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Data-Driven Frequency-Based Airline Profit Maximization
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Although numerous traditional models predict market share and demand along airline routes, the prediction
of existing models is not precise enough, and to the best of our knowledge, there is no use of data mining–
based forecasting techniques for improving airline profitability. We propose the maximizing airline profits
(MAP) architecture designed to help airlines and make two key contributions in airline market share and
route demand prediction and prediction-based airline profit optimization. Compared to past methods used to
forecast market share and demand along airline routes, we introduce a novel ensemble forecasting (MAP-EF)
approach considering two new classes of features: (i) features derived from clusters of similar routes and
(ii) features based on equilibrium pricing. We show that MAP-EF achieves much better Pearson correlation
coefficients (greater than 0.95 vs. 0.82 for market share, 0.98 vs. 0.77 for demand) and R2-values compared to
three state-of-the-art works for forecasting market share and demand while showing much lower variance.
Using the results of MAP-EF, we develop MAP–bilevel branch and bound (MAP-BBB) and MAP-greedy
(MAP-G) algorithms to optimally allocate flight frequencies over multiple routes to maximize an airline’s
profit. We also study two extensions of the profit maximization problem considering frequency constraints
and long-term profits. Furthermore, we develop algorithms for computing Nash equilibrium frequencies
when there are multiple strategic airlines. Experimental results show that airlines can increase profits by a
significant margin. All experiments were conducted with data aggregated from four sources: the U.S. Bureau
of Transportation Statistics (BTS), the U.S. Bureau of Economic Analysis (BEA), the National Transportation
Safety Board (NTSB), and the U.S. Census Bureau (CB).
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1. INTRODUCTION

Since the deregulation of U.S. airlines in 1978, there has been intense competition
among airlines for market share and, eventually, profitability. Although there is
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considerable work on predicting market share and demand along airline routes, the
prediction of existing models is not precise enough, and to the best of our knowledge,
there is no use of data mining–based forecasting techniques for improving airline
profitability. In this article, we formally define the maximizing airline profits (MAP)
problem by allowing airlines to decide the flight frequencies on their flying routes to
maximize their profits, subject to cost constraints. For instance, if there is a set R of
routes in the world, and the airline can fly up to n routes where n ≤ |R|, then our MAP
problem would capture both route selection (which routes to fly) and frequency.1

The first key contribution of this article is a precise route-specific prediction of both
total demand of an origin-destination market and an airline’s market share. Existing
related works only use simple regression methods and focus on a limited number of
variables. Our studies of three major route market share [Hansen 1990; Suzuki 2000;
Wei and Hansen 2005] and demand prediction [Alperovich and Machnes 1994; Bhadra
and Kee 2008; Bhadra and Wells 2005] methods show that the Pearson correlation
coefficients between the predicted values and the actual values are a max of 0.82 (for
one market share method) and 0.77 (for one demand model). Other existing models
predict much lower numbers. Although one of these regression methods [Hansen 1990]
outputs satisfactory prediction results in our experiments, there is still a gap between
the prediction and the real value. The relatively “small” prediction gap can lead to a
huge revenue loss if airlines make decisions based on prediction. Worse still, due to
the inflexibility of existing models, the prediction gap can be large for some routes.
We propose a new ensemble-based prediction method for forecasting total demand and
market share, which uses an extensive number of features and several state-of-the-art
clustering and regression algorithms that have never been adopted for MAP. The new
ensemble method builds on existing models, but also collects several new features,
together with novel clustering and game theoretic methods. We are the first to propose
a prediction method, for a broad set of routes (around 700; past works stopped at 200),
that considers the predictions of both total demand (demand generation) of a route and
market share (demand allocation) of each airline operating in that route (13 airlines
in total).

The second key contribution is two novel algorithms for solving MAP, which becomes
computationally intractable with brute-force search when the number of routes is
large. This is because (1) the solution space is exponential with respect to the number
of routes, and (2) the profit-frequency function, which is generated by our proposed
prediction method, is neither convex nor concave (and thus not linear). We show in
Section 2 that MAP belongs to the hardest subclass of knapsack problems (KPs) and
resource allocation problems (RAPs), and despite a vast amount of existing works
[Bretthauer and Shetty 2002; Caprara et al. 2000; Pferschy 1999; Pisinger 2000]
for both KPs and RAPs, all previous algorithms fail to solve it efficiently. Based
on predictions made by a novel ensemble forecasting (MAP-EF), we come up with
two optimization algorithms to solve the raised profit maximization problem. We
present an exact algorithm to solve MAP based on a novel bilevel branch and bound
(MAP-BBB) approach that computes the true optimal solution, as well as a MAP
greedy (MAP-G) algorithm that more quickly computes suboptimal solutions.

As our third key contribution, we study two practical extensions of the basic
frequency-based airline profit maximization problem and develop algorithms to
compute Nash equilibrium strategies when there are multiple strategic airlines. First,
airlines are usually conservative about changing their flight frequencies. Furthermore,
they are concerned about the effect of the current frequency strategies on future

1Because the airline industry is very complex, it is difficult to model all other sources of profit that might be
available (e.g., in-flight sales, baggage fees) to the airline, especially as such data is not freely available.
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Table I. Summary of Notations

“potential” profits. As a result, we introduce bounded frequencies and a future profit
effect factor in the basic profit maximization problem as two extensions of the basic
problem and study their effects on airlines’ profits. Second, we consider multiple
strategic airlines. In the basic profit maximization problem, we assume that only one
airline is strategic in deciding its frequencies. We release this assumption and study
Nash equilibrium frequency strategies with multiple strategic airlines, each of which
is smart enough to reason about the optimal behavior of the other airlines.

As our final contribution, we conduct extensive experimental evaluations to com-
pare MAP’s prediction results with those of past works. We show that past prediction
models are significantly “beaten” by MAP, which increases these predictive accuracies
to greater than 0.95 while significantly reducing the variance in our prediction error
compared to past works. We also compare both the optimality and scalability of our
proposed profit maximization algorithms to several benchmarks. The result shows that
our predictions are far superior to past efforts. Moreover, by using MAP, an airline can
increase its profit by at least 55% under mild conditions.2

The rest of this article is organized as follows. Section 2 introduces related work. Sec-
tion 3 discusses the dataset used in our study. Section 4 shows our proposed prediction
framework based on our ensemble method. Section 5 presents our proposed algorithms
for the basic profit maximization problem. Section 6 introduces two practical extensions
of the profit maximization problem. Section 7 studies equilibrium frequency strategies
with multiple strategic airlines. Section 8 conducts extensive experimental evaluations.
We conclude in Section 9. For notational convenience, Table I summarizes all notations
used in this article.

2. RELATED WORK

Existing airline market share and demand prediction models try to write down math
formulas for market share/demand and then use regression to find values of the pa-
rameters in these formulas that minimize the sum of the squared errors between the
predicted values and the true values. We therefore call these math models to indicate
that the structural form of these models is written down a priori without reference to

2Like all past models, our analysis of airline profits is only based on publicly available data, so the true
number might be smaller. Nevertheless, even a 10% improvement in the real world would be substantial.
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any data and that the parameter values that minimize error are then computed using
available data.

Airline market share prediction. Most works on airline market share prediction use
a multinomial logit (MNL) regression model [Hansen 1990; Suzuki 2000; Wei and
Hansen 2005]. For a set A of airlines in a given route, an airline Ai ’s market share mi
is modeled as

mi = eVi

∑
Aj∈A eVj

. (1)

Here, Vi = ∑
k ηkXik is the customer’s utility for choosing airline Ai ’s service, Xik is the

value of the kth variable for airline Ai, and ηk is its corresponding weight to be learned
from data. Various variables have been studied. Market1 [Hansen 1990] considers a
route’s price, frequency, and number of stops. Based on the prediction, the competition
among airlines is analyzed. Market2 [Suzuki 2000] considers an airline’s frequency,
delay, and safety. Market3 [Wei and Hansen 2005] studies the effect of aircraft size
and seat availability on market share and considers other variables, such as price and
frequency.

Total demand prediction. For total demand of a route, a multiplicative [Alperovich
and Machnes 1994; Bhadra and Kee 2008; Bhadra and Wells 2005] regression model
is the most frequently adopted. Formally, a route’s total demand is represented as

d =
∏

k

Y λk
k , (2)

where Yk is a value of the kth variable and λk is a parameter to be learned from data that
measures the importance of Yk. Demand1 [Alperovich and Machnes 1994] considers
wealth-related variables such as price, income, and the consumer price index (CPI).
Demand2 [Bhadra and Wells 2005] studies the influence of demographic variables such
as price, income, and population, as well as hub status (i.e., large, medium, small, or
nonhub) on passenger demand. Demand3 [Bhadra and Kee 2008] focuses on variables
such as price, income, population, and origin-destination distance.

