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ABSTRACT
Fraud transactions are one of the major threats faced by online
e-commerce platforms. Recently, deep learning based classifiers
have been deployed to detect fraud transactions. Inspired by find-
ings on adversarial examples, this paper is the first to analyze the
vulnerability of deep fraud detector to slight perturbations on in-
put transactions, which is very challenging since the sparsity and
discretization of transaction data result in a non-convex discrete
optimization. Inspired by the iterative Fast Gradient Sign Method
(FGSM) for the L∞ attack, we first propose the Iterative Fast Co-
ordinate Method (IFCM) for discrete L1 and L2 attacks which is
efficient to generate large amounts of instances with satisfactory
effectiveness. We then provide two novel attack algorithms to solve
the discrete optimization. The first one is the Augmented Iterative
Search (AIS) algorithm, which repeatedly searches for effective “sim-
ple" perturbation. The second one is called the Rounded Relaxation
with Reparameterization (R3), which rounds the solution obtained
by solving a relaxed and unconstrained optimization problem with
reparameterization tricks. Finally, we conduct extensive experimen-
tal evaluation on the deployed fraud detector in TaoBao, one of
the largest e-commerce platforms in the world, with millions of
real-world transactions. Results show that (i) The deployed detector
is highly vulnerable to attacks as the average precision is decreased
from nearly 90% to as low as 20% with little perturbations; (ii)
Our proposed attacks significantly outperform the adaptions of the
state-of-the-art attacks. (iii) The model trained with an adversarial
training process is significantly robust against attacks and performs
well on the unperturbed data.
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1 INTRODUCTION
With the rapid growth of information technologies, e-commerce has
become prevalent nowadays. Large e-commerce platforms serve
billions of users and connect them to factories, stores and third-
party merchants with numerous products available. The big success
of e-commerce also motivates the emergence of fraud transactions
to illegally promote items and stores. In order to increase sales,
fraudulent sellers turn to third-party malicious service platforms
where they can hire human labors to create fake purchases and
visits [26, 29, 33], and thus provide a fake impression that the target
item is popular. This results in much higher rankings of the items
from fraudulent sellers, and causes huge losses to the platforms as
it hurts the user experience. Online fraud activities have caused a
loss in billions of dollars1, and it is reported that just in China, the
online fraudulent industries involve over 1.6 million human labors
and create billions of dollars of illegal incomes2.

Fraud detection is critical to the development of e-commerce
platforms. Recently, with billions of transaction data available, deep
learning based models are proposed and deployed to detect fraud
transactions on a real-time basis [6, 32, 34]. Inspired by recent
findings in the domain of computer vision that deep learning based
image classifiers could be fooled by imperceptible noises during
test phases [27], we are interested in analyzing the vulnerability
of deep fraud detector to slight perturbations on input data. This
study has a high practical value for e-commerce platforms as the
existence of such adversarial perturbations could indicate the risk
of deploying deep fraud detectors. As shown in our motivating
example, fraudulent sellers and malicious service providers are able
to exploit such risks to bypass the detector with little costs.

In this paper, we aim to investigate the vulnerability of a deployed
deep fraud detector being fooled by slight and feasible perturbations.
However, the e-commerce domain is different from the computer
vision area, since the transaction data are mostly discrete and sparse.

1https://www.signifyd.com/blog/2017/10/26/ecommerce-fraud-eight-industries/
2http://cn.chinadaily.com.cn/2015-11/05/content_22379527.htm
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Few works considering discrete adversarial perturbations either
propose a straightforward extension of the existing Fast Gradient
Method [9], or take into account only the L∞ attack [2], while they
cannot handle more complex L1 and L2 attacks, which are of higher
practical interests in our problem.

This paper makes the following contributions.
• First, inspired by the Fast Gradient Sign Method (FGSM), to
handle the L1 and L2 norm bound constraints, we propose
the Iterative Fast Coordinate Method (IFCM) which repeat-
edly conducts a one-unit descent on a single coordinate.
IFCM can efficiently generate a large amount of adversarial
perturbations with satisfactory effectiveness and is used in
our proposed adversarial training process.
• Second, to address the discrete optimization for adversar-
ial perturbations, we provide two novel attacks. The first
attack is called the Augmented Iterative Search (AIS). In each
iteration, AIS proceeds to search for “simple" perturbations
with one-unit descents on at most two coordinates. AIS also
augments the searching process by restricting the space of
two-coordinate perturbations based on the Value of Perturba-
tion (VoP). The second attack is called the Rounded Relaxation
with Reparameterization (R3), which is an optimization-based
attack. R3 first relaxes the discrete optimization with repa-
rameterization trick and rounds the continuous solution to
obtain a discrete perturbation.
• Third, we conduct extensive experimental evaluations on
the deployed fraud detector from TaoBao, one of the largest
e-commerce platforms in the world, with millions of real-
world transactions. The experimental results show that (i)
The deployed fraud detector is threatened by the crafted ad-
versarial perturbations. Our AIS and R3 attacks successfully
decrease the detector’s average precision from nearly 90% to
as low as 20% with little perturbations. (ii) Our proposed AIS
and R3 attacks significantly outperform adaptations of sev-
eral state-of-the-art attacks, including the C&W attack [4],
the Logit-Space attack [2], and the EAD attack [5]. (iii) We
propose an adversarial training process with adversarial ex-
amples generated by the IFCM. Results show that the robust-
ness of the detection model is significantly improved as we
achieve an average precision above 85.9% under all tested at-
tacks. Meanwhile, the average precision on the unperturbed
data remains nearly 90%.

2 RELATEDWORK
In this section, we review the related works in crafting adversarial
examples to attack DNN models and various defense techniques.

2.1 Attacks on DNNs
FGSM [8] and its variant R+FGSM [28] are single step attacks, which
perturb the input towards the gradient direction of the loss function.
The extensions of FGSM iteratively perform single step attacks with
smaller step size, such as BIM [13] and PGD [15]. Other iterative
attacks include DeepFool [17], which approximates the decision
boundary near the target instance with the linear hyperplane, and
UAP [16] to produce a single perturbation which is capable of
attacking multiple images. FGSM and R+FGSM are further extended

to perturb towards the direction which maximizes the confidence
score on the least likely labels for the target image [8, 28].

