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Abstract—One important approach of multiagent reinforce-
ment learning (MARL) is equilibrium-based MARL, which is
a combination of reinforcement learning and game theory. Most
existing algorithms involve computationally expensive calculation
of mixed strategy equilibria and require agents to replicate the
other agents’ value functions for equilibrium computing in each
state. This is unrealistic since agents may not be willing to share
such information due to privacy or safety concerns. This paper
aims to develop novel and efficient MARL algorithms without the
need for agents to share value functions. First, we adopt pure
strategy equilibrium solution concepts instead of mixed strategy
equilibria given that a mixed strategy equilibrium is often com-
putationally expensive. In this paper, three types of pure strategy
profiles are utilized as equilibrium solution concepts: pure strat-
egy Nash equilibrium, equilibrium-dominating strategy profile,
and nonstrict equilibrium-dominating strategy profile. The lat-
ter two solution concepts are strategy profiles from which agents
can gain higher payoffs than one or more pure strategy Nash
equilibria. Theoretical analysis shows that these strategy profiles
are symmetric meta equilibria. Second, we propose a multi-
step negotiation process for finding pure strategy equilibria since
value functions are not shared among agents. By putting these
together, we propose a novel MARL algorithm called negotiation-
based Q-learning (NegoQ). Experiments are first conducted in
grid-world games, which are widely used to evaluate MARL
algorithms. In these games, NegoQ learns equilibrium policies
and runs significantly faster than existing MARL algorithms
(correlated Q-learning and Nash Q-learning). Surprisingly, we
find that NegoQ also performs well in team Markov games
such as pursuit games, as compared with team-task-oriented
MARL algorithms (such as friend Q-learning and distributed
Q-learning).

Index Terms—Game theory, multiagent reinforcement learn-
ing, Nash equilibrium, negotiation.
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I. INTRODUCTION

A multiagent system (MAS) is defined as a group of
autonomous agents that sense and interact with an

environment and act for predefined goals. It brings a new
paradigm to design artificial intelligence applications such as
robotic teams [1], manufacturing control [2], networks [3]–[5],
and so on. Due to the dynamics and complexity of environ-
ments, some machine learning techniques have been developed
for MASs in order to improve the performance of each agent
and the whole system.

One common learning technique in a MAS is multiagent
reinforcement learning (MARL), which is an extension of rein-
forcement learning (RL) [6] in a multiagent domain. It has
been successfully applied in real practice, such as QoS routing
in ATM and broadband networks [7], [8]. A survey [9] claims
that MARL can be treated as a fusion of temporal-difference
RL, game theory, and direct policy search techniques. More
recently, some other MARL techniques have also been pro-
posed, including learning automata [10]–[12], and dynamic
programming on feasible-sets [13].

Equilibrium-based MARL is one of the most important
approaches in MARL. It adopts Markov games as the frame-
work and introduces various equilibrium solution concepts
in game theory to define optimal policies. Minimax-Q [14]
is widely considered as the first equilibrium-based MARL
algorithm, which uses a minimax rule to help agents select
actions. Although minimax-Q only solves two-agent zero-sum
Markov games, it presents a novel framework for MARL.
Hu and Wellman [15], [16] proposed Nash Q-learning (NashQ)
for general-sum Markov games based on the concept of Nash
equilibrium. The convergence condition of NashQ requires
each state’s one-shot game to have a global optimal equili-
brium point or a saddle point. Littman [17] proposes friend-
or-foe Q-learning (FFQ) for learning two special kinds of Nash
equilibria (adversarial equilibrium and coordination equili-
brium) and it has less strict convergence condition compared
with NashQ. Correlated Q-learning (CE-Q) [18] is proposed
based on the concept of correlated equilibrium. It generalizes
NashQ and allows for dependencies among agents’ actions.

Unfortunately, most existing equilibrium-based MARL
algorithms require agents to replicate the other agents’ value
functions [9] and adopt mixed strategy equilibria, which pre-
vents them from being widely applied. The reasons are as
follows. First, sharing value functions is unrealistic in domains
where agents are distributed or locally restricted (e.g., grid
computing [19], distributed sensor networks [20], distributed
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streaming processing systems [21]). Moreover, value function
is private information of an agent and the agent may not
be willing to share such sensitive information with others.
Second, mixed strategy equilibria are computationally expen-
sive. Motivated by this, the goal of this paper is to develop
novel and efficient MARL algorithms without sharing value
functions between agents.

The proposed MARL algorithm for addressing the above
two limitations is based on two key ideas. Firstly, instead of
mixed strategy profiles, three types of pure strategy profiles
are utilized as the equilibrium concepts in MARL: pure strat-
egy Nash equilibrium (PNE), equilibrium-dominating strategy
profile (EDSP), and nonstrict equilibrium-dominating strat-
egy profile (nonstrict EDSP). The latter two are strategy
profiles that lead to higher payoffs than one or more pure
strategy Nash equilibria and encourage cooperation between
agents. We prove that the three identified strategy profiles
are symmetric meta equilibria. Secondly, since agents cannot
replicate the other agents’ value functions, a multistep nego-
tiation process is proposed to find the three strategy profiles,
through which agents can exchange their action preferences.
By integrating the two ideas, a novel MARL algorithm called
negotiation-based Q-learning (NegoQ) is proposed.

Experiments are first conducted in grid-world games, in
which NegoQ exhibits empirical convergence and runs much
faster than the state-of-the-art algorithms. Surprisingly, we also
find that NegoQ can do well in team Markov games, though it
is not intentionally designed for such type of games. We show
that in a team Markov game called a pursuit game, NegoQ
achieves equivalent (and sometimes better) performance com-
pared with some team-task-oriented MARL algorithms (joint
action learner [JAL] [22], friend Q-learning [17], distributed
Q-learning [23]).

The rest of this paper is organized as follows. In the next
section, background information about MARL is introduced.
In Section III, three types of pure strategy profiles are defined
and corresponding theoretical analysis is provided. Section IV
introduces the multistep negotiation process for finding these
strategy profiles, after which the algorithm NegoQ is pro-
posed. Experimental results are shown in Sections V and VI.
Section VII discusses the related work. Finally, we draw some
conclusions in Section VIII. Appendix A briefly introduces
metagame theory and Appendix B shows the proofs of some
formal results.

II. MULTIAGENT REINFORCEMENT LEARNING

In multiagent settings, learning is complicated due to the
fact that multiple agents learn simultaneously. This can thus
make the environment nonstationary for a learner [24]. Game
theory provides us with a powerful tool for modeling mul-
tiagent interactions. In this section, we review some basic
concepts in MARL and game theory.

A. Preliminaries

Markov games are commonly adopted as the framework of
MARL [14], [15], [17], [18].

Definition 1 (Markov Game): An n-agent (n ≥ 2) Markov
game is a tuple 〈N, S, {Ai}ni=1, {Ri}ni=1, T〉, where N is the set
of agents; S stands for the state space of the environment; Ai is
the action space of agent i(i = 1, . . . , n). Let A = A1×···×An

be the joint action space of the agents. Ri : S× A→ � is the
reward function of agent i; T : S × A × S → [0, 1] is the
transition function of the environment.

In general, an agent i’s goal is to find a policy which maxi-
mizes its expected (discounted) sum of rewards for each state s
at each time step t

E
{ ∞∑

k=0

γ krt+k
i |st = s

}
(1)

where E stands for expectation, k is future time step, γ ∈ [0, 1)

is the discount rate, and rt+k
i is agent i’s immediate reward at

future time step (t+k). However, in MARL, one agent i cannot
maximize Vi(s) individually. The other agents’ policies should
be taken into consideration. A policy for agent i is a function
πi : S × Ai → [0, 1], which assigns each state a probability
distribution over the agent’s action set. Denote the joint policy
of all agents by π = (π1, . . . , πn). The state-value function
Vπ

i gives expected values for agent i under joint policy π at
every state s

Vπ
i (s) = Eπ

{ ∞∑
k=0

γ krt+k
i |st = s

}
. (2)

The action-value function Qπ
i gives expected values if we

start at state s performing a joint action
→
a and then follow the

joint policy π :

Qπ
i (s,

→
a ) = Eπ

{ ∞∑
k=0

γ krt+k
i |st = s,

→
at=→a

}
. (3)

RL can be viewed as a sampling method which estimates
the value functions Vπ

i or Qπ
i of the current policy π and

improves π by updating the value functions. Usually, we use Vi

and Qi to denote the value functions of agent i maintained by
an algorithm. A common way for learning in a Markov game
is to construct a normal-form game (a.k.a. one-shot game) in
each sampled state s, treat the state-action value Qi(s,

→
a ) as

each agent i’s payoff of each joint action
→
a in this game, com-

pute an equilibrium, and update the action-value function Qi

according to that equilibrium [14], [15], [17], [18].
Definition 2 (Normal-Form Game): An n-agent (n ≥ 2)

normal-form game � is a tuple 〈N, {Ai}ni=1, {Ui}ni=1〉, where N
is a finite set of agents and Ai is the finite action space of
agent i. Let A be the joint action space and Ui:A→ � be the
utility function of agent i. For agent i, a joint action

→
a∈ A

can be also denoted by (ai,
→

a−i), where ai represents the action
taken by agent i and

→
a−i∈ A−i is the joint action of all other

agents.
For a MARL algorithm, let Qi(s) = {Qi(s,

→
a )|∀ →a } be

the set of all state-action values of agent i in state s. The
tuple 〈N, {Ai}ni=1, {Qi(s)}ni=1〉 can be treated as the normal-
form game played in state s, where Qi(s) corresponds to agent
i’s utility function Ui in Definition 2.
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B. Equilibrium-Based MARL

In order to define the concept of optimal policy in a
MAS, some equilibrium solution concepts in game theory are
introduced into MARL.

