
1

On the Robustness of Average Losses for
Partial-Label Learning
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Abstract—Partial-label learning (PLL) utilizes instances with PLs, where a PL includes several candidate labels but only one is the true
label (TL). In PLL, identification-based strategy (IBS) purifies each PL on the fly to select the (most likely) TL for training; average-based
strategy (ABS) treats all candidate labels equally for training and let trained models be able to predict TL. Although PLL research has
focused on IBS for better performance, ABS is also worthy of study since modern IBS behaves like ABS in the beginning of training to
prepare for PL purification and TL selection. In this paper, we analyze why ABS was unsatisfactory and propose how to improve it.
Theoretically, we propose two problem settings of PLL and prove that average PL losses (APLLs) with bounded multi-class losses are
always robust, while APLLs with unbounded losses may be non-robust, which is the first robustness analysis for PLL. Experimentally, we
have two promising findings: ABS using bounded losses can match/exceed state-of-the-art performance of IBS using unbounded losses;
after using robust APLLs to warm start, IBS can further improve upon itself. Our work draws attention to ABS research, which can in turn
boost IBS and push forward the whole PLL.

Index Terms—Partial-label learning, weakly supervised learning, robustness analysis, robust loss.

✦

1 INTRODUCTION

Deep neural networks (DNNs) have become the par excel-
lence base model in diverse application domains, which
transform the input data (e.g., images) to the specific outputs
(e.g., classes). Much of the success in running DNNs is
attributed to its internal capability to approximate arbitrarily
complex functions mapping input to output [1], [2], [13], [14],
as well as an external driving force—labeled training data. It
is widely believed that the performance of DNNs is improved
as the number of data increases, reaching saturation only
when millions of data are available [43], [54], [57], [77]. Their
remarkable performance usually comes at a prohibitively
high labeling cost, especially when data labeling must be
carried out professionally. A shortage of skilled experts, an
expensive and time-consuming labeling process, and privacy
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issues can pose challenges to the acquisition of high-quality
labels. As a result, learning with imperfect but inexpensive
labels is practically significant.

Crowdsourcing [7] relying on non-expert workers has
recently emerged as an attractive surrogate. Unlabeled
instances are typically assigned to workers of varying
knowledge, and limited by their expertise, they often have
difficulty recognizing the exact label from multiple ambigu-
ous categories. Therefore, crowdsourcing platforms naturally
allow workers to select several possible labels if they are
uncertain about an instance. In this way, an instance is
associated with a set of candidate labels where a fixed but
unknown candidate is the true label. A set of candidate labels
is referred to as a partial label (PL) for an instance, and the
learning paradigm that can handle PLs is termed as partial-
label learning (PLL) [8], [12], [18], [41], [42], [51], [61], [62], [66],
[68], [74], [75], also known as ambiguous label learning [9],
[10], [22], [67] and superset learning [27], [36], [37]. PLL
attempts to infer the optimal multi-class classifier that is able
to accurately predict the true label for unseen instances by
fitting PLs, and more ideally, the hypotheses can be modeled
by DNNs. PLL problems arise in real-world scenarios [36],
[40], [70] as well.

Research on PLL dates back about 20 years. Initially, Jin
and Ghahramani [30] built up a maximum likelihood model
to reassign class-posterior probabilities to candidate labels
iteratively. This work opened up a main research route of
PLL that purifies each PL on the fly to select the most likely
true label during training [10], [16], [17], [30], [61], [66], which
is named the identification-based strategy (IBS). Because IBS
aims at eliminating the ambiguity [74] between individual
instances and their true labels in the training phase, this
technique is also commonly known as disambiguating [12],
[30]. Contrariwise, Hüllermeier and Beringer [26] formalized
PLL as a collaborative problem, where all candidate labels
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Fig. 1. Comparison of a SOTA IBS method PRODEN [41] and our ABS method with CCE or GCE for PLL under different training dataset sizes.
All experiments were repeated 5 times and the standard deviations are presented in shadow. In the upper row, on MNIST, a linear-in-input model
(Linear) and a 5-layer multi-layer perceptron (MLP) were trained by stochastic gradient descent [56]. In the bottom row, on CIFAR-10, an MLP-5 and
a 12-layer convolutional neural network (ConvNet) [33] were trained by Adam [31]. We can clearly see our ABS method with GCE matches the
performance of PRODEN with noise-free PLs, and exceeds PRODEN with noisy PLs, where the true label might not be included in PLs.

contribute to the learning objective equally. The idea is that
the inductive bias underlying the learning process can benefit
disambiguating the given PLs, and let trained models be able
to predict the true label of any instance. Such a scheme is
called the average-based strategy (ABS) [12], [73].

In recent years, the research of PLL has focused on IBS,
since it was believed that the performance of IBS is more
promising, while little attention has been paid to ABS. This
is especially so in the era of deep learning [18], [41], [61].
The pessimism about ABS comes from “memorization” of
over-parameterized DNNs, that is, the perfectly fitted DNNs
can memorize all training samples, even if their labels are
completely arbitrary [15], [71]. ABS is free from identifying
the latent true labels during training, and therefore memorize
all candidate labels. Then the PLL problem would be
degenerated to a multiple-label problem [30], where it is
acceptable that an arbitrary candidate label is taken for the
“pseudo true label”. Then will ABS fail in the true-label
prediction and should ABS just be phased out by the times?

In this paper, we argue the research value of ABS by
showing its practical potential and theoretical superiority,
problematizing the traditional view of ABS and pushing
forward PLL as a whole.

Promising experimental findings. Our work is inspired
by a set of exploratory experiments. We propose a family of
ABS losses named average partial-label (APL) losses, which are
defined as the average of multi-class losses over all candidate
labels. The categorical cross entropy (CCE) loss is the most
popular multi-class loss in deep learning nowadays, and
we observed that all existing deep IBS methods [18], [41],
[61], [67] also adopted the CCE loss. Thus firstly, we trained
several standard deep models with the APL loss equipped
with the CCE loss on benchmark datasets where true labels
were manually corrupted to PLs. In this case, we found
that our ABS method with the CCE loss performs poorly as

was previously thought, shown in Figure 1. Extending these
experiments, we then replaced the CCE loss with another
widely-used loss, i.e., the generalized cross entropy (GCE)
loss [76], and conducted experiments with early stopping [49].
Surprisingly, we observed that our ABS method with the GCE
loss can often be on a par with, or even outperform a SOTA
IBS method PRODEN [41], regardless of datasets, models,
and optimizers. For the details of data generation processes,
please see Section 6.1. These observations challenge common
beliefs since one would expect that ABS is incapable of
distinguishing true labels, thereby hurting generalization,
while the results showed that ABS method with the APL loss
can also predict the true label. Therefore, we would like to
analyze what is it that distinguishes ABS methods that perform
well from those that do not, and the answer to this question
will hopefully help improve ABS.

Novel robustness analysis. To answer this question, we
analyze the robustness of our ABS method to PLs, namely,
whether the classification error on supervised data of the
minimizer of the risk w.r.t. the APL losses is approximated
to that of the Bayes classifier (learned using supervised
data) [20], [21], [44], [46]. Thanks to the concise form of
the APL losses, it is easy to estimate the risk under the
APL losses from PLs and carry out empirical risk minimization
(ERM). Thus we can analyze the robustness through existing
mathematical techniques.

Furthermore, we take one more step forward—unreliable
PLL, which learns from noisy PLs, that is, the candidate-label
set that might not include the true label. As the acquisition of
training data expands, noise is inevitable, therefore, it is not
an overstatement to say unreliable PLL is imminent in real-
world applications. Unfortunately, previous PLL algorithms
concentrate on noise-free PLs, and they have not been able
to handle the unreliable PLL well, as shown in the two
rightmost columns in Figure 1. To avoid confusion, we refer
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to the traditional PLL paradigm reliable PLL, to reliable PLL
and unreliable PLL collectively as “PLL”, and to noise-free
PL and noisy PL collectively as “PL” in later sections.