In this article, our prediction models build on all of these methods but use an en-
semble approach to achieve not only much higher predictive accuracy but also much
greater robustness.

KPs and RAPs. Airline profit maximization through optimal frequency allocation
over multiple routes, given a certain budget constraint, belongs to the family of KPs
and RAPs, which have been extensively studied ever since the work of Dantzig [1957].
Although all variants of KPs are known to be NP-hard, MAP, which has bounded
integer variables, and a nonconcave (arbitrary) objective function, is notoriously hard
[Bretthauer and Shetty 2002].

There are some polynomial-time approximation schemes (PTAS) and even fully-
PTAS to solve bounded knapsack problems (BKPs), using greedy algorithms [Keller
et al. 2004], dynamic programming [Pisinger 2000], and branch and bound
(BB) [Martello and Toth 1977]. The first two methods assume linear objective func-
tions, whereas the last approach uses linear relaxation. Several algorithms have been
proposed to solve KPs/RAPs with nonlinear objective functions, especially for a concave
and nondecreasing objective function [Bretthauer and Shetty 2002]. The common idea
is to decompose the original objective function into a set of approximated piecewise
linear functions. Unfortunately, none of these works for our problem. This is because
the profit-frequency function in our problem is neither concave nor convex (and thus
not linear), varies from one route to another, and cannot be described by a simple
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Fig. 1. Quarterly revenue (dashed lines) and profit (solid lines) in 10 million dollars generated by MAP-EF.
Revenue is defined as the average ticket price multiplied by the number of passengers. Cost is the per flight
cost multiplied by frequency. Note that the profit-frequency curve (revenue minus cost) is very irregular
even though the revenue-frequency curve is monotonically increasing. The shapes of the curves are quite
different.

math formula but by a series of clustering, regression, and other types of functions.3
As shown in Figure 1, where the x-axis is the frequency and the y-axis is the profit (or
revenue), the two graphs are for two routes (SFO-LAX route on the left and JFK-LAX
route on the right) and four major U.S. airlines. We see that the shapes of the curve
on the left (SFO-LAX) is quite different from another on the right (JFK-LAX). In fact,
across the 700 routes we studied, there was huge variation in the actual profit/revenue
curves. Thus, any method specially devised for a certain form of objective functions
(e.g., linear, concave, or convex) cannot be applied.

Optimal decision making based on data mining. Data mining–based optimization
has been implemented by many existing KDD works, including optimal bidding [Zhang
et al. 2014; Zhu et al. 2015], smart pacing [Xu et al. 2015], and optimal recommendation
systems [Lu et al. 2014]. In the first step of these works, a predicted objective function
is learned using regression analysis techniques. Based on the prediction results, an
optimization problem is solved, either analytically [Lu et al. 2014; Zhang et al. 2014]
or via optimization algorithms [Xu et al. 2015; Zhu et al. 2015]. Our MAP framework
follows this general scheme; however, it differs in many ways, including the fact that
the predicted objective function is in a very complicated linear algebra form.

3. THE MAP DATASET

We have created an integrated MAP dataset by aggregating information from four
publicly available data sources: the U.S. Bureau of Transportation Statistics (BTS)
[BTS 2016], the U.S. Bureau of Economic Analysis (BEA) [BEA 2016], the National
Transportation Safety Board (NTSB) [NTSB 2016], and the U.S. Census Bureau (CB)
[CB 2016]. The entire dataset amounts to 539 million rows, 80% of which are from the
BTS dataset. The BTS provides almost all aspects of airline market information, such
as ticket price,4 frequency, number of stops, delay records, aircraft size, and available
seats. The BEA and the CB release regional income, economic state, and population
information, whereas the NTSB provides all safety- and accident-related information.

3We will revisit this point after Definition 5.2.
4The BTS releases a 10% sample of route and airline specific ticket sales logs, from which the average ticket
price is obtained.
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Table II. Variables for Predictions in Related Works ALGORITHM 1: ITER
1 Randomly assign values to

pt−1 within [pmin
i , pmax

i ]
2 repeat
3 for Ai ∈ A do
4 counter ← 0
5 pi,t ← Solution of

Equations (3) through
(5)

6 if |pi,t − pi,t−1| ≤ ε
then counter + +

7 pt−1 ← pt

8 until counter = n
9 return pt

Fig. 2. Structure of the MAP-EF prediction model. Rectangles mean data and ellipses mean algorithms.
Each algorithm is marked with a processing sequence number. Solid lines mean inputs and dashed lines
mean outputs.

The BTS provides a quarterly dataset. A detailed description of the variables we con-
sider is presented in Table II. We plan to publicly release our tools and dataset in
2016.

4. ENSEMBLE PREDICTION MODEL

In this section, we design an ensemble-based predictor, MAP-EF, which produces highly
accurate route-specific predictions.

Overall architecture. Figure 2 shows the architecture of our ensemble model with
four major steps:

—Step 1: Past models with regularization. In the first step, we use the MAP dataset
in conjunction with existing market share models (Market1 [Hansen 1990], Mar-
ket2 [Suzuki 2000], Market3 [Wei and Hansen 2005]) and demand models (De-
mand1 [Alperovich and Machnes 1994], Demand2 [Bhadra and Wells 2005], De-
mand3 [Bhadra and Kee 2008]) to generate the predictions made by models developed
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previously in the literature. These predictions are used as additional features. In ad-
dition, we augment past models with regularization [Bishop 2006].5 Because this step
is straightforwardly built on top of past works, we do not go into it in further detail.

—Step 2: Nash equilibrium. Ticket pricing clearly influences both market share and
demand. Moreover, the competitive pricing behavior of airlines would have further
influence. Thus, we include equilibrium pricing calculated based on past models as
an additional feature in MAP-EF. After this step, each route has one feature table for
market share prediction and another for demand prediction. Each table6 includes a
set of features collected from the MAP dataset and from Steps 1 and 2.

—Step 3: Clustering of similar routes. We cluster all routes into groups of similar routes
with the features of the quarter we predict. For each group of routes, we concatenate
all individual route tables constructed in Step 2 for all routes in that group. The
merged tables are then used for training within MAP-EF. We describe this step in
further detail.

—Step 4: Iterative Gaussian process regression (GPR) and random sample consensus
(RANSAC). After Step 3, we have a comprehensive MAP feature table. We use a
combination of the well-known methods of GPR [Rasmussen and Williams 2006] and
RANSAC [Fischler and Bolles 1981]. To make market share/demand predictions for
a route R, this step trains only on data of the group that contains route R, removes
outliers with RANSAC, and then uses GPR to make the final prediction.

Nash equilibrium price feature. In a competitive airline market, the pricing behaviors
of airlines are strategic. To capture the competitive nature of the market, we include
equilibrium price as an additional feature.7 The rationale behind this is that when an
airline’s quoted price is higher or lower than its equilibrium price, the customer might
lose or gain utility, which has influence on the customer’s choice and thus further affects
an airline’s market share. Therefore, we use the gap between equilibrium price and
real price as an additional feature. The utility (net income) N(Ai) of an airline Ai with
respect to a specific route is N(Ai) = (pi −cpsg

i )·d·mi, where pi is the ticket price and cpsg
i

is the passenger-related per ticket cost obtained from the BTS dataset; d and mi are a
route’s total demand and airline Ai ’s market share as described in Section 2. Recall that
Nash equilibrium is an equilibrium situation in a multiplayer noncooperative game,
where each player is assumed to know the equilibrium strategies of the other players,
and no player has anything to gain by changing only its own strategy. Following this
definition, we formulate the computation of Nash equilibrium strategy of each airline
Ai ∈ A with respect to a given route:

maxpi N(Ai), (3)

subject to pmin
i ≤ pi ≤ pmax

i , (4)

d · mi ≤ Qi. (5)

5In past works for market share prediction, the authors minimize sum squared error (SSE)—that is, they try
to find parameter values for the math models that minimize �Ai (mi − m̂i)2, where mi (respectively m̂i) is the
true (respectively predicted) market share. In addition to this, regularization minimizes

