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Abstract
The field of Reinforcement Learning (RL) has garnered increasing at-
tention for its ability of optimizing user retention in recommender
systems. A primary obstacle in this optimization process is the
environment non-stationarity stemming from the continual and
complex evolution of user behavior patterns over time, such as
variations in interaction rates and retention propensities. These
changes pose significant challenges to existing RL algorithms for
recommendations, leading to issues with dynamics and reward dis-
tribution shifts. This paper introduces a novel approach, AURO, to
address this challenge. To navigate the recommendation policy in
non-stationary environments, AURO introduces an state abstrac-
tionmodule in the policy network. Themodule is trainedwith a new
value-based loss function, aligning its output with the estimated
performance of the current policy. As the policy performance of RL
is sensitive to environment drifts, the loss function enables the state
abstraction to be reflective of environment changes and notify the
recommendation policy to adapt accordingly. Additionally, the non-
stationarity of the environment introduces the problem of implicit
cold start, where the recommendation policy continuously interacts
with users displaying novel behavior patterns. AURO encourages
exploration guarded by performance-based rejection sampling to
maintain a stable recommendation quality in the cost-sensitive on-
line environment. Extensive empirical analysis are conducted in a
user retention simulator, the MovieLens dataset, and a live short-
video recommendation platform, demonstrating AURO’s superior
performance against all evaluated baseline algorithms1.
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1 Introduction
Recent advances in recommender systems have shown promising
results in enhancing user retention through the application of Rein-
forcement Learning (RL) [6, 45, 55], primarily due to RL’s capacity
to effectively manage delayed reward signals [7, 37] and promote
efficient exploration strategies [5, 11]. This focus on long-term
engagement, as opposed to short-term feedback, is driven by its
direct correlation with key performance indicators such as daily
active users (DAU) and user dwell time. Nonetheless, the dynamic
and ever-changing nature of large-scale online recommendation
platforms presents a significant challenge to RL-based recommen-
dation algorithms, with constant shifts in user behavior patterns.
For instance, stock traders may exhibit increased activity on a news
recommendation application during periods of significant financial
news, and promotions might boost user interactions with recom-
mended products in a shopping application. From the perspective
of RL, different user behavior patterns will lead to constantly evolv-
ing environment dynamics and reward functions. Due to the poor
generalization ability of standard RL methods [23, 46], policies that
behave well during training can struggle in the deployment phase
due to the evolving recommendation environment.
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To improve the generalization ability of RL in dynamic environ-
ments, current algorithms in Meta-RL or zero-shot policy gener-
alization [30, 46] attempt to explicitly identify one unique envi-
ronment parameter as the latent feature corresponding to certain
environments. But in the recommendation task, user behaviors
exhibit distinct patterns in different time periods, including the pos-
itive ratio of immediate feedback, such as click, like, comment, and
hate, as well as long-term feedback such as the distribution of user
return time, as demonstrated in the motivating example in Sec. 3.1.
These factors collectively contribute to a non-stationary recom-
mendation environment, one that cannot be simplified to a single
hidden parameter. The non-stationary environment also leads to
the challenge of implicit cold start [20], where the recommendation
policy continually interacts with users exhibiting new behavior
patterns. Therefore, the policy needs to be able to actively adapt to
new settings. The exploration ability of some RL methods [5, 11]
facilitates such requirement of rapid policy adaptation, but they
can be overly optimistic and propose unreliable exploratory actions
in the cost-sensitive recommendation environment. To conclude,
the dynamic and evolving recommendation environment leads to
two critical challenges: to accurately identify complex environment
changes and to make safe adaptations to these changes.

In this work, we propose a new approach termed Adaptive User
Retention Optimization (AURO) that simultaneously addresses
both challenges. As RL policies are sensitive to distribution shift [6,
46], the policy performance will be a reliable and universal signal for
detecting changes in the recommendation environment. Therefore,
to identify non-stationarity actively and universally, we introduce
an additional state abstraction module in the policy network, align-
ing the state abstraction output with state value functions, which
serve as proxy performance measure of the current policy. The
state abstraction module will then generate different outputs in
correspondence with environment changes and notify the learning
policy when it is no longer suitable for new user behavior patterns.
For rapid policy adaptation, optimism under uncertainty [10, 11] is
a common approach for rapid adaptation with exploratory actions.
To ensure a safe exploration process, AURO proposes to generate a
pool of candidate exploration actions and filter them based on their
estimated state-action values. This approach significantly lowers
the likelihood of choosing exploration actions that could have ad-
verse effects, thereby enhancing the stability and reliability of the
online training process.

To assess the effectiveness of AURO when optimizing user re-
tention in various recommendation tasks, we conduct experiments
with a user retention simulator [49] and the MovieLens dataset. We
also fully launch AURO in a popular short video recommendation
platform. The outcomes of these experiments indicate that AURO
outperforms contemporary state-of-the-art methods in both the
training stability and the adaptation capacity within complex and
non-stationary recommendation environments.

2 Background
Fig. 1 illustrates the connection between RL and the practical rec-
ommendation process. In this framework, users are treated as envi-
ronments and the RL policy operates by feeding actions to the en-
vironment. As the number of candidate items can be very large and

make discrete action selection burdensome, we follow the practice
in literature [6, 45] and employ 𝑘-dimensional continuous actions.
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Figure 1: The procedure of
optimizing user retention
with RL.

At step 𝑡 , the RL policy gen-
erates the actions 𝑎𝑡 . A pre-
trained deep scoring model
is used to predict a 𝑘 dimen-
sional score 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2,
· · · , 𝑥𝑖𝑘 ) for each candidate
item 𝑖 , where each dimension
evaluates the item in a particu-
lar aspect. The scoring model
will be treated as a black box in
this paper. Subsequently, a pre-
defined ranking function 𝑓 is
employed to compute the fi-
nal ranking score 𝑓 (𝑎𝑡 , 𝑥𝑖 ) for
each selected item 𝑖 . The sys-
tem then recommends the top-
𝑛 items to the user according
to the ranking score.

