that all the recommended items are browsed by users.

This paper aims at addressing the position bias and the pseudo-

exposure problem to improve the performance in the online recom-

mendation. We adopt the contextual bandit framework, which is

widely used for online recommendation. There are a few challenges

that should be addressed to apply the bandit framework in our

problem. First, a set of arms should be selected each round since a
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Figure 1: Pages in some e-commerce platforms

list of items is recommended in the online recommendation. How-

ever, traditional contextual multi-armed bandit algorithms, such

as LinUCB [14], only choose one arm each round and thus cannot

be applied in our problem directly. Second, the position bias and

pseudo-exposure issue impact our dataset. If we directly learn from

such data, clicks are biased due to the influence of positions and

some items that are not viewed by users are treated as negative

samples. Thus, the learned user preferences could be inaccurate.

Although position bias is widely studied in recommender systems,

only a few works consider it in the bandit domain. Though com-

binatorial bandit algorithms [8, 9, 11, 19] have been proposed to

pull a set of arms in each round, existing works rarely consider

the position bias issue in contextual combinatorial bandit methods.

There are some attempts to model the influence of positions on

clicks, such as the Cascade Model [5] and the Position-Based Model

[4]. However, the Cascade Model and its extension directly assume

that users will not browse the items behind the last click and ignore

them, which is not accurate. The existing researches [10, 13] that

apply the Position-Based Model in bandit algorithms ignore the

features of items, which leads to poor performance in large-scale

recommendation problems.

In this paper, we propose a novel contextual combinatorial bandit

algorithm to address these challenges. Our contributions are four-

fold. First, we model the online recommendation task as a novel

contextual combinatorial bandit problem and define the reward of

a recommended set. Second, aiming at addressing the position bias

and the pseudo-exposure issue, we assume that the examination

probability is determined by both the position of an item and the

last click above the position. We estimate the examination proba-

bilities of various positions based on the User Browsing Model and

use them as weights of samples in a linear reward model. Third,

we formally analyze the regret of our algorithm. For T rounds, K
recommended arms, d-dimensional feature vectors, we prove an

Õ(d
√
TK) regret bound. Finally, we propose an unbiased estimator

to evaluate our algorithm and other baselines using real-world data.

An online experiment is implemented in Taobao, one of the largest

e-commerce platforms in the world. Results on two CTR metrics

show that our algorithm significantly outperforms the extensions

of some other contextual bandit algorithms both on the offline and

online experiments.

2 RELATEDWORK
Combinatorial bandit approaches are proposed to extend traditional

MAB methods (e.g., UCB, LinUCB) to pull a set of arms in each

round. The formulation is first studied in [3] to handle the situation

where the reward is decided by a set of arms, such as recommen-

dation and advertising. The contextual version of this problem is

proposed in which each arm possesses a contextual vector that

determines the reward [18, 22]. The idea of utilizing click mod-

els in bandit algorithms to model the influence of positions has

been explored in prior research works [9–13, 16, 23]. The Cascade

Model [5] merges with multi-armed bandit, combinatorial bandit,

contextual bandit and contextual combinatorial bandit respectively

[11, 12, 16, 24]. The Cascade Model assumes that a user scans items

from top to bottom until they click one. Thus, their algorithms

cannot be applied to the scenarios where users click more than one

item. To address this disadvantage, Katariya et al. [9] combine a

multi-armed bandit algorithm with the Dependent Click Model,

an extension of the Cascade Model for multiple clicks scenarios.

This model assumes that after users clicked an item, they may still

continue to examine other items, if they are not satisfied. However,
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all these models assume that users will not browse items behind the

position of the last click and users’ attention on each item before

the last click is the same, which is not suitable for our problem. In

contrast, the Position-Based Model [10, 13] assume that click rates

of items are affected by their displayed positions. Komiyama et al.

[10] consider the influence of ads differing from traditional bandit

problems. However, the pseudo-exposure issue is not considered

as an independent issue and the context information of items is

ignored in these two researches, which has a negative impact on

the application in large-scale problems.

In summary, the related works mentioned above ignore either

the influence of positions or the context of items and users. Thus,

in this paper, we consider the influence of positions in contex-

tual combinatorial bandit domain to address the position bias and

pseudo-exposure issue.

3 PROBLEM STATEMENT AND
FORMULATION

In this section, we first provide a problem statement and describe

the challenge encountered by mobile e-commerce platforms. We

then formally formulate contextual combinatorial bandit problem

and give the definition of reward.

With the popularity of smartphones, more and more consumers

are prone to visiting e-commerce platforms by mobile applications.

Different fromweb pages, the space of a page onmobile applications

is limited and usually only a few commodities can be displayed.

For example, Fig. 1(a) and 1(b) display 3 and 2 commodities respec-

tively. Our recommendation scenario is from Taobao, in which 12

commodities are recommended when a user enters the scenario.

