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A Coalition Formation Framework Based on Transitive Dependence
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SUMMARY Coalition formation in multi-agent systems (MAS) is be-
coming increasingly important as it increases the ability of agents to exe-
cute tasks and maximize their payoffs. Dependence relations are regarded
as the foundation of coalition formation. This paper proposes a novel de-
pendence theory namely transitive dependence theory for dynamic coali-
tion formation in multi-agent systems. Transitive dependence is an exten-
sion of direct dependence that supports an agent’s reasoning about other
social members during coalition formation. Based on the proposed transi-
tive dependence theory, a dynamic coalition formation framework has been
worked out which includes information gathering, transitive dependence
based reasoning for coalition partners search and coalition resolution. The
nested coalitions and how to deal with incomplete knowledge while form-
ing coalitions are also discussed in the paper.
key words: coalition formation, transitive dependence, multi-agent sys-
tems

1. Introduction

Autonomous agents situated in dynamic, open, and com-
plicated multi-agent environments may need to cooperate
to achieve their goals. Thus agents may form coalitions to
achieve goals that can’t be accomplished by individuals. Co-
operation among autonomous agents may be mutually bene-
ficial even if the agents are selfish and try to maximize their
own expected payoffs [11]. Mutual benefit may arise from
resource sharing and task redistribution. Coalition forma-
tion is important for agent cooperation in multi-agent en-
vironment. A number of coalition mechanisms have been
successfully proposed and applied into many areas [9]–[13],
[17].

Social reasoning refers to agents’ reasoning about oth-
ers. The social reasoning mechanism is considered to be an
essential building block of autonomous agents. Although
there are various kinds of relations in multi-agent systems
(MAS) as what in a real society, the dependence relation is
believed to be one of the most crucial ones. With depen-
dence relations, an agent is able to dynamically choose a
goal to pursue and a plan to achieve as it is sure every skill it
needs to accomplish the selected plan is available in MAS.

Social reasoning mechanisms, especially dependence
based methods, play an important role in coalition formation
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in MAS. Dependence relations are regarded as the founda-
tion of coalition formation [2]. There have been some re-
search efforts with respect to dependence based coalition
formation (e.g., [4], [8], [14], [15]). However, transitive de-
pendence has not yet been considered in the existing re-
search. For instance, if an agent agi depends on an agent
ag j about an action a1, and the agent ag j depends on an
agent agk about an action a2, is there dependence relation
between the agent agi and the agent agk? The answer is
definitely not. Then under what condition will there exist
dependence between the agent agi and the agent agk? If
there is a dependence relation derived from the two direct
dependence relations, this kind of dependence is called tran-
sitive dependence. This research advocates the importance
of transitive dependence, an extension of direct dependence,
in social reasoning in MAS and proposes a coalition forma-
tion framework based on transitive dependence. Moreover,
search for potential partners is a crucial problem in dynamic
coalition formation. This research also presents a transitive
dependence based method for searching coalition partners
including dependence tree generation, dependence tree re-
duction, plan optimization and action optimization.

The remainder of this paper is organized as follows.
Section 2 presents the transitive dependence theory. In
Sect. 3, we propose the transitive dependence based coali-
tion formation mechanism. Nested coalitions and coalition
formation with incomplete information will be discussed in
Sect. 4. Related work will be given in Sect. 5. In the final
section, some conclusions are presented and ideas for future
work are outlined.

2. Transitive Dependence Theory

A multi-agent system is composed of agents, agent envi-
ronments, agent organizations, agent interaction and various
relationships between agents. The organization structure in
MAS includes issues such as the organization style, rela-
tions between members, which evolve during agents’ coop-
eration problem solving.

As social reasoning mechanisms are based on agents’
information about the others, an agent must explicitly repre-
sent certain properties concerning other agents [14]. For the
agents agi and ag j, Dagi (ag j) is the set of desires, Aagi (ag j) is
the set of actions, Ragi (ag j) is the set of resources, Pagi (ag j)
is the set of plans the agent agi believes the agent ag j has. A
plan consists of a sequence of actions with its associated re-
sources needed to accomplish them. DPagi (ag j) is the set of
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action dependence relations the agent agi believes the agent
ag j has. The definition of action dependence will be dis-
cussed later.