According to the formulation in Fig. 1, fluctuations in user be-
havior patterns can make the recommendation environment non-
stationary. To model the recommendation task in such environ-
ments, we employ the Hidden Parameter Markov Decision Process
(HiP-MDP) [13] < S,A,Θ,𝑇 , 𝑟, 𝛾, 𝜌0 > that attributes the non-
stationarity to an agnostic hidden parameter distribution Θ. In the
HiP-MDP, S is the continuous state space. A is the 𝑘-dimensional
continuous action space. Θ is the joint hidden parameter distri-
bution. When the episode starts, 𝜃 ∼ Θ is sampled reflecting the
current status of the non-stationary environment. Both Θ and 𝜃

are invisible to RL algorithms. 𝑇 is the transition function. At
step 𝑡 , 𝑇 updates the user profile and browsing history in state
𝑠𝑡 according to the action 𝑎𝑡 and current hidden parameters 𝜃 ,
generating the next state distribution 𝑠𝑡+1 ∼ 𝑇𝜃 (·|𝑠𝑡 , 𝑎𝑡 , 𝜃 ). 𝑟 is
the reward function. To optimize user retention, the time gap of
users returning to the recommendation platform is used to calcu-
late the retention reward assigned to the last step of an episode
𝑟𝜃 (𝑠0, 𝑎0, 𝑠1, 𝑎1, · · · , 𝑠𝑡 , 𝑎𝑡 , 𝜃 ) = 𝜆 × user return time, where 𝜆 is the
predefined weighing coefficient. The reward is set to zero at other
steps. 𝛾 is the discount factor that determines how much the policy
accounts for rewards in future steps. 𝜌0 is the initial state distribu-
tion. When the session starts, 𝑠0 is randomly sampled according to
𝜌0 and the current hidden parameter 𝜃 : 𝑠0 ∼ 𝜌0 (·|𝜃 ).

We aim at maximizing the expected accumulated return of the
policy 𝜋 : 𝜂𝑇 (𝜋)= 𝐸𝜋,𝑇 ,Θ [

∑∞
𝑡=0 𝛾

𝑡𝑟𝜃 (𝑠0, 𝑎0, · · · , 𝑠𝑡 , 𝑎𝑡 , 𝜃 )], where the
expectation is computed with 𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡 ), 𝑠𝑡+1 ∼ 𝑇𝜃 (·|𝑠𝑡 , 𝑎𝑡 , 𝜃 ),
and 𝜃 ∼ Θ. The state-action value function𝑄𝜋 (𝑠, 𝑎) denotes the ex-
pected return after taking action 𝑎 at state 𝑠 :𝑄𝜋 (𝑠, 𝑎) = 𝐸𝜋,𝑇 ,Θ

∑∞
𝑡=0

𝛾𝑡𝑟𝜃 (𝑠, 𝑎, · · · , 𝑠𝑡 , 𝑎𝑡 , 𝜃 ). The state value function, or the V-function,
is defined as 𝑉 𝜋 (𝑠) = E𝑎∼𝜋 ( · |𝑠 )𝑄

𝜋 (𝑠, 𝑎).

3 AURO: Adaptive User Retention Optimization
3.1 Motivating Example
The main focus of this paper is to address the challenge of non-
stationary environment arisen from multiple fluctuation factors of
user behaviors. To empirically justify the existence of such issue
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Figure 2: Left: Normalized ratio of immediate user feedback among all data samples in the live environment, compared on
different dates in one month and different hours in one day. Right: The distribution of user return time in three consecutive
weeks. The return probabilities at different days exhibit variability over time.

Table 1: Statistics of the dataset sampled in the live environ-
ment. The immediate feedbacks are normalized to have unit
mean before computing the standard deviation.

Dimension Number Positive
Ratio

Normalized Standard
Deviation of Ratio

Users 27,285 - -
Items 7,551 - -

Samples 1,186,059 - -

Click 208,934 17.61% 0.049
Like 5,691 0.480% 0.116

Follow 310 0.026% 0.286
Comment 411 0.035% 0.418

Hate 1,351 0.114% 0.334

in practical recommendation systems, we conduct a data-driven
study in a popular short-video recommendation platform, which is
also used in live experiments in Sec. 4.3. To avoid the influence of
different recommended items and interaction histories, we select
interactions that occur at the beginning of each recommendation
session, i.e., the 𝑠0 of the trajectory. For the purposes of this paper,
we are primarily interested in investigating the users’ return-time
distribution and the positive ratio of immediate feedback among
all data, including click, like, follow, comment, and hate.

We visualize the normalized interaction ratio across different
dates and hours in Fig. 2 (left). The distribution of the user return
time in three weeks is also illustrated in Fig. 2 (right). We also
demonstrate the normalized standard deviations of several immedi-
ate interaction ratio in Tab. 1. The return probability and interaction
ratio exhibit large variability over time. For example, the average
probability of user returning to the application in the next day can
be as low as about 70% in week 1, and as high as about 81% in week
2. Among immediate signals, the “click” and “like” signals exhibit
relatively more stability, while the other three signals fluctuates
significantly, with 3 to 4 times higher standard deviation than “like”.
For example, the “follow” signal is about twice more frequent on
day 5 than on day 9 and the “comment” signal is three times more
frequent on 8 a.m. than on 3 and 5 a.m. Furthermore, we can hardly
identify any clear pattern in the changes of interaction frequency
between dates within a month or hours within a day. Therefore, it
becomes challenging to manually extract environment information
with rules and feed to the policy network. Overall, these findings

characterize the complex and non-stationary nature of the recom-
mendation environment, where several different aspects of user
behaviors evolve over time.