1) Minimax-Q: Littman [14] proposed the first equilibrium-
based MARL algorithm called minimax-Q, which focuses
on two-agent zero-sum Markov games. The framework of
minimax-Q follows that of Q-learning [25]. The form of the
action-value function is Q(s, a, o), which takes the agent’s
action a and the opponent’s action o into consideration. The
value of any state s is defined as

V(s) = max
π

min
o

∑
a

Q(s, a, o)π(s, a) (4)

where π denotes any policy of the agent (i.e., π(s, a) is the
probability of taking action a in state s). The updating rule for
Q-value after an experience (s, a, o, r, s′) is

Q(s, a, o)← (1− α)Q(s, a, o)+ α[r + γ V(s′)] (5)

where α ∈ [0, 1] is the learning rate, r is the reward received
by the agent and s′ is the next state.

2) NashQ: Hu and Wellman [15], [16] proposed Nash
Q-learning (NashQ) algorithm for more general problems
based on the concept of Nash equilibrium.

Definition 3 (Nash Equilibrium, NE): In an n-agent (n≥ 2)

normal-form game �, a strategy profile p∗ = (p∗1, . . . , p∗n),
where p∗i :Ai → [0, 1] is a probability distribution over Ai, is
a Nash equilibrium if and only if for any i ∈ N, it holds that

Ui(p
∗) ≥ max

p′i∈�i

Ui(p
∗
1, . . . , p∗i−1, p′i, p∗i+1, . . . , p∗n) (6)

where �i is the strategy space of agent i. For any given strategy
profile p, Ui(p) = �→

a∈A
p(
→
a )Ui(

→
a ).

Like minimax-Q, NashQ still adopts the framework of
Q-learning, but it needs to maintain the action-value function
Qi(i = 1, . . . , n) for each agent. The rule of updating Qi is

Qi(s,
→
a )← (1− α)Qi(s,

→
a )+ α[ri + γ NashQi(s

′)] (7)

where
→
a represents a joint action taken by all agents, and

NashQi(s′) is the value of agent i in regard to the selected
Nash equilibrium in state s′.

3) FFQ: Littman [17] proposed FFQ for two special types
of Nash equilibria: adversarial equilibrium and coordination
equilibrium, which correspond to two opponent types “friend”
and “foe,” respectively. For simplicity, we introduce the two-
agent version of FFQ. From the perspective of agent 1, the
rule of updating value function is (7) with

NashQ1(s) = max
a1∈A1,a2∈A2

Q1(s, a1, a2) (8)

if agent 2 is considered a friend. If agent 2 is considered as a
foe, the rule is (7) with

NashQ1(s) = max
π1

min
a2∈A2

∑
a1∈A1

Q1(s, a1, a2)π1(s, a1). (9)

Algorithm 1: General Framework of Equilibrium-Based
MARL

Input: The agent set N, state space S, and joint action
space A of a Markov game, learning rate α,
discount rate γ , exploration factor ε

1 Initialization. ∀s ∈ S,∀i ∈ N,∀ →a∈ A, Qi(s,
→
a )← 0;

2 foreach episode do
3 Initialize state s;
4 repeat

5
→
a← �〈Q1(s), . . . , Qn(s)〉 with ε-greedy policy;
/* � is for computing an

equilibrium */

6 Receive the experience (s,
→
a , r, s′);

7 Qi(s,
→
a )← (1− α)Qi(s,

→
a )+ α(r + γ	i(s′));

/* 	i is the expected value of the
equilibrium in the game
occurring in state s′ for agent
i */

8 s← s′;
9 until s is a terminal state;

4) Correlated-Q: Greenwald and Hall [18] adopted
the concept of correlated equilibrium and presented the
correlated-Q learning (CE-Q) algorithm. Compared to a
Nash equilibrium, a correlated equilibrium [26] allows for
dependencies among agents’ actions. The updating rule of
Q-value is

Qi(s,
→
a )← (1− α)Qi(s,

→
a )+ α[ri + γ CEQi(s

′)] (10)

where CEQi(s′) is the value of agent i with respect to the
selected correlated equilibrium in state s′.

5) General Framework: In addition to the above
algorithms, there are also other equilibrium-based MARL
algorithms, such as asymmetric Q-learning [27], optimal
adaptive learning [28], etc. In general, equilibrium-based
MARL algorithms can be summarized into Algorithm 1. At
line 5, 〈Q1(s), . . . , Qn(s)〉 denotes the normal-form game
played in state s (the agent set and action space are omitted),
�〈Q1(s), . . . , Qn(s)〉 represents computing an equilibrium
of this normal-form game, and ε-greedy policy means that
agents choose a joint action according to the computed
equilibrium with probability (1 − ε) and choose a random
action with probability ε. At line 7, 	i(s′) is the expected
value of the equilibrium in state s′ for agent i.

As mentioned in Section I, in most existing algorithms,
mixed strategy equilibria are often adopted as the solution
concepts and agents need to replicate the other agents’ value
functions for equilibrium computing. This prevents them from
being used widely for two reasons. Firstly, agents may not
be willing to sharing value functions due to safety or privacy
concerns. Secondly, mixed strategy equilibria involve compu-
tationally expensive calculation. To address these problems,
in the next two sections, we define novel equilibrium solu-
tion concepts and propose algorithms for finding them without
disclosing agents’ value functions.
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Fig. 1. Two-agent prisoners’ dilemma. (a) Game matrix. (b) What agent A
observes. (c) What agent B observes.

III. EQUILIBRIUM SOLUTION CONCEPTS AND ANALYSIS

In this section, we introduce three kinds of pure strategy
profiles and adopt them as the equilibrium solution concepts
for the normal-form game played in each state of a Markov
game. The three strategy profiles are PNE, EDSP, and nonstrict
EDSP.1

A. Equilibrium Solution Concepts

Since we focus on pure strategy equilibria, one obvious
choice is PNE, in which each agent’s action is a best response
to the other agents’ joint action. However, there are two prob-
lems for a PNE. The first is that sometimes it may not exist
in a game. The second problem is that it may be Pareto domi-
nated by a strategy profile which is not a PNE. A well-known
example is the prisoners’ dilemma, which is shown in Fig. 1.
The unique PNE of this particular game is (Confess,Confess).
However, if the agents A and B choose Deny at the same time,
both of them can obtain a higher payoff. In fact, (Deny,Deny)
is Pareto optimal while the unique Nash equilibrium is not.
An NE is based on the assumption of full rationality, but it
may not be the best solution if actions are selected according
to other criteria (e.g., agents are bounded rational). If A and
B only know their own utilities, (Deny,Deny) must be more
attractive than (Confess,Confess) to both of them. We define
a strategy profile which Pareto dominates an NE as EDSP.

Definition 4 (Equilibrium-Dominating Strategy Profile,
EDSP): In an n-agent (n ≥ 2) normal-form game �, a joint
action

→
a∈ A is an EDSP if there exists a PNE

→
e ∈ A such that

Ui(
→
a ) ≥ Ui(

→
e ), i = 1, 2, . . . , n. (11)

The definition above indicates that each agent following an
EDSP can obtain a payoff no less than that of a PNE. In
addition to EDSP, we also observed another kind of inter-
esting strategy profiles, which can be found in Fig. 2. It is
easy to verify that (a1, b1) and (a2, b2) are two pure strat-
egy Nash equilibria. Now examine the two nonequilibrium
strategy profiles (a1, b3) and (a3, b3). Both of them provide
a higher payoff to agent A than (a1, b1) and a higher payoff
to agent B than (a2, b2). Again, if we look at this game from
each agent’s own perspective, it can be found that the priority
orders of (a1, b3) and (a3, b3) must be higher than (a1, b1)

for A and (a2, b2) for B. For each agent, these two nonequi-
librium strategy profiles partially Pareto dominate one certain
Nash equilibrium. We call each of them a nonstrict EDSP.