To theoretical analyze the cause of success or failure
of an ABS method, we formalize two problem settings
for the generation processes of PLs, each with several
specific instances that differ significantly in their conceptual
approaches. With the help of them, we delve into multiple
widely-used multi-class loss functions, and formally prove
that APL losses with bounded loss functions (e.g., GCE) are
always robust under mild assumptions on the domination of
true labels, while APL losses with unbounded loss functions
(e.g., CCE) may not be robust. The theoretical results are
reconciled with experimental observations in Figure 1. Given
that there exists no such analysis for IBS yet, our robustness
analysis is novel for not only ABS but also PLL.

ABS improvement to IBS. Moreover, we rethink the
existing deep IBS methods. We point out that all modern IBS
methods behave like ABS in the beginning of training to prepare
for PL purification and true-label selection. In other words,
they need to use ABS to warm start model training, and use
the pretrained model to identify the true label. Thus they
will select the correct true labels if ABS can become better,
while they have hitherto used unbounded losses throughout
the training process. As a consequence, IBS methods can in
turn improve upon themselves by our study on ABS: we
suggest utilizing bounded losses as a warmup for the first
few epochs. We conduct extensive experiments to verify the
effectiveness of this improvement.

Contributions. Our contributions can be summarized:
• We establish a theoretically grounded framework for ABS

based on a simple yet effective APL loss family, the risk
minimization of which is guaranteed to be robust under
two problem settings for the data generation processes.

• To the best of our knowledge, we are the first to propose the
unreliable PLL paradigm, further developing the practical
potentiality of PLL in society. Our ABS method with the
APL losses provides an effective baseline for unreliable
PLL, and it also works well for reliable PLL without any
modifications.

• We redraw the attention of the PLL community to ABS.
Our research findings can not only improve ABS, but also
enlighten a general principle to incorporate ABS into IBS
methods to further enhance their performance, and push
forward PLL as a whole.

Paper organization. We recapitulate the related work and
discuss the philosophies behind ABS and IBS in Section 2.
In Section 3, we give an overview of the problem settings
and introduce the importance of robustness analysis. In
Section 4, we propose APL losses and formalize generation
processes of PLs. We present our main theoretical results and
experimental findings in Section 5 and Section 6, respectively.
We conclude in Section 7, and defer additional experimental
results and all the proofs to the appendix.

2 RELATED WORK

In this section, we review some seminal work in reliable PLL,
discuss philosophies behind different technical routes of PLL,

and analyze its relation to and difference from other machine
learning problems.

Practical reliable PLL. [30] is one of the milestones for
reliable PLL. It proposed to disambiguate noise-free PLs by
using the expectation-maximization (EM) algorithm. In the
E-step, the class-posterior probability is estimated as the
normalization of current model predictions. In the M-step,
the model parameters are updated in order to minimize the
KL divergence between the given estimated probabilities and
the model-based distributions. Such a strategy that identifies
true labels along with model training is referred to as IBS.
Following the milestone work, many IBS algorithms have
been developed (e.g., [10], [17], [22], [42], [58], [66], [73], [75]).

Reliable PLL also has been studied along the other
research route called ABS, pioneered by Hüllermeier and
Beringer [26]. They determined the class label for an unseen
instance by voting among the candidate labels of its nearest
neighbors. Cour et al. [12] proposed a convex loss that
distinguishes the averaged output over the candidate labels
from outputs over non-candidate labels. It is always believed
that ABS is likely to fail as the outputs of pseudo true labels
would overwhelm the output of true label. Therefore, the
development of the two strategies was not balanced – IBS
has been the focus of considerable recent research whilst ABS
faded away.

From 2020, deep learning starts injecting new vitality into
IBS. Almost at the same time, three works proposed to model
classifiers by DNNs. Yao et al. [67] adopted ResNet as the
backbone together with two specially designed regularizers
for partially-labeled image classification. Yao et al. [68] used
the co-teaching scheme [24] to let two networks interact
with each other regarding the confidence levels of the in-
stances. The method proposed by Lv et al. [41] progressively
identifies true labels based on the memorization effect of
DNNs [3], which is flexible on the learning models and loss
functions. Later, Feng et al. [18] formalized for the first time
the generation process of noise-free PLs, based on which
they derived two provably consistent algorithms. Wen et
al. [61] proposed a leveraged weighted loss to trade off the
losses on candidate labels and non-candidate ones. Wu and
Sugiyama [63] proposed a unified framework includes [18]
as a special case. These three works are both compatible with
DNNs.

Provable reliable PLL. Although the above practical
algorithms have proven empirically successful on specific
domains, there is an elusive theoretical gap in the under-
standing of them. Through the lens of learning theory, some
researchers proposed seminal theoretical works in reliable
PLL. Liu and Dietterich [37] proposed the small ambiguity
degree condition to ensure that classification errors on any
instance have a probability of being detected. The proof of
this theorem requires strict assumptions: the approximation
error equals zero and meanwhile the Bayes error equals
zero (i.e., the deterministic scenario [48]). Cour et al. [12],
Feng et al. [18], and Wen et al. [61] focused on the statistical
consistency. They proposed a consistent loss based on some
specific data generation process or deterministic scenario
assumption, while our findings are general enough to hold
under different generation processes and also a stochastic
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scenario [48].

Philosophies behind IBS and ABS. IBS iterates between
the optimization of a learning model and the identification
of the true label. Typically the identified true label has the
biggest posterior of all labels, and must be in the candidate-
label set. In other words, the “true” one is the “ideal” one. It
implies that the true label can be uniquely determined given an
input—it is satisfied only in the deterministic scenario where
the class-posterior probability of the true label is equal to 1.

However, the natural world is more like the stochastic
scenario that possesses some inherent randomness. In this
setting, the label is a probabilistic function of the input, indi-
cating that the same input will lead to an ensemble of unfixed
output labels. ABS essentially gets rid of the deterministic
scenario by avoiding recognizing the “ideal” label. The “true”
label is considered as an “actually sampled” outcome, and
consequently, the philosophy of ABS is compatible with the
stochastic scenario. Therefore, it is crucial to design advanced
methods and provide theoretical understandings for ABS.

Relevant learning problems. There are some weakly
supervised learning problems related to PLL.
• Complementary-label (CL) learning [19], [28], [29], [69] learns

from weakly-supervised datasets wherein an instance is
equipped with a CL. A CL specifies a class that the pattern
does NOT belong to, so it can be considered as an extreme
noise-free PL case with a fixed number (k−1) of candidate
labels. Then from the algorithmic point, reliable PLL
algorithms can directly handle the CL learning problem,
but not also the other way around.

• Semi-supervised learning (SSL) [6], [47], [59], [72], [78] learns
from datasets consisting of both labeled and unlabeled
data. Since we can regard the universe set of labels as the
candidate labels of unlabeled data, SSL has some relation
with PLL. However, standard SSL assumes that labeled
data are fully supervised, which is different from reliable
PLL, where labeled data are still ambiguous.

• Noisy-label learning (NLL) [23], [24], [38], [50], [53] learns
from noisy supervision where the training data are sam-
pled from a corrupted distribution. Both NLL and PLL
should have an underlying transition matrix linking the
clean class posterior and the observed class posterior of
an instance. Nonetheless, their matrix dimensions are
different: the transition matrix is k × k in NLL and
k × (2k − 2) in PLL.

3 PRELIMINARIES

In this section, we formally introduce reliable PLL and
propose unreliable PLL, and give the definition of robustness.