3.2 Framework Overview
To tackle the aformentioned challenges, we introduce a new par-
adigm called Adaptive User Retention Optimization (AURO). Its
architecture is shown in Fig. 3 and the algorithm procedure is listed
in Appendix C. As discussed in Sec. 2, the recommendation policy
takes user features, item features, and item history as input. They
are processed by embedding networks and transformers, before
being concatenated together and generating the vectorized state. In
the following part of this section, we discuss two key contributions
of AURO, namely the state abstraction network and the guarded
online exploration procedure.
3.3 Universal Non-stationarity Identification

with Value-based State Abstraction
In this paper, we introduce an extra state abstraction network and
align its outputs with the expected performance of the current
policy, which is more universal in reflecting environment non-
stationarity. When a new hidden parameter 𝜃 in HiP-MDP is sam-
pled, the policy performance will be degraded due to dynamics
and reward distribution shift, and therefore change accordingly
with the evolvement of the dynamic environment. The output of
a well-aligned state abstraction network can then serve as a uni-
versal approach of identifying the current environment status in
face of non-stationarity. To achieve the abstraction-performance
alignment, we enforce the 𝑙2-distance in the state abstraction space
to be close to a performance-related distance measure 𝑑 that re-
flects policy performance. The loss function for updating the state
abstraction network 𝜙 can then be expressed as

𝐽 (𝜙) =
∑︁
𝑖, 𝑗

[

𝜙 (𝑠𝑖 ) − 𝜙
(
𝑠 𝑗
)



2 − 𝑑
(
𝑠𝑖 , 𝑠 𝑗

) ]2
. (1)

In the Actor-Critic architecture of RL, the state value function 𝑉
can serve as the critic and can evaluate the performance of the
learning policy. If both two states 𝑠𝑖 , 𝑠 𝑗 have high state values, the
policy will perform well on both of them, so the latent variable
𝜙 (𝑠𝑖 ) should be close to 𝜙 (𝑠 𝑗 ). If two states have different state
values, their corresponding latent variables should be far from each
other. Therefore, we choose the following distance measure based
on the state value function 𝑉 :

𝑑
(
𝑠𝑖 , 𝑠 𝑗

)
=

{
0 if 𝑉 (𝑠𝑖 , 𝜙 (𝑠𝑖 )) and 𝑉

(
𝑠 𝑗 , 𝜙 (𝑠 𝑗 )

)
are close,

∞ otherwise.
(2)
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Figure 3: Overview of the AURO framework. (a) The user state encoding module that embed user features, item features, and
the item history into a low-dimentional state vector. (b) The actor-critic module with a state abstraction network that generates
the latent feature vector 𝜙 (𝑠). The state vector is concatenated with 𝜙 (𝑠) before serving as the input to the actor and critic
networks. (c) The exploration module for selecting exploration actions that interact with the recommendation environment.

By setting the distance function to have extreme values with differ-
ent inputs of estimated policy performances, the state abstractor
𝜙 (𝑠) will be provided with more precise and simplified signals to dis-
criminate different environments. As illustrated in Fig. 3, the state
abstraction 𝜙 (𝑠) also serves as an additional input to the state-value
function 𝑉 for more accurate value estimation. The comparison
of value error2 during training between different algorithms is in
Fig. 6 (d). The value estimation in AURO is more accurate than other
algorithms without state abstraction. This justifies the feasibility
of using state value functions as proxies of policy performance.
Meanwhile, lower value error corresponds to better training sta-
bility in face of non-stationary environments, demonstrating the
effectiveness of the additional state abstraction module.

To determine whether𝑉 (𝑠𝑖 , 𝜙 (𝑠𝑖 )) and𝑉 (𝑠 𝑗 , 𝜙 (𝑠 𝑗 )) are close, we
rank a batch of input states 𝑠1, 𝑠2, · · · , 𝑠𝐵 with size 𝐵 by their state
values and divide them into 𝑛 categories 𝐶1,𝐶2, · · · ,𝐶𝑛 , where 𝑛
is a hyperparameter. States that are assigned to the same category
are considered to have similar values. We denote 𝑗 ∈ 𝑁 (𝑖) if 𝑠𝑖 and
𝑠 𝑗 fall into the same category. Plugging Eq. (2) into the original loss
function Eq. (1), we get3

𝐽 (𝜙) =
∑︁
𝑖


∑︁

𝑗∈𝑁 (𝑖 )



𝜙 (𝑠𝑖 ) − 𝜙
(
𝑠 𝑗
)

2

2 −
∑︁

𝑗∉𝑁 (𝑖 )



𝜙 (𝑠𝑖 ) − 𝜙
(
𝑠 𝑗
)

2

2

 ,
(3)

where the first term makes state abstractions in the same category
closer, and the second term pushes them in different categories
away from each other.

In practice, the state-value function𝑉 is updated alongside policy
training and the state batch is randomly sampled from the replay
buffer that keeps updating. Therefore, the output 𝜙 (𝑠𝑖 ) can be un-
stable, which is undesirable when using 𝜙 (𝑠𝑖 ) as part of the policy
2The value error E𝑡 is computed according to the Bellman error: E𝑡 = [𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝜃 ) +
𝛾𝑉 (𝑠𝑡 ) − 𝑉 (𝑠𝑡+1 ) ]2 on 10,000 randomly selected states in the replay buffer.
3Detailed derivations of equations in this section are listed in Appendix A.

input. To mitigate this problem, we incorporate the moving average
𝜙𝑘 = (1 − 𝜂)𝜙𝑘 + 𝜂

|𝐶𝑘 |
∑
𝑠𝑖 ∈𝐶𝑘

𝜙 (𝑠𝑖 ), 𝑘 = 1, 2, · · · , 𝑛 of each state
categories to both terms in Eq. (3). We transform Eq. (3) to make it
related with the average state abstraction 𝜙𝑘 = 1

|𝐶𝑘 |
∑
𝑠𝑖 ∈𝐶𝑘

𝜙 (𝑠𝑖 ).
With regard to the first term (denoted as 𝐽same (𝜙)), we have

𝐽same (𝜙) =
𝑛∑︁

𝑘=0

∑︁
𝑠𝑖 ,𝑠 𝑗



𝜙 (𝑠𝑖 ) − 𝜙
(
𝑠 𝑗
)

2

2 =
2𝐵
𝑛

𝑛∑︁
𝑘=0

∑︁
𝑠𝑖



𝜙 (𝑠𝑖 ) − 𝜙𝑘


2

2 .