However, only one item can be seen at the first glance because of

the limited screen size of mobile devices. Due to this, the data we

obtained is affected by positions. More specifically, the probability

that a user examines an item depends heavily on its position. 1)

For an item, a higher position leads to a higher probability of click

[7]. 2) Since we only obtain the items that are recommended and

clicked after a user leaves our recommendation scenario, whether

the items whose positions are behind the last click are viewed or

not is unknown, which leads to the pseudo-exposure issue. An

idea for addressing these problems is evaluating the influence of

positions based on clicks and positions. The estimated influences

are utilized as the weights of samples to learn users’ preferences

more accurately in this paper.

Recommending multiple commodities to a user based on context

information can be naturally modeled as a contextual combinato-

rial bandit problem. Formally, a contextual combinatorial bandit

methodM proceeds in discrete rounds t = 1, 2, 3, . . . ,T . In round t ,
M observes the current user ut and a candidate set At includingm
arms and a set of context Xt that includes d-dimensional context

vectors xa for each arm a ∈ At . The algorithm M will choose a

subset St includingK arms fromAt based on the observed informa-

tion and then receive a reward vector RSt containing the rewards
rak,t ∈ {0, 1}, ∀ak,t ∈ St , which is the semi-bandit feedback used

in existing researches. The algorithm then updates the strategy of

choosing arms based on the tuple (RSt ,Xt ).
Now we define the reward functions for the recommended set

St following [9, 11, 17, 24]. To avoid the abandon of users, we hope

Algorithm 1: LinUCB algorithm with User Browsing

Model (UBM-LinUCB)

Input :Constant λ ≥ ϕ ′w , β ≥ ∥θ∗∥2
2
(We set λ = ϕ ′w , β = d

in experiments), weights of different positions

{wk,k ′ |k = 1, . . . ,K , k ′ = 1, . . . ,k − 1},the number

of items in a page K , the set of arms A, the set of

context X ;

1 A0 = λId (d-dimensional identity matrix);

2 b0 = 0d×1 (d-dimensional zero vector);

3 for t = 1, . . . ,T do

4 α =

√
d ln

(
1 +

ϕ′
w t
dλ

)
+ 2 ln (tK) +

√
λβ ;

5 θ = A−1
t bt ;

6 pa = θ
T xat + α

√
xTatA

−1
t xat ;

7 St = �;

8 for k = 1, . . . ,K do
9 ak,t = argmaxa∈At \St pa ;

10 St = St ∪ {ak,t };

11 Display St to a user;

12 Get reward vector RSt = [rat,1 , . . . , raK,t ] of St ;

13 Compute k ′ for all positions based on RSt ;

14 At = At−1 +
∑K
k=1w

2

k,k ′xak,t x
T
ak,t ;

15 bt = bt−1 +
∑K
k=1wk,k ′rak,t xak,t ;

that at least one item in the set St attracts users and can be clicked.

In view of this, the reward of the selected set is defined to be 1, if

at least one of the K items is clicked, formally,

F (St ) =

{
1 if

∑
r ∈RSt r > 0

0 otherwise

In our recommendation problem, we view the commodities in

the candidate set as arms. When at least one displayed commodity

is clicked, the reward r is 1, otherwise 0. With this definition, the

expected reward of the recommended set is similar to the defini-

tion of click through rate (CTR), which will be introduced in the

experiment part. Thus, choosing an item to maximize the CTR of a

set is equivalent to maximizing the total expected reward E[F (St )]
in our problem.

4 LINUCBWITH USER BROWSING MODEL
In this section, we propose our contextual bandit algorithm UBM-

LinUCB (LinUCB with User Browsing Model), illustrated in Algo-

rithm 1, which addresses the position bias and pseudo-exposure

issue and is able to recommend a list of commodities with the

theoretical guarantee.

After users view some items shown in the screen, they decide to

slide the screen or leave, if these items are not attractive. Intuitively,

the probability that users leave increases after seeing a long se-

quence of unattractive items. Thus, the probability of examination

decreases when the position of an item becomes lower [7]. However,

if an item is clicked, this item must be displayed in the screen. Since

the screen usually can display more than one items, the nearby

item (behind the clicked one) are more likely to be displayed and
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the probability of examining increases. Therefore, we introduce

position weights relating to both positions and clicks to address

the position bias and the pseudo-exposure issue. For all the items,

we estimate the probability of examination rather than treating

them as negative samples or ignoring them directly. Inspired by the

User Browsing Model (UBM) [4], we assume that the click through

rate rt,a of an arm is determined by the examination probabilityw
and attractiveness γ (a) of arm a, namely, rt,a = wk,k ′γ (a), where
γ (a) is the attractiveness of an item a andwk,k ′ is the examination

probability meaning the probability that a user views an item. We

assume thatwk,k ′ depends not only on the rank of an item k , but
also on the rank of the previously clicked item k ′. By assuming that

the attractiveness of items follows a linear function, we propose a

new linear reward model:

E[rak ] = θ
T (wk,k ′xak ) (1)

where θ is an unknown coefficient vector whose length is the same

as xak . wk,k ′ is the examination probability for the rank k when

the position of the last click is k ′. We assume thatwk,k ′ is a fixed

constant, since it only depends on the structure of a page and can

be learned in advance [13]. We introduce how to obtain wk,k ′ in

the experiment part and focus on our main contribution, bandit

algorithm, in this section.