Besides gradient directional methods, Papernot et al. [21] pro-
pose the JSMA attack which uses the Jacobian matrix to get the
salient map and modifies the features with high significance to
confuse the classifier. C&W attack [3] relaxes the hard constraint
on the distortion, and adds a penalty on the Lp norm (p ∈ {0, 2,∞})
of perturbation. EAD [5] improves the transferability of adversarial
examples through elastic-net regularization. Several works study
the adversarial examples to evade DNN models in real-world ap-
plications, including the face recognition system [25], objection
detection [11], and malware detection [9].

Most of the works focus on image recognition tasks and consider
only continuous perturbations. While Grosse et al. consider the
binary input [9] and adapt the fast gradient algorithms to solve
their problem in a similar way as our IFCM1, they only consider
the L1 attack. Buckman et al. propose the Gumbel-softmax trick to
approximate the one-hot encoding of the discrete feature. However,
their attack is suitable for L∞ distortion bound and fails to consider
the constraints that correlate the input features such as L1 and L2
norm constraints in our problem.

Our R3 attack is inspired by the optimization-based L2 attacks [4,
5, 27]. These attacks all handle the L2 norm constraint by imposing
a penalty in the objective function and conducting a binary search
to find a suitable constant coefficient of penalty term. This is a rea-
sonable way to find the minimal distortion to successfully craft an
adversarial example. However, in our problem, we are asked to find
the most effective adversarial instance given the allowed distortion.
While one could conduct a binary search to find the suitable con-
stant coefficient that the distortion constraint is satisfied, the neural
networks are non-convex in general and thus the binary search
could be unstable to always generate a distortion satisfying the
given constraint [27]. Our R3 attack utilizes the reparameterization
trick to transform the constrained optimization to an equivalent
unconstrained problem for which the solution always satisfies the
distortion bound.

2.2 Defenses
There are several defense measures to improve the robustness
of deep learning based classifiers, such as the defensive distilla-
tion [20, 22], which adopts the distillation technique [10] to retrain
the same network with the confidence score outputted by the orig-
inal model as the soft label, feature squeezing [30], detection ap-
proaches for adversarial instances [4], and adversarial training [8],
a general process based on robust optimization that augments the
training data with adversarial examples [8, 15, 35]. Some recent
works propose to regularize or mask the gradient of the loss func-
tion with respect to inputs [24]. Almost all defenses are shown to
be effective only for some attacks [31].

Recently, Athalye et al. pointed out that the defenses based on ob-
fuscated gradients are threatened by their characteristic behaviors
which can be exploited to design attacks circumventing them [1].
It is believed that adversarial training does not cause obfuscated
gradient [1]. Thus, in this paper, we use adversarial training to
achieve robust fraud detection and our experimental evaluation
verifies the effectiveness of the strengthened detector.
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Figure 1: Abstracted architecture of deep fraud detector

3 DEEP FRAUD DETECTION AND ATTACKS
In this section, we first briefly introduce the deep learning model
for fraud detection which is used by one of the largest e-commerce
platforms in the world. We then present concrete examples to show
the possible attacks by malicious sellers and service providers.

3.1 Deep Fraud Detection
Figure 1 shows the architecture of deep neural networks in de-
ployed fraud detection system of TaoBao. The goal of the detector
is to predict whether an online transaction is fraudulent. Each input
transaction is represented as a feature vector x which concatenates
two classes of features. The first is non-manipulable features, such
as scores obtained with label propagation on the user-item trans-
action graph, to measure the offline maliciousness based on past
records. Other non-manipulable features are prices3. In this paper,
we focus on manipulatable features whose adjustment could have a
significant effect on the detector’s prediction. Without causing any
confusion, we denote a transaction by a vector of only perturbable
features. In the context of the investigated fraud detection, the
perturbable features are those characterizing the user’s preference,
called preference features, defined as follows.

Let C be the set of all item categories, and n = |C |. A preference
feature vector is represented by x ∈ Nn with xi denoting the
number of records that the user interacts with items in the i-th
category of C in a past period, normally 30 days. Such records
include adding an item to the shopping cart, adding an item to
“favorite", and so on. x represents the user’s global interest in online
shopping. Fraudulent buyers tend to show different preference
patterns compared with benign users. Each transaction instance x
is associated with a labely ∈ {0, 1}, such thaty = 1 if the transaction
is fraudulent and y = 0 otherwise.

All features are first normalized to be within [0, 1]n with a
“smooth” normalization function to tackle the extreme values. Here,
the feature value x is normalized to be log (x+1)

logM (element-wise)
where M is the largest number of interactions observed in train-
ing data. The normalized preference features are passed to a cross

3Prices are hard to perturb in practice and the empirical study shows that slight
perturbations on prices cause negligible changes.

no more items

Figure 2: A piece of a fraudulent automatic script

layer [14] at first to exploit the interactions between different cat-
egories. The output of the cross layer is concatenated with non-
manipulable features. The aggregated feature vector goes to a multi-
layer feed-forward neural network, where each hidden-layer con-
sists of rectified linear units as hidden neurons [18]:

relu (x ) = max(0,x ).
The output of the last hidden-layer z ∈ R2, called the logit, is then
passed to a softmax layer to produce the confidence score on the
transaction x being fraudulent

f w (x) =
ez1

ez0 + ez1
,

wherew denotes the parameters of themodel, including the weights
and biases on hidden neurons. The model is trained over a large-
scale data set D = {xi ,yi }Ni=1 by minimizing the regularized total
loss function Lw (x,y) over D

min
w

E
(x,y )∼D

[Lw (x,y)] + λ∥w∥2, (1)

where λ is the regularization coefficient. The commonly used loss
function in classification tasks is the cross-entropy loss

Lw (x,y) = −1{y=1} log f w (x) − 1{y=0} log (1 − f w (x)),

and the stochastic gradient descent is widely applied to optimize
the parameter w [7, 23].