1We call the defined strategy profiles equilibrium solution concepts since
we have proven that they are symmetric meta equilibria.

Fig. 2. Normal-form game that shows an example of nonstrict EDSPs,
where (a1, b1) and (a2, b2) are pure strategy NE while (a1, b3) and (a3, b3)

are nonstrict EDSPs. (a) Game matrix. (b) What agent A observes. (c) What
agent B observes.

Definition 5 (Nonstrict Equilibrium-Dominating Strategy
Profile): In an n-agent (n ≥ 2) normal-form game �, a joint
action

→
a∈ A is a nonstrict EDSP if ∀i ∈ N, there exists a PNE→

ei∈ A such that
Ui(
→
a ) ≥ Ui(

→
ei ). (12)

The index i of
→
ei indicates this equilibrium is for agent i and

may be different from those of the other agents. Obviously,
an EDSP is a special case of nonstrict EDSP.

In this paper, we choose the three strategy profiles defined
above as the equilibrium solution concepts for learning in
a Markov game. Pure strategy Nash equilibria are chosen
since we focus on pure strategy equilibria. EDSP and nonstrict
EDSP are chosen since they provide higher payoffs than some
Nash equilibria to agents. Rather than requiring agents to be
infinite rational, the two strategy profiles allow for cooperation
between agents.

B. Theoretical Analysis

In this subsection, we show that the three types of strategy
profiles are symmetric meta equilibria [29]. In order to keep
contextual coherence, the introduction of metagame theory and
the proofs of our formal results are put in Appendix.

Theorem 1: Any PNE of a normal-form game is also a
symmetric meta equilibrium.

Theorem 2: Any nonstrict EDSP of a normal-form game is
a symmetric meta equilibrium.

Obviously, an EDSP is also a symmetric meta equilibrium
since it is a special case of nonstrict EDSP. In short, a
joint action

→
a of a normal-form game is a symmetric meta

equilibrium if for any agent i there holds

Ui(
→
a ) ≥ min→

a−i∈A−i

max
ai∈Ai

Ui(ai,
→

a−i) (13)

where Ui is the utility function of i. Symmetric meta equili-
brium is a special case of meta equilibrium and it can at
least satisfy each agent’s optimistic expectations (the minimum
value among the best response values to the other agents’s joint
actions). The relationship between all these equilibria can be
illustrated by Fig. 3.

However, since all the three defined strategy profiles are
related to PNE, one potential problem is that they may not
exist in a game. In this situation, an alternative solution is



HU et al..: MULTIAGENT REINFORCEMENT LEARNING WITH UNSHARED VALUE FUNCTIONS 651

Fig. 3. Relationship between meta equilibrium, symmetric meta equilibrium,
PNE, EDSP, and nonstrict EDSP. They are pure strategy equilibria.

Fig. 4. Example to illustrate negotiation. Agents A and B can exchange their
action preferences, after which a preference matrix can be obtained.

needed for replacing them. Fortunately, the following theorem
provides a possible solution.

Theorem 3: For any normal-form game defined in
Definition 2, it has at least one meta equilibrium.

Our idea is to choose a meta equilibrium when there is
no pure strategy Nash equilibria and nonstrict EDSPs in a
game (shown in Appendix). In the next section, we try to deal
with the problem of how to obtain these strategy profiles in a
distributed manner and then propose a novel MARL algorithm.

IV. NEGOTIATION-BASED Q-LEARNING

Since agents cannot replicate the other agents’ value func-
tions, it is impossible to compute an equilibrium according to
the game matrix of each state. An alternative way should be
found to obtain the strategy profiles identified in the last sec-
tion. In this section, we provide a multistep negotiation process
for finding the three strategy profiles without disclosing each
agent’s value function in MARL.

Our idea is that agents can exchange preferences of joint
actions. Each agent asks the other agents whether a joint action
is acceptable or not. At the same time, each agent answers
similar questions received from the other agents. This idea is
illustrated by Fig. 4, where a preference matrix can be obtained
through negotiation between the two agents A and B. In the
preference matrix, “Y” and “N” stand for an agent’s positive
and negative attitude to a joint action, respectively. A joint
action is acceptable only when both the agents would like to
choose it.

A. Negotiation Process

The negotiation process contains three steps: 1) negotia-
tion for finding the set of pure strategy NE; 2) negotiation

Algorithm 2: Negotiation for Pure Strategy NE Set

Input: A normal-form game 〈N, {Ai}ni=1, {Ui}ni=1〉
/* But agent i only knows N, {Ai}ni=1, and

Ui. */
1 The set of pure strategy Nash equilibria JNE ← ∅;
2 Compute the maximal utility set MaxSeti;

3 foreach
→

a−i∈ A−i do
4 ai ← arg maxa′i Ui(a′i,

→
a−i);

/* There may be more than one such
actions. */

5 JNE ← JNE ∪ {(ai,
→

a−i)};
/* QUESTIONING THREAD: */

6 foreach joint action
→
a∈ JNE do

7 Ask all the other agents whether
→
a is also in their

JNE sets;
8 if one of the answers are ‘no’ then

9 JNE ← JNE \ {→a };

10 Tell the other agents to remove
→
a from their JNE

sets;

/* ANSWERING THREAD: */

11 foreach joint action
→
a
′

received from the other agents do

12 if
→
a
′

is in MaxSeti then
13 Send answer ‘yes’ back to the agent;
14 else
15 Send answer ‘no’ back to the agent;

for finding the set of nonstrict EDSPs; and 3) negotiation for
choosing one equilibrium from the sets obtained in the first
two steps. Computing the set of EDSPs is not necessary since
an EDSP is a special case of nonstrict EDSP. As we have
mentioned before, if both the PNE and nonstrict EDSP sets
are empty, a set of meta equilibria will be found through nego-
tiation as the alternative solution, which is always nonempty.
The negotiation for meta equilibrium set will be shown in
Appendix.

1) Negotiation for the Set of Pure Strategy Nash Equilibria:
Negotiation process for finding the set of pure strategy Nash
equilibria is shown in Algorithm 2, which is described from
the viewpoint of agent i. The first step is to find the set of
strategy profiles that are potentially Nash equilibria according
to agent i’s own utilities. The second step is to filter out all
strategy profiles that are not Nash equilibria by asking other
agents whether the strategy profiles in the set JNE are also in
their JNE sets. At the same time, agent i also answers similar
questions received from the other agents.

2) Negotiation for the Set of NonStrict EDSP: Similar to
the first step, each agent can first compute potential non-
strict EDSPs according to its own utilities and then obtain
the intersection through negotiation. The algorithm is shown
in Algorithm 3.

3) Negotiation for Choosing One Equilibrium: Last step
is to choose one equilibrium from the obtained sets for the
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Algorithm 3: Negotiation for Nonstrict EDSPs Set

Input: A normal-form game 〈N, {Ai}ni=1, {Ui}ni=1〉, the set
of pure strategy Nash equilibria JNE

/* But agent i only knows N, {Ai}ni=1, and
Ui. */

1 The set of nonstrict EDSPs JNS ← ∅;
2 X← A \ JNE;
/* A is the joint action space */

3 foreach Nash equilibrium
→
e ∈ JNE do

4 foreach joint action
→
a∈ X do

5 if Ui(
→
a ) ≥ Ui(

→
e ) then

6 X← X \ {→a };
7 JNS ← JNS ∪ {→a };

/* QUESTIONING THREAD: */

8 foreach joint action
→
a∈ JNS do

9 Ask all the other agents whether
→
a is also in their

JNS sets;
10 if one of the answers is ‘no’ then

11 JNS ← JNS \ {→a };
/* ANSWERING THREAD: */

12 foreach joint action
→
a
′

received from the other agents do

13 if
→
a
′

is in JNS then
14 Send ‘yes’ back to the agent;
15 else
16 Send ‘no’ back to the agent;

agents. We use a simple rule here. That is, each agent first
sends its favorite equilibrium (i.e., the equilibrium with the
highest utility) to the other agents and then the earliest sent
equilibrium will be chosen. We assume that each agent sends
its request at different time, since in real practice, it is dif-
ficult for two agents to send their requests precisely at the
same time. However, if two or more agents do simultaneously
send their requests, there are other mechanisms which can
address this problem. For example, we can choose one agent
as the leader agent before learning and this agent can ran-
domly choose one strategy profile from the sets obtained in
the first two negotiation steps.