We use ridge regression to solve the linear model [14]. The

objective of ridge regression is to minimize the penalized residual

sum of squares (PRSS):

PRSS(θ ) =
∑T

t=1

∑T

k=K
[rak,t −θ

T (wk,k ′xak,t )]
2+

∑d

j=1
θ j

2
(2)

where θ j is the j-th element of θ . To simplify notation, we usewk,k ′

to denote wk,k ′,ak,t , which is the examination probability of the

item ak,t at round t where the position of ak,t and the last click

before ak,t is k and k ′ respectively.
LetX be aTK ×d-dimensional matrix whose rows correspond to

the context xak,t of the arm ak,t in round t and position k .W is also

a TK × d-dimensional matrix whose rows arewk,k ′11×d , weights

of ak,t in round t and position-pair (k,k ′). R contains rewards rak,t
for the item ak,t each round t and position k . The PRSS function
can be transformed to a compact representation:

PRSS(θ ) = [R − θT (W ◦ X )]T [R − θT (W ◦ X )] + λ∥θ ∥2
2

(3)

where λ is a constant to control the weight of the regularizer and

◦ is the Hadamard product and (W ◦ X )i, j =Wi, jXi, j . Thus, each
row ofW ◦ X iswk,k ′xak,t .

To minimize the PRSS(θ ), the derivation
∂PRSS (θ )

∂θ should be

zero. Then, the solution of θ is:

θ = [(W ◦ X )T (W ◦ X ) + λId ]
−1(W ◦ X )T R (4)

where Id is the d×d identity matrix. LetA = (W ◦X )T (W ◦X )+λId
and b = (W ◦X )T R. Applying the online version of ridge regression

[14], the update formulations of At and bt in round t are shown as

follows:

At+1 = At +
∑K

k=1
w2

k,k ′xak,t x
T
ak,t (5)

bt+1 = bt +
∑K

k=1
wk,k ′x

T
ak,t rak,t (6)

The initialization of A and b is shown in Line 1 and 2. Then, we use

Eq. (5) and (6) in Line 14 and 15 respectively to update these two

coefficients in our algorithm.

The standard deviation of the ridge regression [21] for any a

and a given pair {k,k ′} is

√
wk,k ′x

T
a A

−1
t wk,k ′xa and the upper

confidence bound used to select the best recommended set is

pa = θ
Twk,k ′xa + α

√
wk,k ′x

T
a A

−1
t wk,k ′xa

= wk,k ′(θ
T xa + α

√
xTa A

−1
t xa )

(7)

where α is a parameter related to t , which is defined in the next

section. Since the parameterwk,k ′ for a fixed pair {k,k ′} is a con-
stant and is not related to a, we can ignore it and use the simplified

equation in Line 6:

pa = θ
T xa + α

√
xTa A

−1
t xa (8)

In the next section, Lemma 1 indicates how to select the optimal

set based on pa and Theorem 1 defines α and constants used in the

algorithm.

5 THEORETICAL ANALYSIS
In this section, we give the theoretical analysis and prove that UBM-

LinUCB achieves the regret bound Õ(d
√
TK) with respect to the

aforementioned formulation of reward, where the Õ notation hides

logarithmic factors. Our key contributions are 1) the proof for
Lemma 1, and 2) considering wk,k ′ , which depends on both
position k and the position of the last click k ′ in Theorem 1.
We define the expected cumulative regret at round T formally:

R(T ) = E
[∑T

t=1
F (S∗t ) − F (St )

]
(9)

where S∗t is the optimal set.

We first show that with respect to our novel linear reward model,

the optimal set S∗t at each round t selects the arms with top-K values

of xTat θ
∗
, which holds for R based on the rearrangement inequality.

Then, the upper bound is proved.

Let γ (a) = xTa θ
∗
. We assume that, without loss of generality,

w j+1, j ≥ w j+2, j ≥ · · · ≥ wK, j and wk,k−1 ≥ wk,k−2 ≥ · · · ≥

wk,0. These two assumptions can be explained intuitively: 1) If a

user clicks the j-th position, the probability that he observes k-th
(k > j) position is inversely related to the distance k − j. 2) For a
fixed position k , the probability of examination is larger when the

position of the last click k ′ is closer to k .
The following lemma verifies that the optimal set S∗t simply

selects the arm a with the k-th highest value γ (a) at the k-th slot for

F by the rearrangement inequality. Let S∗t = {a∗
1,t , ...,a

∗
K,t } where

a∗k,t is the optimal arm that recommended at the k-th position. We

have:

Lemma 1. S∗t maximizing E[F (St )] consists of a∗k,t being the arm
with the k-th highest value γ (a).