3.2 Attacks to Fraud Detector
With billions of customers served on e-commerce platforms, the
profit from fraud transactions could be huge for malicious sellers
as they significantly promote the rankings of target items. Driven
by the huge profit, a lot of malicious service platforms provide
sophisticated tactics to bypass the strict detection and conduct
fraud transactions. One common tactic is to mimic benign users’
behavior such as using automatic visit script to visit different items
before purchasing the target item, and hiring human labors to chat
with the merchants before making a transaction. Figure 2 shows an
example of automatic script to bypass the fraud detection, which
is a piece of Java code as part of a mobile malicious service App
which creates random perturbation to a target transaction such as
dragging and browsing to behave like humans, intentionally visit-
ing items from some categories, etc. According to domain experts,
malicious platforms can create around 200,000 visits in per day and
promote over 1000 items frommalicious sellers. Since we verify that
the vulnerability to slight perturbations exists for a fraud detector,
the malicious platforms could exploit those threats to adapt the
fraud transaction data in order to bypass the detection.
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Formally, let δ be the vector of perturbation on fraud instance
x where δi is the amount of changes on xi , and δ is discrete, i.e.,
δ ∈ Zn . Assume δ ≥ 0 since it is more practical for realistic adver-
saries to add additional records of interactions via measures such
as aforementioned automatic scripts4. In the domain of computer
vision, the adversarial perturbations need to satisfy constraints that
the perturbations are small enough, so that the ground truths of
the adversarial instances remain the same as the original ones [8].
We also impose similar restrictions on δ , in order to capture the
feasibility of perturbations in the sense that adversaries can conduct
the perturbation with little effort. Such restrictions are expressed
by the Lp norm bound on perturbations, and the common choices
of p are {0, 1, 2,∞}. Thus, the set of feasible δ bounded by Lp norm
is defined as follows:

∆
p
q B {δ | δ ∈ Z

n , ∥δ ∥p ≤ q,δ ≥ 0}, (2)
where q is the maximal distortion in Lp norm, and

∥δ ∥0 =
n∑
i=1

1{δi>0}, ∥δ ∥1 =
n∑
i=1
|δi |,

∥δ ∥2 =

√√ n∑
i=1

δ2i , ∥δ ∥∞ = max
i
|δi |.

We focus on attacks bounded by L1 and L2 norms, which are suit-
able to describe realistic perturbations on the discrete and sparse
preference features. L0 attack is not practical as it allows the adver-
sary to add infinitely many records on one category. L∞ attack is
not reasonable as the preference features are sparse in the sense
that interactions on only few categories are recorded. Thus, even
an adversarial perturbation with L∞ norm of 1 violates the sparse
nature of preference features.

For a suitable distortion metric Lp , our objective is defined as
follows. For a deep fraud detector with model parameter w, given
a fraud transaction instance x in testing or deploying phase, we
aim to find the adversarial example, an instance xadv crafted with
a feasible perturbation δ ∈ ∆

p
q , i.e., xadv = x + δ , to maximally

decrease the fraudulent score on xadv . This can be done by solving
the following optimization problem:

min
δ ∈∆pq

f w (x + δ ) (3)

In the following sections, we present our three novel L1 and L2
attack algorithms. We first provide an Iterative Fast Coordinate
Method (IFCM) which is efficient enough to generate a large num-
ber of adversarial examples with satisfactory attacking effective-
ness. Therefore, IFCM is used in the defense measure of adversarial
training. To evaluate the robustness of the detector more accu-
rately, we provide two stronger attacks. One is the search-based
attack called Augmented Iterative Search (AIS), and the second one
is optimization-based attack called Rounded Relaxation with Repa-
rameterization (R3). Though AIS and R3 cannot generate millions
of adversarial examples for adversarial training, their scalability
is sufficient to evaluate the robustness of the model, and both al-
gorithms outperform the adaption of the state-of-the-art methods
significantly in attacking effectiveness. Empirical evaluation shows
that with adversarial training on samples generated by IFCM, the
4Note that, our attacks can be easily adapted to allow negative perturbations.

model is significantly more robust against stronger attacks such as
AIS and R3.

4 FAST ATTACK: IFCM
In this section, we propose a fast attack algorithm called Iterative
Fast Coordinate Method (IFCM), which is inspired by the iterative
gradient sign method [13]. Given the sparsity and discretilization
of input data, IFCM conducts multiple gradient descents, each with
step size 1 along a single coordinate. The descending coordinate
is selected in different ways when generating L1 and L2 attacks
respectively. In IFCM for L1 attack (IFCM1), the coordinate with
the smallest partial derivative is chosen. While in IFCM for L2
attack (IFCM2), the selection of descending coordinate considers
not only the value of partial derivative along that coordinate, but
also the increment of L2 norm caused by one unit descent along the
coordinate. Thus, following the greedy algorithm for the knapsack
problem, IFCM2 selects the coordinate with the highest Value of
Perturbation (VoP) which is defined later. The two variants of IFCM
are illustrated as follows.

4.1 IFCM1

Algorithm 1: Iterative Fast Coordinate Method for L1 attack
(IFCM1)
input :Fraud instance x,q, detection model parameter w
output :Adversarial example xadv with L1 norm bounded

distortion
1 xadv ← x,δ ← 0n ;
2 while

∑n
i=1 δi < q do

3 Compute the gradient ∇x f w (xadv ) with
back-propagation;

4 imin = argmini ∂f w (xadv )
∂xi

;

5 if ∂f w (xadv )
∂ximin

> 0 then
6 return xadv ;
7 xadvimin

← xadvimin
+ 1,δimin ← δimin + 1;

8 return xadv .

As illustrated by Algorithm 1, at each iteration, IFCM1 computes
the gradient ∇x f w (xadv ) of the fraudulent score with the current
adversarial example (Line 3), and selects the coordinate imin with
the minimal partial derivative (Line 4). If the partial derivative of
f w (xadv ) with ximin is negative, a step of coordinate descent along
the coordinate imin is conducted with step size 1. Otherwise, when
the gradient ∇x f w (xadv ) is positive along every coordinate, or the
maximal distortion q is reached, the algorithm terminates.

4.2 IFCM2
The main difference between IFCM2 and IFCM1 lies in the choice of
descending coordinate. IFCM1 selects the coordinate by comparing
the partial derivative, while the coordinate chosen in IFCM2 is de-
cided by Value of Perturbation (VoP). VoP is inspired by the greedy
algorithm for knapsack problem. For each coordinate i , a unit de-
scent on such coordinate decreases the fraudulent score f x

adv by
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Algorithm 2: Iterative Fast Coordinate Method for L2 attack
(IFCM2)
input :Fraud instance x,q, detection model parameter w
output :Adversarial example xadv with L1 norm bounded

distortion
1 xadv ← x,δ ← 0n ;

2 while
√∑n

i=1 δ
2
i < q do

3 Compute the gradient ∇x f w (xadv ) with
back-propagation;

4 Compute VoPi for i ∈ [n];
5 imax = argmaxi VoPi ;
6 if VoPimax ≤ 0 then
7 return xadv ;
8 xadvimax

← xadvimax
+ 1,δimax ← δimax + 1;

9 return xadv .

an estimated amount of − ∂f w (xadv )
∂xi

(the value), and increases the

L2 norm of current perturbation δ by
√
∥δ ∥22 + 2δi + 1 − ∥δ ∥2 (the

weight).VoPi is defined as the estimated decrease on the fraudulent
score per unit increase of L2 norm via increasing δi

VoPi =




−
∂f w (xadv )

∂xi√
∥δ ∥22+2δi+1−∥δ ∥2

if
√
∥δ ∥22 + 2δi + 1 ≤ q

−∞ otherwise.