To maximize 𝐽 (𝜙) with states from different categories (denoted as
𝐽diff (𝜙)), we have

𝐽diff (𝜙) = −
𝑛∑︁

𝑘=0

∑︁
𝑚>𝑘

∑︁
𝑠𝑖 ∈𝐶𝑘

∑︁
𝑠 𝑗 ∈𝐶𝑚



𝜙 (𝑠𝑖 ) − 𝜙
(
𝑠 𝑗
)

2

2

⩽ −𝐵2

𝑛2

𝑛∑︁
𝑘=0

∑︁
𝑚>𝑘



𝜙𝑘 − 𝜙𝑚


2

2 .

(4)

By minimizing the last term in Eq. (4), we are minimizing an upper-
bound of the original loss function. The average state abstraction
𝜙𝑘 can be replaced with the moving average 𝜙𝑘 , giving rise to the
final loss function that is used during training:

𝐽 (𝜙) = 2𝐵
𝑛

𝑛∑︁
𝑘=0

∑︁
𝑖




𝜙 (𝑠𝑖 ) − 𝜙𝑘




2

2
− 𝐵2

𝑛2

𝑛∑︁
𝑘=0

∑︁
𝑚>𝑘




𝜙𝑘 − 𝜙𝑚




2

2
. (5)

In practice, in addition to the value-based loss function 𝐽 (𝜙), the pol-
icy optimization loss is also backpropagated to the state abstraction
network during training to accelerate the training process.

3.4 Guarded Online Exploration for Implicit
Cold Start

In the non-stationary recommendation environment illustrated in
Sec. 3.1, the recommendation policy is continuously facing users
with new behavior patterns. From the perspective of HiP-MDP,
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Figure 4: Left: The demonstration of action selection with optimism under uncertainty in Eq. 6. The action can miss the local
optimums of the state-action value function; Right: The state-action value function on two example state-action pairs in
the user retention simulator [49]. The vertical lines show the relative values of the original and exploration action in one
dimension. The exploration action generated by Eq. 6 with a fixed step size 𝛿 can lead to a lower value than the original action.

different 𝜃 at different episodes will lead to new environment dy-
namics 𝑇 and reward functions 𝑟 . Although the state abstraction
network in Sec. 3.3 can help policies identify environment novelty,
the policy itself needs to be able to actively adapt to new environ-
ment parameters. This is similar to the well-known cold-start issue
in recommendation [21, 33], but happens implicitly during online
training.

An ideal approach to deal with such issue in RL is exploration.
We consider the approach of optimism under uncertainty [11] with
the optimistic state-action value estimation, defined as 𝑄UB (𝑠, 𝑎) =
𝜇𝑄 (𝑠, 𝑎) +𝛽𝜎𝑄 (𝑠, 𝑎), where 𝜇𝑄 and 𝜎𝑄 represent the mean and stan-
dard deviation of the outputs from the Q networks, respectively,
and 𝛽 is a hyper-parameter. The exploration action 𝑎𝐸 can be cal-
culated by extending the original policy output 𝑎𝑇 in the direction
of gradient ascent of 𝑄UB (𝑠, 𝑎) [11]:

𝑎𝐸 = 𝑎𝑇 + 𝛿 ·
[∇𝑎𝑄UB (𝑠, 𝑎)]𝑎=𝑎𝑇

∥ [∇𝑎𝑄UB (𝑠, 𝑎)]𝑎=𝑎𝑇 ∥ , (6)

where [∇𝑎𝑄UB (𝑠, 𝑎)]𝑎=𝑎𝑇 is the gradient of𝑄UB with respect to the
action 𝑎𝑇 , and 𝛿 is the step size hyperparameter. However, deter-
mining the extent to which the original action should be extended,
i.e., the step size 𝛿 , can be challenging, as a small step size may
lead to inefficient exploration, and a large step size can result in
inaccurate gradient approximation. As illustrated in Fig.4 (left), the
state-action function can exhibit multiple peaks, and an improper
step size may cause the exploration action to miss a local optimum.

The challenge of selecting an appropriate step size 𝛿 is more
pronounced in recommendation tasks, as the landscape of state-
action values in such tasks can exhibit high complexity, which is
illustrated in Fig. 4 (middle and right). Another challenge is that
recommendation tasks can be risk-sensitive: users may disengage
from the application and cease the recommendation process if they
encounter recommended items that fail to capture their interest.
To mitigate the aforementioned issues, we propose to generate a
set of actions with optimistic exploration and filter out candidate
actions that may lead to poor recommendation quality with rejec-
tion sampling. The actions 𝑎𝑘 , 𝑘 = 1, 2, · · · , 𝑁 are located near the
original policy output 𝜋 (𝑠, 𝜙 (𝑠)), in the direction of the gradient
∇𝑎𝑄UB (𝑠, 𝑎). The exploration action 𝑎𝐸 is selected form the action
set according to the average Q-value:
𝑎𝐸 = arg max

𝑎𝑘

𝜇𝑄 (𝑠, 𝑎𝑘 ), 𝑎𝑘 = 𝑎𝑇 + 𝑘𝛿 [∇𝑎𝑄UB (𝑠, 𝑎)]𝑎=𝜋 (𝑠 ) (7)

where 𝛿 is the hyper-parameter controlling the gap of action parti-
cles. It can be set to a small value and does not need extra tuning,
as shown by the ablation study in Tab. 2. By choosing from several
candidate actions, the exploration module manages to find actions
with higher state-action values more efficiently and reduces the
risk of adopting dangerous actions that have low values. We also
visualize the effectiveness of this exploration technique in Fig. 6.