Now we transform the upper bound of R and give the proof.

Lemma 2 ([9]). The upper bound of R is∑T

t=1

∑K

k=1
wk,0

[
γ (a∗k,t ) − γ (ak,t )

]
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The proofs of two Lemmas are in the Appendix. Finally, we prove

the upper bound of R(T ) for UBM-LinUCB algorithm.

Theorem 1. Letϕ ′w =
∑K
k=1w

2

k,k−1. When λ ≥ ϕ ′w ≥ 1, ∥θ∗∥2
2
≤

β and

α ≥

√
d ln

(
1 +

ϕ ′wT

dλ

)
+ 2 ln (TK) +

√
λβ ,

if we run UBM-LinUCB algorithm, then

R(T ) ≤ 2α

√
2TKd ln

(
1 +

ϕ ′wT

λd

)
+ 1

Proof. (sketch) The structure of proof follows [1, 22]. The main

contribution is consideringwk,k ′ , which depends on both position

k and the position of the last click k ′. We first define an event to

judge the distance between the true attractiveness and the estimated

attractiveness of each item a ∈ At :

E ={|⟨xak,t−1 ,θ
∗ − θt−1⟩| ≤ α

√
xTak,t−1A

−1
t−1xak,t−1 ,

∀ak,t ∈ At ,∀t ≤ T ,∀k ≤ K}

If event E happens, the regret can be bounded by the variance

R(T ) ≤ 2αE

[∑T

t=1

∑K

k=1
wk,0

√
xTak,tA

−1
t−1xak,t

]
≤ 2α

√
2TKd ln

(
1 +

ϕ ′wT

λd

)
Then, we prove that the E happens with the probability 1− δ when

α satisfies the condition shown in the Theorem. And the bound of

regret isTKδ when E does not happen. Let δ = 1

TK and combining

these two parts together, we finish the proof. □

The full version of the proof is in the Appendix.We prove that our

algorithm can achieve Õ(d
√
TK) bound and the Õ notation hides

logarithmic factors. Our bound is improved compared to related

works [17, 24], which proved Õ(dK
√
TK) and Õ(dK

√
T ) bounds

respectively with the same reward function.

6 EXPERIMENTAL EVALUATION
In this section, we describe the details of our experiments. First, we

define the metrics of performance and the evaluation method. An

unbiased estimator is introduced. Second, benchmark algorithms

are listed and introduced briefly. Then, we introduce a public dataset,

Yandex Personalized Web Search dataset
1
, used in a simulated ex-

periment and a real-world dataset provided by Taobao. We also

implement an online experiment in the e-commerce platform. The

details of data collection and processing are presented. Finally, the

results of both offline and online experiments are provided and

analyzed.

6.1 Metrics and Evaluation Method
Corresponding to the formulation of reward, we use the CTRset ,
the expectation of F (St ), as the metric:

CTRset =

∑T
t=1 F (St )

T

1
https://www.kaggle.com/c/yandex-personalized-web-search-challenge

Additional Metric. In practice, the CTR of all the recommended

items is also widely used. Thus, we define the accumulative reward

CTRsum of the set St , which is the expected total clicks of St :

CTRsum =

∑T
t=1

∑
r ∈RSt r

T

Offline unbiased estimator. Since the historical logged data is
generated by a logging production policy, we propose an unbiased

offline estimator, User Browsing Inverse Propensity Scoring (UBM-

IPS) estimator, to evaluate the performance inspired by Li et al.

[15]. The idea is to estimate users’ clicks on various positions based

on UBM model and the detail of reduction is at Appendix. The

formulation of the UBM-IPS estimator is shown as follows.

VU BM (Φ) =EX

[
E S∼π (·|X )

r∼D(·|X )

[∑K

k=1

∑k

k ′=0
r (ak ,k,k

′ |X )

·
⟨W̃ ,Φ(ak , ·, ·|X )⟩

⟨W̃ ,π (ak , ·, ·|X )⟩

] ] (10)

where D is the logged dataset, ak ∈ A, π is the policy that generate

D. Φ is the estimated policy, W̃ = [w1,0,w2,0, . . . ,wK,K−1] is a

vector including position weights. Given the features of a candidate

set and a user X , π (ak , ·, ·|X ) consists of the probabilities that ak
appears at different k and k ′ under π corresponding to W̃ which is

[π (ak , 1, 0|X ),π (ak , 2, 0|X ), . . . ,π (ak ,K ,K − 1|X )]. ⟨·, ·⟩ means the

dot product of two vectors.