5 SEARCH-BASED ATTACK: AIS
In order to further evaluate the vulnerability of deep fraud de-
tector to adversarial perturbation, we propose an attack method
called Augmented Iterative Search (AIS) which shows superior per-
formance in fooling the detector and outperforms all benchmarks
significantly in our experimental evaluation. Since the size of pertur-
bation space is a combinatorial number, for example, |∆1

q | = C
q
n+q−1,

the exhaustive search is intractable. Thus, AIS repeatedly searches
for a “simple" perturbation which brings the largest decrease on the
objective value of optimization (3) and accumulates those “simple"
perturbations to form the final solution. The simplest perturbation
perturbs only one coordinate with a single unit, which is the one
with L1 norm of 1, termed “single-unit" perturbation. AIS goes
further by taking into account the perturbations which perturb
two entries with non-zero changes, one with 1 and one with -15,
termed “tuple-unit" perturbations. However, the number of feasible
tuple-unit perturbations is of quadratic order O (n2) with n, which
makes it impractical to exhaustively search all of them. Thus, AIS
augments the search process of the tuple-unit perturbations by
restricting the space of such perturbations, as we explain later.

5.1 AIS1
Similarly as IFCM,we implement two variants of AIS, AIS1 andAIS2,
for L1 and L2 attacks respectively. AIS1 is illustrated in Algorithm 3.
δ t denotes the accumulative perturbations until iteration t and
5Notice that the value of -1 does not necessarily violate the non-negative requirement
on δ , which is the accumulative perturbation.

δ0 = 0. At each iteration t , the set of all single-unit perturbations is
denoted by∆−t ∪∆+t where∆−t contains the single-unit perturbations
which have value -1 on the only non-zero entry and the adoption of
δ− ∈ ∆−t decreases the L1 norm of accumulative perturbation δ t−1

by 1. Similarly, δ+ ∈ ∆+t has value 1 on the only non-zero entry.

∆−t = {δ ∈ Z
n | ∥δ ∥1 = 1, ∥δ t−1 + δ ∥1 = ∥δ t−1∥1 − 1,δ t−1 + δ ≥ 0}

∆+t = {δ ∈ Z
n | ∥δ ∥1 = 1, ∥δ t−1 + δ ∥1 = ∥δ t−1∥1 + 1}.

(4)
The set of all tuple-unit perturbations is denoted by ∆±t

∆±t = {δ
+ + δ− | δ+ ∈ ∆+t ,δ

− ∈ ∆−t }

However, the size of ∆±t ismn −m wherem is the number of non-
zero entries in δ t−1, and in the worst case, ∥∆±t ∥ can be quadratic
with n. To augment the search of tuple-unit perturbation, AIS1
replaces ∆±t with its restricted subset ∆̃±t,k with much smaller size.
In order to do so, we first define the value of a “simple" perturbation
δ with respect to current solution xadv as the marginal decrease
on the objective value of (3) due to the adoption of δ

V (xadv ,δ ) = f w (xadv ) − f w (xadv + δ )

The restricted set ∆̃±t,k is defined as follows

∆̃±t,k = {δ
+ + δ− | δ+ ∈ ∆̃+t,k ,δ

− ∈ ∆̃−t,k } (5)

where ∆̃+t,k ⊂ ∆+t and ∆̃−t,k ⊂ ∆−t contain the top k single-unit
perturbations among ∆+t and ∆−t respectively ordered by values
in the descending order. The intuition behind ∆̃±t,k is that a tuple-
unit perturbation is more likely to have higher marginal decrease
on f w (xadv ) if it consists of the single-unit perturbations with
high values. The size of ∆̃±t,k is of order O (k2), and the choice of k
balances the scalability and solution quality.

The search operation in AIS1 is as follows. Given the L1 norm
bound of distortion, a reasonable policy is to process the spaces of
perturbations ∆−t , ∆+t and ∆̃±t,k separately with different priorities.
∆−t is assigned the highest priority as the perturbation within it
can decrease the L1 norm of the accumulative perturbation. Thus,
if there exists one single-unit perturbation δ− ∈ ∆−t with positive
value, it is returned and added to δ t−1, the accumulative perturba-
tion so far (Lines 4–6). If ∆−t contains no single-unit perturbation
with positive value, ∆̃±t,k is processed. Similarly, the tuple-unit per-
turbation δ± with positive value is returned and δ t is updated
(Lines 8–10). Finally, if both ∆−t and ∆̃±t,k cannot decrease the ob-
jective f w (w(xadv ), AIS1 searches for δ+ with positive value from
∆+t , which increases the L1 norm of accumulative perturbation by
1 (Lines 14–16).

5.2 AIS2
The key difference between AIS2 and AIS1 is that, in AIS1, a single-
unit perturbation would always change the L1 norm of the accu-
mulative perturbation by 1, and the L1 norm of the accumulative
perturbation is unchangedwhen a tuple-unit perturbation is applied.
However, this is not always the case when producing L2 attacks.
Therefore, the value of a “simple" perturbation needs to take into
account not only the decrease of fraudulent score f w (xadv ), but
also the change of the L2 norm of accumulative perturbation. Given
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Algorithm 3: Augmented Iterative Search (AIS) for L1 attack
input :Fraud instance x,q, maximum iteration K ,detection

model parameter w, k
output :Adversarial example xadv with L1 norm bounded

distortion
1 xadv ← x,δ0 ← 0n ;
2 for t ← 1 to K do
3 Compute ∆−t , ∆+t and ∆̃±t,k with (4) and (5);
4 Solve minδ ∈∆−t V (xadv ,δ ) and get δ−;
5 if V (xadv ,δ−) > 0 then
6 δ t ← δ t−1 + δ−, xadv ← xadv + δ−;
7 else
8 Solve minδ ∈∆̃±t V (xadv ,δ ) and get δ±;
9 if V (xadv ,δ±) > 0 then

10 δ t ← δ t−1 + δ±, xadv ← xadv + δ±;
11 else
12 if ∥xadv − x∥1 = q then
13 return xadv

14 Solve minδ ∈∆+t V (xadv ,δ ) and get δ+;
15 if V (xadv ,δ ) > 0 then
16 δ t ← δ t−1 + δ+, xadv ← xadv + δ+;
17 else
18 return xadv ;

19 return xadv

the current solution xadv of optimization (3) and a feasible “simple"
perturbation δ , we define the Value of Perturbation (VoP) as follows:

VoP (xadv ,δ ) =



∆f w (xadv ,δ )
d2 (xadv ,δ )+ϵ

if ∥xadv + δ ∥2 ≥ ∥xadv ∥2
−d2 (xadv ,δ ) · ∆f w (xadv ,δ ) o.w.

where ϵ is a small constant to avoid being divided by 0,

d2 (xadv ,δ ) = ∥xadv + δ ∥2 − ∥xadv ∥2,

and
∆f w (xadv ,δ ) = f w (xadv ) − f w (xadv + δ ),

Similar with AIS1, we start from the definition of the single-unit
perturbations, which form ∆−t and ∆+t . ∆−t is the same as defined
in (4) while ∆+t is a bit different, considering the L2 norm constraint.