B. Complexity of Negotiation

For an n-agent normal-form game �, let |JNE| denote the
number of pure strategy Nash equilibria. In Algorithm 2, the
cost for each agent to compute its potential set of pure strat-
egy Nash equilibria set JNE is O(
n

i=1|Ai|) while the total
communication cost of all agents is O((n− 1)
n

i=1|Ai|) in the
worst case, where each joint action of the game is a PNE. In
Algorithm 3, the computational cost is O(|JNE| × (
n

i=1|Ai| −
|JNE|)) at most and the total communication cost for finding
the set of all nonstrict EDSPs is O((n− 1)(
n

i=1|Ai| − |JNE|))
in the worst case, where each nonequilibrium joint action is a
nonstrict EDSP.

Algorithm 4: Negotiation-Based Q-Learning Algorithm
Input: The agent set N, state space S, and joint action

space A of a Markov game, learning rate α,
discount rate γ , exploration factor ε

1 Initialization. ∀s ∈ S and ∀ →a∈ A, Qi(s,
→
a )← 0;

2 foreach episode do
3 Initialize state s;
4 Negotiate with the other agents according to Qi(s)

using Algorithms 2, 3;

5
→
a← the selected equilibrium (with ε-greedy);

6 repeat

7 Receive the experience (s,
→
a , ri, s′);

8 Negotiate with the other agents according to
Qi(s′) using Algorithms 2, 3;

9
→
a′← the selected equilibrium (with ε-greedy);

10 Qi(s,
→
a )← (1− α)Qi(s,

→
a )+ α(ri + γ Qi(s,

→
a′));

11 s← s′, →a←
→
a′ ;

12 until s is a terminal state;

While the complexity of these negotiation algorithms seems
high, the communication cost can be reduced in some simple
ways. For example, if agent i receives a joint action from
agent j and it is also in agent i’s JNE set, there is no need
for agent i to ask agent j the same question. Furthermore, an
agent can broadcast a message to the other agents after it finds
an NE or EDSP. In our experiments (shown in the next two
sections), it only takes a few microseconds (4–30 µs) for our
negotiation algorithms to find an equilibrium in two-agent 4×4
and three-agent 4× 4× 4 normal-form games, while for com-
puting a correlated equilibrium or a Nash equilibrium, it takes
the corresponding algorithms a few hundreds microseconds or
several milliseconds (129µs–15ms).

C. NegoQ

Based on the negotiation process above, we present a novel
MARL algorithm called the negotiation-based Q-learning
(NegoQ). As shown in Algorithm 4, NegoQ is described from
the viewpoint of agent i. Its main structure follows the frame-
work of equilibrium-based MARL in Algorithm 1. In each
state s, an equilibrium is obtained and agent i takes an action
according to this equilibrium with ε-greedy policy. After that,
the reward ri is received and the next state s′ is observed, fol-
lowed by the step of updating the Q-table Qi. Agent i follows
the same process iteratively until a terminal state is reached.

The major difference between NegoQ and previous algo-
rithms is that the solution concepts adopted in NegoQ are pure
strategy profiles and agents only need to keep their own value
functions. On one hand, a decentralized algorithm is neces-
sary since in some domains agents are distributed or locally
restricted, and not sharing agents’ value functions can reduce
the memory cost and guarantee safety/privacy. On the other
hand, the choice of pure strategy equilibrium solution concepts
makes it possible to quickly find them without disclosing their
payoffs.
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Fig. 5. Initial states and goals of agents in the four games. The arrow lines show a pure strategy equilibrium policy in each grid world. The dashed arrows
in GW2 represents that if agent B is obstructed by a barrier in the first step, it will choose to move left in its second step. (a) GW1. (b) GW2. (c) GW3.
(d) GW4.

Fig. 6. Online learning performance of each algorithm in GW1. The learning rate α for NegoQ is 0.1 and 1/n(s,
→
a ) for NashQ and CE-Q, γ = 0.9, ε = 0.01.

(a) NegoQ. (b) NashQ. (c) uCE-Q and eCE-Q. (d) pCE-Q and dCE-Q.

V. EXPERIMENTS ON GRID-WORLD GAMES

In this section, we compare NegoQ with the state-of-the-
art equilibrium-based MARL algorithms on grid-world games,
which is a commonly used test bed in MARL domain [16],
[18], [27], [30]. Two equilibrium-based MARL algorithms
Nash Q-learning (NashQ) [16] and correlated Q-learning
(CE-Q) [18] are chosen for comparison.

We implement four versions of CE-Q according to the
objective functions presented by Greenwald and Hall [18]: util-
itarian CE-Q (uCE-Q), egalitarian CE-Q (eCE-Q), plutocratic
CE-Q (pCE-Q), and dictatorial CE-Q (dCE-Q). The former
three versions are centralized while dCE-Q is decentralized.
For NashQ, we use the state-of-the-art PNS algorithm [31] for
computing a Nash equilibrium in each state.

A. Experiment Settings

First, two 2-agent grid-world games are adopted to evaluate
our algorithm, which are also used for experiments in related
work [16], [18], [30]. Since our algorithm can be used for
general n-agent (n ≥ 2) games, we also design two 3-agent
grid-world games. All of these games (GW1, GW2, GW3,
and GW4) are shown in Fig. 5. In these games, agents should
learn to reach their goals (possibly overlapping) within a few
steps. States can be distinguished by agents’ joint locations.
The action set for each agent in each state is {up, down, left,
right}. However, if the agents move out of the border or a
collision happens, they will be placed back to their previous
positions. One episode of the game is over when all agents
reach their goals.

As shown in Fig. 5, the agents are denoted by A, B, and C
and their goals are denoted by GA, GB, and GC or an over-
lapping goal G. The black dashed lines in GW2 and GW4
are barriers for achieving stochastic transitions: if an agent

attempts to move through one of the barriers, then with prob-
ability 0.5 this move will fail. The reward function is set as
follows. Whenever an agent reaches its goal, it receives a pos-
itive reward of 100. A negative reward of −10 is received
when an agent steps out of the border or a collision happens.
In other cases, the reward is set to −1 in order to encourage
fewer steps.

Learning algorithms are expected to acquire a winning strat-
egy with a few steps and no collisions. In GW1, there are
several pairs of pure strategy equilibrium policies, while there
are exactly two in GW2 [18]. The arrow lines in Fig. 5 show
one pure strategy equilibrium policy for each of the four
games. We study the online learning performance of each algo-
rithm in these four grid world games, respectively. For each
algorithm, 50 experiments are repeated and each experiment is
composed of 50 000 episodes. We record the average reward
obtained by each algorithm in each episode. The parameters
of the algorithms are set as follows.

1) Our implementation of each algorithm is on-policy and
ε-greedy, with ε = 0.01 and discount rate γ = 0.9.

2) The learning rate α is set to 0.1 for NegoQ.
3) In the 2-agent games, α is set to 1/n(s,

→
a ) for NashQ

and each version of CE-Q as do in [16] and [18], where
n(s,

→
a ) is the number of visits to state-action pair (s,

→
a ).

4) In the 3-agent games, α of NashQ and CE-Q is set to
0.1 (their performance with a variable learning rate is
not satisfactory).

B. Average Rewards

Results of the four games are shown in Figs. 6–9, respec-
tively. In these figures, the vertical axis stands for an algo-
rithm’s average reward and the horizontal axis stands for the
number of episodes. Each data point of a curve is computed
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Fig. 7. Online learning performance of each algorithm in GW2. The learning rate α for NegoQ is 0.1 and 1/n(s,
→
a ) for NashQ and CE-Q, γ = 0.9, ε = 0.01.

(a) NegoQ. (b) NashQ. (c) uCE-Q and eCE-Q. (d) pCE-Q and dCE-Q.

Fig. 8. Online learning performance of each algorithm in GW3. For all algorithms, α = 0.1, γ = 0.9, ε = 0.01. (a) NegoQ. (b) NashQ. (c) uCE-Q and
eCE-Q. (d) pCE-Q and dCE-Q.

Fig. 9. Online learning performance of each algorithm in GW4. For all algorithms, α = 0.1, γ = 0.9, ε = 0.01. (a) NegoQ. (b) NashQ. (c) uCE-Q and
eCE-Q. (d) pCE-Q and dCE-Q.

by averaging the values recorded in the corresponding episode
of these 50 experiments. The curves of some different algo-
rithms are plotted in the same coordinate system for saving
space.

