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Algorithms for Transitive Dependence-Based
Coalition Formation

Bo An, Zhiqi Shen, Chunyan Miao, and Daijie Cheng

Abstract—Coalition formation methods allow autonomous
agents to join together in order to act as a coherent group in
which they increase their individual gains by collaborating with
each other. Although there are some research efforts toward
coalition formation in multiagent systems (MAS), such as game
theory-based approaches, these methods cannot be easily applied
in real-world scenarios. Based on a novel social reasoning theory,
namely, transitive dependence theory, this work proposes two
dynamic coalition formation algorithms for coalition formation:
1) without and-action dependence and 2) with and-action de-
pendence, respectively. While most related work addresses the
problem of searching for the optimal coalition structure (CS),
the proposed algorithms aim to find out the optimal coalitions
for specific goals. Theoretical analysis and experimental results
suggest that 1) the algorithm for coalition formation without
and-action dependence is of polynomial complexity and is effi-
cient, and 2) when the incidence rate of and-action dependence
is not high, the anytime algorithm for coalition formation with
and-action dependence is also efficient although it has relatively
high complexity (NP-complete).

Index Terms—Coalition formation, multiagent systems, transi-
tive dependence.

I. INTRODUCTION

THE decentralized control architecture has been widely
used in manufacturing systems. These systems, also

referred as multiagent manufacturing systems, are composed
of autonomous components that communicate with other com-
ponents and perform their functions without a central control
[23]. Each system can be regarded as an agent that governs
the operation of the system. Cooperation among autonomous
agents may be mutually beneficial even if the agents are selfish
[31]. A number of coalition mechanisms, widely studied in
game theory and economics (e.g., [28], [29], [33]), have been
successfully proposed and applied in many areas. However,
most methods suffer from some limitations, for example, the
coalition formation process is invisible. To avoid the limitations
of game theory-based approaches, some other techniques, such
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as social reasoning mechanisms (e.g., [1], [5], [9], [12], [16]),
are proposed to meet the needs of dynamic coalition formation
in real-world agent environments.

Socially intelligent agents are autonomous problem solvers
that achieve their objectives by interacting with other similarly
autonomous entities. Social reasoning mechanisms have been
successfully used to design and build such intelligent agents
[5], [9], [35], [36]. Social reasoning refers to agents’ reasoning
about others. Although there are various kinds of relations in
MAS, dependence relation is believed to be the most crucial one.
Sichman et al. [36] describe fundamental concepts of a social
reasoning mechanism based on dependence networks. Depen-
dence relations exist in many application domains like supply
chain, social networks, and virtual organizations. For example,
in a simplified supply chain, a Consumer Agent depends on a
Computer Producer Agent to produce computers and the Com-
puter Producer Agent depends on a Transporter Agent to deliver
computers. Understanding and reasoning with such dependence
relations is essential for planning and problem solving. In [9]
and [35], an abstract structure called dependence graph is used
for the study of emerging social structures and the analysis of
social phenomena regarding group formation and cohesiveness.

Although there is some related work with respect to depen-
dence-based social reasoning (e.g., [1], [12], [16], [24], [34]),
transitive dependence, however, has not yet been tackled. For
instance, in the above supply chain example, there is a transi-
tive dependence relation between the Consumer Agent and the
Transporter Agent as if the Transporter Agent does not work, the
Consumer Agent’s purchase will fail. Previous work in [1] ex-
tends the related work on social reasoning by proposing a novel
transitive dependence theory and presents a general framework
for transitive dependence-based dynamic coalition formation.

The focus of this work is proposing algorithms for transitive
dependence-based dynamic coalition formation that can gen-
erate optimal coalitions. Although our previous work in [1] (to
the authors’ best knowledge) is the first attempt to investigate
transitive dependence-based coalition formation, the coalition
formation mechanism in [1] is an approximate approach that
will generate suboptimal coalitions. This research advocates
the importance of transitive dependence in social reasoning and
proposes two algorithms for searching potential partners. Since
coalition formation is an extremely difficult and complicated
task, an algorithm for simple transitive dependence based coali-
tion formation scenarios is proposed first (see Section V), and
then, the algorithm for complex transitive dependence-based
coalition formation scenarios is presented (see Section VI).
Additionally, Section II summarizes related work. An illustra-
tion of the problem to be solved is presented in Section III. The
performance of the proposed algorithms is evaluated through
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Section VII. In the final section, the conclusion is presented
and ideas for future work are outlined.

II. RELATED WORK

The literature of 1) game theory-based coalition formation
and 2) social reasoning-based coalition formation forms a
very huge collection. Space limitation precludes introducing
all of them here. For a survey on game theory-based coalition
formation, see [20] and [39]. The remaining part of this section
only introduces and discusses some important related work
on 1) applying game theory (e.g., Shapley value, kernel, and
core), 2) virtual organization/enterprise creation, and 3) social
reasoning mechanisms in coalition formation.

A. Game Theory-Based Coalition Formation

The Shapley value [30] for an agent is a weighted average of
all the utilities that the agent contributes to all possible coali-
tions. Any payoff division scheme according to the Shapley
value provides an agent with the added value that it brings to
the given coalition structure, averaged over all possible joining
orders. Zlotkin and Rosenschein [41] present a simple coalition
mechanism for sub-additive task-oriented domains based on the
Shapley value. Reference [31] presents a Shapley value algo-
rithm for coalition formation in super-additive environments.
The limitation of the method in [31] is that it only can be used in
super-additive environments. The Shapley value-based coalition
formation mechanisms are also used in multilateral trades [40]
and transmission expansion planning [10] in electric market.
Conitzer and Sandholm [8] have studied a concise representa-
tion of characteristic functions that allows the agents to be con-
cerned with a number of independent issues that each coalition
of agents can address.