4 Experiments
To evaluate and analyse the practical performance of AURO, we
conduct extensive experiments to investigate the following research
questions (RQs): RQ1: Can AURO optimize user retention better
than baseline algorithms, when applied to recommendation datasets
and simulators? RQ2: How does each component of AURO con-
tribute to overall performance? RQ3: Can AURO perform well in on-
line A/B tests of large-scale live recommendation platforms? To an-
swer these questions, the state abstraction module in AURO is used
to generate recommendation policies in the modified MovieLens-
1M dataset and the KuaiSim retention simulator [49]. We conduct
ablation studies and visualizations to investigate the contribution
of each component of AURO to the overall performance. AURO
is also deployed in a dynamic, large-scale, real-world short video
recommendation platform to perform live A/B test.

4.1 Experiments in Retention Simulator
Setup AURO adopts a novel paradigm that focuses on optimizing
user retention, rather than immediate user feedback. However, rec-
ommendation simulators that have been widely used [19, 35, 40]
cannot simulate user retention behaviors. The KuaiSim retention
simulator [49] aims to simulate long-term user retention on short
video recommendation platforms. It has verified several recommen-
dation algorithms [6, 26, 27] that also investigate user retentions.
The KuaiSim simulator contains a user leavemodule, which predicts
whether the user will leave the session and terminate the episode;
and a user return module, which predicts the probability of the user
returning to the platform on each day as a multinomial distribution.
The probabilities of user leaving and returning are altered in each
episode to capture the dynamic nature of user behaviors and create
a non-stationary evaluation environment. More information on the
simulator setup is in Appendix D.1.
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Figure 5: Performance comparison of different algorithms in the modified KuaiSim simulator. Metrics with the up arrow (↑) are
expected to have larger values and vice versa.

Table 2: Left: Performance comparisons of AURO and all the baseline algorithms in the simulator. The scores are computed at
timestep 20K. Right: Results of ablation studies. 𝑛 is the number of categories in state abstraction loss Eq. (5); 𝛿 is the action
partition gap when computing the exploration action according to Eq. (7).

Average Return
Days (↓)

Return Rate
at Day 1 (↑)

Retention
Reward (↑)

CEM 1.858±0.232 0.715±0.065 -0.018±0.001
DIN 1.725±0.029 0.755±0.005 -0.017±0.001
TD3 1.772±0.146 0.738±0.048 -0.017±0.001
SAC 1.810±0.166 0.726±0.053 -0.017±0.001
DDPG 2.012±0.013 0.662±0.003 -0.019±0.000
OAC 1.794±0.070 0.731±0.026 -0.018±0.000
RND 1.828±0.034 0.724±0.012 -0.018±0.000
ESCP 1.705±0.125 0.764±0.039 -0.017±0.001
RL-LTV 1.719±0.281 0.761±0.050 -0.017±0.003
RLUR 1.706±0.114 0.765±0.038 -0.017±0.001
OSPIA 1.726±0.113 0.803±0.020 -0.017±0.001
AURO (Ours) 1.531±0.058 0.824±0.018 -0.015±0.000

Average Return
Days (↓)

Return Rate
at Day 1 (↑)

Retention
Reward (↑)

No exploration 1.868±0.061 0.708±0.015 -0.018±0.000
No state abstraction 1.803±0.109 0.732±0.034 -0.018±0.001
No auxiliary loss 1.672±0.208 0.776±0.068 -0.017±0.002

𝑛 = 3 1.598±0.171 0.804±0.029 -0.016±0.002
𝑛 = 5 1.534±0.062 0.815±0.011 -0.015±0.001
𝑛 = 6 1.550±0.064 0.812±0.011 -0.016±0.001

𝛿 = 0.3 1.547±0.068 0.813±0.013 -0.016±0.001
𝛿 = 3 1.565±0.125 0.808±0.023 -0.016±0.001

AURO
(𝑛 = 4, 𝛿 = 1) 1.531±0.058 0.824±0.018 -0.015±0.000

For baseline algorithms, we include non-RL recommendation
methods (CEM [12], DIN [52]), state-of-the-art value-based RL algo-
rithms (DDPG [24], TD3 [17], SAC [18]), RL algorithms facilitating
efficient exploration (OAC [11], RND [5]), context encoder-based RL
algorithms (ESCP [30]), and RL-based recommendation algorithms
for optimizing user retention (RLUR [6], OSPIA [43], RL-LTV [20]).
Detailed descriptions of the baseline algorithms are in Appendix D.2.
In simulator-based experiments, we choose three metrics to evalu-
ate the algorithms: the users’ average return days (lower is better),
the users’ return probability on the next day (higher is better), and
the retention reward defined in Sec. 2 (higher is better). All algo-
rithms for comparison are run for 50,000 training steps with five
different random seeds.
Performance Comparison The training curve for AURO, as
well as baseline algorithms CEM, TD3, SAC, ESCP, and RLUR, are
shown in Fig. 5. The table for comparisons with all baseline algo-
rithms at timestep 20K is in Tab. 2 (left). CEM and DIN perform
worse than the other RL-based algorithms. This highlights the ef-
fectiveness of RL in optimizing user retention. The performance of
TD3 and SAC exhibits improvements in the early stage of training,
but deteriorates as training proceeds. Without explicit modeling
of the environment distribution shift, the policies they obtain are

loosely coupled with specific user behavior patterns, leading to sub-
optimal performance. The exploration algorithms OAC and RND do
not exhibit large performance improvements compared to TD3 and
SAC, largely due to their unsafe exploration procedure. RLUR and
OSPIA take into account the bias of long-term recommendation
optimization and outperform TD3 and SAC. But they suffer from
unstable training and take more steps to converge than AURO. The
ESCP algorithm incorporates a context encoder that can capture
the environment non-stationary to some extent. But it explicitly
relies on a single hidden parameter, and cannot model environment
fluctuations universally. As a result, it has a stable training curve,
but exhibits suboptimal overall performance.