The estimator is unbiased when 1) the term
⟨W̃ ,Φ(ak , ·, · |X )⟩

⟨W̃ ,π (ak , ·, · |X )⟩
is

not infinite and 2) users’ behaviors follow the UBMmodel. For 1), in

our offline experiment, we treat commodities recommended by π in

one record as candidate set. Thus, all the items chosen byΦ has been

selected by π for a specific X , that is Φ(ak , ·, ·|X ) , 0K (K+1)/2 and

π (ak , ·, ·|X ) , 0K (K+1)/2. Thus, the UBM-IPS term is not infinite.

For 2), we use the evaluation method proposed in [2] to empirically

estimate the accuracy of the UBM model in our recommendation

dataset. This evaluation method removes the position bias by using

the data in the first position as the test set and the rest as the train-

ing set. The experiment result in our e-commerce dataset shows

that the UBM-IPS estimator is better than traditional IPS estimator

that does not involve the UBM model (MSE: UBM-IPS: 0.1754, IPS:

0.1943), although the MSE is not 0 (totally unbiased). Thus, we use

UBM-IPS to evaluate different algorithms empirically in the offline

experiments.

Since k ′ depends on previous clicks, Φ(ak , ·, ·|X ) cannot be ob-

tained directly. In practice, we first generate a recommended set by

Φ. Since Φ is deterministic in our case, the recommended set deter-

mines Φ(ak , ·, ·|X ). Then, we obtain k ′ sequentially. More specifi-

cally, when the policy Φ chooses the set SΦ after sampling a context

set X from dataset, we first collect |D(·|X )| records D(·|X ) with the

same context set X . Then, for the first commodity a1 ∈ SΦ, delete
the terms that do not include a1 in the Eq. (10):

1

|D(·|X )|

∑
a1∈D(· |X )

r (a1,k,k
′ |X )

⟨W̃ ,Φ(a1, ·, ·|X )⟩

⟨W̃ ,π (a1, ·, ·|X )⟩
(11)

This equation is used to simulate the reward r (a1, 1, 0), where k and

k ′ are the position of a1 and the last click before k in records respec-

tively. SinceΦ is deterministic,Φ(a1, ·, ·|X ) =

{
1 f or k = 1,k ′ = 0

0 others
.
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Notice that the simulated reward would be larger than one since

⟨W̃ ,Φ(a1, ·, ·|X )⟩ would be larger than ⟨W̃ ,π (a1, ·, ·|X )⟩. Then, we

obtain thek ′ for the second commoditya2 based on reward r (a1, 1, 0):

k ′ =

{
1 r (a1, 1, 0) ≥ 1 or B(r (a1, 1, 0)) = 1

0 B(r (a1, 1, 0)) = 0

where B(·) is the reward sampled from the Bernoulli distribution

with mean r (a1, 1, 0). Given a fixed k
′
, we can use the above method

to compute the reward of a2. Repeating this process, the rewards
of all commodities in set SΦ can be obtained. Then, the CTRsum
andCTRset can be calculated. For theCTRsum , we directly use the

average of the unbiased rewards overT . For theCTRset , we use the
the Bernoulli distribution to sample a reward (0 or 1) if r ∈ [0, 1]. If

the reward of a recommended item is not less than 1, F (St ) = 1.

Influence of Positions. The influence of position is mainly de-

termined by the structure of a page. Since a page’s structure does

not change in the long term, the position influence wk,k ′ can be

considered as constants following [13]. We use the EM algorithm

suggested by [4, 6] to estimatewk,k ′ in advance. The max and min

values are 0.55 and 0.17 respectively for our recommendation sce-

nario. For the Yandex dataset, they are 0.96 and 0.015. The difference

is caused by the distribution of clicks in these two datasets. Since

the Yandex dataset is collected from a web search scenario, 79.3% of

users click the first web page shown in the result, which is usually

the most relevant to the keyword they queried. Clicks are very rare

for low-ranking web pages. Therefore, the gap between the max

and min position influences is more significant. However, for our

recommendation scenario, users usually are not purposeful and

prone to browse more items (see Fig. 3). Thus, the gap of position

influences is relatively small.

6.2 Benchmark Algorithms
We evaluate 4 baseline methods to illustrate the performance of our

proposed algorithm. We only compare with combinatorial bandit

algorithms that are based on LinUCB considering fairness and the

problem setting. The first one is a context-free combinatorial bandit

algorithm merged with the PBM model. The other three algorithms

are contextual combinatorial bandit algorithms. Theoretical optimal

parameters are used in experiments.

• PBM-UCB [13]: The PBM-UCB algorithm combines the

PBMmodel with the UCB algorithm. Positions bias is consid-

ered to compute the mean and variance of an arm’s reward

by applying the position-based model (PBM), which assumes

that the position bias is only related to the rank of an item.