∑
Ai

(mi − m̂i)2 +
||W ||, where W is a vector that consists of parameters ηk (or λk for demand prediction) and ||W || is the
norm of W . ||W || can be defined using either the L1 or L2 norm. Thus, we have three options: SSE, SSE+L1

regularization, and SSE+L2 regularization. To decide the best model among these, we use grid search and
cross validation. For cross validation, we predict a quarter of the training data after training with the
remaining quarters regardless of temporal sequence, which creates n-fold cross validation, where n is the
number of quarters in the training data.
6Please refer to the appendix for detailed examples of the merged table.
7Note that when computing the equilibrium price, the market share and total demand is the math formula
obtained in Step 1, and the competition is only within a route.
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Equation (4) specifies the feasible section of price, and Equation (5) indicates that the
total number of passengers cannot exceed its capacity Qi. To compute the equilibrium
price on a route, we propose the iterative method for nash equilibrium (ITER) com-
putation in Algorithm 1, where pt−1 and pt denote the optimal price vectors of two
subsequent “virtual” periods. The algorithm starts with an initialization of pt−1 within
[pmin

i , pmax
i ], where pmin

i and pmax
i are the minimum and maximum possible prices quoted

by airline Ai. After this, iteration proceeds. In each repeat loop (lines 2 through 8), the
algorithm updates optimal prices of all airlines. Within each repeat loop, there is a for
loop (lines 3 through 7). In the for loop, each airline alternately updates its optimal
price pi,t based on the previous price vector p−i,t−1 of the other airlines in the last
virtual period. It iterates until for each airline Ai ∈ A, the price is not updating in two
subsequent virtual periods (i.e., the difference between the two prices is no larger than
a small threshold |pi,t − pi,t−1| ≤ ε), which means that a Nash equilibrium is obtained.
Note that the existence and uniqueness of Nash equilibrium prices are dependent on
the utility function N(Ai) (e.g., whether it is concave with respect to price). Due to the
complex form of the utility function, it is intractable to prove it analytically. However,
the following theorem guarantees that if there exists an equilibrium price, ITER al-
ways returns it, and our empirical results show that ITER always returns a solution
after a few iterations, which means that Nash equilibrium prices always exist.

THEOREM 4.1. If ITER returns a solution, then that solution is the Nash equilibrium
price.

PROOF. In each repeat loop, ITER finds the best response of all players (airlines)
given the strategies of the last virtual period. When the best response strategies of all
players in the current virtual period are equal to the best response strategies of the
last virtual period, a Nash equilibrium is found according to the definition of Nash
equilibrium.

Clustering similar routes. Some routes are more similar than others. For example,
LAX-JFK may show more similar market attributes to SFO-JFK than LAX-SFO be-
cause the first two are long-haul routes from west to east and the last one is a short-haul
local route, and estimating market share/demand would probably benefit from exam-
ining all similar routes. To cluster routes, we use all features gathered in the MAP
dataset, Steps 1 and 2. As we do not know the “ground truth” definition of whether a
cluster is correct or not, we evaluate cluster quality via a silhouette score8 [Rousseeuw
1987]. The silhouette score tends to keep increasing (with some glitches) as the num-
ber of clusters increases. The elbow method [Thorndike 1953] chooses the optimal
number of clusters when silhouette scores stabilize. We tested several clustering meth-
ods, including k-means++ [Arthur and Vassilvitskii 2007], and connectivity-based and
density-based clustering algorithms, such as DBSCAN [Ester et al. 1996]. Of these, we
achieved the best result with k-means++.

RANSAC/GPR regression. Training with similar routes does not always contribute
positively to predictive accuracy. In several cases, it incurs additional error. We tested
many linear regression algorithms, such as Ridge, Lasso, and Lars [Bishop 2006]. None
of them produces stable performance across multiple routes. We then tested a specially
devised structure that consists of RANSAC and GPR. RANSAC removes outliers from

8The silhouette score is to calculate the consistency of clusters. As more similar routes are contained by a
cluster, its silhouette score is higher. If G is a set of clusters, dis is some distance (dissimilarity) measure,
and e is some data item, the silhouette score SS(e) = b(e)−a(e)

max{a(e),b(e)} , where a(e) is the average distance between
e and the data items of the cluster to which it belongs, and b(e) is the minimum average distance between e
and the data items of clusters to which it does not belong.
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training data, and GPR makes the final prediction only with inliers. GPR is known
to be robust because it is much less parametric than other methods. GPR assumes
that priors follow Gaussian processes, and the prior mean values are set to the same
means as the training data means. The prior’s covariance is calculated based on a
user-input covariance function (i.e., kernel function), and the hyperparameters of the
kernel function are optimized by maximizing the log marginal likelihood. The final
predictions for test cases are calculated using the covariance matrix of all training
and testing cases. The entire process can be described by a very complicated linear
algebra form. RANSAC regression is known to be robust with respect to noise. In the
first step, RANSAC performs regression with a small random subset of training data
called hypothetical inliers. In the second step, all training data that do not fit the model
constructed in the first step (in terms of a user-specified loss function) are classified as
outliers and others as inliers. These two processes iterate over time to refine the set
of inliers called the consensus set until the size of consensus set is large enough. Thus,
MAP-EF uses RANSAC with GPR as a base estimator. We show prediction results of
other regression techniques in the appendix.

Time overheads. In comparison with past models, MAP-EF should spend additional
time for clustering and more advanced regression methods, which takes cubic time of
training data size.

5. AIRLINE PROFIT MAXIMIZATION VIA FREQUENCY ALLOCATION

In this section, we suggest how to maximize an airlin’s profit by optimally allocating
quarterly frequencies to routes.

Definition 5.1. A frequency strategy of an airline A for a given set R = {R1, . . . , Rn}
of routes is a vector 〈 fi〉 of nonnegative integers.

Intuitively, the ith element fi of the frequency strategy denotes the number of times the
airline should fly route Ri in a quarter. For a given airline A, a set R = {R1, . . . , Rn}, per
flight cost Ci for each route Ri, and total operation budget b, the profit maximization
problem finds the frequency allocation 〈 fi〉 of A assuming that its competitors’ behav-
iors are fixed. We also conduct experiments to test the robustness of this approach
when competitors change their strategies simultaneously.

Definition 5.2. The frequency-based profit maximization problem can be encoded as
the optimization problem:

max
〈 fi〉

∑
Ri∈R

Ni( fi) (6)

subject to 0 ≤ fi ≤ f max
i , fi ∈ N, ∀Ri ∈ R (7)

∑

Ri∈R
Ci fi ≤ b. (8)

Ni( fi) is the profit of route Ri given frequency fi, which is ticket revenue ri( fi) minus
total operation cost Ci fi and can be calculated by the market share and total demand
predicted by MAP-EF. The ticket revenue is defined as the price per ticket multiplied by
airline A’s total passenger demand on route Ri.

∑
Ri∈R Ni( fi) is the sum of profits for all

routes. Because routes (e.g., the SFO-LAX and JFK-LAX routes shown in Figure 1) can
differ dramatically in profitability, and as these numbers are basically estimated by our
market share and demand prediction algorithms, it follows that the individual terms
Ni( fi) in our objective function can vary dramatically in form from one route to another.
This is what makes using a single form of objective function difficult. Constraint (7)

ACM Transactions on Intelligent Systems and Technology, Vol. 8, No. 4, Article 61, Publication date: February 2017.



61:10 B. An et al.

specifies the bound of frequency for each route as f max
i and that the frequencies are

nonnegative integers. The frequency bound f max
i = min(	 b

Ci

, f BTS), where f BTS is the

maximum frequency discovered in the BTS dataset, so that fi does not exceed the
feasible frequency bound. Constraint (8) indicates the budget constraint. As discussed
in Section 2, this optimization problem belongs to the hardest class of KPs and RAPs,
mainly for two reasons: (1) the solution space is exponentially large as �i f max

i , and (2)
the objective function is neither convex nor concave (thus not linear).

Before presenting the complexity analysis and the algorithms to solve MAP, we
introduce two important assumptions:

—Independence of routes: We assume that varying the frequency of a route does not
affect other routes’ total demand and market share. This assumption is valid for
most cases where the passenger’s traveling pattern on one route is independent of
the other routes.

—Monotonicity of revenue and cost: We assume that revenue (respectively cost) is a
monotonically increasing nonlinear (respectively linear) function of frequency. As
shown in Figure 1, this assumption is intuitive. Increasing frequency leads to larger
market share (and thus higher revenue) and higher operation cost. Therefore, the
monotonicity of revenue and cost does not imply the monotonicity of profit. This
prevents us from applying many well-developed algorithms for KPs and RAPs.

We show the computational hardness of the MAP problem with the following
theorem.

THEOREM 5.3. The decision version of MAP (D-MAP) that answers the question “Is
there a frequency strategy whose profit exceeds a threshold P without violating budget
b?” is NP-complete.