Examining Fig. 6 first, it can be found that in GW1,
almost all of these algorithms finally reach a value around 24.
However, eCE-Q converges to a lower value 22 for both the
agents. For dCE-Q, its two curves even decrease after 45 000
episodes. In GW2, NegoQ, NashQ, and pCE-Q perform simi-
larly, with one agent converging to 32 and the other converging
to 28. Moreover, they perform more stably than the other algo-
rithms. By carefully comparing their curves, it can be found
that NashQ is less stable before converging, since a great
volatility appears on agent A’s learning curve in Fig. 7(b).
For the other three algorithms (uCE-Q, eCE-Q, and dCE-Q),
most of their curves reach relatively lower values. For exam-
ple, the solid curve of eCE-Q stays below 26 almost all along
the 50 000 episodes.

The advantage of NegoQ seems vague in the 2-agent
games. In the 3-agent grid world games, we can find that
NegoQ performs significantly better than the other algorithms.

Figs. 8 and 9 show that only NegoQ plays stably in GW3 and
GW4, since its learning curves are much smoother than those
of the other algorithms. Furthermore, the NegoQ agents finally
achieve higher values than the others. To our surprise, the per-
formance of NashQ is not so satisfactory, with no indication
of convergence observed during the 50 000 episodes.

C. Learned Policies

Above results only show the rewards obtained by each algo-
rithm. In Markov games, it is also necessary to evaluate the
policies learned by the algorithms. Thus, we record the steps
taken for each agent to reach its goal in each episode. Note
that for agents A and B, one pure strategy equilibrium policy
will take them 4 steps in GW1, while for agents A, B, and C in
the 3-agent games, one equilibrium policy will, respectively,
take them 5, 4, and 6 steps in GW3 and 4, 4, and 5 steps
in GW4. In GW2, an equilibrium policy will take 3 steps for
one agent and 3.5 steps for the other. The equilibrium policy
shown in Fig. 5(b) lets agent A go through the central grids
and forces agent B to go through the barrier in the first step. If
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Fig. 10. Step curves of each algorithm in GW1. The learning rate α for NegoQ is 0.1 and 1/n(s,
→
a ) for NashQ and CE-Q, γ = 0.9, ε = 0.01. (a) NegoQ.

(b) NashQ. (c) uCE-Q and eCE-Q. (d) pCE-Q and dCE-Q.

Fig. 11. Step curves of each algorithm in GW2. The learning rate α for NegoQ is 0.1 and 1/n(s,
→
a ) for NashQ and CE-Q, γ = 0.9, ε = 0.01. (a) NegoQ.

(b) NashQ. (c) uCE-Q and eCE-Q. (d) pCE-Q and dCE-Q.

Fig. 12. Step curves of each algorithm in GW3. For all algorithms, α = 0.1, γ = 0.9, ε = 0.01. (a) NegoQ. (b) NashQ. (c) uCE-Q and eCE-Q. (d) pCE-Q
and dCE-Q.

Fig. 13. Step curves of each algorithm in GW4. For all algorithms, α = 0.1, γ = 0.9, ε = 0.01. (a) NegoQ. (b) NashQ. (c) uCE-Q and eCE-Q. (d) pCE-Q
and dCE-Q.

agent B is stopped by the barrier, the equilibrium policy forces
it to move left in the second step. Thus, this equilibrium pol-
icy takes 3 steps for agent A and 3.5 steps (in expectation) for
agent B.

Corresponding results are shown in Figs. 10–13. In Fig. 10,
both the curves of NegoQ converge to a value of 4, indicating
that an equilibrium policy is learned by the two NegoQ agents.
NashQ, uCE-Q, and pCE-Q also converge to the optima.
However, several peaks appear on the curves of NashQ and the

dashed curve of uCE-Q stays above the optimal value during a
long period. It seems that the other two CE-Qs fail to learn an
equilibrium policy: 1) eCE-Q converges to local optimal val-
ues (about 4.5) and 2) the curves of dCE-Q rise right before
the game is over (that is why its average rewards decrease
at that time). In GW2, the results are similar. While NegoQ,
NashQ, and pCE-Q converge close to the optimal values (3
and 3.5), the curves of the other three algorithms all reach
values around 3.5.
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TABLE I
TOTAL RUNTIME OF EACH ALGORITHM TO FINISH THE 50 GROUPS OF

EXPERIMENTS IN GW1, GW2, GW3, AND GW4

As shown in Figs. 12 and 13, in the two 3-agent games,
NegoQ performs much better than the other algorithms, with
pure strategy equilibrium policies learnt in both GW3 and
GW4. In GW4, it takes more episodes for NegoQ to con-
verge because stochastic transitions are added. The curves of
the CE-Q algorithms are not so even and most of them do not
converge to the optimal values. With NashQ algorithm, tens of
steps are needed for the three agents to finish an episode dur-
ing the whole process. As a consequence, the average rewards
achieved by NashQ are much lower, which is shown in the
Figs. 8 and 9.

D. Runtime Performance

We also record the total runtime of each algorithm for finish-
ing the 50 groups of experiments in each grid world, which
is shown in Table I. NegoQ runs the fastest and can com-
plete training within 100 s in 2-agent cases and within 1000
seconds in 3-agent cases. Although the four CE-Q algorithms
can complete training in one hour in GW1 and GW2, multiple
hours are spent for them to finish the 3-agent games. NashQ
is the most time-consuming algorithm. In GW3 and GW4, the
learning process even lasts for more than one week.

The runtime of each learning algorithm is mainly deter-
mined by the corresponding equilibrium computing algorithm.
In GW1 and GW2, the average time taken for the multi-
step negotiation process to find an equilibrium in each state
is around 4µs, while in GW3 and GW4, it is around 30µs.
For computing a correlated equilibrium, CE-Q has to solve
one or more linear program in each state. The average time
for computing a correlated equilibrium is around 120µs in
GW1 and GW2, and 2 ms in GW3 and GW4. To find a Nash
equilibrium, PNS algorithm [31] needs to solve a feasibility
program iteratively until a Nash equilibrium is found. This
feasibility program is linear in 2-agent cases and quadratic in
3-agent cases. The average time used for PNS to find a Nash
equilibrium is 1ms in GW1 and GW2, and 15ms in GW3 and
GW4. Therefore, a large amount of time is needed for NashQ
to finish training.

E. Discussions

The above experiments show empirical convergence of
NegoQ, either in environments with stochastic transitions or
without. In each state, NegoQ agents may choose a PNE, an
EDSP, a nonstrict EDSP, or a meta equilibrium. As a con-
sequence, this makes the theoretical convergence proof of

Fig. 14. Initial states of the pursuit game. Each black solid circle represents
a hunter and the triangle in the central grid is the prey.

NegoQ difficult. However, we have proven that the former
three strategy profiles all belong to the set of symmetric meta
equilibria, showing the power of NegoQ from another perspec-
tive. Importantly, NegoQ provides us with a simpler and faster
way to learn equilibrium policies.

The most important advantage of NegoQ is that it does not
require agents to have knowledge of the others’ value func-
tions. In a general-sum Markov game, the relationship between
agents is vague and thus it is better to keep them in privacy. In
the real world, an agent usually is unable to observe the other
agents’ internal information. Another significant advantage of
our algorithm is its low computational cost. Although CE-Q
and NashQ have been successfully applied to 2-agent Markov
games, it seems difficult for them to be applied to multiagent
tasks with more than two agents due to their high compu-
tational cost. Furthermore, the average rewards achieved by
CE-Q and NashQ sometimes are below the optimal values.
Two reasons can cause such deviation. Firstly, the policies
learnt by CE-Q and NashQ algorithms are stochastic so that
it is possible that agents choose conflicting actions. Secondly,
there are often multiple equilibria in a game. The existence of
multiple equilibria can make it difficult for these algorithms
converge to the same equilibrium policy and result in unstable
learning process. In contrast, NegoQ can force all agents to
choose the same strategy profile in each state.

VI. EXPERIMENTS ON PURSUIT GAMES

Since the two identified strategy profiles, EDSP and non-
strict EDSP, allow for cooperation between agents (i.e.,
choosing strategy profiles that have higher payoffs than Nash
equilibria), the second experiment is designed to investi-
gate whether NegoQ can achieve cooperation between agents.
Specifically, a widely used benchmark called pursuit game is
adopted. It is a team Markov game in which there are one or
more hunters and a prey. The goal of the hunters is to hunt
for the prey and the goal of the prey is to escape from the
hunters. If there are more than one hunter in the game, it is
better for them to work cooperatively. We use the following
variant of pursuit game in our experiments.

1) A prey and two hunters are placed in a 5×5 grid world.
2) The two hunters are located in the left-top and right-

bottom, respectively. The prey is located in the center
of the world. Fig. 14 shows their initial locations.

3) The action set of all agents in each state is {up, down,
left, right, stand}. However, the prey has a 0.5 probability
of failing if it moves, when it will be forced to stay in
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TABLE II
AVERAGE STEPS USED FOR EACH ALGORITHM TO CATCH THE PREY IN 10 000 TESTING EPISODES OF

THE PURSUIT GAME. THE FIRST LINE SHOWS SEVERAL GROUPS OF

PARAMETERS IN TRAINING

its current location. This models the situation that the
hunters are faster than the prey.