The position bias is obtained by the EM algorithmmentioned

in [13].

• C2UCB [18]: C
2
UCB algorithm is a combinatorial extension

of the LinUCB algorithm. In each round, the algorithm se-

lects K items with top-K upper confidence bounds. After

displaying them to a user, the algorithm can observe the

rewards for these K items and execute the update equations

for each of these items.

• CM-LinUCB: CM-LinUCB is a simple extension of [16, 24]

based on the Cascading Model. This model assumes that a

user scans items from top to bottom until they find a rele-

vant item. After they click the relevant item, they will leave

without view other items behind. Thus, we ignore items

behind the first click and only use the rest of samples to

update parameters in this extension, which is the same as

the First-Click algorithm used in [9].

• DCM-LinUCB [17]: DCM-LinUCB is an contextual bandit

algorithm based on Dependent Click Model. DCM is an ex-

tension of CM by assuming that after a user clicked an item,

they may still continue to examine other items. The model

introduces a satisfaction variable to determine whether the

user will continue to view other items or not. If the satisfac-

tion variable equals to 1, the user will leave. Otherwise, he

will continue to scan other items.

6.3 Web Search Recommendation
The Yandex Personalized Web Search dataset contains 35 million

search sessions. Each session contains a user ID, a query ID, IDs

of web pages shown as result, and clicks. The top 3 most frequent

queries are used for evaluation. The position influences are esti-

mated by the PyClick library [4]. Since the web pages in the dataset

do not have corresponding features, we build features for all the

web pages. We first construct a user-website matrixMu×m based

on the records in the dataset, where u = 194749 andm = 2701 is

the number of users and web pages respectively. The value of the

elementM(i, j) is determined by the attractiveness of a web page j
for a user i estimated by a part of Eq. 11:

1

|D(·|X )|

∑
aj ∈D(· |X )⟩

r (aj ,k,k
′ |X )

1

⟨W̃ ,π (aj , ·, ·|X )⟩
(12)

where X = i represents the user i . Thus, the simulated reward can

be obtained by multiplying the position weight ⟨W̃ ,Φ(a1, ·, ·|X )⟩

given any policy Φ. The features are generated by the truncated

randomized SVD provided by Scikit-Learn library
2
, i.e.,M ≈ USVT

.

We set the dimension of S to 10 and use the vector [U (i),V (j)] as
the feature of web page j for the i-th user. Notice that |S | = 10 is

a balance between accuracy and complexity. Since the truncated

randomized SVD is an approximated decomposition method, a

smaller |S | leads to worse accuracy. For example, all the contextual

bandit algorithms cannot perform normally when |S | = 5. And a

larger |S | increases the computational complexity since the inverse

of Ak need O(d3) time in each round, where d is the dimension of

the feature vector.

For each round, a user is randomly chosen to decide the attrac-

tiveness of different web pages. We only use the web pages that

are shown to the user as the candidate set, since we cannot know

the attractiveness of a web page if it is never displayed to the user.

The simulated reward is estimated by the estimator we mentioned

above using Eq. 11.

6.3.1 Result. The result after 5000 rounds is shown in Fig. 2 (aver-

age of 10 runs). When K = 3, contextual bandit algorithms perform

similarly except CM-LinUCB. The reasons are: 1) The influence of

positions is relatively small when K = 3. Thus, the effectiveness of

different models cannot be revealed well. 2) Due to the hypothesis

of the Cascading Model, CM-LinUCB only uses samples not behind

the first click to update, which leads to insufficient training. When

K becomes larger, the performance of C
2
UCB declines dramatically

2
https://scikit-learn.org/stable/
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Figure 2: The performances of algorithms when K changes.
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Figure 3: The distribution of the last clicks’ positions. The
numbers outside the pie are positions of the last clicks. For
example, 1 means that the last clicks of users are at the first
position.

and other contextual bandit algorithms outperform it, since C
2
UCB

does not consider the impact of positions. When K is larger than 4,

the CTRs change slightly and do not increase anymore, since 91.6%

of users click one web and 98.4% of users clicks 2 web pages or less.

Moreover, the ratio of positive samples descends rapidly and has a

negative impact on the learning results, especially for the method

not involving click models.

6.4 E-commerce Recommendation
Our real-world dataset is provided by Taobao. We utilize the data

from a recommendation scenario in the platform, where 12 items

are selected and then displayed to users. There are two special

characteristics of this scenario. First, the number of commodities is

fixed to 12. Themobile app of this platformwill not recommend new

items after all of these 12 items are browsed. Another characteristic

is that users can only view the first item and part of the second

item when they enter this scenario. To observe the rest of the items,

users need to slide the screen.