Compared with baseline algorithms, AURO shows a stable train-
ing curve and the best overall performance. The stability is due
to the state abstraction module which enables the algorithm to fit
different environment dynamics and reward functions. The good
asymptotic performance can be attributed to the safe and efficient
exploration module that quickly navigates to high-reward regions
when the environment changes.
Ablations and Analyses We conduct ablation studies in the
modified KuaiSim simulator to analyze the role of each module
in AURO. We also investigate the effect of different values of hy-
perparameters 𝑛 and 𝛿 . As shown in Tab. 2 (right), removing any
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Figure 6: (a): Visualizations of the state abstraction output in Sec. 3.3 with dimension reduction. States with different values are
assigned with different colors. (b) and (c): The state-action value function on two example state-action pairs. The vertical lines
show the relative values of the original action, the exploration action with a fixed step size, and the AURO exploration action.
(d): Comparison of value loss between AURO and baseline algorithms. AURO has a more accurate value network thanks to the
state abstraction module.

Table 3: Performance comparison of different algorithms in the modified MovieLens-1M dataset.

BC CEM TD3+BC ESCP+BC RLUR+BC AURO (Ours)+BC
Retention Reward 1.702 ± 0.018 1.708 ± 0.055 1.714 ± 0.054 1.755 ± 0.031 1.784 ± 0.060 1.798 ± 0.032

of these components will lead to a drop in the overall algorithm’s
performance. Among them, the exploration module has the most
significant impact. The comparison emphasizes the necessity of
exploration when optimizing the sparse retention signal. The per-
formance of AURO will also decrease without state abstraction
or training the state abstraction network without the value-based
auxiliary loss. This demonstrates the effectiveness of the state ab-
straction module and the new value-based loss function proposed
in Sec. 3.3. Different values of 𝑛 or 𝛿 will make little influence on
AURO’s performance, demonstrating its robustness to hyperparam-
eter selections.

We visually demonstrate two of the key components of the AURO
algorithm in Fig. 6. Fig. 6 (a) illustrates the outputs of the state
abstraction module with a batch of states as input. States with
similar values exhibit closely gathered abstractions , while those
in different value categories tend to have distinct abstractions. In
this way, the state abstraction can help the learning policy identify
whether it will perform well in the current environment. Fig. 6 (b,c)
show the landscapes of state-action valueswhen the action is altered
in one dimension. Our exploration policy can find a better action
(vertical green line) than the exploration action generated with a
fixed step size (vertical red line). Fig. 6 (d) shows the comparison of
value loss between AURO and baseline algorithms, where AURO
has the lowest value error during training. This demonstrates the
effectiveness of the state abstraction module in enhancing value
estimation.

4.2 Experiments in MovieLens Dataset
To verify the effectiveness of AURO in different recommendation
tasks, we make evaluations with the well-known recommendation
dataset MovieLens-1M. It contains 1,000,209 anonymous ratings of
approximately 3,900 movies, generated by 6,040 MovieLens users.
We sample the data of 5000 users as the training set, and use the
data of the remaining users as the test set.

Following previous researches in user retention optimization [42,
45], we assume that average user return days is proportional to the
movie ratings in MovieLens-1M. We assign retention reward of -1
with rating score 1, and retention rewards 1,2,3 for rating scores

3,4,5, respectively. To ensure conservative policy update during
offline training, we remove the exploration module and add BC
loss when training policies with online RL algorithms, similar to
the TD3+BC [15] algorithm. We use Normalised Capped Impor-
tance Sampling (NCIS) [39], a standard offline evaluation method,
to make offline algorithm evaluations. The comparative results are
listed in Tab. 3, where AURO achieves the highest performance.
This demonstrates the effectiveness of the state abstraction mod-
ule in state representation even without explicit changes in user
behaviors.

4.3 Experiments in Live Experiments
Setup The MDP setup in the live experiments is similar to that
described in Sec. 2. The algorithms are incorporated in a candidate-
ranking system of a popular short-video recommendation platform.
The live experiment is run continuously for two weeks. It involves
an average of 25million active users and billions of interactions each
day. With such long time period and large scale of involved users,
the recommendation environment can exhibit large deviations,
as shown by the analysis in Sec. 3.1 based on data collected in
this platform. For comparative analysis, users are randomly split
into several buckets. The first bucket runs the baseline algorithm
RLUR, and the remaining buckets run algorithms AURO, TD3, and
ESCP. We do not consider as many baseline algorithms as in dataset
or simulator based experiments, because online experiments are
cost-sensitive and poor algorithms can potentially bore or annoy
platform users. In live experiments, the retention signal can be noisy
and sometimes influenced by other module of the live platform.
Therefore, the main metric we use is the rate of users returning
to the platform averaged between 7 days, rather than the 1-day
retention rate.We also focus on the application dwell time, as well as
immediate user responses including video click-through rate (CTR)
(click and watch the video), like rate (like the video), comment rate
(provide comments on the video), and unlike rate (unlike the video).
These metrics are standard evaluation criteria for recommendation
algorithms and are empirically shown to be related to long-term
user experiences [42].
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Table 4: Performance comparison of different algorithms with the RLUR baseline in live experiments. Metrics with the up
arrow (↑) are expected to have larger values and vice versa.

7d Retention Rate
‰, ↑

Dwell Time
‰, ↑

Click-through Rate
‰, ↑

Like Rate
‰, ↑

Comment Rate
‰, ↑

Unlike Rate
%, ↓

TD3 0.041±0.148 -0.685±0.297 1.412±0.619 1.798±1.127 1.715±1.782 -0.567±0.820
ESCP 0.123±0.073 -0.115±0.277 0.703±0.313 0.302±0.952 -1.975±1.204 -0.116±0.791
AURO (Ours) 0.138±0.089 0.263±0.181 3.260±0.332 2.821±0.925 8.392±1.881 -1.874±0.781

Performance Analysis The comparative results are shown in
Tab. 4. The statistics are permillage or percentage improvements
compared with RLUR. AURO exhibits superior performance in all
evaluation metrics than baseline algorithms, including TD3, ESCP,
and RLUR. Specifically, AURO is the only algorithm that achieves
performance improvement in the application dwell time. AURO also
improves the rate of user comments by 8.392‰, which is almost 5
times larger than the improvements of TD3. These empirical results
demonstrate AURO’s effectiveness and scalability when applied to
live recommendation platforms.