4) The game is finished when any hunter catches the prey.
At that time, each of the hunters will get a reward of
200.

A. Experiments and Results

Since we only care about the cooperation of the hunters,
a random agent is chosen to control the behaviors of
the prey. The hunters are equipped with learning algo-
rithms. To compare with NegoQ, several MARL algorithms
designed for team tasks are also tested, including JAL [22],
friend Q-learning (friend-Q) [17], and distributed Q-learning
(distributed-Q) [23]. All of the three algorithms are decentral-
ized: JAL learns the Q-values of joint actions and maintains
an opponent model for each of the other agents to help with
selecting actions; friend-Q also learns the values of joint
actions and updates Q-values based on coordination Nash
equilibria; distributed-Q solves team tasks without assuming
coordination and with limited computation, in which each
agent only maintains the Q-value of its own actions.

Each algorithm is trained for 10 000 episodes and then
tested in another 10 000 episodes. In each test episode, agents
take actions according to the policy learnt during the training
process with exploration factor ε = 0. We record the steps
taken for the hunters to catch the prey in each test episode
and compute the average value. Several groups of parame-
ters are chosen for each algorithm in the training process. A
decreasing learning rate is needed for JAL to satisfy its conver-
gence condition. In our implementation of JAL, the learning
rate α = 1/n(s,

→
a ), where n(s,

→
a ) is the number of visits to

the state-action pair (s,
→
a ). The parameters of distributed-Q

only include the discount rate γ and the exploration factor ε.
The results are listed in Table II.

In general, all algorithms can capture the prey within a few
steps. However, JAL spends more than 70 steps when the dis-
count rate γ is set to 0.9. In a further study, the performance
of JAL decreases as γ increases, indicating that the value of γ

has a big impact on the performance of JAL. It is difficult to
tell which of the algorithms is the best because the parameters
chosen have more or less impact on the results. But surpris-
ingly, NegoQ shows its ability in team Markov games and can
perform as well as these team-task-oriented algorithms.

VII. RELATED WORK

MARL has gained much attention over the last years. The
wide variety of approaches proposed in MARL community

integrate developments in the areas of RL, game theory, and
more general direct policy search techniques [9].

In MARL, it is often difficult to maximize all agents’ long-
time returns at the same time. To specify a better learning goal
and evaluate learning algorithms, some criteria were defined.
To the best of our knowledge in the AI community, Bowling,
and Veloso [30] were the first to put forth such a set of criteria
(i.e., rationality and convergence). Their algorithm WoLF-IGA
satisfies these criteria, but only in repeated games with two
agents and two actions per agent. Subsequently, two algorithms,
ReDVaLeR [32] and AWESOME [33], extended rationality and
convergence to more general repeated games. The main dif-
ference between the two algorithms is that in AWESOME there
is no need for agents to observe the others’ mixed strategies
while in ReDVaLeR such observation is required.

Later, another set of criteria called guarded optimal-
ity was proposed by Powers et al. [34] with the hope
that algorithms would generalize well to bigger games and
against more sophisticated opponents. Guarded optimality
requires an learning algorithm to maximize social welfare
by exploiting the agents from the target set and individu-
ally always achieve a return higher than the security value.
Also, Powers et al. [34] proposed two algorithms, PCM(S)
and PCM(A), to achieve guarded optimality. More recently,
Chakraborty and Stone [35] proposed a newer set of criteria
for evaluating multiagent learning algorithms in the presence
of memory-bounded agents, which included convergence, tar-
geted optimality against memory-bounded agents, and safety.
Their corresponding algorithm CMLES successfully achieved
the three criteria and improved previous algorithms in many
aspects. For example, PCM(A) only guarantees optimality
against memory-bounded agents drawn from a target set while
CMLES can model any memory-bounded agent.

However, all above cited algorithms are designed for
repeated games and it is difficult to use their evaluation criteria
to evaluate MARL algorithms for more complicated games,
such as Markov games (a.k.a. stochastic games). Currently,
one of the most important approaches for learning in Markov
games is equilibrium-based MARL. Littman [14] was the
first to introduce Markov games into MARL and proposed
the first equilibrium-based MARL algorithm minimax-Q. In
minimax-Q, the state-value function is defined as the maximal
joint-action-value over the values minimized by the oppo-
nent. However, it only solves two-agent zero-sum Markov
games. Comparing with minimax-Q, FFQ [17] has no limit
in the number of agents, in which an agents friends are
assumed to work together to maximize its value, while its foes
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work together to minimize its value. Based on the concept of
Nash equilibrium, Hu and Wellman [15], [16] proposed Nash
Q-learning (NashQ)for general-sum Markov games. The major
problem of NashQ is that it has a very strict convergence con-
dition and equilibrium calculation is computationally expen-
sive. Since correlated equilibria are much easier to compute
and allow a richer set of solutions, Greenwald and Hall [18]
proposed CE-Q based on the concept of correlated equilibrium.
There are also some other important algorithms for Markov
games, such as optimal adaptive learning [28] and asymmetric
Q-learning [27].

Rather than requiring agents to be infinitely rational, the two
strategy profiles identified in this paper, EDSP and nonstrict
EDSP, encourage the cooperation between agents even through
they may have conflicting interest. Such cooperation has been
studied well in game theory recently, such as the evolution of
cooperation behaviors in networks [36], [37] and the prisoners’
dilemma game [38].

VIII. CONCLUSION

This paper focuses on equilibrium-based MARL and its key
contributions are listed as follows.

1) Three pure strategy profiles instead of mixed strategy
ones have been defined as the solution concepts in
equilibrium-based MARL, which are PNE, EDSP, and
nonstrict EDSP. The latter two are strategy profiles from
which agents can obtain higher payoffs than some pure
strategy Nash equilibria. All these three identified strat-
egy profiles haven been proven to be symmetric meta
equilibria by metagame theory.

2) A multistep negotiation process has been proposed to
obtain the three defined strategy profiles without shar-
ing value functions between agents, since sharing such
information is unrealistic in some domains and may raise
privacy and safety issues. The key idea of this negotia-
tion process is to allow agents to exchange their action
preferences.

3) A novel MARL algorithm called NegoQ has been pro-
posed by introducing the three identified strategy profiles
and the negotiation process into MARL.

4) Through experiments, NegoQ has shown: a) empirical
convergence to equilibrium policies and much higher
speed than all the other algorithms (NashQ and four
versions of CE-Q) in grid-world games and b) equiva-
lent performance to team-task-oriented algorithms (JAL,
friend-Q, and distributed-Q) in a team Markov game
called a pursuit game, though NegoQ is not directly
designed for such a specialized game.

The positive results in experiments indicate that it is possi-
ble for NegoQ to be applied in some real-world application,
such as multirobot navigation and multirobot hunting. Since
the joint-action space increases exponentially with the number
of agents, one future direction is to address the curse of dimen-
sionality of equilibrium-based MARL. Methods for solving
large state space problems [39] may provide helpful insight.
Another direction is to guarantee safety through negotiation,
because some malicious opponents may intentionally not act

Fig. 15. Prisoners’ dilemma and one of its metagame. The indices of agents
A and B are 1 and 2, respectively. (a) Original prisoners’ dilemma. (b) 1� of
prisoners’ dilemma.

according to the solutions established. Future work will con-
sider identifying such opponents and establishing more robust
negotiation process.

APPENDIX A
METAGAME THEORY

Metagame [29] is a hypothetical game derived from the
original game by assuming that one agent can know other
agents’ actions first and its actions are reaction functions of
other agents’ joint actions.

Definition A.1 (Metagame): For an n-agent (n ≥ 2)
normal-form game � = 〈N, A1, . . . , An, U1, . . . , Un〉
and any i ∈ N, metagame i� is a tuple
〈N, A1, . . . , Ai−1, Fi, Ai+1, . . . , An, Ui�

1 , . . . , Ui�
n 〉, where

Fi is the space of agent i’s reaction functions. Any function
in the form of f : A−i → Ai is a reaction function of agent i.
For any reaction function f ∈ Fi and any of the other agents’
joint action

→
a−i∈ A−i, Ui�

k (f ,
→

a−i) = Uk(f (
→

a−i),
→

a−i) for any
k ∈ N.

We can see that metagame i� is constructed when agent i
extends its actions to reaction functions. We call � the basic
game of i�. We can extend the prisoners’ dilemma to its 1�

form, which is shown in Fig. 15. In 1�, B keeps its action
space as in the original game. For A, there are four reactive
strategies for the action taken by B.

f1: Always confess no matter which action B takes.
f2: Always deny no matter which action B takes.
f3: Confess when B confesses and deny when it denies.
f4: Deny when B confesses and confess when it denies.