∆+t = {δ ∈ Z
n | ∥δ ∥1 = 1, ∥δ t−1+δ ∥1 = ∥δ t−1∥1+1, ∥δ t−1+δ ∥2 ≤ q}.

The restricted set ∆̃±t,k follows the definition in (5) where ∆̃+t,k ⊂ ∆+t
and ∆̃−t,k ⊂ ∆−t contain the k single-unit perturbations with top-k
VoPs among ∆+t and ∆−t respectively. AIS2 searches the“simple" per-
turbation in a way that, the perturbations which can decrease the
L2 norm of accumulative perturbation are evaluated first. For this
aim, we divide ∆̃±t,k into two sets, ∆̃±,mt,k which consists of pertur-
bations whose adoption can decrease the L2 norm of accumulative
perturbation, and ∆̃

±,p
t,k , the complementary set of ∆̃±,mt,k .

∆̃±,mt,k = {δ ∈ ∆̃
±
t,k | ∥δ

t−1 +δ ∥2 < ∥δ
t−1∥2} ∆̃

±,p
t,k = ∆̃±t,k \ ∆̃

±,m
t,k .

Algorithm 4 illustrates the details of AIS2. First, AIS2 processes

Algorithm 4: Augmented Iterative Search (AIS) for L2 attack
input :Fraud instance x,q, maximum iteration K ,detection

model parameter w, k
output :Adversarial example xadv with L2 norm bounded

distortion
1 xadv ← x,δ0 ← 0n ;
2 for t ← 1 to K do
3 Compute ∆−t , ∆+t and ∆̃±t,k ;
4 Solve minδ ∈∆−t ∪∆̃±,mt,k

VoP (xadv ,δ ) and get δ−;

5 if VoP (xadv ,δ−) > 0 then
6 δ t ← δ t−1 + δ−, xadv ← xadv + δ−;
7 else
8 Solve minδ ∈∆+t ∪∆̃±,pt,k

VoP (xadv ,δ ) and get δ+;

9 if VoP (xadv ,δ+) > 0 then
10 δ t ← δ t−1 + δ+, xadv ← xadv + δ+;
11 else
12 return xadv

13 return xadv

∆−t ∪ ∆̃±,mt,k , with perturbations decreasing the L2 norm of the ac-
cumulative perturbation. If there exists one “simple" perturbation
δ− ∈ ∆−t ∪ ∆̃±,mt,k with positive VoP, it is returned and added to
δ t−1, the accumulative perturbation so far (Lines 4–6). Otherwise,
∆+t ∪ ∆̃

±,p
t,k is proceeded (Lines 8–10). The algorithm terminates if

no “simple" perturbation within ∆−t ∪ ∆+t ∪ ∆̃±t,k has positive VoP
(Line 12) or the maximum iteration K is reached.

6 OPTIMIZATION-BASED ATTACK: R3
In this section, we propose a novel attack framework called Rounded
Relaxation with Reparameterization (R3). R3 solves the following
relaxed optimization problem of (3) and rounds the continuous
solution to get the discrete perturbation.

min
δ ∈Rn+,0

f w (x + δ )

s.t. ∥δ ∥p ≤ q.
(6)

The main problem here is that the constrained non-convex op-
timization is hard to solve. Though one can apply the projected
gradient descent to ensure the solution is always feasible, unlike
the box-constraint in the common L∞ attacks, the projection oper-
ation is challenging under the complex L1 and L2 norm constraints.
Thus, we propose the reparameterization tricks to transform the
constrained optimization (6) to the equivalent unconstrained opti-
mization by exploiting the property of L1 and L2 norms.

For the L1 attack, we notice that the unit L1 norm ball B1 = {δ ∈
Rn
+,0 | ∥δ ∥1 = 1} is the set of all n-dimensional probability distri-

bution vectors. Thus, we can resolve the unit L1 norm constraint
in (6) with Softmax reparameterization as follows. Let z ∈ Rn be
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the variable to reparameterize δ .

δi =
ezi∑n
j=1 e

zj ∀i ∈ [n]

To generalize it to the L1 norm within [0,q], we define r ∈ Rn and
reparameterize δ as follows

δi = q ·
(tanh(ri ) + 1) · ezi

2∑nj=1 ezj ∀i ∈ [n] (7)

One can easily verify that δ satisfies the L1 norm constraint and
every feasible δ can be reparameterized with suitable r and z.

The L2 norm constraint of δ can also be resolved with similar
reparameterization trick using r and z.

δi = q ·
(tanh(ri ) + 1) · ezi

2
√∑n

j=1 e
2zj

∀i ∈ [n] (8)

With reparameterization, we solve the following unconstrained
optimization which is equivalent to (6).

min
r,z∈Rn

f w (x + δ ) (9)

where δ is in the forms of (7) and (8) for L1 and L2 attacks respec-
tively.

We use the Adam optimizer to conduct gradient descent to
solve (9). After the continuous solution δ is obtained, we round
it into a discrete solution satisfying the Lp norm bound of q. The
rounding process works as follows. We pick a threshold value η
from [0, 1]. Let δ̃ be the solution of (9). For each entry δ̃i , if the
residual value δ̃i −⌊δ̃i ⌋ is larger than η, we set δi be ⌊δ̃i ⌋+1 and oth-
erwise, δi is assigned with ⌊δ̃i ⌋. The binary search is conducted on
possible threshold values and output the final solution δ such that
no feasible δ with ∥δ ∥p ≤ q can be obtained with higher threshold
value. As there are at most n different residual values, the binary
search can be done within log(n) rounds.