PROOF. We first show that there is a polynomial reduction from the KP to D-MAP. In
the KP, there are n items (each has pi profit and wi cost), budget limit W , a threshold
V , and the objective is to find a set of items whose profit is no smaller than V without
violating budget W . This a special instance of D-MAP where b = W , P = V , Ci = wi,
and the profit-frequency function of route Ri is linear with the slope of pi, and the
reduction from the KP to profit maximization can be done in polynomial time.

Next, we show its correctness—that is, Y is a yes instance of the KP ⇐⇒ X reduced
from Y is a yes instance for D-MAP.

“If” direction. Assume that there exists a solution s for a KP instance. We can create
a frequency strategy 〈 fi〉, where fi is the number of ith items in the solution s; s can
achieve a profit of at least V without violating budget W , and so is 〈 fi〉 because b = W ,
P = V , Ci = wi, and the same linear profit function.

“Only if” direction. Assume that a frequency strategy 〈 fi〉 achieves a profit of at least
P without violating budget b. We can create a knapsack solution s to select fi items for
the ith item; s is a valid solution of the KP because b=W , P =V , Ci =wi, and the same
linear profit function.

Finally, D-MAP is in NP because the verification process to check whether a fre-
quency strategy’s profit exceeds a threshold requires |R| oracle queries. Note that each
oracle query takes a constant time for a given route and airline. Thus, the verification
process takes polynomial time.

Due to the computational complexity, it is intractable to find an optimal solution
of the MAP problem by performing brute-force search. As a result, we propose two
new approaches: (1) MAP-BBB is a bilevel BB method, and (2) MAP-G is a greedy
algorithm operating over groups of routes. Section 8 shows that these two algorithms
have complementary performance in terms of runtime (scalability) and optimality.
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Fig. 3. An example BB process for MAP-BBB with three routes. Each blue bar of node represents a frequency
range. Lower BB is used to calculate an upper bound profit of a node. Here, cl and cr are two children of the
parent node np.

5.1. Bilevel BB (MAP-BBB)

BB is a popular search algorithm for combinatorial optimization to efficiently enumer-
ate the entire solution space and find the optimal solution. The solution space of BB
can be represented by a rooted tree, and each child of a parent node considers a subset
of solution space of its parent node. BB consists of a series of repeated branching and
bounding processes. In the branching process, the feasible solution space is divided
into a number of smaller subsets, whereas in the bounding process, an upper and a
lower bound of the objective (airline profit in this problem) is derived for each subset
of solution space. The largest lower bound is updated, and when the upper bound of a
certain subset is smaller than the current largest lower bound, that subset is pruned
since it does not contain the optimal solution. As we can see, the key of BB lies in find-
ing a tight upper and lower bound for the bounding process, especially for the upper
bound. Although most of the BB algorithms for KPs find upper bounds through linear
relaxation [Martello and Toth 1977], the complicated form of our prediction model pre-
vents us from implementing such upper bounds. As a result, we propose the MAP-BBB
algorithm, which uses another sub-BB search to find an upper bound for the main BB
process.

Algorithm 2 shows the MAP-BBB algorithm that builds on classical BB methods.
The search for an optimal solution explores a tree whose nodes are labeled with n
intervals, one for each of the routes R1, . . . , Rn under consideration. Intuitively, if a
node is labeled with the interval [�, u] for a particular route Ri, it means that we are
currently restricting the frequency in the interval [�, u] for that route. MAP-BBB also
maintains a priority queue Q of all nodes where the head has the largest upper bound
profit. The root node has the full range of [0, f max

i ] for each route Ri ∈ R. As we descend
the tree, these intervals get smaller. In Figure 3, for example, the parent node np is
divided into two children nodes cl and cr, where the frequency range of the last route
of np is divided into two halves.

For the bounding process of child node c ∈ {cl, cr}, upper and lower bound profits of
the optimal strategy that can be defined with the frequency range of c are calculated
(to be further described later). If its lower bound LBc is larger than the temporary
maximum lower bound, denoted as MaxLB in Algorithm 2, and its lower bound cost Cc
of the optimal strategy does not violate the budget b, we update MaxLB (line 8). If its
upper bound UBc is no larger than MaxLB or its lower bound cost Cc violates budget
b, we prune this node (line 9). Once we find a node that consists of only nondivisible
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ALGORITHM 2: MAP–Bilevel Branch and Bound (MAP-BBB)
1 N∗ ← 0, 〈 f ∗

i 〉 ← 0; Create root; MaxLB ← LBroot;
2 PriorityQueue Q ← ∅; Q.enque(root)
3 while |Q| > 0 do
4 np ← Q.poll()
5 if np is divisible then
6 Create cl, cr
7 for c ∈ {cl, cr} do
8 if LBc > MaxLB and Cc ≤ b then MaxLB ← LBc
9 if UBc ≥ MaxLB and Cc ≤ b then Q.enque(c)

10 else if N∗ < N(np) and Cnp ≤ b then
11 N∗ ← N(np); 〈 f ∗

i 〉 ← frequency strategy of np

12 return 〈 f ∗
i 〉, N∗

ranges (i.e., min and max of ranges are all the same) and its cost is within budget b,
it is a candidate of the optimal frequency strategy. The optimal strategy is selected
among them (line 10). N∗ and 〈 f ∗

i 〉 stand for the obtained optimal profit and optimal
frequency strategy, respectively.

Lower bound profit and lower bound cost. Calculating a lower bound of profit LBc
and cost Cc of node c is a key to the MAP-BBB algorithm. We choose the min frequency
value for each route’s range and calculate its lower bound profit and cost with MAP-EF.
This is valid because the optimal profit and the associated cost of node c are always no
smaller than that.

Upper bound. As we cannot employ linear relaxation, the upper bound calculation
is more challenging. For this, we use another BB process, which is why the proposed
algorithm is called a bilevel branch and bound. For each range of Ri in node c, we
perform the following sub-BB process to find its optimal frequency within the range
without a budget constraint. This is good because the optimal profit without budget
limit is definitely no smaller than the optimal profit with budget constraint, and it is
much faster than the upper bound with budget check across multiple routes. We omit
its pseudocode because it is more or less the same as Algorithm 2, except the sub-
BB does not check budget violation. To distinguish two BBs, we use different terms:
sub and main. The sub root node is initialized with the specified range of Ri. During
the sub branching process, we equally divide a sub node interval into two halves and
create two sub children nodes. In the sub bounding process of a sub node, the heuristic
for computing a lower bound of the sub-BB is defined as ri( frandom) − Ci frandom, where
frandom is a random frequency in the frequency range. This holds since any feasible
frequency generates a lower bound of the optimal profit. The heuristic for computing
an upper bound of the sub-BB is ri( fmax)−Ci fmin, where fmax and fmin are the maximum
and minimum frequency of the sub node, which utilizes the monotonicity of revenue
and cost. The sum of maximum profits calculated for each route with the sub-BB
without budget constraint is always no smaller than that with a budget, and thus
sub-BB provides an upper bound profit of the main node. With the lower and upper
bounds derived earlier, MAP-BBB eliminates only nonoptimal frequency strategies of
routes, which proves correctness and optimality of MAP-BBB. We show the best-case
complexity analysis of MAP-BBB in the following theorem.

THEOREM 5.4. The best-case runtime complexity of MAP-BBB is O((log(max{ f max
i }))2×

n), where n is the number of routes.

ACM Transactions on Intelligent Systems and Technology, Vol. 8, No. 4, Article 61, Publication date: February 2017.



Data-Driven Frequency-Based Airline Profit Maximization 61:13

Fig. 4. Best PCR among all routes in
each iteration of the naive greedy knap-
sack algorithm.

ALGORITHM 3: MAP-G
1 N∗ ← 0, 〈 f ∗

i 〉 ← 0
2 G ← divide R into 	 n

k
 groups
3 bg ← δ, ∀g ∈ G;
4 while

∑
g∈G bg ≤ b do

5 for g ∈ G do
6 〈 f ∗

g 〉 ← solve MAP of g with budget bg

7 g∗ ← the best PCR group
8 〈 fi〉 ← merge({〈 f ∗

g 〉|g ∈ G})
9 bg∗ ← bg∗ + δ;

10 if N∗ < N(〈 fi〉) then 〈 f ∗
i 〉 ← 〈 fi〉

11 return 〈 f ∗
i 〉, N∗

PROOF. The best-case complexity of the BBB algorithm happens when in each branch
and bound process, one of the children nodes is pruned. For each route Ri, its maximum
frequency is f max

i , and it takes log( f max
i ) branches until the frequency in this route is

nondivisible; for all routes, it takes max{ f max
i } × n time. However, for each branch, it

needs at least O(log(max{ f max
i })) time to solve one sub-BB. Thus, the total complexity

is O((log(max{ f max
i }))2 × n).