Recursively, by treating i� as the basic game, we can con-
struct metagames with higher orders. For example, 21� can be
constructed from 1� and 321� can be constructed from 21�.
For each metagame, the string before � is called the prefix.
A special type of metagame is complete game.

Definition A.2 (Complete Game): For an n-agent normal-
form game �, a metagame η� is a complete game if the prefix
η is a permutation of 1, . . . , n.

Definition A.3 (Meta Equilibrium): For a normal-form
game � and one of the agents’ joint actions

→
a , if there exists

a metagame η� and a PNE
→
x of η� that satisfies φ(

→
x ) = →a ,→

a is a meta equilibrium of �. φ is the operator which maps
a joint action in a metagame to its original action in the basic
game.

In short, a PNE of a metagame corresponds to a
meta equilibrium of the basic game. For example, in
Fig. 15(b), (f1, Confess) is a pure strategy equilibrium of
the metagame 1�. Therefore, the corresponding joint action
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in the basic game �, namely (f1(Confess), Confess) =
(Confess, Confess), is a meta equilibrium of �.

Definition A.4 (Symmetric Meta Equilibrium): A meta
equilibrium

→
a of a normal-form game � is a symmetric meta

equilibrium if and only if
→
a∈⋂

∀τ� Ê(τ�), where τ� denotes
a complete game of �.

We denote the set of meta equilibria of � by Ê(�). In par-
ticular, the set of meta equilibria deduced from η� is denoted
by Ê(η�). The set of symmetric meta equilibria is denoted by
Sym(�). Here, we give a sufficient and necessary condition
of meta equilibrium [40], which provides us with an effective
way to compute meta equilibria.

Definition A.5 (A Sufficient and Necessary Condition of
Meta Equilibrium): For an n-agent normal-form game �, a
joint action

→
a is called a meta equilibrium from a metagame

k1k2 · · · kr� if and only if for any i there holds

Ui(
→
a ) ≥ min→

aPi

max
ai

min→
aSi

Ui(
→
aPi , ai,

→
aSi ,

→
aNi) (14)

where Pi is the set of agents listed before sign i in the prefix
k1k2 · · · kr, Si is the set of agents listed after sign i and Ni is
the set of agents which do not appear in the prefix. If i is not
listed in the prefix, let Pi be ∅ and Si be the set of all agents
listed in the prefix. Therefore,

→
aPi ,

→
aSi ,

→
aNi represent the joint

actions of agents in set Pi, Si and Ni, respectively.
Thus, to compute a meta equilibrium, there is no need to

extend a normal-form game to its meta game and find the
corresponding Nash equilibria of that meta game. For example,
if � is a 3-agent normal-form game, for computing the set
Ê(321�), we need to find the joint action

→
a= (a1, a2, a3)

which satisfies⎧⎪⎨
⎪⎩

U1(a1, a2, a3) ≥ mina′3 mina′2 maxa′1 U1(a′1, a′2, a′3),
U2(a1, a2, a3) ≥ mina′3 maxa′2 mina′1 U2(a′1, a′2, a′3),
U3(a1, a2, a3) ≥ maxa′3 mina′2 mina′1 U3(a′1, a′2, a′3).

Recall that one issue of the three strategy profiles defined in
this paper is that they may not exist in a game. We choose a
meta equilibrium as an alternative solution concept in such sit-
uation. The reasons are as follows. Firstly, a meta equilibrium
is a pure strategy equilibrium and always exists. Secondly,
as shown in (14), the utility of a meta equilibrium for each
agent is always higher than a threshold value. Lastly, a meta
equilibrium is consistent with the three identified strategy pro-
files since they also belong to the category of meta equilibria.
Appendix B shows that meta equilibria deduced from com-
plete games always exist. Therefore, we can first choose a
complete game and then find a meta equilibrium through nego-
tiation according to (14). Corresponding algorithm is given in
Algorithm 5.

APPENDIX B
MATHEMATICAL PROOFS

In this section, we prove the theorems given in this paper.
We first give three lemmas to show the formal relationship
between a basic game and its metagames. They are also used
for proving the theorems in our paper. Denote an element of a

normal-form game � by
→
g→

a
= (U1(

→
a ), U2(

→
a ), . . . , Un(

→
a

Algorithm 5: Negotiation for a Meta Equilibrium Set

Input: A normal-form game 〈N, {Ai}ni=1, {Ui}ni=1〉
/* But agent i only knows N, {Ai}ni=1, and

Ui. */
1 The set of meta equilibria Jmeta = ∅;
2 Determine a complete game randomly or by any other

possible mechanism;
3 η← the prefix of the complete game chosen;
4 Pi ← the set of indices listed before ‘i’ in η;
5 Si ← the set of indices listed after ‘i’ in η;

6 threValue← min→
aPi

maxai min→
aSi

Ui(
→
aPi , ai,

→
aSi);

7 foreach joint action
→
a∈ A do

8 if Ui(
→
a ) ≥ threValue then

9 Jmeta ← Jmeta ∪ {→a };
/* QUESTIONING THREAD: */

10 foreach joint action
→
a∈ Jmeta do

11 Ask all the other agents whether
→
a is also in their

Jmeta sets;
12 if one of the answers is ‘no’ then

13 Jmeta ← Jmeta \ {→a };
/* ANSWERING THREAD: */

14 foreach joint action
→
a
′

received from the other agents do

15 if
→
a
′

is in Jmeta then
16 Send ‘yes’ back to the agent;
17 else
18 Send ‘no’ back to the agent;

)), where
→
a is the joint action corresponds to this element.

For any agent i ∈ N and any action ai ∈ Ai, define a set

Gi
�(ai) = {

→
g

(ai,

→
aj
−i)

|
→

a j
−i∈ A−i, j = 1, 2, . . . , |A−i|}. It can be

found that Gi
�(ai) contains all game elements in the (n− 1)-

dimensional matrix corresponding to the action ai of agent
i. We call this (n − 1)-dimensional matrix a “row” of agent
i. From the viewpoint of agent i, � = ⋃

a∈Ai
Gi

�(a). For a

joint action
→
a∈ A, denote agent i’s action in

→
a by

→
a (i).

The following lemma indicates that any reaction function f ∈
Fi of agent i corresponds to one of its rows in i� and vice
versa.

Lemma B.1: Let � be an n-agent normal-form game, for
any agent i ∈ N, metagame i� can be represented by a |A1|×
· · ·×|Ai−1|×|Ai||A−i| ×|Ai+1|×· · ·×|An| game matrix, where

each row for agent i is in the form of (
→
g

(a1
i ,
→

a1−i)
,
→
g

(a2
i ,
→

a2−i)
,

. . . ,
→
g

(am
i ,
→

am−i)
), where aj

i ∈ Ai,
→

aj
−i∈ A−i for all j = 1, . . . , m

and m = |A−i|.
Proof: Let F = {f |f : A−i → Ai} and R = {(→g

(a1
i ,
→

a1−i)
,

→
g

(a2
i ,
→

a2−i)
, . . . ,

→
g

(am
i ,
→

am−i)
)|(a1, . . . , am) ∈ Ai × · · · × Ai︸ ︷︷ ︸

m

}. Thus,
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F is the set of all reaction functions of agent i and we want
to show that R is the set of all rows in metagame i�.

Let ϕ : F → R, f �→ (
→
g

(a1
i ,
→

a1−i)
,
→
g

(a2
i ,
→

a2−i)
, . . . ,

→
g

(am
i ,
→

am−i)
).

On one hand, for any (
→
g

(a1
i ,
→

a1−i)
,
→
g

(a2
i ,
→

a2−i)
, . . . ,

→
g

(am
i ,
→

am−i)
) ∈ R,

we can construct a function f :A−i → Ai, aj
i �→

→
aj
−i. Obviously,

this is a reaction function, namely f ∈ F . Therefore, ϕ is a
surjection.

On the other hand, ϕ(f ) and ϕ(h) must be distinct if f , h ∈ F
are distinct. Otherwise, assume that f �= h and ϕ(f ) = ϕ(h), we

will conclude (
→
g

(f (
→

a1−i),
→

a1−i)
,
→
g

(f (
→

a2−i),
→

a2−i)
, . . . ,

→
g

(f (
→

am−i),
→

am−i)
) =

(
→
g

(h(
→

a1−i),
→

a1−i)
,
→
g

(h(
→

a2−i),
→

a2−i)
, . . . ,

→
g

(h(
→

am−i),
→

am−i)
). Therefore,

f (
→

a−i) = h(
→

a−i) for any joint action
→

a−i∈ A−i. This is a con-
tradiction with the assumption that f �= h. Thus, ϕ is also an
injection.