The kernel [13] is a payment configuration space in which
the coalitional configurations are stable in the sense that there
is equilibrium between pairs of individual agents in the same
coalition. Suppose that there are two agents and in a
coalition . In a given payment configuration, they are in equi-
librium if they cannot outweigh one another from . In [32],
a reduced complexity kernel-oriented coalition formation algo-
rithm is presented. A problem of the algorithm is that in poly-
nomial time, it cannot guarantee that a Pareto-optimal payment
configuration will be reached. In [3], trusted kernel-based coali-
tion formation is defined as a novel extension to the traditional
kernel-based coalition formation process.

The core of a game with respect to a given coalition structure
can be defined as the set of coalition configurations that do not
necessarily have unique payoff distributions [20]. Only coali-
tion structures that maximize the sum of all coalition values of
coalitions in the considered structure are core-stable. However,
searching for an optimal coalition structure is computationally
difficult. Conitzer and Sandholm [7] define a concise general
representation for games in characteristic form that relies on
super-additivity. In [6], the authors remove some often unre-
alistic assumptions and propose a model that utilizes Bayesian
reinforcement learning in a way that enables coalition partici-
pants to reduce their uncertainty.

Coalition structures are partitions of a set of agents into dis-
joint coalitions. Since finding the optimal coalition structure

(CS) is NP-complete, Sandholm et al. [28] have presented an al-
gorithm that establishes a tight bound within a minimal amount
of search and show that any other algorithm would have to
search strictly more. Reference [11] reports on a novel anytime
algorithm for coalition structure generation that produces solu-
tions that are within a finite bound from the optimal. However,
the complexity of their algorithm remains exponential, and they
also do not consider the case of overlapping coalitions. In [27],
the authors present a novel algorithm for distributing this calcu-
lation among agents in cooperative environments.

Sandholm and Lesser [29] present a coalition formation
model for bounded-rational agents and present a general
classification of coalition games. In their model, the value of
a coalition depends on the computation time. However, all
configurations and possible coalitions are considered when
computing a stable solution. Shehory and Kraus [33] present
several solutions to the problem of task allocation among
autonomous agents.

Little work has been done in coalition formation among both
self-interested and cooperative agents. Reference [22] presents
a protocol that enables agents to negotiate and form coalitions
and provides them with simple heuristics for choosing coali-
tion partners. Soh and Li [37] propose an integrated multilevel
learning approach to multiagent coalition formation. Reference
[21] presents protocols and strategies for coalition formation
with incomplete information under time constraints.

Related work in game theory mainly describes which coali-
tions will be formed in N-person games and how the players
will distribute the benefits. These game theoretical approaches
are typically centralized and computationally infeasible. More-
over, they seldom take into consideration the constraints of a
multiagent environment, such as communication costs and lim-
ited computation time. Thus, it is hard to apply these approaches
to real-world environments.

B. Virtual Organization/Enterprise Creation

Virtual organization (VO) is a term being used to describe
how different organizations come together to explore business
opportunities and collaborating on a temporary basis [17]. For
a survey on virtual organization/enterprise creation, see [25].

Reference [18] presents a model of the design and imple-
mentation processes for virtual organizations and the proposed
model links the effects of managerial activity to the value cre-
ated, and in doing so, it is a model of managerial affectivity.
Putnik et al. [26] discuss the issues of virtual enterprise integra-
tion (VEI) as a contribution to a better understanding of the VEI
phenomenon. Katzy and Dissel [19] present a framework for
designing an agile virtual enterprise that can support short-term
business opportunities, which is referred to as the “Value System
Designer.”

“Grid” computing has emerged as an important new field
that focuses on large-scale resource sharing, innovative appli-
cations, and high-performance orientation. Foster et al. [14] de-
fine the “grid problem” as controlled and coordinated resource
sharing and resource use in dynamic, scalable virtual organiza-
tions. Travica [38] discusses virtual organizations’ relationship
with electronic commerce. E-commerce and VO are related as
on the one hand, e-commerce is conducted through virtualized
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processes, on the other hand, e-commerce generates the mo-
mentum and purpose for virtualizing.

C. Social Reasoning Mechanisms-Based Coalition Formation

Social reasoning mechanisms are considered as essential
building block suitable for situations where agents may dy-
namically enter or leave the society, without any global control
[5]. In order to acquire and use dependence knowledge, each
agent has to 1) explicitly represent some properties of the
other agents; 2) exploit this representation. thereby optimizing
its behavior according to the evolution of the society; and 3)
monitor and revise its representation to avoid inconsistencies.

An important aim in the field of multiagent systems is to
study emergent social structures, such as groups and collec-
tives. Some approaches aim in exploring social relations like
power and dependence, which are based on decision-theo-
retic techniques [36]. Boella et al. distinguish four structural
viewpoints on multiagent systems in an abstraction hierarchy:
mind view, power view, dependence view, and coalition view
[4]. Dependence relations are also used in coalition formation.
David et al. present a utility-driven rationality and a comple-
mentary-driven rationality-based model for multiple partner
coalitions. Morgado and Graca present a social reasoning mech-
anism that extends previous works [24]. In [16], a comparison
analysis of a utility-driven method and a complementary-driven
method is introduced. DEPINT [34] illustrates some essential
aspects of an agent’s social reasoning mechanism concerning
1) adaptation, 2) formation of coalitions, and 3) revision of
inconsistent belief. Our previous work in [1] introduces transi-
tive dependence relations and proposes a coalition formation
framework. However, the proposed framework can only gen-
erate suboptimal coalitions.