Since we cannot know a user’s real interest if he does not click

any item, we remove the data without clicks from the original log

data. After processing, our dataset contains 180k records, while

each record contains a user ID, IDs of 12 commodities, context

vectors of 12 commodities and a click vector corresponding to the

12 commodities. The context vector is a 56×1 array including some

features of both a commodity and a user, such as the commodity’s

price and the user’s purchasing power. In our offline experiment,

we treat 12 commodities in each record as the candidate set since

whether users will click other commodities is unknown.

To illustrate the position bias and the pseudo-exposure issue bet-

ter, Fig. 3 demonstrates the distribution of the last clicks’ positions.

The number around the circle is the position of the last click. Only

6.2% of the last items are clicked by users in our data. If we assume

that the items at the positions behind the last click are affected by

the pseudo-exposure,
11

12
of items are biased for the records whose

last click’s position is 1, which accounts for 16.6% of the data. By

calculating the weighted sum
11

12
× 16.6% + 10

12
× 11.6% + . . . , about

54% of rewards are affected by the pseudo-exposure issue. Notice

that this percentage is a rough estimate, since it is possible that

some items at positions behind the last click are viewed by users.

6.4.1 Feature Reduction. Additionally, we reduce the dimension of

features inspired by [14], since the time of computation is closely

related to the dimension of context. The update equation ofAk takes

O(d2) time and the inverse of Ak need O(d3) time in each round.

Thus, in order to improve the scalability of the algorithm, we apply

a pre-trained denoising autoencoder [20] to reduce the dimension

of the feature space from 56 to 10. The encoder contains 4 hidden

layers with 25,10,10,25 neural units respectively and an output layer

with 56 units. The ReLU activation function is applied to the outputs

of the hidden layers. The context vectors x are perturbed by the

vectors randomly drawn from a uniform distribution between 0

and 1, formally, input = 0.95 ∗x + 0.05 ∗noise . The objective of this
autoencoder is to minimize the MSE loss ∥x − output ∥2

2
between

the context and the output. We adopt the output of the second

hidden layer as extracted features, whose dimension is 10. The

extracted features are utilized as the context in our algorithm and

other compared methods.
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Figure 4: Performance of each algorithm under two CTR metrics with the increase of the number of rounds.

Table 1: CTRs with the change of K from 3 to 6 when α is optimal. The numbers with a percentage is the CTR lift.

Algorithm

K = 3 K = 4 K = 5 K = 6

CTRsum CTRset CTRsum CTRset CTRsum CTRset CTRsum CTRset

C
2
UCB

0.592 0.420 0.643 0.440 0.747 0.510 0.812 0.534

0% 0% 0% 0% 0% 0% 0% 0%

PBM-UCB

0.545 0.396 0.655 0.453 0.744 0.519 0.795 0.522

-7.9% -5.7% 1.8% 2.9% -0.4% 1.7% -2.1% -2.1%

CM-LinUCB

0.578 0.398 0.674 0.464 0.771 0.548 0.839 0.539

-2.3% -5.2% 4.8% 5.4% 3.2% 7.4% 3.3% 9.3%

DCM-LinUCB

0.613 0.408 0.704 0.474 0.820 0.570 0.915 0.614

3.5% -2.8% 9.5% 7.7% 9.7% 11.7% 12.7% 14.9%

UBM-LinUCB

0.660 0.480 0.781 0.538 0.869 0.604 0.976 0.671
11.4% 14.2% 21.4% 22.2% 16.3% 18.4% 20.2% 25.6%

6.4.2 Result. We conduct offline and online experiments to eval-

uate various algorithms. The first part of experiments illustrates

the curves of algorithms with the increase of the number of rounds

when K = 3 and 6. The second set of experiments shows the per-

formance of different algorithms with the change in the number

of recommended commodities. Finally, we implement the online

experiment for three days in a real platform and report the perfor-

mance in different days. The UBM-LinUCB algorithm performs the

best in most cases.

Performance with the increase of the number of rounds.
Fig. 4 demonstrates the performance of our algorithm under two

metrics. Sub-figures 4(a) and 4(c) are the trends under the CTRsum
metric when K = 3 and 6 respectively. The other two sub-figures

show the performance under theCTRset metric. The UBM-LinUCB

algorithm performs the best in all of these figures. Since the PBM-

UCB algorithm does not consider the features of items, it performs

worse than other methods. The speed of convergence is similar

for the contextual bandit algorithms, while PBM-UCB is relatively

slow. This is coincident to theoretical analysis that the regret of

contextual bandit algorithms is independent of the number of items

rather than non-contextual ones.

When K = 6, the speed of convergence is faster for almost all the

algorithms. For example, for our UBM-LinUCB algorithm, it takes

about 30k rounds to converge when K = 6 while its performance

increases slowly until 60k or 70k rounds when K = 3. The reason

would be related to the number of samples obtained in each round.

More specifically, K = 6 means that our algorithm can receive 6

samples per round, which is double compared to the case when

K = 3. The more samples received in each round, the faster the

speed of convergence is. One exception would be the CM-LinUCB.