Therefore, ϕ is a bijection between F and R. The total
number of distinct reaction functions is |Ai||A−i|. Thus, the
number of agent i’s rows in i� is |Ai||A−i|, and R is the set of
all rows of agent i in i�.

Lemma B.2: Let � be an n-agent (n ≥ 2) normal-form
game, for an agent i ∈ N, Gj

i�(aj) = Gj
�(aj) holds for any

agent j �= i and for any action aj ∈ Aj.
This lemma is a direct corollary of Lemma B.1 and shows

that when constructing metagame i� from �, each of the other
agents’ action space remains unchanged.

Lemma B.3: For an n-agent (n ≥ 2) normal-form game �,
denote the set of pure strategy Nash equilibria by E(�), then
E(�) ⊆ Ê(i�) for any i ∈ N.

Proof: The idea of proving this lemma is to map a PNE to
a meta equilibrium derived from i�. Suppose

→
e ∈ E(�) is a

PNE of �. For any i ∈ N, we can construct a reaction function
fi:A−i → Ai which satisfies fi(

→
a−i) =→e (i) for any

→
a−i∈ A−i.

By Lemma B.1, fi corresponds to a row of agent i in i�.
Then consider the joint action

→
x= (

→
e (1), . . . , fi, . . . ,

→
e

(n)) in i�. We can find that for any j �= i, there holds

Ui�
j (
→
x ) = Ui�

j (
→
x (1), . . . ,

→
x (n))

= Ui�
j (
→
e (1), . . . , fi, . . . ,

→
e (n))

= Uj(
→
e (1), . . . ,

→
e (i), . . . ,

→
e (n))

= max
aj∈Aj

Uj(
→
e (1), . . . , aj, . . . ,

→
e (n))

= max
aj∈Aj

Ui�
j (
→
x (1), . . . , aj, . . . ,

→
x (n)).

For agent i, since the domain of agent i’s reaction function
is Ai, we have

Ui�
i (
→
x ) = Ui�

i (
→
x (1), . . . ,

→
x (n))

= Ui�
i (
→
e (1), . . . , fi, . . . ,

→
e (n))

= Ui(
→
e (1), . . . ,

→
e (i), . . . ,

→
e (n))

= max
ai∈Ai

Ui(
→
e (1), . . . , ai, . . . ,

→
e (n))

= max
f∈Fi

Ui�
i (
→
e (1), . . . , f , . . . ,

→
e (n)).

Therefore,
→
x is a PNE of i�. Correspondingly,

→
e is also a

meta equilibrium which can be derived from i�.
Theorem B.1: Any PNE in a normal-form game is also a

symmetric meta equilibrium.
Proof: Suppose � is an n-agent normal-form game. By

Lemma B.3, we have E(�) ⊆ Ê(1�). Since Ê(1�) also rep-
resents the set of pure strategy Nash equilibria of 1�, we can
also get Ê(1�) ⊆ Ê(21�) by applying Lemma B.3 to 1�.
Therefore, we have

E(�) ⊆ Ê(1�) ⊆ Ê(21�) ⊆ · · · ⊆ Ê(n(n− 1) · · · 21�).

Analogously, we can prove E(�) is a subset of all the other
complete games.

Note that Sym(�) = ⋂
∀τ� Ê(τ�), where τ� denotes a

complete game. Therefore, for any PNE
→
e ∈ E(�), we have→

e ∈ Sym(�).
Theorem B.2: Any nonstrict EDSP in a normal-form game

is a symmetric meta equilibrium.
Proof: We prove this theorem by finding reaction functions

which map a nonstrict EDSP to a symmetric meta equilibrium.
Suppose

→
x is a nonstrict EDSP in an n-agent normal-form

game �. According to the definition of nonstrict EDSP, there
must exist a PNE

→
ei for any i ∈ N, which satisfies Ui(

→
x ) ≥

Ui(
→
ei ). We need to prove that in each complete game of �,

there exist an NE that corresponds to
→
x . We first consider the

metagame n(n− 1) · · · 21�.
Constructing 1� based on �, we can find a reaction function

f1 of agent 1 in 1�

f1(
→

a−1) =

⎧
⎪⎨
⎪⎩

→
x (1) if

→
a−1 = (

→
x (2), . . . ,

→
x (n))

→
ej (1) else if

→
a−1 = (

→
ej (2), . . . ,

→
ej (n))(j > 1)

→
e1 (1) otherwise.

Then we extend 1� to 21� and we can find a reaction
function f2 of agent 2

f2(
→

a−2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

→
x (2) if

→
a−2 = (f1,

→
x (3), . . . ,

→
x (n))

→
ej (2) else if

→
a−2 = (f1,

→
ej (3), . . . ,

→
ej (n))

(j > 2)
→
e1 (2) else if

→
a−2 is in the form of (f1, . . .)→

e2 (2) otherwise.

Iteratively, when we construct the metagame i(i − 1) · · ·
21�(2 < i ≤ N), we can define a reaction function of agent i

fi(
→

a−i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

→
x (i) if

→
a−i = (f1, . . . , fi, . . . ,

→
x (i+ 1), . . . ,

→
x (n))

→
ej (i) else if

→
a−i = (f1, . . . , fi−1,

→
ej (i+ 1), . . . ,

→
ej (n))(j > i)

→
ek (i) else if

→
a−i is in the form of

(f1, f2, . . . , fk−1, . . .)(1 ≤ k < i)
→
ei (i) otherwise.
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Now consider the action (f1, f2, . . . , fn) in metagame
n(n− 1) · · · 21�, for any agent i ∈ N, obviously we have

Un(n−1)···1�
i (f1, f2, . . . , fn)

= U(n−1)···1�
i (f1, f2, . . . ,

→
x (n))

= U(n−2)···1�
i (f1, f2, . . . ,

→
x (n− 1),

→
x (n))

= · · · = Ui(
→
x ).

For any other joint action (f1, . . . , fi−1, f ′i , fi+1, . . . , fn) that
satisfies f ′i �= fi, we can get

Un(n−1)···1�
i (f1, . . . , fi−1, f ′i , fi+1, . . . , fn)

= U(n−1)···1�
i (f1, . . . , fi−1, f ′i , fi+1, . . . , fn−1,

→
ei (n))

= U(n−2)···1�
i (f1, . . . , fi−1, f ′i , fi+1, . . . , fn−2,

→
ei (n− 1),

→
ei (n))

= · · ·
= Ui(

→
ei (1), . . . , a′i, . . . ,

→
ei (n)).

Here, a′i ∈ Ai is the original action of f ′i in the basic game �.
Obviously

Ui(
→
ei (1), . . . , a′i, . . . ,

→
ei (n))

≤ Ui(
→
ei (1), . . . ,

→
ei (i), . . . ,

→
ei (n)) ≤ Ui(

→
x ).

Note that this is true for any i ∈ N. Therefore, (f1, f2, . . . , fn)
is a PNE of metagame n(n−1) · · ·21�. Correspondingly,

→
x is

a meta equilibrium which can be derived from n(n−1)···21�.
For each of the other complete games, the proof is similar and
we do not repeat.

Theorem B.3 (Existence of Meta Equilibrium): For any
normal-form game defined in Definition 2, it has at least one
meta equilibrium.

Proof: We prove this theorem by finding a metagame in
which there always exists at least one PNE. Suppose � is
an n-agent normal-form game. First, we extend � to 1�.
We can construct a reaction function f1:A−1 → A1 which
satisfies ∀ →

a−1∈ A−1, f1(
→

a−1) = arg maxa1 U1(a1,
→

a−1). By
Lemma B.1, f1 corresponds to one row of agent 1 in 1� in
which agent 1’s action is a best response to each of the other
agents’ joint actions.

Treating 1� as the basic game, we can extend it to 21�.
Similarly, we can find a row of agent 2 in 21�, where the
action of agent 2 is the best response to all of the other
agents’ joint actions. Obviously, in this row, we can find an
(n− 2)-dimensional matrix where the action of agent 1 is f1,
since its action space remains unchanged from 1� to 21�.
Therefore, in this (n− 2)-dimensional matrix, both the actions
of agent 1 and agent 2 are a best response to all of the other
(n− 1) agents’ joint actions.

Iteratively, by constructing metagames step by step, we can
finally find a 0-dimensional matrix (namely a joint action) in
n(n− 1) · · · 21�, where each agent’s action is a best response
to the other agents’ joint action. Therefore, there must be a
PNE in the metagame n(n− 1) · · · 21�.

Note that n(n− 1) · · · 21� is a complete game. In fact, we
can prove that there always exists a Nash equilibrium in any
complete game in a similar way.
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