This work extends the related work on social reasoning and
discusses transitive dependence theory. We also propose algo-
rithms for finding the best coalition with the least cost, which
aims to find out the best set of coalition partners. The algorithms
are suitable for real-world coalition formation problems as they
work toward specific goals.

III. ILLUSTRATION OF THE PROBLEM

The coalition problem to be solved in this paper is that of co-
operative problem solving (CPS) among groups of autonomous
entities. Given a problem (called a goal in this paper) of an agent,
the agent has to invite other entities to form a coalition to solve
the problem and, at the same time, strive to maximize its ben-
efit while satisfying the goal. Also, the self-interested agents in-
vited seek to get more benefits during coalition formation and
problem solving.

For the ease of illustration, a simplified manufacturing ex-
ample is used to demonstrate the coalition formation problem to
be solved. In addition, price is considered as the only criterion.1

More complex action dependence relations, such as or-action
dependence and and-action dependence, will be discussed in
Section IV. There are three factories: furniture factory, cabinet

1In real-world coalition formation, there may be many more criteria, some
of them of a subjective nature, others depending on historic data, etc. However,
such multicriteria case can be formalized by combining all the criteria into an
integrative criterion like utility.

factory, and wood factory. Each factory can do some actions,
e.g., the furniture factory can produce furniture, the cabinet fac-
tory can produce cabinets, and the wood factory can produce
wood. For each action a factory can do, the factory has a reserve
offer (the lowest offer it can accept) to do the action for other
factories. Similarly, for each action an agent cannot perform, it
also has a reserve offer (the highest offer it may propose) if it
asks for other factories’ help with the action. There are some
action dependence relations. For example, if any other factory
wants the cabinet factory to produce cabinets for it, it must pro-
duce wood for the cabinet factory.2

Consider that the furniture factory has a goal, which includes
two actions: produce furniture and cabinets. The furniture fac-
tory can produce furniture but cannot produce cabinets, which
can only be done by the cabinet factory. Thus, the furniture fac-
tory will seek the help of the cabinet factory for producing cabi-
nets. Since the cabinet factory has an action dependence relation
on producing wood about producing cabinets, it is the furniture
factory’s responsibility to find a factory to produce wood for
the cabinet factory. Thus, the furniture factory has to ask for the
wood factory’s help with producing wood for the cabinet fac-
tory. The three factories have the possibility to form a coalition
toward the goal (here, assume it is the only possible coalition
for the furniture factory’s goal).

Now we analyze whether the three self-interested factories
will agree to form a coalition. First, if the highest offer the fur-
niture factory can pay for producing cabinets is less than the re-
serve offer of the cabinet factory, the coalition will fail since the
two factories cannot make any agreement; otherwise, the two
factories can make an agreement. Assuming that the furniture
factory and cabinet factory can make an agreement on producing
cabinets, the furniture factory still has to consider the cabinet
factory’s action dependence on producing wood. If the highest
offer the cabinet factory can pay for wood production is not less
than the reserve offer of the wood factory, the wood factory will
agree to join the coalition only if the cabinet factory pays at the
wood factory’s reserve price to the wood factory; otherwise, in
order to form a coalition (an agent will not agree to perform
an action for another agent if its reserve price of the requested
action cannot be satisfied), the furniture factory has to pay the
price difference between the reserve price of the cabinet factory
and the wood factory when the cabinet factory pays at its reserve
price to the wood factory.

The furniture factory will seek the best solution to achieve its
goal. However, to find the optimal solution may be extremely
difficult as there are many possible coalitions to solve the
problem. For instance, in the example above, if there are two
factories that can produce cabinets but with different reserve
offers, the furniture factory has to make a choice on which
factory to invite.

Given the existence of such action dependence relations,
agents should not only consider some other entities who can
help them but also take such action dependence relations into
account. From the above simple example, it can be found that
such problems are reasonable and are real-world problems.
For instance, in some situations, producing cabinets for the

2More complex action dependence relations, such as or-action dependence
and and-action dependence, will be discussed in Section IV.
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furniture factory will spend the cabinet factory’s some precious
resources; thus, the cabinet factory may ask the furniture fac-
tory to do other actions, not only to pay some money. Although
the cabinet factory can use the payment of the furniture factory
to ask some other factories to do the actions to make up the
resources spent in producing cabinets for the furniture factory,
there is no guarantee that it will really happen in some situations
such as uncooperative environments.

The problem of the above example is generalized in this
paper. We provide algorithms to solve this problem in a system
of agents via the formation of coalitions and show that the
algorithms are simple to be implemented, have a relatively
short runtime (hence can be used as a real-time method), and
yield the optimal results.

IV. DEFINITIONS

This paper deals with coalition formation in an MAS where
each agent has its goals, plans, and actions. However, a single
agent may have limited abilities for a specific goal. Thus, au-
tonomous agents may join together to reach some or all of their
goals. In such a case, the agents form a coalition. In order to
elucidate the problem and its solution, the following definitions
and assumptions are presented (see [1] for a more detailed dis-
cussion of transitive dependence).