The worst-case complexity happens when there is no pruning in each BB process.
However, the experimental results in Section 8 show that this never happens and that
the average runtime of MAP-BBB is promising.

5.2. Greedy Algorithm (MAP-G)

As MAP is NP-hard, it is clear that the exact algorithm MAP-BBB may not be scalable.
In this section, we propose a greedy algorithm to solve MAP more efficiently while
sacrificing optimality. A naive greedy algorithm is to increase the frequency of the
route with the largest marginal profit/cost ratio (PCR), which is known to work very
well for conventional KPs. However, unlike conventional KPs where the PCR is fixed
(i.e., linear objective function), the PCR in our problem fluctuates as can be seen from
the example in Figure 4. According to our experiments, this naive greedy approach on
average achieves only 0.66 of the optimal profit.

To address the fluctuating PCRs, we suggest an improved “group-greedy” algorithm
(MAP-G). The basic idea of MAP-G is that instead of greedily raising the frequency
of a single route with the largest PCR, MAP-G first divides routes into groups and
then compares the PCRs of different groups and raises frequencies of the group of
routes with the largest PCR. As shown in Algorithm 3, it randomly divides n routes
into 	 n

q 
 groups (line 2), each consisting of q routes.9 Initially, each group is assigned
small budget δ (line 3), and we independently solve MAP within each group using
exact algorithms such as MAP-BBB as a subroutine (line 6). We merge all groups’ most
recent frequency strategy to create a complete frequency strategy of all routes (line 8),
and its profit is compared to the temporary maximum profit (line 10). The budget of
the group that creates the largest marginal profit density is increased by δ (line 9).

9The actual number of routes in a group may slightly vary due to the floor operation.
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This process iterates until the sum of groups’ budgets equals the total budget b. This
method is robust with respect to the fluctuating PCR because we calculate the optimal
strategy for each group in each iteration. On the other hand, calculating the optimal
frequency strategy for a group of routes is much faster than that of all routes because
the solution space is much smaller. We set δ = b × 1

h, where h > 1 is an integer. The
quality of the solution increases as q increases—if q = n and h = 1, it finds the optimal
solution. The benefit of a small q is the short runtime, although it sacrifices optimality.
By adjusting q, MAP-G can trade off between runtime and optimality.

6. EXTENSIONS OF THE FREQUENCY-BASED PROFIT MAXIMIZATION PROBLEM

In the preceding section, we formalized a basic frequency-based profit maximization
problem and proposed two search algorithms to solve the problem. In this section,
we introduce two extensions of the basic problem: bounded frequencies and future
profits.

6.1. Bounded Frequency

As shown in Figure 1, the profit function of an airline is rather irregular. For some
routes, it is even monotonically decreasing (respectively increasing) with respect to
frequency. For these routes, we find out that the optimal frequency values computed by
the proposed algorithms are rather small (respectively large), with an abrupt decrease
(respectively increase) compared to the flight frequency strategy of the last quarter.
Although in practice even if it is more profitable to change the frequency by a large
number, airlines tend to be conservative and make only bounded changes to the fre-
quencies. Interestingly, the BTS dataset shows that in some extreme cases airlines
maintain their flight frequency on a route even when profit is negative. As a result, we
vary the constraint in Equation (7) and introduce tighter frequency bounds:

f 0
i (1 − α) ≤ fi ≤ f 0

i (1 + α), (9)

where f 0
i is the frequency on a route Ri in the last quarter and α ∈ [0, 1] is a bounding

factor that indicates the “conservativeness” of an airline. With the new bounded fre-
quency constraint, in the adapted MAP-BBB (MAP-BBB1), the root node’s frequency
range should be altered [ f 0

i (1−α), f 0
i (1+α)] and the remaining steps of MAP-BBB are

the same.

COROLLARY 6.1. The best-case runtime complexity of the adapted algorithm MAP-
BBB1 is O((log(2α max{ f 0

i }))2 × n), where n is the number of routes.

PROOF. According to Theorem 5.4, the runtime runtime complexity of search-
ing each route Ri is O((log(max{ f max

i − f min
i }))2 × n). In MAP-BBB1, f max

i = f 0
i (1 +

α), f min
i = f 0

i (1 − α). As a result, the best-case runtime complexity of MAP-BBB1 is
O((log(2α max{ f 0

i }))2 × n).

6.2. “Potential” Long-Term Profits

Another interpretation of airlines’ conservativeness in changing (decreasing in particu-
lar) their frequency strategies is that for some highly competitive routes, these airlines
(especially large airlines) are hoping to maintain their market share with relatively
large frequency numbers. The maintained market, which may not be profitable in the
current stage, will “drive off” the other competing airlines and bring potential profits
in the future. To better capture this property, we add an extra linear term (with respect
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to frequency) in the objective:10

max
〈 fi〉

∑

Ri∈R
Ni( fi) + βi fi (10)

subject to f 0
i (1 − α) ≤ fi ≤ f 0

i (1 + α), fi ∈ N,∀Ri ∈ R (11)
∑

Ri∈R
Ci fi ≤ b. (12)

βi > 0 is a route-dependent factor indicating the extent to which future market share is
important to the airline. Note that we also set bounded frequency in this extension (as
indicated by the constraints in Equation (11)). With larger frequency, one airline may
not have larger immediate profit, whereas in the new objective, the linear term, which
increases with respect to frequency, indicates the potential increase of future profits.

It is guaranteed that with positive βi values, the term βi fi monotonically increases
with respect to fi. Therefore, by merging this term with the revenue term ri( fi), the
monotonicity of the combined term ri( fi) + βi fi is inherited. Inspired by this, we re-
place ri( fi) with ri( fi) + βi fi in the sub-BB process, and the upper bound of sub-BB is
represented as ri( f 0

i (1 + α)) + βi f 0
i (1 + α) − Ci f 0

i (1 − α). With this adaptation, sub-BB
finds a proper upper bound for the main BB process, and the adapted BBB algorithm
(MAP-BBB2) still works.

COROLLARY 6.2. The best-case runtime complexity of MAP-BBB2 is still
O((log(2α max{ f 0

i }))2 × n), where n is the number of routes.

PROOF. With the adaptation in the sub-BB process, the runtime for the searching
process of each route is the same as MAP-BBB1.

7. MULTIPLE STRATEGIC AIRLINES AND NASH EQUILIBRIUM FREQUENCY STRATEGIES

Previously, we assumed that only one airline is strategic in deciding its frequencies of a
certain set of routes R, which may not be true in practice. In this section, we investigate
the case where multiple airlines are strategic and change their frequencies using our
proposed frequency-based profit maximization algorithm and optimally respond to the
current frequency strategies of the other airlines. The selfish and strategic behaviors of
the competing airlines result in a noncooperative game among the airlines, for which
Nash equilibrium is a natural solution concept. Recall from the definition of Nash
equilibrium in Section 4 that in a Nash equilibrium, the frequency strategies of the
each airline A ∈ A satisfy

max
〈 fi,A〉

∑

Ri∈R
Ni,A( fi,A), (13)

subject to f 0
i,A(1 − α) ≤ fi,A ≤ f 0

i,A(1 + α), fi,A∈N,∀Ri ∈ R (14)
∑

Ri∈R
Ci,A fi ≤ bA. (15)

We add a subscript A in fi, f 0
i , Ci, and b to distinguish different airlines. We adapt

Algorithm 1 and propose ITER-Freq (ITER with respect to frequency strategies) to

10Although potential future profits cannot be precisely measured with the simple linear term, to some
extent it does reveal an airline’s concern for long-term profit maximization. To better study this, a more
complicated model (e.g., using MDPs to formulate long-term profits of a series of future quarters or data
mining/machine learning methodologies to obtain profit function of a series of future quarters with respect
to current frequency) should be applied. We leave the long-term profit maximization problem as future
research.
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ALGORITHM 4: ITER-Freq

1 Randomly assign values to 〈 fi,A〉 within [ f 0
i,A(1 − α), f 0

i,A(1 + α)]
2 repeat
3 for Ai ∈ A do
4 counter ← 0
5 f ′

i,A ← Solution of Equations (13) through (15)
6 if | fi,A − f ′

i,A| ≤ ε then counter + +
7 〈 fi,A〉 ← 〈 f ′

i,A〉
8 until counter = n
9 return 〈 fi,A〉,∀A ∈ A

compute Nash equilibrium frequency strategies, which is shown in Algorithm 4. First,
we initialize the frequency of each airline A for each route Ri by randomly assigning
a value within a bounded frequency range [ f 0

i,A(1 − α), f 0
i,A(1 + α)]. In the repeat loop

(lines 2 through 8), it updates the optimal frequency strategies of each airline with the
for loop (lines 3 through 7) and terminates until, for each airline A and for each route
Ri, the difference between the updated frequency value f ′

i,A and the original value fi,A
is within a small bound ε. Note that after each iteration, the predicted profit function
(i.e., MAP-EF) is updated with the new frequency values of the corresponding airlines.
To do this, the features described in Section 4 are also updated.