3.1 Problem Setup
Basic settings. Let us consider a multi-class classifica-
tion problem of k classes. Let X ⊆ Rd be the feature
space, Y = [k]

.
= {1, 2, . . . , k} be the label space, and

S .
= {2[k]\∅\Y} be the PL space. 2[k] means the collection of

all subsets in [k], and |S| = 2k −2 because the empty set and
the whole label set are excluded. We denote by p(x, y) some
probability density of “clean” distribution over X × Y . In
fully-supervised classification, the goal is a learning model

(e.g., a DNN) f : Rd → [k] that can make correct prediction
on unseen inputs, with a set of i.i.d. supervised training
data {(xi, yi)}ni=1 sampled from p(x, y). A classifier f(x) is
routinely assumed to take the following form:

f(x) = argmax
i∈Y

gi(x),

where gi(x) : Rd → R outputs a score for class i. In
this paper, we concentrate on deep learning: assume the
learning model f is a DNN and apply softmax operation to
convert scores into a vector of class-posterior probabilities,
i.e., gi(x) = p(i|x) ∈ ∆k−1 [55], where ∆k−1 denotes the
k-dimensional simplex.

While in PLL, for the notional clean distribution with
probability density p(x, y), we instead observe i.i.d. PL
training data {(xi, si)}ni=1 from a corrupted version p(x, s)
of p(x, y) over X×S . The distribution p(x, s) is such that the
marginal distribution of instances p(x) is unchanged, but the
observed label is corrupted to an ambiguous candidate-label
set. PLL tries to nonetheless learn the optimal classifier by
fitting {(xi, si)}ni=1.

The key assumption in reliable PLL is that the PLs are
noise-free, which means the latent true label yi of an instance
xi is always included in its candidate-label set si, i.e.,

p(yi ∈ si | xi, si) = 1, ∀(xi, yi) ∈ p(x, y), ∀si ∈ S.

We argue that this assumption is fairly strict since the
density p(x, y) of clean distribution is agnostic. For example,
annotations of large-scale datasets usually need to be done by
distributed workers in crowdsourcing platforms. Requiring
crowdsourcing workers to cautiously judge each category
to ensure that the correct one must be chosen partially runs
counter to the original purpose of reducing labeling costs,
and workers are unable to annotate tasks accurately due to
the limited knowledge, even when combining labels pro-
vided by multiple workers, 100% accuracy is not guaranteed.
Another vivid example is medical diagnosis. It is nontrivial
for doctors to make an exact judgment on challenging cases
with one single exam. Instead, giving several suspected
diseases and referring patients to receiving other tests
based on those suspicions are less demanding. However,
owing to high inter- and intra-observer variability [23], some
complicated diseases are less noticeable and often difficult to
detect, even for experts, leading to unreliable candidate labels.
As the acquisition of training data expands, it is pervasive
for label information to be corrupted, but unfortunately, it
has never been considered in previous PLL works. Thus we
introduce a more general data setting titled unreliable PLL:

Definition 1 (unreliable PLL). Given the joint density p(x, y, s)
and its marginal density p(x, s), for any noisy PL data (xi, si)
independently sampled from p(x, s), its true label yi has a
probability of 0 ≤ γ ≤ 1 not being included in the candidate-label
set si, i.e.,

p(yi ∈ si | xi, si) = 1− γ, ∀(xi, yi) ∼ p(x, y), ∀si ∈ S,

where γ is called the unreliability rate. Learning from noisy PL
data is called unreliable PLL.
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3.2 Robustness

The ℓ-risk of f in fully-supervised learning w.r.t. multi-class
loss ℓ : Rk × Y → R+ is defined as follows:

R(f ; ℓ) = Ep(x,y)[ℓ(f(x), y)].

E denotes the expectation and its subscript indicates the
distribution with respect to which the expectation is taken.
The Bayes optimal classifier that minimizes R(f ; ℓ01) is given
by f∗ = argminf R(f ; ℓ01), where the optimality is defined
over all measurable functions. We denote by R∗ .

= R(f∗)
the corresponding Bayes risk under the clean distribution.
Typically, ℓ is classification-calibrated [4], that is, the global
minimizer of R(f ; ℓ) is the same as that of R(f ; ℓ01), which
can be interpreted as controlling the excess 0-1 risk by
controlling the excess ℓ-risk [50].

Denote by ℓ̃ : Rk × S → R+ a suitably modified ℓ for
use with PLs (defined in Section 4.1). Similarly, the PLL risk
under p(x, s) w.r.t. PLL loss ℓ̃ is defined as

R̃(f ; ℓ̃) = Ep(x,s)[ℓ̃(f(x), s)].

The aim of PLL is to predict the true label for unseen
instances. However, most of the standard learning methods
are hard to perform well as they tend to exhibit overfitting
on the candidate labels in such scenarios [41].

Constructing robust losses from the perspective of the
objective function is a powerful means in weakly supervised
learning [21], [44], [46]. Its focus is to derive the theoretical
guarantee for robust losses so that the learned classifier
based on weak supervision approximates the Bayes opti-
mal classifier. Concretely, a loss ℓ̃ is robust to PLs (more
specifically the risk minimization with ℓ̃ is asymptotically
robust to PLs) if it guarantees that the optimal PLL classifier
f̃∗ = argminf R̃(f ; ℓ̃) converges to the Bayes optimal
classifier.

Definition 2 (PL-robustness). We say that a loss ℓ̃ is robust to
PL data (PL-robust) if for any p(x, y) ∈ X × Y , R(f̃∗)−R∗ is
bounded.

R(f̃∗)−R∗ is bounded means that f̃∗ learned from PL
data has a similar classification error to f∗ on the supervised
data, i.e., minimizing R̃ yields an approximate solution
that minimizes R. A guarantee of robustness thus sets an
analogous calibration theory [4] of PLL. Let R̃∗ .

= R(f̃∗).
Then the robustness condition will often be rewritten as that
R̃(f∗) − R̃∗ is bounded, which is slightly weak because
it only signifies that f∗ is the approximated minimizer of
R̃(f∗), but does not guarantee the classification performance
of f̃∗ on the supervised data.

In statistical learning theory, consistency [48] is another
important concept. We use the superscript ⋆ to indicate
the optimal solution over a given hypothesis class F ,
i.e., f⋆ = argminf∈F R(f ; ℓ), f̃⋆ = argminf∈F R̃(f ; ℓ̃).

Suppose ˆ̃
f = argminf∈F

1
n

∑n
i=1 ℓ̃(f(xi), si) is the PLL

empirical risk minimizer. The quality of ˆ̃
f with respect to f⋆

is measured by the estimation error:

R(
ˆ̃
f)−R(f⋆) = (R(

ˆ̃
f)−R(f̃⋆)︸ ︷︷ ︸

RHS1

+(R(f̃⋆)−R(f⋆))︸ ︷︷ ︸
RHS2

.

(1)

If as n → ∞, there is R(
ˆ̃
f) → R(f⋆), we say the PLL

is consistent. According to the universal approximation
theorem [2], [13] that using a proper DNN, the hypothesis
space F is sufficiently complex to contain the Bayes optimal
classifier, we have f∗ = f⋆, f̃∗ = f̃⋆. Thanks to this,
the concepts of robustness and consistency can be well
connected in deep learning: RHS2 in Equation (1) is just the
robustness measure. Therefore, consistency is a sufficient but
not a necessary condition of robustness. Although robustness
is a weaker property than consistency, its advantage lies
in no need to design an ad-hoc loss for each specific
data generation process, which is generally required in the
consistent methods. In conclusion, robustness is a common
and critical theoretical guarantee in supervised learning, but
the mechanism by which it might be achieved remains barely
understood in PLL. To the best of our knowledge, this is the
first work to analyze the robustness of PLL.