A. Transitive Dependence

Let be a group of autonomous agents,
. Each agent can perform a set of

actions , which represents the agent’s
ability. If agent can perform an action , i.e., ,

is the lowest offer agent would ask for if
any other agent asks for the agent’s help with action ; if
action , i.e., agent cannot perform action ,
highest is the highest offer agent would pay when it
asks for another agent to perform action .

For each goal, there may be some plans and each plan con-
sists of a set of actions. Let be a goal of agent ,

is the set of plans for goal , in which
.3

Definition 1: (direct dependence) Suppose agent tries to
achieve a goal . is a plan for goal .
Agent has no ability to perform an action , i.e.,

, but it believes that agent has ability to perform
action , i.e., , then agent directly depends on
agent about action , i.e., .

Definition 2: (action dependence) Suppose agent can per-
form an action , but it wants any other agent who depends on
it about the action to do an action for it, then the
agent has an action dependence on the action about the
action , i.e., .

Let be a set of actions. Agent can perform an action
. If it wants any other agent who depends on it about action
to do all the actions in for it, the action dependence is called

and-action dependence. If it wants any other agent who depends
on it about action to do any one action in , the action depen-
dence is called or-action dependence. Action dependence other

3At the present stage, the order of the actions in a plan is assumed to have no
effect on the achievement of the plan.

than and-action dependence and or-action dependence is called
single-action dependence.

For agents , , and , there are two dependence
relations: and .
Although agent can perform action , it has an ac-
tion dependence relation on action about action , i.e.,

. It can be found that agent transitively
depends on agent about action .

Dependence chains are used to describe the transi-
tion process of transitive dependence relations. Each de-
pendence chain has a head and a tail. For agents ,

, and , if the following dependence relations
hold: , , and

, the dependence chain from agent to

agent is .
For a dependence chain , represents the

agent at the head of the dependence chain, and
represents the agent at the tail of the dependence chain. For
agent in a dependence chain ,
and represent the actions that agent
depends on and is depended upon, respectively.4 For the de-
pendence chain in the last paragraph, ,

, , and
.

For a dependence chain , its transitive dependence can be
described as ( , , ). For the sake
of simplicity, the direct dependence is regarded as a special kind
of transitive dependence. For instance, agent ’s dependence
on agent about action that belongs to plan can be

represented as .

Definition 3: (transitive dependence) Transitive de-
pendence can be recursively defined as follows: For
agents , , and ,

,
where represents the connection of and

.
Transitive dependence is derived from direct dependence re-

lations based on action dependence. Action dependence exists
in multiagent systems, as well as in real society. Recall the fol-
lowing scenario: sometimes when you ask for one’s help, no
matter how much you can pay, he will not agree to help you
until you promise doing something for him. As a consequence,
it is intuitive to regard transitive dependence as an essential rela-
tion that is useful for cooperative problem solving and coalition
formation.

B. Coalitions

A coalition that consists of a set of agents and their requested
actions can be formed based on dependence relations specified
above. Thus, we define as follows.

Definition 4: (a coalition) For a specific goal of agent ,
a coalition to achieve the goal according to a plan consists
of a set of agents represented as . Agent
in the coalition is asked to do some actions ;

4An agent may appear more than once in a dependence chain.
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such actions are called the requested actions of agent for
the coalition .

In this paper, a coalition is formed for a specific goal of a
depending agent. Given a coalition for a goal, whether the goal
can be achieved by the coalition determines whether or not the
coalition is feasible.

Definition 5: (feasible coalition) A coalition is feasible for a
goal of a depending agent if, and only if, the set of agents in the
coalition and their requested actions are sufficient for achieving
the goal.

A feasible coalition also means that the transitive dependence
relations related to achieving the goal of a depending agent are
satisfied. In the manufacturing example, the furniture factory
and the cabinet factory cannot form a feasible coalition since
the cabinet factory’s action dependence cannot be satisfied if
there is no other agent (e.g., the wood factory) to produce wood
for the cabinet factory.

Definition 6: (minimal feasible coalition) A feasible coali-
tion is a minimal feasible coalition if, and only if, absence of
any requested action of an agent in the coalition will lead the
coalition to be unfeasible.

For a specific goal, a depending agent will strive to reason out
a feasible coalition with the lowest cost.

C. Assumptions

For rational agents, coalitions will take place if, and only if,
each member of a coalition gains more if it joins the coalition
than it could gain before. In order to make the creation of mu-
tually beneficial coalitions possible, the following two assump-
tions are needed.

Assumption 1: (complete information) Agents’ information
about other members in MAS is complete.

It is obvious that agents must have some information about
other members before reasoning about possible coalition part-
ners. This kind of information can be acquired and updated dy-
namically.5 Agents’ information can be acquired by: 1) passive
receiving. When an agent joins a multiagent system, it must
present itself to the others. When an agent leaves the system,
it has to tell the other members about this; 2) active inquiring.
When an agent wants to know some information about another
agent, it can inquire directly about the member or ask for other
members’ help; 3) internal reasoning. Agents can get informa-
tion about the other members by reasoning.