THEOREM 7.1. If ITER-Freq returns a solution, then that solution is the Nash equi-
librium frequency.

PROOF. In each repeat loop, ITER-Freq finds the best response of all airlines given
their strategies of the last iteration. When the best response strategies of all airlines
in the current iteration are equal to the best response strategies of the last iteration, a
Nash equilibrium is reached according to its definition.

The existence and uniqueness of Nash equilibrium heavily depend on the shape
(e.g., concave, convex) of the profit functions of the competing airlines. Unfortunately,
the profit functions are represented with a very complicated linear algebra form, and
thus it is infeasible to analytically study the existence and uniqueness of Nash equi-
librium frequencies. At the same time, it is known that the runtime complexity of
iteration-based computation of Nash equilibrium is unpredictable, whereas in prac-
tice it normally takes a few iterations before convergence of equilibrium (if achieved).
As a result, we leave further discussion to Section 8 and study these two aspects
experimentally.

8. EXPERIMENTAL RESULTS

In this section, we first compare MAP-EF to several benchmark methods for both route
demand and airline market share prediction. We then show the improvement of the
optimal profit obtained based on MAP-EF prediction compared to that based on tra-
ditional methods. Last, we compare both scalability and optimality of our proposed
algorithms to several benchmarks.

8.1. Market Share and Total Demand Prediction

8.1.1. Experimental Environment. For route-specific predictions, we selected the 700
largest routes in terms of the number of passengers. We predicted market share and
total demand for the first quarter of 2015, the most recent period for which all data
are available, after training with 10 years of data up to the last quarter of 2014. We
tested three pre-existing prediction models for both market share and total demand as
described in Section 2, and our proposed method, MAP-EF.
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For each route, we evaluated with the following three criteria: the correlation coef-
ficient (CC), R2, mean absolute error (MAE) divided by the maximum market share
value of a route or divided by true total demand value. These two metrics are much
stricter than pure MAE values. A good predictor will perform well under all three
metrics.

8.1.2. Experiment Results.
Market share. Table III (respectively Table IV) summarizes mean values (respectively

variances) of the three metrics for all routes (All) and for routes with four or more
operating airlines (|A| ≥ 4)—as the number of airlines increases, predictions become
more challenging. Among existing models, Market1 shows the best performance. Its CC
of 0.82 is quite reasonable with a low variance around 0.18, but its poor R2 of −0.84
indicates some issues. Two metrics revealing contradictory results indicates that the
rise or decline of the predicted values may have high error. Thus, Market1 can tell us
which airline has a larger market share than another, but its absolute market share
value is not reliable. Profit optimization based on the best competitor, Market1, does not
make sense because even a small error in predicting market share may lead to a high
loss in profit. As shown in Tables III and IV, MAP-EF shows very stable performance in
terms of both mean and variance for all metrics, especially when |A| ≥ 4. Note that for
all tables, ↑ indicates that larger values are preferred and vice versa. The best method
is highlighted in yellow.

Total demand. Whereas route-specific market share prediction is a list (one value
for each airline), total demand prediction of a route is a scalar value. Thus, we create
two lists, one of true demand and one of predicted demand, and perform CC and R2

analysis. MAE divided by true demand can be measured for each route, and its mean
and variance are also summarized in Table V. Again, MAP-EF shows better performance
than all other methods.

Effectiveness of additional features in MAP-EF . To evaluate the effectiveness of the
equilibrium price feature (Step 2 in Figure 2) and route clustering (Step 3 in Fig-
ure 2), we created two simpler prediction models: one without Step 2 and the other
without Step 3. On average, the model without the equilibrium feature achieved
88% (respectively 93%) of the full model’s CC (respectively R2), whereas the model
without the clustering achieved 90% (respectively 72%). All of these results indi-
cate that profit maximization should be based on the prediction results of MAP-EF,
whereas “optimal” strategies obtained with other models are more likely to be far
from real optimal strategies. Nevertheless, we note that MAP-EF builds on other pre-
existing prediction models’ findings, and hence we build on top of these prior scientists’
work.

8.2. Profit Maximization

8.2.1. Experimental Environment. We performed experiments on a cluster of 64 machines
running Linux with a 2.4GHz Xeon CPU and 24GB RAM. We selected six major airlines
and calculated the optimal frequency allocation strategy for their top K biggest markets
(a market means an origin-destination pair, i.e., a route). We retrieved real budget
information of routes from the BTS dataset such that the budget for a set of routes is
the sum of their real budgets. For the scalability test, we chose the number of markets
K = {2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30}. We compare the proposed MAP-BBB and MAP-
G with two benchmark algorithms, namely N-Greedy (naive greedy algorithm) and
DP (dynamic programming). DP is a well-known approach for KPs and RAPS, and
we refer to the appendix for a detailed description of DP. MAP-BBB is the proposed
BBB algorithm. We used MAP-BBB as a subroutine for MAP-G to solve the profit
maximization subproblem in each group.
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Table III. Mean Values of CC, R2, and
MAE/Max for Market Share Predictions

Table IV. Variance of CC, R2, and MAE/Max
of Market Share Predictions

Table V. CC, R2, and MAE Divided by
True Demand of Total Demand Predictions

Note: The variance of CC and R2 cannot be de-
fined because it predicts a scalar value for each
route.

Fig. 5. Profit maximization with different predic-
tion methods (relative to MAP-EF) and 90% confi-
dence interval are shown.

8.2.2. Maximum Profit of Different Predictors. Ground truth is not available for the true
maximal profit an airline could possibly make, as their actual quarterly profit may not
reflect the total profit that they could have made. In theory, MAP-BBB is guaranteed
to produce the maximal profit under the assumptions made in our model. As we see
in the following, MAP-BBB works when the number of markets is relatively small.
To explore the profits obtained using predictions made by pre-existing market share
predictors [Hansen 1990; Suzuki 2000; Wei and Hansen 2005], we compare them to
the profits obtained using the MAP-EF predictor. We also obtain the optimal frequency
allocation strategies using MAP-BBB for K ≤ 6 based on different prediction methods
and then calculate the corresponding profit of these strategies using MAP-EF (for larger
K, MAP-BBB, as an exact algorithm, takes an inordinate amount of time). As shown in
Figure 5, the optimal profit obtained by all existing methods has a gap of around 30%
compared to MAP-EF, which is a huge amount considering the scale of profit (typically
several million dollars per route per quarter).

8.2.3. Comparing Different Optimization Algorithms. In this section, we first compare several
algorithms that are targeted at small K (number of markets) values, such as DP,
MAP-BBB, and N-Greedy. Using these algorithms as subroutines, we then test the
performance of MAP-G with large K values. Average optimized profits of airlines and
runtime are summarized in Figures 6 and 7. “Real” stands for the average profit of
airlines calculated with real frequency strategies in the BTS dataset. Interestingly,
Real shows worse results than even the simple N-Greedy. We see that past market
share models can only capture about 75% of the profit generated by MAP-EF. This is a
substantial loss in absolute dollars.

Profit and runtime analysis for K ≤ 6. As we can see from Figure 6(a), since both DP
and MAP-BBB are exact algorithms, their maximum profit values are the same and
are the largest. However, DP’s runtime, shown in Figure 6(b), grows exponentially, and
we could not finish it on time for K ≥ 4. N-Greedy cannot achieve a reasonable profit.
When K = 2, it has around 70% of the optimal profit calculated with exact algorithms;
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Fig. 6. Optimized profits (a) and runtime for K ≤ 6 (b).

Fig. 7. Optimized profits (a) and runtime for K ≥ 5 (b), with the number of routes in a group set to h = 100.

Table VI. Profit Maximization of MAP-G(BBB) with
q = 3 (Relative to the Optimal Profit)

K = 4 K = 5 K = 6
Profit 0.99 0.97 0.99

as K increases, however, it decreases to only 60%. Before K = 5, MAP-BBB can find the
optimal profit in a few seconds, whereas DP takes around 10,000 seconds in average.
This is due to its pseudopolynomial runtime, which behaves more like exponential
runtime than polynomial time. This indicates that MAP-BBB scales really well. The
MAP-BBB is more suitable as the subsolver of MAP-G.