4 METHODOLOGY

In this section, we propose a family of APL loss functions for
PLs, and introduce the generation processes of PLs.

4.1 A Family of Average PL (APL) Losses

In this paper, we propose a family of loss functions named
the average PL (APL) losses following the principled ABS:

ℓ̃(f(x), s) =
1

|s|
∑

i∈s
ℓ(f(x), i), (2)

where | · | represents the cardinality. Our learning formu-
lation is built on a simple scheme that combines multiple
multi-class losses on the individual candidate. For exam-
ple, we can use the GCE or CCE loss as the component
ℓ. If s is a singleton, the APL loss reduces to the ordi-
nary multi-class loss. The idea of the APL losses comes
from a practically motivated process proposed by Feng et
al. [18]: they assumed that a candidate-label set is feature-
independent and uniformly drawn given a specific true label,
i.e., p(s|y,x) = p(s|y) = const. if y ∈ s, and p(s|y) = 0
otherwise. The generation process of noise-free PLs can thus
be formalized as p(s|x) =

∑
y p(s|y)p(y|x) ∝

∑
y∈s p(y|x).

Then we could consider replacing the posterior with a loss
and obtain ℓ̃(f(x), s) ∝

∑
y∈s ℓ(f(x), y). It inspires the

formula of the APL losses, and the normalization term 1/|s|
breaks the bias to training data with more candidate labels.
The APL losses encourage the larger outputs on candidate
labels, while do not explicitly guarantee the true label has the
biggest score. Ideally, a“nice” loss ℓ can drive up the output
of the true label implicitly resorting to the inductive bias,
while a “bad” loss results in an inability to disambiguate.
Thus, the issue now is that which multi-class loss functions
can bound R(f̃∗)−R∗ (or R̃(f∗)− R̃∗), that is, make our
ABS method with the APL loss PL-robust.

Let us give an motivating example. {z1, z2} ∈ s are two
candidate labels of an instance x, and z1 is true. Then the
APL loss of f on this sample is ℓ̃(f(x), s) = 1

2 [ℓ(f(x), z1) +
ℓ(f(x), z2)]. We would like to increase gz1(x) to get it close
to 1 so that gz2(x) is decreased, signifying f successfully
remembers the true label without the interference of z2.
Paradoxically, because all candidate labels contribute to
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TABLE 1
Bounds of multi-class losses, including the mean absolute error (MAE) loss, the mean square error (MSE) loss, the reverse cross entropy (RCE)

loss [60], the generalized cross entropy (GCE) loss, the partially Huberised cross entropy (PCE) loss [46], the categorical cross entropy (CCE) loss,
and the focal loss (FL) [35].

Loss function Bound of loss Bound of the sum of losses over all classes

MAE ℓ(f(x), i) = ||ei − f(x)||1 0 ≤ ℓ(f(x), i) ≤ 2
∑k

i=1 ℓ(f(x), i) = 2k − 2

MSE ℓ(f(x), i) = ||ei − f(x)||22 0 ≤ ℓ(f(x), i) ≤ 2 k − 1 ≤
∑k

i=1 ℓ(f(x), i) ≤ 2k − 2

RCE ℓ(f(x), i) = −
∑k

j=1 gj(x) log e
i
j 0 ≤ ℓ(f(x), i) ≤ −A,A < 0

∑k
i=1 ℓ(f(x), i) = A− Ak

GCE ℓ(f(x), i) = 1−gi(x)
q

q 0 ≤ ℓ(f(x), i) ≤ 1
q , q ∈ (0, 1] k−k1−q

q ≤
∑k

i=1 ℓ(f(x), i) ≤ k−1
q

PCE ℓ(f(x), i) =

{
−τgi(x) + log τ + 1, if gi(x) ≤ 1

τ ,

− log gi(x) otherwise
0 ≤ ℓ(f(x), i) ≤ log τ + 1, τ > 1

k log k ≤
∑k

i=1 ℓ(f(x), i) ≤ (k − 1)(log τ + 1), if k ≤ τ

k − τ + k log τ ≤
∑k

i=1 ℓ(f(x), i) ≤ (k − 1)(log τ + 1), if k > τ

CCE ℓ(f(x), i) = − log gi(x) ℓ(f(x), i) ≥ 0 Unbounded

FL ℓ(f(x), i) = −(1− gi(x))
τ log gi(x) ℓ(f(x), i) > 0, τ > 0 Unbounded

minimizing ℓ̃, neither ℓ(f(x), z1) nor ℓ(f(x), z2) should be
too large. Intuitively, if ℓ has an upper bound, then the value
of ℓ̃ is acceptable even if gz2(x) is close to 0. But if this is not
the case, the optimization algorithm must keep gz2(x) not too
small to ensure that ℓ̃(f(x), z2) is not too small, then memory
for the true labels is hindered. The empirical observations in
Section 1 also confirm this inference.

We investigate a series of non-negative multi-class loss
functions and prove that the APL losses with bounded multi-
class loss functions 1 are robust to (both noise-free and noisy)
PL data in Section 5.

Definition 3. We say a multi-class loss function is bounded if
for any classifier f and input x ∈ X , the sum of losses over all
classes is bounded by certain constants C1 and C2:

C1 ≤
∑k

i=1
ℓ(f(x), i) ≤ C2. (3)

Especially, if C1 = C2 = C, i.e.,
∑k

i=1 ℓ(f(x), i) = C, the loss
function is said to be symmetric.

We should point out that the loss of a bounded loss
function on any class is also bounded: 0 ≤ ℓ(f(x), i) ≤
U, ∀i ∈ Y , where U is a constant. We examine widely-used
loss functions and list their bounds in Table 1. We use a
one-hot representation for each label, i.e., if the label y = i,
its label vector is represented as ei, where the j-th element
is given by eij = 1 if i = j, otherwise 0. Then for symmetric
losses, ℓ(f(x), j) = C/(k − 1),∀j ̸= i.

4.2 Data Generation Processes
To provide the main insights, we have to propose some
assumptions on the data generation processes. In the follow-
ing, we formally establish two general problem settings for
the generation processes of noise-free PLs and noisy PLs,
and for each of them we further propose several particular

1. Notice that if the marginal density p(x) is compactly supported,
given supf∈F ||f ||∞ ≤ Cf where Cf > 0 and F is a chosen function
class, ℓ(f(x), y) with any surrogate loss function ℓ is bounded. In this
paper, “bounded” refers to the property of the loss function itself without
regard to specific data distributions, function classes, or regularizations.

implementations motivated by realistic scenarios. We follow
the assumption in prior reliable PLL works [18], [36], [61] and
the classical feature-independent model of label noise [24],
[45], [50], [53], [64] that the observation is conditionally
independent of input given the true label, as a result there are
s ⊥ x | y, p(s|x, y) = p(s|y). Then the density of corrupted
distribution is formulated as p(x, s) =

∑
y∈Y p(s|y)p(x, y).

4.2.1 Filtered sampling process for noise-free PLs

In a pioneering study involving PLL generation processes,
the PL is assumed to be independently and uniformly
sampled given a specific true label [18]. It is inspired by
a real-world cost-saving application of labeling: without any
prior knowledge, the labeling system generates a random
PL for each sample and asks the human annotators whether
the set contains the true label. Resampling PLs for samples
for which the annotators answered “NO”. While it would
be easy to make the labeling system have some rudimentary
knowledge, for example, “salmon” and “spacecraft” do not
usually appear in the same set. Then we generalize the
uniformly sampling assumption and propose the Filtered
sampling process. Formally speaking, given a specific true
label, a noise-free PL is assumed to be sampled as a whole:

p(s|y) =
{
ηys if y ∈ s,

0 if y /∈ s,
(4)

where 0 ≤ ηys ≤ 1 is the sampling probability of the label set s
given the true label y, and

∑
y∈s η

y
s = 1.