Assumption 2: (payoff distribution) If a depending agent
asks for the help from agent with action directly,

5While reasoning about the other agents to establish a coalition, an agent can
adopt two different perspectives: a global perspective, which corresponds to rea-
soning about all the dependence relationships among the agents that can partic-
ipate in the coalition, and a local perspective, in which the agent only reasons
about direct dependence. In dynamic, distributed, and heterogeneous multia-
gent systems, the complete information assumption seems unpractical. How-
ever, when agents have incomplete information, they can take the local per-
spective instead of the global perspective, which is utilized in this paper while
reasoning coalitions. The depending agent makes a list of possible partners, or-
dered by a preference measure. It then asks each agent from the list, from the
top to the bottom, if it is willing to take part into the coalition. Then every agent
in the list reasons about transitive dependence in the same way. The procedure
stops when some agent accepts to take part into the coalition, and then the de-
pending agent sends it a coalition formation message.

Fig. 1. Simple example.

it just need to pay to agent . If the de-
pending agent transitively depends on agent about
action , and agent has an action dependence relation
on action about action , i.e., , and
if an agent can do action , the following holds: if

, in order to invite agents
and to join the coalition, agent has to pay the price

difference to agent when
agent pays to agent ; otherwise, i.e.,

, agent pays nothing to
agent when agent pays to agent .

This work does not consider the negotiation process of
bargaining for an action.6 Given the assumption of payoff
distribution, a depending agent will try to find out a feasible
coalition with the least cost. For agents invited, their desires
are satisfied by receiving acceptable payoffs (according to
assumption 2, agents invited always receive the minimal price
they ask for). According to the payoff distribution mechanism,
it follows that the optimal coalition formation will be a minimal
feasible coalition.

V. ALGORITHM FOR COALITION FORMATION WITHOUT

AND-ACTION DEPENDENCE

In order to enable an agent to coordinate its activities with
other agents and to participate in coalitions, one of the impor-
tant elements to take into account in its conception should be
a proper social reasoning mechanism that allows the agent to
reason about the other agents. The algorithm presented in this
section intends to find out the optimal coalition in MAS envi-
ronments in which there is no “and-action” dependence.

To illustrate the algorithm, a simple example is given in
Fig. 1.7 Agent has a goal and has two alternative plans,

and . Suppose that agent
can only perform action , and actions and can be per-
formed, respectively, by the set of agents and .
Agent can perform action . An action dependence relation

6Negotiation can also be utilized in our framework. Agents can negotiate for
each action dependence. If the two agents related to an action dependence re-
lation can reach an agreement, the agreement would be the solution of the final
utility distribution. If they cannot reach an agreement, a depending agent still
has to pay the price difference between their proposals in the final round of ne-
gotiation.

7Multiple choices in the graph are represented with doted lines.



AN et al.: ALGORITHMS FOR TRANSITIVE DEPENDENCE-BASED COALITION FORMATION 239

Fig. 2. Algorithm for getting the optimal coalition for a goal.

of agent is . An or-action dependence re-
lation of agent is . An action depen-
dence relation of agent is . Action can
be performed by agent . Action can be performed by two
agents and . Actions and cannot be performed by
any agent.

Suppose that there are agents, and each agent can perform
at most actions. Agent has a goal . There is a set
of plans for goal . To find the optimal plan, the depending
agent should get the least cost of each plan. To get the least
cost of a plan, the depending agent should compute the least
cost of each action in the plan that the depending agent depends
on other agents. To get the least cost of an action in a plan, the
depending agent should get the least cost when it asks another
agent to perform the action. For instance, taking the dependence
situation in Fig. 1 as an example, to decide which plan to use,
the agent should get the least cost of plans and ,
respectively. To get the least cost of plan , agent should
get the least cost of actions and , respectively. To get the
least cost of action , the cost of asking agents and
to perform action should be calculated, respectively, first.
Therefore, the procedure for getting the optimal solution for a
goal includes four steps as in Fig. 2.

The first step in Fig. 2 is the most important step. To get the
least cost of asking an agent to perform an action that the de-
pending agent depends on other agents, the depending agent
should analyze all the action dependence relations related to
achieving the action. A directed dependence graph is introduced
to describe the process of computing the least cost of asking an
agent to perform an action. As there are agents in MAS and
each agent can perform at most actions, there are at most

valid vertices and one invalid vertex in the dependence
graph. Each valid vertex, represented as , represents
that agent can perform action . If agent has an action
dependence relation on action about action , and agent

can perform action , then there is an edge from vertex
to vertex . However, if there is no agent that can per-
form action , then there is an edge from vertex to
the invalid vertex. An or-action dependence relation is treated
as multiple single action dependence relations, i.e., it can be di-
vided into several single action dependence relations.

Now discuss how to get the least cost when the depending
agent asks another agent to perform an action ,
which is represented as root vertex of the dependence
graph. Suppose that there are vertices in the graph:

, in which represents root vertex
and represents the invalid vertex. If root vertex has no
action dependence, i.e., there is no edge from root vertex, the
cost of root vertex will be the lowest offer of root vertex. When
root vertex has an action dependence relation (assume this in
the remaining part of this paper), to find a set of vertices to sat-
isfy root vertex (root vertex is satisfied if and only if the action
dependence of root vertex can be satisfied by other vertices),
following the definition of transitive dependence, the depending
agent should reason out a feasible path from root vertex that
can satisfy root vertex . Each path is a dependence chain. Let
the feasible path be , the head of the path be ,
and the tail of the path be . As root vertex has an
action dependence relation, to satisfy root vertex, an edge from
root vertex should be connected to root vertex. Recursively, if

has an action dependence, to satisfy root vertex, an
edge from should be connected to . Therefore,
a feasible path can be constructed in accordance with the
following four rules.