From a practical perspective, some naive algorithm modifica-
tions in live environments can hardly simultaneously improve all
performance metrics in Tab. 4. This phenomenon has been reported
in literature [7] and is also observed in our live experiment. In Tab. 4
the ESCP algorithm can increase CTR and like rate, but witness
drops in dwell time and comment rate. In contrast, our AURO algo-
rithm is capable of improving all performance metrics, meanwhile
highlighting the large drop in hate rate. This can be because previ-
ous approaches only recommends common items that lead to high
CTR/like rate, such as short videos that are very amusing or goods
that are very cheap. Meanwhile they have limited abilities in rec-
ommending user-oriented items that really consider the dynamic
behavior of each user, as demonstrated by the poor user dwell time
and comment rate. Thanks to our state abstraction module for pol-
icy adaptation, our AURO algorithm can recommend up-to-date,
user-oriented items that captures the dynamic user interests. The
large drop in AURO’s user hate rate provides evidence for such
inference.

5 Related Work
RL for Recommendation In Reinforcement Learning (RL) [38],
a learning agent interacts with the environment [31] or exploits
offline dataset [16] to optimize the cumulative reward obtained
throughout a trajectory. RL has been found promising for recom-
mendation tasks [1, 29, 34, 48]. Traditional approaches propose to
learn an additional prediction model [2, 41] or explicitly construct
high-fidelity simulators [35] to enhance the sample efficiency of RL
algorithms. They can also be categorized into value-based [9, 25]
or policy-based [8] methods. Recently, increasing attention has
been paid to optimizing user retention with RL [55]. RLUR [6] and
OSPIA [43] deal with issues that comes along in this field, including
delayed reward, uncertainty, and instability of training. They will
also serve as baselines in the experiments. Other approaches fo-
cus on reward engineering, employing the constrained actor-critic
method [7] or incorporating human preferences [44]. Our paper
also aims at optimizing user retention and focuses on mitigating
the challenge of non-stationary environments that has largely been
ignored in previous methods.

Adaptive Policy Training with RL There are a handful of RL
algorithms that train adaptive policies in evolving environments
with distribution shift. Meta-RL algorithms [3, 32] can adapt to
new environments by fine-tuning a small amount of data from the
test environment. Zero-shot adaptation algorithms like ESCP [30],
CaDM [22] and SRPO [46] can fit new environments without ad-
ditional data. A key component enabling rapid adaptation of RL
policies is the context encoder [30], which takes a stack of his-
tory states as input and generates a dense vector that represents
different contexts. The encoder can be trained with variational in-
ference [14, 54] or auxiliary losses [30]. Its output can be used as
additional inputs to the environment model [22] or the policy net-
work [46]. Other approaches focus on representation learning [47]
or importance sampling [28]. However, none of these methods
specifically consider the complexity of the recommender systems
and can be unreliable or inefficient when applied directly.

We leave relevant researches on recommendation with evolving
user interests in Appendix B.

6 Conclusion
In this work, we address the challenge of non-stationary environ-
ments when optimizing user retention with RL. Through data-
driven analyses, we identify several fluctuation factors in user be-
havior, such as the positive ratio of immediate feedback and the user
return time distribution, as the main causes of non-stationarity. To
tackle this challenge, we propose the AURO algorithm for training
adaptive recommendation policies. AURO utilizes a new value-
based contrastive loss to train an additional state abstraction mod-
ule in the policy network. The state abstraction enables RL policies
to identify different sorts of fluctuations in user behavior patterns
universally. To facilitate safe and efficient policy adaptation, we
combine the idea of optimism under uncertainty with rejection
sampling to boost exploration. Experimental results demonstrate
that AURO outperforms state-of-the-art methods in optimising
long-term and non-stationary user retention. It also ensures stable
recommendation quality in face of distribution shift of environment
dynamics and reward function.
Ethics Statement While our approach involves real user logs,
the user data we used have been stripped of all sensitive privacy
information. Each user is denoted by an anonymous user id, and
sensitive features are encrypted in the form of one-hot vectors.
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Algorithm 1 The workflow of AURO
1: Input: The state abstraction network 𝜙𝜑 , the deterministic

policy 𝜋𝜃 , the state-action value function 𝑄𝜓 , the replay buffer
𝐷 , training steps 𝑁 , and the training horizon 𝐻 .

2: Initialize the networks and the replay buffer.
3: for 1, 2, 3, . . . , 𝑁 do
4: for 𝑡 = 1, 2, . . . , 𝐻 do
5: Obtain 𝑧𝑡 from 𝜙𝜑 (𝑠𝑡 ) and sample 𝑎𝑇 from 𝜋𝜃 (𝑠𝑡 , 𝑧𝑡 ).
6: Get the exploration action 𝑎𝐸 with Eq. (7) and set 𝑎𝑡 = 𝑎𝐸 .
7: Interact with the simulator, get transition data

(𝑠𝑡+1, 𝑟𝑡 , 𝑑𝑡+1, 𝑠𝑡 , 𝑎𝑡 , 𝑧𝑡 ), and add it to 𝐷 .
8: end for
9: Update the state abstraction network 𝜙𝜑 according to Eq. (5).
10: Use the replay buffer𝐷 and the TD3 [17] algorithm to update

the policy and value network parameters 𝜃 and𝜓 .
11: end for

A Detailed Derivations
The loss 𝐽same (𝜙)) can be derived as follows:
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The loss 𝐽diff (𝜙) can be derived as follows:
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B Additional Related Work
B.1 Recommendation with Evolving User

Interests
Previous point-wise or list-wise recommendation models have in-
corporated the concept of evolving user behavior, primarily focus-
ing on changes in the distribution of user interests [36]. However,
our paper considers other user behaviors related to the long-term
user experience, such as the rate of immediate response and the dis-
tribution of user return time. To model the evolving user interests,
[52, 53] learn the representation of user interests from historical
behaviors and performs click-through rate prediction. Brown and
Agarwal [4] proposes to ensure that sufficiently diversified content
is recommended to the user in face of adaptive preferences. But
the algorithm is analysed in the bandit setting without empirical
justifications. Zhao et al. [51] predicts users’ shift in tastes during
training and incorporates these predictions into a post-ranking
network. Another approach involves predicting the distributions
of the top-k target customers and training the recommendation
model accordingly [50]. It is also worth noting that some studies
have indicated that these forms of distribution adjustment may neg-
atively impact the overall recommendation accuracy [50]. Instead
of predicting user behaviors and train recommendation models be-
forehand, our paper focus on the identification of new distributions
and the ability to rapidly adapt to them.