This generation process can be written in the form of
a transition matrix [24]. We enumerate all the label sets s
in the PL space S and specify an index l for each set, i.e.,
li ∈ S (i ∈ [2k − 2]). By this notation, we summarize all
the probabilities into a PL transition matrix Qk×(2k−2), where
Qij = p(s = lj |y = i). Further taking into account the
assumed data distribution in Equation (4), we can instantiate
Q as Qij = ηilj if i ∈ lj , otherwise Qij = 0. Then for all
j ∈ [2k − 2], there is p(s = lj |x) =

∑
i∈lj

p(s = lj |y =
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i)p(y = i|x). Thus we have

p(x, s) = Q⊤p(x, y), (5)

where ⊤ denotes the transpose.

Flipping model. In the real world, however, there are com-
plex and varying correlations between categories, making
it common to get some similar categories mixed up, so that
some combinations of labels appear more frequently than
others. The probability of an incorrect label appearing in
the PL of a sample depends on how similar it is to its true
label. We therefore propose the Flipping model as a means of
representing this more realistic situation, where a noise-free
PL is supposed to be generated by adding each label to the
candidate-label set independently:

p(s|y) = M
∏

i∈s
ηyi

∏
i/∈s

(1− ηyi ), (6)

where

ηyi = p(i ∈ s|y),∀i ∈ Y, M = 1/
(
1−

∏
i̸=y

ηyi
)
.

ηyi is the flipping probability that depicts the probability of
i-label being included into the candidate-label set given the
specific class label y, and ηyy = 1. For i ̸= y, it satisfies
0 ≤ ηyi < 1. M excludes the set whose cardinality equals k
by re-sampling.

Similarly, the PL transition matrix can be formulated as
Qk×k where Qij = p(j ∈ s|y = i) = ηij and the diagonal
elements of Q are all 1. If q(x) is a k-dimension vector where
the j-th element qj(x) is the probability p(j ∈ s|x), then

q(x) = Q⊤p(y|x), (7)

p(x, s) = M
∏

i∈s
qi(x)

∏
j /∈s

(1− qj(x))p(x).

The Flipping model is a well-established approach
for characterizing the data generation process in weakly
supervised learning problems represented by NLL. This
model emphasizes the commonalities among categories
and quantifies the likelihood that an error category is
indistinguishable from the true category, parameterized by a
class-level transition matrix. In contrast, in PLL, the Filtered
sampling process serves as the "rell/complete2" Flipping
model, as annotations in PLL form a transition matrix at
the collection (i.e., PL) level. However, the Filtered sampling
process typically fails to decouple the flipping probabilities of
individual labels, making it challenging to discern similarities
among categories. Consequently, special consideration of the
Flipping model remains necessary.

4.2.2 Global sampling process for noisy PLs

As a reminder, the sampling process entails manual filtering
of non-conforming label sets and subsequent resampling,
leaving room for potential noisy PLs in the event of errors
by human annotators. Consequently, all elements within the
PL space possess a non-zero probability of being sampled:

p(s|y) = ηys , ∀s ∈ S, (8)

2. Given a sample, the probability of the generation of its correspond-
ing PLs can necessarily be formulated by the Filtered sampling process,
but not necessarily by the Flipping model.

where 0 ≤ ηys ≤ 1. If the sampling probability for all noise-
free PLs is (1 − γ)/(2k−1 − 1), and that for all noisy PLs
equals γ/(2k−1−1), then the sampling probability under the
Global sampling process is said to be uniform. In addition,
the density p(x, s) takes the same form as Equation (5) while
even if i /∈ sj , Qij may be larger than 0.

Next we discuss two specific generation patterns of the
Global sampling process in terms of how noise-free PLs are
contaminated, i.e., the true class is obfuscated by another
similar class, or noise-free PL is deliberately corrupted,
respectively.

Confusing model. In this type of setting, the true class was
(accidentally) confused with other (similar) classes, leading
to the misuse of an incorrect label as the original true label
in the PL generation process. Therefore, the Confusing model
consists of two steps.

First, the true label is corrupted. Suppose the class-
conditional label noise (CCN) model [24], [45], [50], [53], [64]—
the most widely-used model for noisy label classification—
is applied, where each instance from class y has a fixed
probability of being assigned to label i, that is

ȳ =

{
y with probability 1− γy,

i, i ∈ Y, i ̸= y with probability γ̄y
i ,

(9)

where 0 ≤ γy ≤ 1 is the label noise rate. The noise is said to
be uniform if γy = γ and γ̄y

i = γ/(k− 1), otherwise it is said
to be asymmetric. The corrupting step can be formalized by
the noise transition matrix T [53], where Tij = p(ȳ = j|y = i).
Second, the corrupted label ȳ serves as the true label y to
generate candidate labels, which signifies we require noisy
PLs to contain ȳ, in the same way that noise-free PLs must
contain y. Accordingly, the following equation holds:

p(x, s) =
∑

y,ȳ∈Y
p(s|ȳ)p(ȳ|y)p(y|x)p(x) (10)

=
∑k

j=1
p(s|ȳ = j)

∑k

i=1
T⊤
ij p(y = i|x)︸ ︷︷ ︸

p(ȳ=j|x)

p(x),

where p(s|y) can be expanded into the form of Equation (4)
or Equation (6).

Destructing model. We believe that noise-free PLs can also
be (intentionally) destructed. For example, there may exist
spammers who deliberately choose label sets that are totally
irrelevant to the tasks. Hence we propose the Destructing
model that also contains two steps.

Noise-free PLs are first generated by the Filtered sampling
process, followed by taking its complement with the set
flipping rate γs:

s =

{
s with probability 1− γs,

s with probability γs,
(11)

where 0 ≤ γs ≤ 1. Constructing the complement transition ma-
trix T (2k−2)×(2k−2), each row (column) of which represents
a fixed label set in the PL space. Tij = γs if the i-th and the
j-th label set are complementary to each other, Tii = 1− γs
for all i ∈ [2k−2], and 0 otherwise. Then the density function
of the PL distribution p(x, s) is multiplied by T on the basis
of Equation (5) or Equation (7).
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Similar to the noise-free scenario, the Global sampling
process provides a thorough description of the sampling pos-
sibilities for all PLs, whereas the Confusing and Destructing
models, which are particular instances of the Global sampling
process, focus primarily on elucidating the techniques and
approaches used to corrupt true labels and generate PLs.

5 THEORETICAL RESULTS

The studied generation processes of PLs allow us to theoret-
ically understand the properties of the APL losses. In this
section, we detail sufficient conditions under which multi-
class loss functions make PLL with the APL losses robust in
various scenarios, and conclude some instructive findings.

5.1 Robustness to Noise-Free PLs

Lemma 1. Any symmetric loss satisfies f̃∗ = f∗, and any
bounded loss satisfies 0 ≤ R(f̃∗)−R∗ ≤ A′(C2−C1)

A−A′ , where A =
1

2k−1−1

∑k−1
j=1

1
j

(k−1
j−1

)
and A′ = 1

2k−1−1

∑k−1
j=2

1
j

(k−2
j−2

)
under

the Filtered sampling process with uniform sampling probability.

Theorem 1. With the Filtered sampling process, suppose R∗ = 0
and ∀i ̸= y,

∑
s:i∈s η

y
s < 1, then

(1) for any symmetric loss, f̃∗ = f∗;
(2) for any bounded loss, 0 ≤ R̃(f∗) − R̃∗ ≤ A(C2 − C1),

where A = Ep(x,y)

∑k−1
i=1

1
i

∑
s:|s|=i η

y
s .