7 ADVERSARIAL TRAINING FOR
IMPROVING ROBUSTNESS

In order to improve the robustness of the deep fraud detector, we
incorporate adversarial examples into the training process (Algo-
rithm 5), and solve the following robust optimization

min
w

E
(x,y )∼D

[ max
δ ∈∆1

q1∪∆
2
q2

Lw (x + δ ,y)] (10)

where we omit the regularization term. Adversarial training (Al-

Algorithm 5: Adversarial training with IFCM
1 Randomly initialize the network for fraud detection;
2 repeat
3 Read minibatch B ⊂ D from training set D;
4 For each fraud instance in B, randomly selects p ∈ {1, 2}

and create an adversarial example with IFCMp , grouped
into Badv ;

5 Concatenate Badv with B as B′;
6 Conduct one training step over B′ with loss L̃ in (11);
7 until training converged;

gorithm 5) is a common practice to solve (10). The idea is to incor-
porate the adversarial examples into the training process and to
approximate the optimization of the inner problem in (10). Notic-
ing that both L1 and L2 attacks are considered in this paper, at
each iteration, for each fraud instance in minibatch B of training
data, we uniformly pick p from {1, 2} and generate one adversarial
example with IFCMp . All the generated adversarial examples are
grouped into Badv , which is concatenated with B to form the new
minibatch training data B′. A training step is then conducted on
B′ with the following loss function

L̃w (x,y) =1{y=0}L
w (x,y) + (1 − γ )1{y=1}Lw (x,y)

+ γ1{y=1}L
w (xadv ,y)

(11)

where γ is the parameter balancing the loss of the original data and
adversarial examples.

8 EXPERIMENTAL EVALUATION
In this section, we present extensive experimental evaluation to
illustrate the performance of our methods.

8.1 Experimental Settings
8.1.1 Dataset andData Analysis. Our dataset is provided by TaoBao,
one of the largest e-commerce platforms in the world. The dataset
contains all transaction data in a period of 30 days. Each transac-
tion is encoded as a feature vector to represent its statistics and
characteristics, including various prices, the number of historical
purchases on an item, the offline metrics on fraudulent suspicious
of the buyer and item, and the statistics on a user’s preference,
depicted by the records of interactions on all categories in the past
one month. We randomly sample 1.5 million fraud transactions
and 1.5 million benign instances from the data in the first 25 days
to form a balanced training set. We uniformly pick 300 thousand
transactions from the records of the last 5 days as the test data,
where the proportion of fraud instances to benign ones is around 1
: 30.

We provide some statistics on the preference features to give a
better impression on the fraud detection problem. One key statistic
is the L1 norm of a transaction instance x, that is, the total number
of interactions recorded in the past month. We notice that in the
fraud transactions, 66.8% have zero interaction, i.e., ∥x∥1 = 06, while
the percentage is only 3.9% in the benign transactions. According
to the explanation from domain experts in TaoBao, those fraud
instances with zero L1 norms are likely to be generated by large
number of simple and cheap robots or scripts by the platforms,
which are also easier to detect. The remaining fraud instances with
non-zero L1 norms correspond to the sophisticated scripts, such as
the one in Figure 2, which makes complicated operations to behave
like humans. Table 1 presents the distribution of ∥x∥1 of instances
with non-zero L1 norms, as well as the mean value of ∥x∥1.

There are several points we would like to make regarding these
statistics. First, though it seems reasonable to have two separate
classifiers, one for instances with zero L1 norm and the other for
the remaining instances, empirical attempts show that it provides
6Wewould like to remind the reader that for simplicity, we only consider the preference
features to encode an instance, while in the deployed model, there are other non-zero
features.
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Type ∥x∥1 ≤ 100 100 < ∥x∥1 ≤ 200 200 < ∥x∥1 ≤ 300 ∥x∥1 > 300 mean(∥x∥1)
fraud 33.87% 16.43% 10.85% 38.85% 377
benign 45.33% 23.56% 12.8% 18.31% 208

Table 1: Statistics on fraud and benign instances with non-zero L1 norms

little improvement and brings extra vulnerability to adversarial
attack. Thus, we use a single classifier as the detector for all in-
stances. Second, despite the high amount of fraud instances with
zero L1 norms, the perturbation on those instances is meaningful as
it indicates the potential that the adversary improves their simple
bots with extra functions. Third, we also evaluate our attacks on
fraud instances with non-zero L1 norms separately, and the slight
perturbation can still bypass the detector with high chance. For
example, with q = 20 in L1 attack, which corresponds to the dis-
tortion ratio of only around 5% given that the mean value of ∥x∥1
is 377 for fraud instances with non-zero L1 norms, the adversarial
examples generated by AIS1 can fool the detector with probability
over 50%.

8.1.2 Model Training and Attack Settings. The deep fraud detector
model is trained with the following parameters. The training batch
size is 500 and the model is trained over 30000 batches. Adam [12]
optimizer is used to conduct the stochastic gradient descent and
the learning rate is set to be 0.0002. The regularization parameter
α is set to be 0.01. The adversarial training is conducted with ad-
versarial examples generated by IFCM1 and IFCM2, with q = 30
and q = 6 respectively. To test the attacking effectiveness of vari-
ous algorithms, we consider q ∈ {10, 20, 30} for the L1 attack and
q ∈ {4, 5, 6} for the L2 attack. In evaluation of the detector strength-
ened with adversarial training, we also try larger values of q, such
as q ∈ {10, 20, 30, 40, 50} for the L1 attack and q ∈ {4, 5, 6, 7} for the
L2 attack.

8.1.3 Baselines. We adapt several state-of-the-art continuous at-
tacks to generate discrete perturbations, including FGSM [8], C&W
attack [4], Logit-Space attack [2], and EAD attack [5].
FGM1: FGM1 is a single step L1 attack method which selects the q
coordinates with the minimal partial derivatives and adds one unit
perturbation on each of them.
C&W attack: C&W attack is an optimization-based method pri-
marily for continuous L0, L2, and L∞ attacks on image classifiers.
We adapt it to generate L1 attack and use rounding techniques to ob-
tain the discrete perturbation satisfying the norm constraint. C&W
uses the Change of Variables (CoV) to replace δ with q

2 (tanh(w)+1)
(element-wise) and solves the following continuous optimization

min
w∈Rn

c · f (x +
q

2 (tanh(w) + 1)) + ∥q2 (tanh(w) + 1)∥p

where f (xadv ) is suggested to be defined as the difference of the
logits, i.e., f (xadv ) = max(zadv1 − zadv0 , 0) [4] with zadv being
the output of the last hidden-layer when the adversarial exam-
ple xadv = x + q