Profit and runtime analysis for K ≥ 5. Table VI shows the optimality of MAP-G
when K = 4, 5, or 6. The exact maximum profit when K ≥ 7 cannot be computed, as
the exact algorithms either run out of memory or take inordinately long. But in cases
when K ≤ 6, MAP-G achieves 99% of the maximum profit, suggesting that it does very
well. As expected, MAP-G is robust with respect to the problem of fluctuating profit
and independent processing of each route from which N-Greedy suffers. Figure 7(a)
shows that MAP-G is consistently better than N-Greedy and that N-Greedy obtains
only about 70% of MAP-G’s profit, suggesting that MAP-G is far superior. We confirm
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Fig. 8. Profits by varying price and frequency of
other competitors.

Fig. 9. Ratio of optimal profits for bounded fre-
quency and unbounded frequency.

that q = 3 (i.e., groups of similar routes are limited to have three routes in them) leads
to an increase in profit than when q = 2 for MAP-G—in Figure 7(a), MAP-G with q = 3
is consistently better than q = 2—which corresponds to our conjecture that optimality
will be improved as the size of groups increases.

The profit increase from Real to the optimized one is quite impressive. Airlines
can increase their profits by at least 55% by adopting MAP based on our model with
available data. But please note that we assume the behaviors of other airlines are fixed,
which is not the case in reality. In the following, we will test the robustness of MAP
(i.e., when the frequency and pricing strategies of other airlines also vary (and are not
known in advance), how much profit can be achieved by the airline to be optimized).

Robustness analysis. In the preceding experiments, we assume that the frequency
allocation and pricing strategies of all other airlines are fixed and known in advance.
We now test the robustness of our approach—that is, we test the airline profits obtained
by our approach when the frequency and pricing strategies of other airlines vary. To
do this, we randomly varied price (respectively frequency) by a rate of {[−20%,−10%),
[−10%, 0), 0, [0, 10%), [10%, 20%]}. We first compute the optimal strategy by assum-
ing that the other airlines’ behaviors are fixed (because they are unknown). We then
evaluate this obtained optimal strategy with the prediction model of the changed price
and the frequency strategies of other airlines. We computed the ratio of the suboptimal
profit (not knowing other airlines’ price/frequency changes) to the optimal profit (know-
ing the changed price/frequency strategies of other airlines), and to calculate the exact
optimal profit on time, we tested K up to 6. For each frequency and price change rate
combination, we generated 30 scenarios with all different random seeds, and profits
are averaged on them. As shown in Figure 8, this profit ratio is always larger than 0.8,
which indicates robustness of our MAP approach even with a 40% fluctuation of both
price and frequency. Moreover, it is shown that for a fixed frequency change rate, the
profit ratio is almost the same for all price change rates, which means that frequency
change is more effective in airlines’ competition. Last, the largest ratio happens in the
case that competitors increase frequencies, which means that MAP is more effective in
competitive markets.

8.3. Extensions of Profit Maximization

Bounded frequencies. Figure 9 shows the averaged optimal profit values of airlines
operating on different number of routes with varying frequency ranges, where the x-
axis represents different values of α from 0 to 0.8 (recall that the frequency range is
set as [ f 0

i (1 − α), f 0
i (1 + α)]), the y-axis represents the optimal profit with bounded

frequencies (related to the optimal profit with unbounded frequencies), and the K
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Fig. 10. Ratio of optimal profits. Fig. 11. Ratio of frequency values.

Table VII. Convergence Behavior of Nash Equilibrium Frequency

K 1 2 3
Percentage of convergence 5/10 4/10 5/9

Number of iterations 1.8 2 2.4

value in the legend means the number of routes. With larger α values (i.e., larger fre-
quency ranges), the airlines can obtain larger short-term profits. However, in practice,
airlines normally do not make abrupt changes in their flight frequencies—even when
larger changes in profits may lead to more profits, which implies the conservativeness
of airlines.

Considering potential profits. To evaluate the effect of airlines’ concern on potential
profits, we first compare the optimal profit obtained in the extended profit optimization
problem in Equations (10) through (12) to that computed by the basic profit optimization
problem in Equations (6) through (8). To reveal a different extent of importance of
potential profits, we set βi as the airline’s per-flight cost of a route Ri multiplied by a
varying factor β. As shown in Figure 10, the x-axis denotes different β values from 0.4
to 0.8, the y-axis denotes the ratio of profits obtained by the preceding two optimization
problems, and K denotes the number of routes considered.

As we can see, the profit ratio is always smaller than 1, and it decreases with
respect to the value of β. Meanwhile, Figure 11 shows the ratio of the averaged optimal
frequency values obtained by the extended profit optimization problem and the basic
profit optimization problem. For all β values, the frequency ratio is always larger than
1, and it increases with respect to the value of β. Combining these two figures, we can
see that (1) when future profit is taken into consideration, airlines do not “rush” for
immediate profit, and (2) when airlines put more weight on potential profits, they tend
to invest more in flight frequencies even if not more profitable currently.

8.4. Equilibrium Frequencies

Here, we evaluate the convergence behavior and profits obtained with Nash equilib-
rium frequency. To do this, we select three of the five largest airlines (denoted as
A1, A2, A3, A4, A5) in the United States, which we assume are strategic and use Nash
equilibrium frequency strategies, and then we evaluate when these three airlines are
competing over a different number of routes (K = 1, 2, 3). Since there are a total of
10 combinations of airlines (C5

3 = 10), for each number of routes, all of the following
results are averaged over 10 cases. Table VII shows the percentage of convergence11

11Note that we regard a case as not able to reach Nash equilibrium when the ITER-Freq algorithm does not
converge within 10 iterations.
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to equilibrium and, if a case converges, the averaged number of iterations required
to reach equilibrium (not counting the cases where it does not converge). For the per-
centage of convergence, the number in the denominator means the number of cases
reported. Note that for K = 3, this number is not equal to 10, because for one case,
not all of the three airlines are operating over the same three routes simultaneously.
We note that some cases do not converge to a Nash equilibrium within 10 iterations.
However, for those cases that do converge, they converge very quickly—1.8 to 2.4 itera-
tions on average. Our interpretation for the cases that do not converge is that for these
routes, the profit function of certain airline(s) obtained with our MAP-EF method is not
concave, and the frequency values are restricted to natural number. We prove in the
following theorem that when the frequency domain is relaxed to continuous and the
profit function of each competing airline is concave, Nash equilibrium always exists.

THEOREM 8.1. When the frequency domain of airlines (described in Equations (14) and
(15)) is relaxed from a natural number (i.e., fi,A ∈ N) to a positive real number (i.e., fi,A ∈
R

+), and the profit function
∑

Ri∈R Ni,A( fi,A) of each airline A is concave with respect to
its frequency strategy fA, Nash equilibrium (with respect to frequency) always exists.

PROOF. Denote the domain described in Equations (14) and (15) (with linear relax-
ation) as D. Accordingly, DA denotes the domain for each airline A, and D−A denotes
the domain for all other competing airlines A ∈ A except A. For each airline A as a
player, given the frequency strategies f−A of all other competing airlines, it will select
an optimal frequency strategy that maximizes its profit function, which is a mapping
φA : DA → D−A defined as φA(f−A) = fA. Furthermore, according to Equations (14)
and (15), both the domain and range of the mapping φA(f−A) are compact (closed and
bounded). Combining the compactness of the domain and range of the mapping with
the concavity of airline A’s profit function

∑
Ri∈R Ni,A( fi,A), it is guaranteed that the

mapping φA(f−A) is nonempty (existence). The compactness of D−A along with the linear
relaxation also implies that the mapping φA(f−A) is upper hemicontinuous.

The existence and upper hemicontinuity of the mapping φA(f−A) are naturally inher-
ited by the mapping φ : D → D defined as φ(f) = ×A∈AφA(f−A), where f is a matrix that
denotes the frequency strategies of all ompeting airlines. In addition, Equations (14)
and (15) (with linear relaxation) imply that D is a simplex (and closed). Applying Kaku-
tani’s fixed point theorem [Kakutani et al. 1941], we conclude that there always exists
a fixed point f in domain D that maps to a same point f in the range D with the
mapping φ(f). As a result, with the linear relaxation and concavity assumption stated
previously, the Nash equilibrium (with respect to frequency) always exists.