We introduce two quantities, A is the expectation of
a weighted sum of p(y ∈ s|y) over p(x, y), and A′ is the
weighted sum of p(i ∈ s, i ̸= y|y). Theorem 1 establishes
that under certain conditions, the risk of the Bayes classifier
on PL data approaches the minimal PLL risk w.r.t. bounded
losses. The tighter the bound of the bounded loss, the more
robust the APL loss, and the extreme case is achieved by
the symmetric loss which leads to statistical consistency
(refer to Section 3.2). The crucial condition for PL-robustness
concerns the sampling probability. Since

∑
y∈s η

y
s = 1, the

condition
∑

s:i∈s η
y
s < 1, ∀i ̸= y signifies that any label

other than the true one may not necessarily included in the
candidate-label set, i.e., the domination of true labels. Another
constraint, R∗ = 0, implies that classes are separable in
fully-supervised classification if the multi-class loss ℓ is
classification-calibrated. Note that experimental results later
demonstrate that even if this constraint is not satisfied,
bounded losses still exhibit good empirical PL-robustness.

In Lemma 1, the uniform sampling probability has
already ensured the domination of true labels, and the
separability constraint R∗ = 0 is eliminated, which implies
that even in the stochastic scenario, learning with the APL
losses can be PL-robust. Therefore, in this case, the robustness
is satisfied without any constraint. In addition, the excess
0-1 risk is bounded, which signifies that the optimal PLL
classifier approaches the Bayes classifier, so that the PL-
robustness is better guaranteed.

Moreover, if we take into account the shared information
among categories the utilize the Flipping model to formalize
the generation process, we can obtain the subsequent PL-
robustness conditions.

Corollary 2. With the Flipping model, suppose R∗ = 0, then
(1) for any symmetric loss, f̃∗ = f∗;

(2) for any bounded loss, 0 ≤ R̃(f∗)−R̃∗ ≤ MA(C2−C1),
where A = Ep(x,y)[

∏
i̸=y(1− ηyi )+

1
2

∑k
i=1,i̸=y η

y
i

∏
j ̸=y,i(1−

ηyj )+
1
3

∑k−1
i=1,i̸=y

∑k
j=i+1,j ̸=y η

y
i η

y
j

∏
m̸=y,i,j(1− ηym)+ . . .+

1
k−1

∑k
i=1,i̸=y(1− ηyi )

∏
j ̸=y,i η

y
j ].

If ηyi = η then, for any symmetric loss, f̃∗ = f∗; for any
bounded loss, 0 ≤ R(f̃∗) − R∗ ≤ A′(C2−C1)

A−A′ , where A =∑k−1
j=1

1
j

(k−1
j−1

)
ηj−1(1−η)k−j and A′ =

∑k−1
j=2

1
j

(k−2
j−2

)
ηj−1(1−

η)k−j .

Comparing this corollary versus Theorem 1, we observe
that their sufficient conditions and upper bounds on the risk
difference differ in notation, but are conceptually similar.
Notably, the flipping probability is not constrained due to
the diagonal-dominance of the PL transition matrix, which
ensures the prevalence of true labels.

5.2 Robustness to Noisy PLs

In this section, we present formal statements for the Global
sampling process, and provide intuitive statements for the
specific models of noisy PLs, as articulated in Corollary 4,
with more formal mathematical details deferred to Appendix
A.

Lemma 2. Any symmetric loss satisfies f̃∗ = f∗, and any
bounded loss satisfies 0 ≤ R(f̃∗) − R∗ ≤ A′(C2−C1)

A−A′ , where
A = 1−γ

2k−1−1

∑k−1
j=1

1
j

(k−1
j−1

)
and A′ = 1−γ

2k−1−1

∑k−1
j=2

1
j

(k−2
j−2

)
+

γ
2k−1−1

∑k−1
j=1

1
j

(k−2
j−1

)
under the Global sampling process with

uniform sampling probability, if label noise rate γ < 1/2.

Theorem 3. With the Global sampling process, suppose R∗ = 0
and the domination relations hold: d(y) > d(j) ∀j ̸= y where d(·)
is defined as d(i) = Ep(x,y)

∑k−1
j=1

1
j

∑
s:|s|=j,i∈s η

y
s ,∀i ∈ Y ,

then
(1) for any symmetric loss, f̃∗ = f∗;
(2) for any bounded loss, 0 ≤ R̃(f∗)−R̃∗ ≤ d(y)(C2−C1).

In Theorem 3, the domination relations mean that the
expectation of the weighted sum of p(y ∈ s|y) is larger
than that of p(i ∈ s|y) for any incorrect label i ̸= y over
p(x, y). The condition for robustness to noisy PLs tightens
the constraint on the dominance relationship compared to
noise-free PLs, from the sum of probabilities to the weighted
sum of probabilities. Whereas, with the uniform sampling
probability, the constraint is relatively loose: the probability
of outputting noise-free PLs exceeds fifty percent, requiring
only slightly more domain knowledge than a completely
random labeling system.

To encompass a variety of cases, we summarize the
Confusing and Destructing models in the following corollary
and then discuss each in detail.

Corollary 4. With the Confusing model or the Destructing model,
suppose R∗ = 0 and the domination relations hold: the expectation
of the weighted sum of p(y ∈ s|y) is always larger than that of
p(i ∈ s|y),∀i ̸= y over p(x, y), then

(1) for any symmetric loss, f̃∗ = f∗;
(2) for any bounded loss, 0 ≤ R̃(f∗) − R̃∗ ≤ A(C2 − C1),

where A is a constant associated with p(y ∈ s|x).

For the Confusing model, we assume uniform cases in the
generation of candidate labels to simplify the process. This
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Fig. 2. Test accuracy of our ABS method with bounded versus unbounded losses on benchmarks.

simplification degenerates the domination relations to γ̄y
i <

1− γy, ∀i ̸= y, which we were a little surprised to find that
it becomes identical to the condition for asymmetric-noise-
tolerance (Theorem 3 in [20]). Further supposing that the true
labels are corrupted uniformly, we have γ < (k − 1)/k. This
is the same as the noise-tolerant condition under uniform
noise (Theorem 1 in [20]). These findings indicate that the
robustness condition to noisy PLs is exclusively determined
by the label noise rate as long as the candidate labels are
generated uniformly. Moreover, the constraint R∗ = 0 is
removed and R(f̃∗)−R∗ is bounded in this case.

Next we probe into the Destructing model through similar
renderings. Assuming uniform generation of candidate
labels, the domination relations are reduced to γs < 1/k, ∀s.
If the probability of destructing every candidate-label set is
also uniform, the set flipping rate is also the unreliability
rate, namely γs = γ, ∀s. Then we again show that the
PL-robustness condition is solely dependent on the level of
unreliability in the candidate-label set.

Remarks. Our theoretical analysis on the APL losses for
learning with PL data reveals several critical conditions for
achieving PL-robustness. We now make several observations
about all the theorems.

• The key factor that makes the APL losses PL-robust is
consistent across all scenarios: the weighted sum of the
probabilities of the true labels associated with the instances
dominates;

• For noisy PL data, if the candidate labels are generated uni-
formly, the robustness condition is exclusively determined
by the degree of unreliability rate;

• In the uniform case, the excess 0-1 risk w.r.t. the clean
distribution of the optimal PLL classifier can be upper
bounded in proportion to the difference between the upper
and lower bounds of the loss function C2 − C1. A smaller
difference implies a smaller upper bound on the excess
risk, implying a more robust APL loss, and then the most
desirable situation (statistical consistency) can be achieved
by the symmetric losses. Its constant of proportionality

increases with the probability of incorrect labels, accord
with the intuition that higher stochasticity makes learning
difficult;

• In the more general cases, when learning with a bounded
loss, we can only bound the excess ℓ̃-risk under the
corrupted distribution, whose upper bound, up to a
constant less than 1, equals to C2 − C1.