C Algorithm
The detailed algorithm workflow of AURO is in Alg. 1. The main
differences between AURO and TD3 are: 1. The policy takes an
additional latent variable 𝑧𝑡 as input . The latent variable is the
output of the state abstraction module 𝜙𝜑 , which is trained with the
loss specified in Eq. (5) 2. The exploration action 𝑎𝐸 is generated
with Eq. (7) rather than by adding Gaussian noise to the original
action 𝑎𝑇 .
Algorithmic Limitations and Failure Cases This paper fo-
cuses on the task of optimizing user retention, without considering
the combination of retention signals with immediate user feedback.
It will be interesting to investigate how to balance these two kinds
of reward signals. One potential failure case of our algorithm is
when users exhibit unusual or adversarial patterns that have never
been witnessed by the algorithm. For example, users may suddenly
get bored of the app and dislike every item that is recommended.
Our state abstraction module may fail to adapt such behavior pat-
tern and recommend appropriate items. Another case is stubborn
users that do not click any novel item that they are unfamiliar with.
Our exploration module may lead to inferior retention performance
on such users, compared with greedy recommendation methods.

We would also like to mention that in our live recommendation
platform, RL-based algorithms are only one step of the long recom-
mendation pipeline. Items selected by AURO will not be directly
presented to users before further ranking and filtering. The filtering
mechanism ensure that no dangerous or illegal items will be pre-
sented to users. When applying similar RL-based recommendation
algorithms to real-world, it is very important for future practition-
ers to be aware of post processing, such as item filtering, for safe
and robust recommendation.
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Table 5: The hyperparameters for the AURO algorithm.

Hyperparameter Value

Training
Optimizer Adam

Learning rate 3 · 10−4

Batch size 𝐵 256

Network
Number of transformer layers 2

Dimension of feedforward networks 64
Number of attention heads 4

RL

Discount factor 𝛾 0.9
Reward weighing parameter 𝜆 -0.1

Replay buffer size 5 × 104

Target smoothing coefficient 0.005
Target update interval 1

Action Space Dimension 𝑘 7

AURO

Number of clusters 𝑛 4
𝛽 in exploration 30
𝛿 in exploration 1

Number of candidate actions 6

Table 6: Average time cost of action selection in one training
step.

Action Selection (s) Total Time (s)

AURO 0.259 1.738
AURO (no exploration) 0.113 1.595
Exploration Time Cost 129 % 8.966 %

D Additional Experiment Details
D.1 Setup
According to KuaiSim [49], the network architecture of the reten-
tion simulator is similar to the policy network. We assume the
immediate user response follows a Bernoulli distribution and the
user return time in days follows a geometric distribution. The sim-
ulator is trained in a style of supervised learning and is updated by
likelihood maximization on the training data. The hyperparameters
for the AURO algorithm during training are specified in Tab. 5.

D.2 Baselines
In the comparative experiments in the KuaiSim simulator, we con-
sider the following baselines:

• CEM [12]: The Cross Entropy Method, which is commonly
used as a surrogate for RL in recommendation tasks.

• DIN [52]: The Deep Interest Network that learns the rep-
resentation of user interests from historical behaviors and
performs click-through rate prediction. We keep the original
input of DIN unchanged and use transformers, which are of
the same structure with AURO, as the backbone network.
This help us make fair comparisons.

• DDPG [24]: A value-based off-policy RL algorithm with a
deterministic policy updated with deterministic policy gra-
dients.

• TD3 [17]: A value-based off-policy RL algorithm that on
top of DDPG, incorporates a pair of Q-networks to mitigate
overestimation.

• SAC [18]: A value-based off-policy RL algorithm with a sto-
chastic policy and the maximum-entropy RL objective.

• OAC [11]: An RL-based exploration algorithm that incorpo-
rates the idea of optimism under uncertainty, and obtains a
separate optimistic action during the training phase.

• RND [5]: An RL-based exploration algorithm that encodes
the state input to fit the output of a random network. States
with larger encoding error will be assigned with higher in-
trinstic reward.

• ESCP [30]: The state-of-the-art environment sensitive con-
textual Meta-RL approach that explicitly identifies hidden pa-
rameters as additional policy inputs. During training, ESCP
assumes access to the hidden parameters, which is unavail-
abe in live experiments. In practice, we use the level of user
activeness as the proxy hidden parameter in ESCP.

• OSPIA [43]: An one-step policy improvement algorithm that
biases the policy towards recommendationswith higher long-
term user engagement metrics.

• RLUR [6]: An RL-based recommendation algorithm espe-
cially designed for optimizing long-term user engagement.

D.3 Computation Cost of the Exploration
Module

AURO requires addtional steps in action selection, computing the
gradient of the Q-function and sampling among candidate actions.
But apart from action selection, RL training involves interacting
with the environment and updating the policy with gradient decent.
These two parts will take up more time than action selection. We
conduct empirical studies and exhibit in Tab. 6 the average time
cost of action selection in one training step. The total time cost of
one training step is also shown for comparison. According to the
results, although the exploration module lead to an addtional 129%
of computation cost, it only costs less than 10% more total time.
Also, during deployment the exploration module is not included,
so it adds no more computation cost.
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