It is worth mentioning that in this problem, the concavity of airlines’ profit func-
tions is not a necessary condition (but only sufficient condition) of the existence of the
Nash equilibrium. Nonetheless, evidence (e.g., Figure 1, where profit airlines’ functions
of one route are displayed) shows that the profit functions of airlines are sometimes
nonconcave, which we believe is a major reason some cases do not converge to equilib-
rium within 10 iterations. However, it is still possible that the Nash equilibrium exists
when the profit functions of some competing airlines are not globally concave but, for
example, are locally concave.

To evaluate the profits obtained by airlines with equilibrium strategy, we compare
the profits of the airlines in three situations: (1) airlines use the current frequency strat-
egy, (2) only one airline is strategic, and (3) multiple airlines are strategic. As shown
in Table VIII, we show the profits obtained by the five airlines over different numbers
of routes. For each cell in the table, the left number in the bracket denotes the ratio of
profits in the second and first situations, whereas the right number denotes the ratio
of profits for the third and first situations. Note that “N/A” means not applicable. This
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Table VIII. Profits Obtained by Airlines
Under Equilibrium

is because for K = 1 and K = 2, all cases where airline A4 is involved do not converge
to equilibrium, and thus we do not record the profits for these cases. All profit ratios
are averaged among the cases where equilibrium frequencies converge. For example,
for airline A1 and K = 1, if in four out of six (= C4

2 ) cases the equilibrium frequencies
converge, both the left and right profit ratio numbers for A1 and K = 1 are averaged
over four cases. As we can see, first, for all numbers of routes and all airlines, the prof-
its obtained in both the second (only one airline is strategic) and third (when multiple
airlines are strategic) situations are larger than that obtained in the first situation (air-
lines use current frequency strategy). Second, it shows, somewhat counterintuitively,
that with a few exceptions (highlighted in yellow), the profits obtained when multiple
airlines are strategic are mostly even larger than those obtained when only one airline
is strategic. Note that this result is applicable under the assumption that each airline
is only optimizing one-shot profit. When each airline is only concerned about short-
term profit, instead of “competing” with each other by increasing frequencies, airlines
tend to “concede” and decrease their frequencies for routes that are not profitable. This
result, together with Figures 9 through 11, is a vast improvement that provides an
enlightenment to the researchers for a more precise profit prediction model that takes
into account not only profits in the current period but also profits in the future.

9. CONCLUSION AND FUTURE WORK

In this article, we propose the MAP framework for optimal frequency allocation over
multiple routes. We make three key contributions. First, we design a novel ensem-
ble predictor based on past regression-based work, clustering techniques, and game
theoretic analysis, which have never been utilized for this purpose. Second, based on
the prediction, we design several algorithms to solve the profit maximization problem.
Third, we conduct extensive experiments. We show that the prediction performance
of MAP-EF is much better than past methods. We also compare runtime and optimal-
ity of our proposed optimization algorithms with benchmarks. In addition, we show
that MAP increases profitability per route by at least 55%. Even if there are factors
that we did not consider on the basis of open source data and these numbers would
be reduced substantially if private airline data were used, the increased profitability
would still be substantial. Furthermore, we show that considering bounded frequencies
and future profits, the one-shot profit might be less compared to that without these
concerns, which to some extent reveals the practical implications of the current airline
industry—airlines are usually conservative in changing their frequencies and more
concerned about long-term profits. Last, we show the optimal frequencies and profits
of airlines when there are multiple strategic airlines.

We consider two potential directions for future work. First, our current optimization
considers only frequency allocation. In the future, we may also consider joint optimiza-
tion over frequency and pricing. However, the monotonicity property of revenue and
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cost is not guaranteed with ticket pricing,12 and it is already one of the hardest KPs and
RAPs with only frequency being considered. Second, we currently use a simple linear
term (with respect to frequency) to evaluate the effects of current frequency strategies
on future profits, which has limited veracity to represent long-term profits. To more
explicitly model future profits, a more realistic model should be employed, such as
MDPs, POMDPs, or more sophisticated data mining/machine learning methodologies.

APPENDIXES

A. FEATURE TABLES GENERATED AFTER STEP 2 OF MAP-EF

Tables IX and X separately present the example tables of variables for market share
and total demand prediction, which are generated in Step 2 of MAP-EF. We use Table IX
to illustrate. In this table, the first four columns (Route, Quarter, Airline, and Existing
Variables) are existing features that are also used in past works. Column 5 is the output
in Step 1 of MAP-EF, including the parameter values ηk in the math model and the
intermediate predicted market share values. Column 6 is the difference between the
Nash equilibrium price and the real price of an airline, which is obtained in Step 2.
The highlighted last column (True Market Share) indicates the dependent variable to
be predicted. Based on both the market share–related features extracted in Table IX
and the demand-related features in Table X, we further employ clustering techniques
in Step 3 to find similar routes.

Table IX. Variables to Predict Airline Market Share of R1 by MAP-EF

Note: The True Market Share column (highlighted) indicates the dependent variable to be predicted.

Table X. Variables to Predict Total Demand of R1 by MAP-EF

Note: The True Total Demand column (highlighted) indicates the dependent variable to be predicted.

B. PREDICTION RESULTS OF OTHER REGRESSION TECHNIQUES

Tables XI and XII show the market share prediction performance of all tested regres-
sion algorithms, including MAP-EF(Ridge), MAP-EF(Lasso), MAP-EF(Lars), and MAP-
EF(TheilSen). We refer to Section 8.1 for a description of the experiment settings and
the three metrics (CC, R2, MAE/Max) for measuring prediction performance. As we can
see in Table XI, our selected MAP-EF with RANSAC and GPR (herein called MAP-EF
for short) shows the best performance in the mean values of all metrics. Although the

12By decreasing ticket price, market share will increase but revenue may or may not increase due to the
change of price.
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Table XI. Mean Values of CC, R2 and MAE/Max for Market Share
Predictions. ↑ Indicates that Larger Values are Preferred and

Vice Versa. The Best Method is Highlighted in Yellow

Table XII. Variance of CC, R2 and MAE/Max of Market Share Predictions

Table XIII. CC, R2 and MAE Divided by True Demand of Total
Demand Predictions

Note: The variance of CC and R2 cannot be defined because it predicts a
scalar value for each route.

mean metrics values of some regression algorithms are quite close to MAP-EF (e.g.,
MAP-EF(Lars)), it is shown in Table XII that their variances are much larger than
MAP-EF, which means that others regression algorithms are not as stable as MAP-EF.
This is the main reason we chose MAP-EF.

Table XIII shows the total demand prediction results for all regression algorithms.
As we can see, the mean values of both CC and R2 of MAP-EF are larger than the
other regression algorithms, whereas the mean and variance values of MAE/True
are much smaller. This also indicates the superiority of MAP-EF while predicting
total demand.
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C. DYNAMIC PROGRAMMING APPROACH

The following recurrence formula shows the suggested dynamic programming
approach:

N∗(i, w) = f max
imax

k=0
{N∗(i − 1, w − k · Ci) + Ni(k)},

where N∗(i, w) is the best profit we can get when operating flights from R1 to Ri and the
budget is w. Ni(k) is the profit of operating k flights on Ri. Hence, N∗(n, b) will output
the optimal strategy of the profit maximization.

Example C.1. Assume that there are three routes, R1, R2, and R3, and C1 = C2 =
C3 = 10 and b = 100. The optimal profit is N∗(3, 100) = max{N∗(2, 100), N∗(2, 90) +
N(3, 1), N∗(2, 80) + N(3, 2), · · · }.
D. SCATTER PLOTS

Figure 12 shows full details of market share predictions, especially when |A| ≥ 4 (the
most challenging prediction case). Market share prediction of a route is evaluated with

Fig. 12. Scatter plot of market share predictions when |A| ≥ 4. Each dot corresponds to a prediction of route.
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three metrics: CC, R2, and MAE/Max. For each pair of possible combinations of these
metrics, we show how well each prediction model predicts in the figure. As is shown,
MAP-EF’s dots are always collected at the “good” corner of the chart. To illustrate, we
take Figure 12(a) as an example, which shows the prediction performance of metrics
R2 versus CC. As we know, larger R2 and CC values indicate better prediction. In this
figure, MAP-EF’s dots always stay at the top right corner of the chart, which means
that it always has large R2 and CC values. For the dots of existing prediction methods,
although the dots of some routes stay at the top right corner, the rest of them do not.
Worse still, some dots are far away from the corner. As is pointed out, even a small
prediction gap can lead to a large profit loss in reality. These results indicate that
market share prediction should be performed by MAP-EF.
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