The above theoretical findings provide guidance to the
design of losses of ABS. Note that IBS is heuristic and not
really ERM-based (refer to Section. 6.3), and on this account,
the robustness of IBS could hardly be proven.

5.3 Estimation Error Bound

Let us review the relation between robustness and consis-
tency again. Now we have proved the condition that bounds
RHS2 in Equation (1) (assuming F is instantiated to be a
DNN). Then we establish the estimation error bound and
show that as the number of training data approaches infinity,
RHS1 is also bounded.

Suppose Gy be a class of real functions, and F =
⊕y∈[k]Gy be a k-valued function class. Assume there are
Cf > 0 and Cℓ > 0 such that supf∈F ||f ||∞ ≤ Cf and
supx∈X ,f∈F,y∈Y ℓ(f(x), y) ≤ Cℓ, and assume ℓ(f(x), y) is
ρ-Lipschitz continuous for all ||f ||∞ ≤ Cf . The Rademacher
complexity of Gy over p(x) with sample size n is defined as
Rn(Gy) [5], [48]. Then we have the following estimation error
bound.

Theorem 5. For any δ > 0, we have with probability at least
1− δ,

R̃(
ˆ̃
f)− R̃(f̃⋆) ≤ 4

√
2kρ

k∑
y=1

Rn(Gy) + 2Cℓ

√
log(2/δ)

2n
.

(12)

As n → ∞, Rn(Gy) → 0 for all parametric models with a
bounded norm such as DNNs trained with weight decay [39],

which signifies R̃(
ˆ̃
f) → R̃(f̃⋆).
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Fig. 3. Confidence margin of our ABS method with bounded versus unbounded losses on benchmarks.

6 EXPERIMENTAL FINDINGS

In this section, we provide some empirical understandings of
our ABS method, experimentally validating our theoretical
findings on benchmark datasets, which then enlighten an
improvement of IBS methods. The implementation is based
on PyTorch [52] and experiments were carried out with
NVIDIA Tesla V100 GPU.

6.1 Empirical Understanding of APL Losses
Our ABS method with bounded loss functions are robust.
We first run a set of experiments on MNIST [34] and CIFAR-
10 [32] to verify whether our ABS method with bounded
losses is robust to both noise-free PLs and noisy PLs, whereas
they are not with unbounded losses. We generate noise-
free PLs by the Flipping model with a uniform flipping
probability of 0.1, and then noisy PLs by the Confusing
model with γ = 0.3. On each dataset, we train two networks
using the APL losses with different multi-class losses, e.g.,
bounded versus unbounded ones in Table 1. The RCE loss is,
up to a constant of proportionality, equivalent to the MAE
loss and omitted. We set the focusing parameter 0.5 for the
FL loss. Detailed settings are in Section 6.2.

The test accuracy with different losses is presented in
Figure 2. As we have theoretically proved, learning with
bounded losses is robust: after reaching a peak in test
accuracy, their test accuracy is relatively flat throughout the
training process. However, unbounded losses exhibit signifi-
cant overfitting in most cases. Specifically, the symmetric loss
MAE has the smoothest curve, while other bounded losses
would be slightly overfitting in difficult learning scenarios.
The same results are shown across different datasets, under
different data settings, with different models. In general, the
more difficult the learning scenario is (e.g., harder datasets
and weaker supervised information), the larger the gap
between bounded loss and unbounded loss is, because
unbounded losses overfit more severely.

How do the models fit the candidate labels when training
with the APL losses? As we discussed before, ABS methods

are free from identifying the true labels during training. One
may wonder how ABS methods learn from PL data. This
raises the question: is the learned model able to identify
the true label of the training samples? We investigate this
problem by looking at the confidence margin between the
model’s output on the true label and the maximum output
on the other labels, i.e., confidence−margin(xi) = gyi(xi)−
maxj ̸=yi gj(xi). The larger the margin is, the greater the
likelihood that the model will successfully identify the true
label for the training samples is. In Figure 3, we illustrate
the mean confidence margin over the training set. We find
that the margins trained with bounded losses are generally
much higher than those trained with unbounded losses. This
means that although our ABS method does not explicitly
disambiguate the candidate-label sets during the training
phase, our ABS method with bounded losses is still able
to robustly fit the true labels against the interference of
other candidates, thereby explaining the good prediction
performance in the test set.

6.2 Evaluation on Benchmark Datasets
Setup. Experiments were conducted on four widely-used
benchmark datasets including MNIST, Fashion-MNIST [65],
Kuzushiji-MNIST [11], and CIFAR-10. On each dataset, we
generated PLs by (Case 1) the Filtered sampling process
with a uniform sampling probability; (Case 2) the Flipping
model with a uniform flipping probability of 0.1; (Case
3) the Confusing model where the label noise rate equals
0.3 and the candidate labels were generated according to
Case 2; (Case 4) the Destructing model where the candidate
labels were generated according to Case 1 and the set
flipping rate equals 0.3. We leave out 10% of the corrupted
training samples as a validation set, which is for model
selection. Further experiments on the generation processes
with different parameters can be found in Appendix C.

We employed various base models including a linear-
in-input model (Linear), a 5-layer perceptron (MLP), and a
12-layer convolutional neural network (ConvNet) [25]. Linear
was trained on MNIST-like datasets, ConvNet was trained
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TABLE 2
Means±standard deviations of test accuracy in percentage with different data generations.

Dataset Model Case
Bounded Unbounded

MAE MSE GCE PCE CCE FL

MNIST

Linear

1 91.17± 0.07 87.61±0.07 90.40±0.12 86.28±0.40 85.13±0.29 85.10±0.24
2 92.25±0.08 92.03±0.10 92.33±0.06 92.71± 0.08 89.51±0.17 89.71±0.13
3 91.90± 0.13 89.90±0.10 91.86±0.10 91.25±0.19 87.28±0.27 87.08±0.27
4 90.37± 0.19 82.70±0.49 85.87±0.48 80.61±0.41 67.78±1.19 67.63±0.84

MLP-5

1 94.44± 0.19 82.28±0.83 92.77±0.21 87.62±0.27 84.80±0.50 84.15±0.73
2 96.71± 0.05 95.16±0.19 96.49±0.15 95.92±0.13 93.08±0.30 92.62±0.18
3 95.87± 0.85 80.71±0.52 95.34±0.19 91.14±0.25 77.68±0.53 75.66±0.74
4 93.18± 0.47 89.12±1.03 89.19±0.47 86.52±0.82 77.57±1.32 76.45±0.91

Fashion-
MNIST

Linear

1 81.50±1.82 80.23±0.29 82.50± 0.21 79.85±0.38 77.92±0.49 77.56±0.58
2 81.08±0.02 83.59±0.24 84.72± 0.12 84.35±0.12 81.88±0.36 81.91±0.09
3 83.55±2.42 81.12±0.30 84.25± 0.09 81.60±0.28 79.36±0.24 79.37±0.31
4 76.40±0.50 73.87±0.37 78.52± 0.47 61.50±0.67 43.83±0.38 40.39±0.93

MLP

1 86.37± 0.64 81.26±0.47 84.29±0.10 76.01±0.49 51.29±0.83 49.36±0.48
2 87.52± 0.09 84.49±0.27 87.32±0.31 85.47±0.05 74.10±0.64 73.50±0.24
3 85.74± 0.27 81.62±0.33 84.42±0.37 80.33±0.51 53.09±0.74 52.75±0.81
4 82.41± 0.25 73.49±0.53 66.83±0.87 65.73±0.87 25.76±0.38 22.01±0.53