1) If is the head of an edge, the edge can be added into
the end of path . When is the head of an edge,

has an action dependence relation. To satisfy root
vertex, a vertex should be added at the end of the present
path . If is the head of more than one edge (i.e.,
or-action dependence), any edge can be added into the end
of path .

2) If appears more than once in path , the path
would be unfeasible since there will be a circle in the path.
Root vertex cannot be satisfied if there is a circle in the
path.

3) If is not the head of any edge, path ends.
4) If the tail of path is the invalid vertex, is unfeasible

since the invalid vertex means that the action dependence
relation cannot be satisfied.

According to the rules for constructing feasible paths, to get
the least cost of asking agent to perform an action , the
depending agent just needs to find the lowest cost of the paths
from root vertex to any valid vertex that 1) can be reached by
root vertex; and 2) is not the head of any edge. A vertex that can
be reached by root vertex means that the vertex is related to the
achievement of root vertex. A vertex that is not the head of any
edge means that the vertex has no action dependence relation.
If there is a feasible path, root vertex can be satisfied since each
action needed to be performed due to action dependence can be
satisfied. Obviously, root vertex can be satisfied if, and only if,
there is at least one feasible path. Therefore, to get the least cost
of root vertex, we just need to find the feasible path with the
lowest cost. According to assumption 2, the cost of a feasible
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path is the sum of what the depending agent should pay for the
action of root vertex and all the action dependence relations in
the path.

Taking the edge from to in a feasible path
as an example, according to the payoff distribution mechanism,
if , the depending agent has
to spend nothing; otherwise, the depending agent has to spend

. Thus, we can define how much
the depending agent should spend for an action dependence re-
lation as the weight of the corresponding edge. The weight of an
edge is defined as: 1) if the tail of the edge is the invalid vertex,
the weight of the edge is INF; 2) otherwise, taking the edge from
vertex to vertex as an example, the weight
of the edge is .

The algorithm for getting the least cost when the depending
agent asks an agent to perform an action in a plan is in Fig. 3.
The dependence graph is represented as an adjacent matrix. This
algorithm first calculates the shortest distances from root vertex
to all other vertices (step 1). Then, the sum of the lowest offer
of root vertex and the minimum of the shortest distances of all
the feasible paths is selected as the least cost of root vertex (step
2). Finally, is the least cost of root vertex , and
represents the set of agents and their requested actions to form
coalition.

Complexity of the algorithm: The efficiency of this algo-
rithm should be judged from computations. First, we evaluate
the complexity of the algorithm for getting the least cost when
the depending agent asks an agent to perform an action in a
plan (see Fig. 3). Step 1 of the algorithm in Fig. 3 is similar to
Dijkstra’s Shortest Path Algorithm [2, pp. 167–172]; thus, the
complexity of step 1 is . The complexity of step 2 is also

. Therefore, the algorithm for getting the least cost when
a depending agent asks an agent to perform the action in a plan
is , i.e., since . Assume that
there are at most plans for each goal and there are at most

actions in each plan. According to the procedure for getting
the best solution for a specific goal, the complexity of the algo-
rithm for coalition formation without and-action dependence is

. The algorithm is of polynomial complexity.

VI. ALGORITHM FOR COALITION FORMATION WITH

AND-ACTION DEPENDENCE

The algorithm in this section aims to find the “best” coalitions
for specific goals in an MAS in which there are and-action de-
pendence relations.

When there is and-action dependence, the procedure for get-
ting the best solution for a goal is still similar to the proce-
dure for coalition formation without and-action dependence (see
Fig. 2). Also, the first step in Fig. 2 is the most important. When
there is no and-action dependence, to get the least cost of root
vertex, a depending agent just needs to find the feasible path
with the lowest cost. With and-action dependence, however, a
feasible path cannot guarantee that root vertex can be satisfied.
Therefore, to get the least cost of asking an agent to perform an
action, the depending agent should search all the paths from root
vertex and find a coalition of agents with the least cost. Thus,
with and-action dependence, the problem of finding the lowest
cost of root vertex becomes much more difficult.

Fig. 3. Algorithm for getting the least cost of root vertex.

Theorem 1: With and-action dependence, getting the least
cost of root vertex (LCR) is NP-complete.

Proof: Membership of NP is easy: given an instance,
simply guess the action in root vertex can be satisfied by a set of
agents and their requested actions (a solution). The size of the
solution is bounded by and, since and are finite,
guessing can be done in polynomial time. Thus, verifying the
feasibility and cost of a solution in a dependence graph can be
done in polynomial time.

For completeness, we must show that LCR is in some sense
no easier than all other NP-complete problems. To do this, it
suffices to show that any instance of some known NP-com-
plete problems can be transformed into an instance of of
LCR such that the transformation can be done in polynomial
time, and the transformed problem has a solution only if
the original problem has a solution. For LCR, we define a re-
duction from the well-known 0–1 Knapsack problem.