2 (tanh(w) + 1) is the input. We replace it with
f (xadv ) = zadv1 −zadv0 as z1 tends to be larger than z0 in our tested
detector and the suitable threshold is around 0.9, rather than 0.5.
Constant c is selected with binary search to ensure that f (xadv )
is minimized to the extend while ∥ q2 (tanh(w) + 1)∥p ≤ q is still

satisfied7. The optimization is solved with Adam optimizer. We
pick the hyper-parameters that perform the best in solving the
optimization in our tests, including the learning rate of 0.1 with
1000 gradient descent steps. 16 binary searches are conducted on
c ∈ [0, 100]. The continuous solution δ is rounded off in a similar
way as R3 attack. After the binary search returns the optimal c , we
solve the optimization with 5 random starting-points of w and pick
the best rounded discrete solution.
C&W-LS attack: Logit-Space attack [2] uses one-hot encoding
to represent the discrete feature and applies the Softmax reparam-
eterization to approximate the one-hot encoding. Formally, δi is
represented by So f tmax (wi ) · (0, 1, ...,q) and the optimized vari-
able is changed toW = [w1, ...,wn]. The optimization is similar
to C&W attack, except that an entropy penalty is imposed to pe-
nalize δi being fractional. That is, C&W-LS solves the following
optimization

min
W ∈Rn×(q+1)

c ·f (x+U (0, 1, ...,q)T )+∥U (0, 1, ...,q)T ∥p+β ·
∑
i ∈[n]

H (ui )

where U = [u1, ..., un], ui = So f tmax (wi ), i.e., ui j = ewij∑q
j′=0 e

wij′

for j ∈ {0, 1, ...,q}, and H (ui ) = −
∑q
j=0 ui j log(Ui j ) is the entropy

for ui regarded as a distribution, which is minimized when ui is
one-hot. The implementation follows the same settings as C&W
attack. We try different values of β and choose the best one in
evaluation, which is 0.1 for L1 attack and 0.5 for L2 attack.
EAD attack: EAD attack [5] is a continuous L1 attack on image
classifier. It is also optimization-based attack which solves the fol-
lowing optimization problem with elastic-net regularization

min
δ ∈Rn0,+

c · f (x + δ ) + β · ∥δ ∥1 + ∥δ ∥22

We try different values of β and choose the best one in evaluation,
which is 5.0.

We also try to round other attack algorithms such as Deep-
Fool [17] for discrete L2 attack. However, since DeepFool aims to
find the successful attack with the smallest L2 distortion and thus
imposes no norm restriction on perturbation. The rounding solu-
tion of DeepFool performs poorly. We also implement the random
attack, which has little effect on degrading the performance of the
classifier. Therefore, the results of these attempts are not presented
in the paper.

8.1.4 Evaluation Metrics. We evaluate various attacks and adver-
sarial training based on two metrics, success rate and Average Preci-
sion (AP). Success rate measures the proportion of fraud instances
which are correctly recognized by the detector with pre-defined
threshold η and mis-classified under the attack. AP is commonly
7Though in [4], the binary search on c aims to ensure the minimal value of c such that
δ successfully fools the detector, it performs worse than our implementation when
rounding the solution to the discrete one with Lp norm bound q . Thus, we implement
C&W attack in the way explained here.
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Attack Original model Model with adversarial training
q = 10 q = 20 q = 30 q = 10 q = 20 q = 30 q = 40 q = 50

unattack 0.892 0.892 0.892 0.89 0.89 0.89 0.89 0.89
FGM1 0.817 0.798 0.787 0.882 0.885 0.892 0.902 0.901
C&W 0.763 0.516 0.442 0.889 0.892 0.897 0.897 0.9

C&W-LS 0.765 0.572 0.575 0.889 0.889 0.889 0.885 0.887
EAD 0.767 0.573 0.393 0.887 0.891 0.895 0.896 0.896
IFCM1 0.767 0.578 0.409 0.879 0.876 0.875 0.876 0.876
R3 0.745 0.463 0.251 0.881 0.877 0.875 0.873 0.859
AIS1 0.726 0.434 0.238 0.88 0.876 0.875 0.874 0.873

Table 2: Average Precision (AP) of the original model and the model with adversarial training under L1 attacks

Attack Original model Model with adversarial training
q = 4 q = 5 q = 6 q = 4 q = 5 q = 6 q = 7

unattack 0.892 0.892 0.892 0.89 0.89 0.89 0.89
C&W 0.71 0.492 0.238 0.882 0.889 0.893 0.887

C&W-LS 0.66 0.447 0.256 0.888 0.893 0.897 0.9
IFCM2 0.66 0.485 0.343 0.877 0.876 0.876 0.877
R3 0.68 0.463 0.205 0.894 0.895 0.875 0.877
AIS2 0.57 0.344 0.207 0.878 0.877 0.876 0.875

Table 3: Average Precision (AP) of the original model and the model with adversarial training under L2 attacks

Attack ∥x∥ = 0 ∥x∥ > 0
q = 10 q = 20 q = 30 q = 10 q = 20 q = 30

FGM1 5.4% 11.1% 13.4% 22.4% 34.1% 41%
C&W 10.1% 73.4% 75.4% 25.9% 47.4% 53.6%

C&W-LS 9.6% 45.5% 58.7% 25.7% 43.6% 44.7%
EAD 9.7% 58.5% 76.5% 26.6% 49% 60.7%
IFCM1 9.7% 58.4% 90.4% 26.3% 49.4% 64.6%
R3 14.1% 81.4% 97.6% 27.9% 53.4% 66.5%
AIS1 19.3% 84.9% 97.8% 28.7% 54.1% 66.4%

Table 4: Success rate of L1 attacks

Attack ∥x∥ = 0 ∥x∥ > 0
q = 4 q = 5 q = 6 q = 4 q = 5 q = 6

C&W 21.7% 64.4% 94.3% 37% 55.3% 68.7%
C&W-LS 28.2% 82.7% 95.3% 39.3% 58.7% 68.3%
IFCM2 23.7% 78.4% 96.5% 39.2% 58.4% 69.8%
R3 28.8% 72% 94.5% 37.3% 56% 69.9%
AIS2 59.7% 89.8% 98.7% 45% 61.4% 71%

Table 5: Success rate of L2 attacks

adopted to measure the performance of a classifier, which is defined
by the enclosing area of the Precision-Recall curve (PR-curve). For
a threshold η, the precision and recall are defined as follows [19]

P (η) =
tp

tp + f p
R (η) =

tp

tp + f n
,

where tp, f p and f n denote the true positive rate, false positive
rate and false negative rate respectively. A higher value of AP

intuitively means that the detector can recall a large proportion of
fraud instances andmeanwhilemis-classifies a few benign instances.
A stronger attack should be able to degrade the AP to a lower value.
The effectiveness of adversarial training can also bemeasured by AP
by verifying whether the obtained model can pertain the AP under
strong attacks. PR-curve is also useful for the selection of threshold
in deployment. In practice, we choose the threshold η∗ which equals
the precision and recall, and we use η∗ when evaluating the success
rate of attacks. One thing to notice is that, an attack degrading the
AP to a lower value doesn’t mean it has higher success rate at η∗,
since AP is an average measure of performance over all threshold
values. We now present our key experimental results.