Kuzushiji-
MNIST

Linear

1 63.14±0.14 59.65±0.62 65.58± 0.32 58.78±0.46 54.90±0.61 55.02±0.48
2 64.35±0.09 68.54± 0.31 65.04±0.20 67.40±1.93 63.79±0.34 63.74±0.44
3 63.55±0.22 65.26±0.21 64.24±0.29 67.75± 0.17 59.82±0.36 60.16±0.73
4 60.34± 0.67 56.16±0.80 51.98±0.44 51.47±0.80 36.48±0.59 35.76±0.31

MLP

1 81.72± 0.50 64.60±1.06 75.71±0.15 57.17±0.22 36.07±0.16 26.13±0.46
2 86.99± 0.25 74.24±0.13 86.59±0.24 80.90±0.41 66.06±0.51 64.81±0.41
3 78.86±2.25 69.90±0.61 79.26± 0.54 72.89±0.18 56.43±0.88 54.96±0.64
4 66.61± 0.29 54.93±0.18 43.06±0.44 42.58±0.43 23.93±0.44 23.35±0.63

CIFAR-
10

MLP

1 41.46± 0.72 33.11±0.69 31.98±0.40 31.10±0.42 22.47±0.49 22.75±0.28
2 48.69± 0.25 38.99±0.42 46.00±0.30 42.94±0.44 36.81±0.22 36.37±0.35
3 40.83± 0.48 29.05±0.49 35.30±0.30 30.90±0.49 28.04±0.34 27.31±0.18
4 31.62± 0.60 25.52±0.55 20.75±0.35 21.10±0.37 13.51±0.34 13.70±0.35

ConvNet

1 66.86±1.63 61.67±0.31 68.65± 0.71 34.93±0.59 33.67±0.79 34.17±0.89
2 86.65± 0.13 75.47±0.11 82.74±0.29 79.11±0.32 72.82±0.61 73.83±0.21
3 68.88±0.65 63.30±1.16 71.65± 0.27 69.35±0.65 53.13±0.63 52.56±1.14
4 51.96± 4.21 49.58±0.62 43.83±0.36 43.51±0.61 17.29±0.30 17.02±0.14

on CIFAR-10, and MLP was trained on all datasets. The
optimizer was stochastic gradient descent with momentum
0.9. We trained each model 500 epochs with the mini-batch
size set to 256, and recorded the test accuracy of the hyper-
parameters (learning rate and weight decay) with the best
validation accuracy. We did not use any manual learning rate
decay and early stopping.

Results. Tables 2 shows the test accuracy over 5 trials. The
best and comparable methods based on the paired t-test
at the significance level 5% were highlighted in boldface.

We can see that the bounded loss always outperforms
the unbounded loss, especially on the complex models.
In difficult scenarios, i.e., unreliable PLL, the accuracy of
the complex models trained with bounded losses is almost
always better than their linear counterpart, but unbounded
losses can make the complex models overfit very badly on
some tasks, causing their performance to become worse.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3275249

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on August 19,2023 at 05:46:56 UTC from IEEE Xplore.  Restrictions apply. 



12

TABLE 3
PRODEN & Our ABS method on CIFAR datasets. E and A stand for early stopping and robust warm start, respectively. The best and equivalent

based on the paired t-test at the significance level 5% are shown in boldface by comparing the 1st and 3rd columns, the 2nd and 4th columns. “—”
means that we skipped the experiments under the reliable PLL setting. The best combination is underline.

Dataset Model Case
E: X ✓ X ✓ Our ABS
A: X X ✓ ✓ w/ E

CIFAR-10

MLP

1 48.28±0.62 48.33±0.54 48.77± 0.26 48.54± 0.36 —
2 51.49±0.30 52.17±0.21 52.31± 0.32 52.70± 0.14 —
3 38.52±0.16 44.27±0.13 39.00± 0.38 46.67± 0.30 45.86±0.14
4 29.19±0.63 34.04±0.56 29.30± 0.43 35.12± 0.42 34.54±0.36

ConvNet

1 85.38±0.11 85.52±0.25 85.93± 0.31 86.09± 0.20 —
2 88.62±0.19 88.29±0.33 89.42± 0.17 89.05± 0.29 —
3 64.59±0.70 73.05±0.31 66.86± 0.72 75.99± 0.39 76.72±0.12
4 47.35±0.47 53.47±0.38 50.77± 0.82 56.68± 0.49 55.50±0.24

CIFAR-100 ConvNet
2 54.49±0.46 59.90±0.53 58.31± 0.32 60.60± 0.22 —
3 34.78±0.31 42.04±0.22 36.27± 0.43 43.67± 0.22 44.75±0.15
4 37.37±0.32 47.29±0.31 39.55± 0.24 47.86± 0.20 46.13±0.24

6.3 Enhancing IBS Methods with ABS

We revisit the SOTA IBS methods PRODEN [41], RC [18],
and LW [61]. Their typical learning objective is as follows:

R̂(f ; ℓ) =
1

n

n∑
i=1

[ ∑
j∈si

wi
jℓ(gj(xi), j) +

∑
j /∈si

wi
jℓ(gj(xi), j)

]
,

where wj is a weight for j ∈ [k]. The weights of the labels
that are more likely to be true are progressively increased.
Generally speaking, they initialize the weights to be

wi
j = 1/|si|, ∀j ∈ si.

They train a learning model f with the uniform weights
for several epochs for a warm start, and then update w
and f seamlessly for the remaining epochs. We highlight
that uniform weights are necessary to break the circular
dependency existing between w and f : f needs to be trained
with reasonable w and w needs to be estimated by well-
trained f . The success of the algorithms is built on the
observation that even if each sample has multiple candidate
labels, f will remember the true one first [3]. Thus they adjust
w by the output of f . It indicates that an IBS method has to
be pretrained a little in an ABS manner.

While we note that they always use the CCE loss in both
the ABS-style phase and the subsequent IBS-style phase,
which could potentially select incorrect true labels at the very
beginning and negatively affect the model training. Therefore,
we introduce an enhanced principle to incorporate our
theoretical findings into existing IBS methods: training the
learning model with a robust warm start to avoid overfitting.
We replace their loss functions of the first 20 epochs with the
APL loss with MAE, and then switch back to their original
objective function. The hyper-parameters are tuned according
to the original methods.

We considered Case 1, 2, 3, and 4 for CIFAR-10, and Case
2, 3, and 4 where the candidate labels were generated by the
Flipping model with a uniform flipping probability of 0.01

for CIFAR-100 [32]. We used the same training/validation
setting, models, and optimizer as in Section 6.2. We summa-
rize the results without/with early stopping of PRODEN
in Table 3, which means that we report the last epoch
or the epoch in which the best validation accuracy was
reached during training. The results of RC and LW are put
in Appendix C.

From Table 3, we can see that the enhanced method
with the robust warm start has significant performance
improvements over its original version. The model has
better performance when early stopping is not deployed,
suggesting that the robust warm start helps not to remember
incorrect labels at an early stage. Even after using early
stopping, our enhanced version also allows for further
performance improvements. Moreover, we presented the
results of our ABS method with early stopping in the last
column. It is usually comparable with the highest accuracy,
meaning that our proposal is a simple yet effective baseline
for unreliable PLL. The results on CIFAR-10 are also shown
in Figure 1.

7 CONCLUSION

In this paper, we rethought the forgotten ABS in the era of
deep PLL, and improved it theoretically and practically. The-
oretically, we proposed two problem settings with different
data generation models for noise-free and noisy PLs, and
analyzed the conditions that ABS is robust to PLs, which
filled the theoretical gap in the robustness analysis of PLL.
Practically, we conducted extensive experiments to confirm
our theoretical findings, and showed that the IBS methods
could be improved from our work, which pushed forward
PLL as a whole.
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