Formal definition of 0–1 Knapsack problem: There is a knap-
sack of capacity and items. Each item has value
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TABLE I
A 0–1 KNAPSACK PROBLEM INSTANCE

Fig. 4. Dependence graph for example Knapsack-01.

and weight . Find the selection of items ( if se-
lected, 0 if not) that fit, , and the total value,

, is maximized.
To see how the reduction works, consider the example Knap-

sack-01 illustrated in Table I. The most valuable set of items
in this example is . We transform the example into an in-
stance of LCR. To do this, we first create all
the vertices for the dependence graph. We create two vertices
for each item : and . We also create a vertex and an
invalid vertex. The edges between the vertices are defined as: 1)
there is one edge from vertex to the two vertices of item 1;
2) for each vertex of item ( , 2, 3), there is an edge from
the vertex to vertices and , respectively. There
is no edge connected with the invalid vertex. The weight of each
edge is defined as: the weight of the edge connected to vertex
is 0, and the weight of the edge connected to vertex is - .

The dependence graph transformed from the example Knap-
sack-01 is showed in Fig. 4. Then the depending agent begins
to search all the feasible paths from vertex, for example,

. Vertex means that item is not
in the selection of items, and vertex means that item is in
the selection of items. From all the feasible paths from
vertex, the path that fits in the fixed volume of the knapsack
and has the most valuable set of items will be chosen as the
solution. For the example Knapsack-01, the path results in the
most valuable set of items that fit in a knapsack of fixed volume
is . The transformation from the 0–1
Knapsack problem to LCR is entirely automatic (see Fig. 5) and
is polynomial.

Here we introduce an algorithm for solving the problem of
getting the lowest cost of root vertex for coalition formation
with and-action dependence (see Fig. 6). The algorithm is still
based on the dependence graph (see Section VI for details), in
which an and-action dependence relation is still described as
multiple single action dependence relations. When the func-
tion is called, the depending agent will com-
pute the least cost of that which have passed all the vertices in

Fig. 5. Reducing the 0–1 Knapsack problem to LCR.

Fig. 6. Getting the lowest cost of root vertex.

, where is the set of vertices that have been vis-
ited from root vertex to vertex . Let be the set of vertices
that have edges from vertex . If vertex appears in , the
path is not feasible since there is a circle, then the cost of vertex

is ; if vertex is the invalid vertex,
the path is not feasible since there is an action dependence re-
lation that cannot be satisfied, i.e., ;
if vertex is an or-action dependence vertex or a single action
dependence vertex, the depending agent will compute the least
cost of all the vertices that have passed all the vertices in

, and the minimum of the sum of the least cost of
each vertex and the weight of the edge from vertex

to vertex will be chosen as the cost of vertex ; if vertex
is an and-action dependence vertex, the depending agent will
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Fig. 7. Anytime algorithm.

compute the least cost of all the vertices that have passed
all the vertices in , and the sum of the least cost of
each vertex and the weight of the edge from vertex
to vertex will be chosen as the cost of vertex . If ,
vertex is a valid vertex and , the cost of the vertex
will be zero. To get the least cost of root vertex , we just need
to call the function , where , and
the sum of the lowest offer of root vertex and
is the least cost of root vertex .

To reduce the computational loads of each vertex, a de-
pending agent can use some memory to record the value it has
computed. When it is asked to compute the value of a vertex
in a path, the depending agent first searches its memory to
find whether the asked computation exists. If the result of the
computation is in the memory, it just needs to report the result
directly; otherwise, it has to compute the least cost of the vertex
according to the algorithm in Fig. 6.

Complexity of the algorithm: Since there are vertices in
the graph, the worst case of the number of the paths the de-
pending agent has to search from root vertex is . There-
fore, the computational complexity of the algorithm for getting
the least cost of root vertex is , i.e., .
Assume that there are at most plans for each goal and there
are at most actions in each plan. According to the procedure
for getting the best solution for a specific goal, the complexity
of the algorithm for coalition formation with and-action depen-
dence is . Compared with the algorithm for
coalition formation with or-action dependence, the algorithm in
this section is of high complexity.

Given the NP-complete property of the problem of coalition
formation with and-dependence, it will take much longer time
to run the algorithm in complex environments. To produce a
coalition in limited computing time, an anytime algorithm is
presented in Fig. 7. Using the depth-first search method, the
algorithm first gets a solution, and then, it continues to search
for the lowest value of root vertex. Anytime algorithms offer a
tradeoff between solution quality and computation time that has
proved useful in solving time-critical problems such as plan-
ning and scheduling, belief network evaluation, and information
gathering [15]. From the anytime algorithm in Fig. 7, it can be
found that the best solution so far will be chosen as the final so-
lution when the deadline approaches. Moreover, if time resource
is limited, the solution for a plan can be the final solution, and
the optimal solution for other plans can be calculated if the time
permits.

TABLE II
INPUT DATA SOURCES

VII. EXPERIMENTATION

A. Testbed

To realize the idea of transitive dependence-based coalition
formation, a simulation testbed that consists of a virtual mar-
ketplace, a society of agents, and a controller was implemented.
The controller generates agents, randomly determines their pa-
rameters (e.g., abilities, reserve offers, goals, plans), and sim-
ulates the entrance of agents to the virtual marketplace. Using
the testbed, a series of experiments were carried out in order
to demonstrate the features of the transitive dependence-based
coalition formation method and to evaluate the effectiveness of
the proposed algorithms. To evaluate the performance of the al-
gorithms for coalition formation in a wide variety of test envi-
ronments, agents are subject to different market densities and
some other parameters (see Table II).