Since it only considers the samples before the first click, not all

the samples are used for the update. Thus, the learning rate of

CM-LinUCB would be insensitive to the increase of K .
Experiments for the Number of Recommended Items K .

We run algorithms to recommend various number of items and

summarize the result in Table 1. The C
2
UCB method is considered

as a baseline in the table and the number with a percentage is

the CTR lift compared to C
2
UCB. A larger CTR of an algorithm

indicates its effective use of data and features. We alter the value of

K to demonstrate the influence of the recommended set’s size. The

UBM-LinUCB algorithm improves two CTR metrics by 20.2% and

25.6% when K = 6.

The advantage of our algorithm becomes more significant with

the increase of K . The reason is that the influence of positions is

not significant when K is small. When K = 3, the difference of the

value of position weight is small. Thus, the CTR of an item is similar

in the first three positions, which indicates that 1) a sub-optimal

policy can also perform well especially when the recommended
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Figure 5: Trends in two metrics in the online experiment.

items of this sub-optimal policy is the same as the optimal one and

the only gap is the order; 2) the bias introduced in learning is also

relatively small. Then, baseline algorithms without considering the

behavior model of users or using other inaccurate models would

obtain good performance (for example C
2
UCB). However, when K

becomes larger, the performance of C
2
UCB is exceeded by other

algorithms that involve click models. Moreover, the performances

of different click models can be illustrated more straightforwardly.

The performance of CM-LinUCB becomes worse compared with

DCM-LinUCB and UBM-LinUCB, since it only considers one click.

6.5 Online experiment
We implement an online experiment in Taobao. In our scenario,

12 items should be selected from about 40,000 commodities and

displayed on users’ mobile devices. Bucket test or called A/B test

is adopted. More specifically, users that enter our scenario will be

randomly divided into different buckets. Each algorithm is deployed

to one bucket and recommends about 5 millions of communities

per day in the large-scale online evaluation. We use the same met-

rics as the offline experiment and report the performance of four

algorithms. We do not evaluate PBM-UCB since it is infeasible to

store the means and variances of all the 40,000 commodities in our

online platform.
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Figure 6: CTRs of 3 days in the online experiment.
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Figure 7: The ranking system of our online experiment. The
parameters of our algorithm are stored in the online KV sys-
tem and used to rank items when users enter our scenario.
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Fig. 7 illustrates the structure of our online platform. When users

enter our scenario, their information will be concatenated with each

item’s feature. Then, an encoder mentioned in the previous section

is used to reduce the dimension of features. In the ranking services,

items are ranked according to the features and parameters. More

specifically, users are divided randomly to different buckets which

correspond to different algorithms. According to the ids of buckets,

parameters restored in the online KV system are read and used

to compute the rank given features. The results are displayed in

a mobile application and users give their feedback by interaction.

The log center receives the raw logs and transfers them to samples

to train different bandit algorithms. Each algorithm only obtains

samples from its own bucket to update parameters.

Fig. 5 shows the trends of cumulative mean of CTRs in three days

with the increase of time. Since the number of samples is relatively

small in the first few hours, the performance of different algorithms

is unstable. Except the perturbation on the first two hours, our

algorithm constantly performs the best and the improvement is

stable. Notice that all the algorithms performs well before 6 a.m,

which is normal in our platform. The reason would be that active

users shift with time. More specifically, people who use our app

from 0 a.m to 6 a.m usually are keen to shop and thus more likely to

click recommended items. DCM-LinUCB and CM-LinUCB perform

similarly, possibly because a portion of users only click one item.

Since the portion is not fixed, their performances are fluctuated each

day. Fig. 6 summarizes the total CTRs in each day. Our algorithm

can improveCTRsum andCTRset steadily compared to benchmark

algorithms, although each algorithm’s CTRs change in different

dates. The result is reliable and meaningful considering the complex

online environment and the huge volume of the recommended items

(about 60 million). Since CTR is usually positively correlated with

the turnover and profit of an e-commerce platform, our algorithm

can improve the profit directly.

7 CONCLUSION
In this paper, we focus on addressing the position bias and pseudo-

exposure problem in a large-scale mobile e-commerce platform.

First, we model the online recommendation as a contextual combi-

natorial bandit problem. Second, to address the pseudo-exposure

problem, we utilize the UBM model to estimate probabilities that

users view items at different ranks and propose a novel method

UBM-LinUCB to take advantage of the estimated probabilities in

our linear reward model. Third, we prove a sublinear expected cu-

mulative regret bound Õ(d
√
TK) for our regret function. Finally, we

conduct experiments to evaluate our algorithm in two real-world

datasets by an unbiased estimator and an online scenario provided

by Taobao, one of the most popular e-commerce platforms in the

world. Results indicate that our algorithm improves CTRs under

two metrics in both offline and online experiments and outperforms

other algorithms.
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