8.2 Average Precision
Tables 2 and 3 show the AP of the original detector and the one
obtained via adversarial training under various L1 and L2 attacks
respectively. Figure 3 shows the PR-curves of the detector under
L1 attacks with q = 30 and L2 attacks with q = 5. We denote by
unattack the trials without adversarial perturbation, corresponding
to the performance on the original test data. The results show that
(i) The deployed detector is extremely vulnerable to adversarial
perturbations, as with q = 20 and q = 5 for AIS1 and AIS2 respec-
tively, the AP is decreased from nearly 0.9 to 0.434 and 0.344. The
numbers further decrease to 0.238 and 0.207 for AIS1 attack with
q = 30 and AIS2 attack with q = 6 respectively. (ii) Our attack meth-
ods always achieve the largest degrade of AP in all settings, and
significantly outperform baselines, especially AIS and R3, which
show the similar performance. (iii) With adversarial training, the
detector becomes significantly more robust to adversarial perturba-
tions, as we consider larger q values 40, 50 for L1 attack and 7 for
L2 attack, and the model can still achieve an AP above 0.859 in all
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Figure 3: PR-curves.

settings. Besides, the performance on the original test data is not
degraded due to adversarial training, which shows the necessity of
adversarial training8.

8.3 Success Rate
Tables 4 and 5 show the success rates of tested L1 and L2 attacks
respectively on the original model with threshold value η∗. To
better understand the effectiveness of attacks, we separate the fraud
instances based on the L1 norm and randomly pick 1000 fraud
instances with zero L1 norm and 1000 fraud instances with non-
zero L1 norm. The results show that (i) Both types of fraud instances
are highly vulnerable to adversarial perturbations. For instances
with zero L1 norm, with distortion bounds of 20 in L1 norm and
5 in L2 norm, our AIS attack can craft the instance to bypass the
detector with probabilities over 84%. This shows the potential threat
for the deployed system as the real-world adversaries and platforms
may exploit this property and design more sophisticated scripts and
bots with only tens of additional operations to bypass the detector
with high changes. While for instances with non-zero L1 norm,
with distortion bounds of 20 in L1 norm, which corresponds to
an average distortion ratio of only 5% given the average L1 norm
for this type of instance being 377, our AIS1 attack can fool the
detector with probability 54.1%. (ii) Our attack methods achieve the
highest success rates in all settings, and outperform baselines more
significantly for instances with zero L1 norm.

8.4 Feasibility of Attacks
8.4.1 Feasibility of Adversarial Perturbations. The perturbations
generated here are not artificial noises on the input. Instead, there
do exist such cases where the malicious service platform inten-
tionally creates such perturbations. Recall that in the motivating
scenario, we show an automatic script (Figure 2) by a malicious
service provider. The script can conduct operations to pretend it
as a human. One interesting pattern noticed by domain experts is
that, when the script scrolls the item list on the website or mobile
Apps, it will not directly visit the target item to create fake impres-
sion. Instead, it is designated with certain probability of visiting
another item from certain categories and return to the item list.
8The proposed adversarial training process has been adopted to train the deep fraud
detector for deployment since the Double 11 Shopping Festival of 2018.

Attack L1 attack L2 attack
q = 10 q = 20 q = 30 q = 4 q = 5 q = 6

FGM1 0.005 0.005 0.005 - - -
IFCM 0.037 0.072 0.103 0.057 0.088 0.125
C&W 372.5 399.8 480.1 285.4 317.9 329.2

C&W-LS 290.1 313.6 455.9 299.5 301.3 333.2
EAD 71.8 87.4 89.5 - - -
R3 143.9 147.4 161.2 145.2 147.2 159.9
AIS 39.9 88.9 129.1 74.4 103.8 137.9

Table 6: Average runtime of generating one adversarial ex-
ample (in seconds)

Imagine that fraudulent sellers and providers recognize the adver-
sarial perturbations to bypass the detector. They can easily design
effective scripts or even hire human labors to conduct the pertur-
bation. Furthermore, we also sample adversarial perturbations and
the domain experts verify that they are doable by the fraudulent
sellers or malicious service providers.

8.4.2 Scalability of Attacks. Table 6 lists the average runtime of
generating one adversarial example with various attacks. Notice
that different attacks have varying proportions of computations able
to be parallelized. Thus, the runtime of crafting a single instance
cannot reflect the runtime of processing a batch of samples. From
the adversary’s perspective, our attacks are feasible as they can
generate an adversarial examples within several minutes. Besides,
one extra note on AIS is that it belongs to the black-box attacks
as no information of the architecture of the detector is required.
Thus, we argue that AIS could generate adversarial instances that
are practical for real-world adversaries to craft.

9 CONCLUSION
This paper reveals the potential risk of deploying deep learning
models in the task of fraud detection. We propose a fast attack
called IFCM to generate large amount of effective adversarial ex-
amples, and two novel and more powerful attacks, search-based
AIS attack and optimization-based R3 attack. We conduct extensive
evaluations on a deployed deep fraud detector from TaoBao, one
of the largest e-commerce platforms in the world with large-scale
real-world transaction data. Results show that (i) Our proposed
attacks can bypass the deployed detector with a high probability
and can successfully degrade the Average Precision (AP) of the
detector from nearly 90% to as low as 20% with slight perturbations.
(ii) Our proposed attacks significantly outperform the state-of-the-
art attack methods adapted to the domain of fraud detection, with
respect to both the success rate and the degrading of AP of the
detector in all testing trials. (iii) Our proposed adversarial training
with the mixture of adversarial examples from both the L1 and L2
attacks significantly improves the robustness of the model, and
pertains the AP of nearly 90% on the unperturbed test data.
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