B. Experimental Settings

All the six input parameters in Table II are generated ran-
domly following a uniform distribution. The number of agents
in the market determines the market’s density. With less agents,
the market density decreases. The number of actions an agent
can perform represents the agent’s ability. For a specific goal,
the value of determines how many plans can be used to fulfill
the goal. If agent can do an action , represents
the probability that the agent has an action dependence re-
lation about the action . For an action dependence relation,

represents the probability that the action depen-
dence relation is an or-action dependence relation. Similarly,

represents the probability that an action depen-
dence relation is an and-action dependence relation. Obviously,
it follows that . is the
probability that an action dependence relation is a single-action
dependence relation. Moreover, given the fact that an agent
can do an action , (respectively, ) is the prob-
ability that the agent has an or-action dependence relation
(respectively, an and-action dependence relation) on other ac-
tions about the action . With the increase of (respectively,

), the number of or-action dependence relations (respec-
tively, and-action dependence relations) in the market increases.

C. Performance Measure

The performance measures include average processing time
and standardized utility (see Table III). Reducing average pro-
cessing time of coalition formation is a very important perfor-
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TABLE III
PERFORMANCE MEASURE

mance measure, especially for scenarios with bounded compu-
tational resources [29]. Although our algorithms can guarantee
that the results would be optimal, the anytime algorithm for
coalition formation with and-action dependence has high com-
plexity. If there is limited time resource, evaluation of the dis-
tance from the practical coalition results to the optimal results
is an essential criteria. The standardized utility investigates how
well the actually gained coalition values are as compared with
the optimal coalition values.

D. Results

An extensive amount of stochastic simulations were carried
out for many different coalition formation scenarios. Due to
space limitation, only some representative results are presented
in the remaining part of this section. In these experiments, to
evaluate the performance of the proposed coalition formation
algorithms in relatively complex environments, assume that the
number of actions an agent can perform is 30, the number of
plans for a goal is 6, and the probability of an action of an
agent having an action dependence relation is 0.9.

E. Observation 1

The experimental results in Fig. 8 show that, with the increase
of agents, the average processing time increases. In Fig. 8, when
the number of agents increases from 10 to 100, the average pro-
cessing time increases from 0.04 to 2.50 s when . Also,
it can be found that increases more and more rapidly. This
result corresponds to the intuition that the coalition formation
reasoning becomes much harder with the increase with agents.

The simulation results in Fig. 8 also suggest that, with dif-
ferent , almost has no difference for the same market
density. In Fig. 8, when and , the av-
erage processing times are 0.40 and 0.39 s, respectively, when
the number of agents is 40.

F. Observation 2

From the experimental results in Fig. 9, it can be found that,
with the increase of agents, the average processing time in-
creases in coalition formation with and-action dependence. In
Fig. 9, when the number of agents increases from 10 to 100,
the average processing time increases from 0.02 to 0.69 s when

. Unlike the results in Section VII-E, has an
almost linear increase in Fig. 9.

From Fig. 9, it can be found that increases with the
increase of for the same market density. In Fig. 9, when

and , the average processing times are
0.25 and 0.36 s, respectively, when the number of agents is 50.

Fig. 8. Agents and average processing time.

Fig. 9. Agents and average processing time.

The results coincide with the results in Fig. 10, where the av-
erage processing time gradually increases with the increase of

. In Fig. 10, increases from 0.14 to 0.32 s when
increases from 0.10 to 1.

G. Observation 3

The algorithm for coalition formation with and-action depen-
dence is an anytime algorithm (see Section VI). Therefore, the
depending agent may find a solution before finding out the op-
timal solution. Since bounded time is a commonly used assump-
tion, it is necessary to evaluate how well a coalition formation
result is when there is not enough time to get the optimal re-
sult. In this experiment, let be the time enough for run-
ning the algorithm and be the limited practical time to run the
algorithm. From the experimental results in Fig. 11, it can be
found that the standardized utility increases with the increase
of , i.e., the coalition results are more closed to the op-
timal coalition results. Especially when , the prac-
tical coalition results are very closed to the optimal results (e.g.,
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Fig. 10. p and average processing time.

Fig. 11. p and standardized utility.

in Fig. 11, the standardized utilities are always higher than 0.8
when ).

VIII. CONCLUSION

The main contribution of this paper is complementing our
previous work by proposing coalition formation algorithms that
can generate optimal coalitions. This paper does not address the
problem of finding the optimal division of agents into coalitions
such that the total of the payoffs to all the coalitions is max-
imized but aims to propose efficient coalition formation algo-
rithms for specific goals pursuit. When there is no and-action de-
pendence, the proposed algorithm is of polynomial complexity.
Although the problem of coalition formation with and-action
dependence is NP-complete, experimental results show that the
algorithm is still efficient. Compared with other coalition forma-
tion methods, the transitive dependence-based approaches are
more intuitive.

The proposed framework is inspiring for dynamic coalition
formation although. The proposed coalition formation algo-
rithms can be applied in many application domains, such as
multiagent manufacturing systems, in autonomic and service

oriented computing, dynamic web/grid service composition,
virtual organizations (VOs) formation in service-oriented grid
where all the entities can be treated as autonomous agents,
supply chain management, workflow, and enterprise integra-
tion. In addition, our approach can be extended to 1) handle
resource conflict situations when more agents require the same
resource at the same time, and 2) solve much more complex
application problems in which some other relations are also
involved or there are more evaluation criteria.

Finally, a future agenda of this work is further analyzing the
problem of transitive dependence-based coalition formation
with and-action dependence and proposing possible algorithms
(e.g., distributed algorithms) with polynomial complexity
toward the NP-complete problem.
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