We call a depending agent the depender, and the agent
who is depended upon the dependee. The object around
which the dependence relationship centres is called the de-
pendum [16]. A depender (or dependee) can be any mem-
ber in a multi-agent system, e.g., a single agent, an organi-
zation, etc. According to dependence property, we divide
dependence relations into strong dependence and weak de-
pendence.

Definition 1: (Strong dependence) Suppose an agent agi

tries to achieve a goal g. p(agk, g) = {a1, a2, . . . , an} is a
plan of the agent agk for the goal g. The agent agi has no
ability to achieve an action ai ∈ p(agk, g), but it believes
that the agent ag j has ability to achieve the action ai, then
the agent agi strongly depends on the agent ag j about the
action ai, i.e., S dep(agi, ag j, p(agk, g), ai).

Definition 2: (Weak dependence) An agent agi tries to
achieve a goal g. There is a plan of an agent agk for
the goal g, p(agk, g) = {a1, a2, . . . , an}. The agent agi

can achieve the action ai ∈ p(agk, g) by itself, but it also
believes that the agent ag j has ability to achieve the ac-
tion ai if it pays o f f eragi→agj (ai) to the agent ag j. If the
agent agi achieves the action ai by itself, it should spend
costagi (ai), and costagi (ai) > o f f eragi→agj (ai), then the agent
agi weakly depends on the agent ag j about the action ai, i.e.,
Wdep(agi, agj, p(agk, g), ai).

The definition of strong dependence is the same as it
is in most related work. Although weak dependence has
not been addressed in previous research, weak dependence
relations exist in multi-agent systems, as well as in real so-
ciety. For example, a robot who is good at washing clothes
can also wash dishes. Nevertheless it has to spend much
more time than letting a dishwasher robot do it. Therefore,
the clothes-washer robot can request the dishwasher robot
to wash dishes, and it can wash clothes for the dishwasher
robot. In this way, it helps to save the cost and to increase ef-
ficiency through cooperation between the dishwasher robot
and the robot who is good at washing clothes. Another sim-
ple example is the Tireworld [17], where every agent can
move tiles. After analysis of weak dependence, agents can
save cost through cooperation.

Although there is some research work about depen-
dence relations, little research work has been reported with
respect to transitive dependence relations. Due to the fact
that transitive dependence relationship is an important form
of dependence relationships in MAS, this paper aims to
identify, define and model such relationships so that agents
in MAS can mutually benefit each other. Here we give for-
mal definitions related to transitive dependence. First we
define action dependence relations.

Definition 3: (Action dependence) Suppose the agent agi

can achieve the action ai, but it wants any other agent who
depends on it about the action ai to do an action a j for it, and

it has no ability to achieve the action a j, then the agent agi

has an action dependence on the action a j about the action
ai, i.e., Adep(agi, ai, a j).

Let A be a set of actions. The agent agi can achieve the
action ai. If it wants any other agent who depends on it about
the action ai to do all the actions in A, we call this kind of
action dependence and-action dependence. If it wants any
other agent who depends on it about the action ai to do any
one action in A, we call this kind of action dependence or-
action dependence.

Now we discuss transitive dependence. For the
agents agi, ag j and agk, there are two dependence
relations: Dep(agi, ag j, p(agm, ga), ai) and Dep(ag j, agk,
p(agq, gb), a j), where Dep can be S Dep or WDep. Al-
though the agent ag j can achieve the action ai, but it has an
action dependence on the action a j about the action ai, i.e.,
Adep(ag j, ai, a j). We can find that the agent agi transitively
depends on the agent agk about the action a j.

In contrast to the transitive dependence, we call the de-
pendence relations defined in definition 1 and definition 2
direct dependence.

Dependence chain is used to describe the tran-
sition process of transitive dependence relations. A
dependence chain has a head and a tail. For the
agents agi, ag j and agk, Dep(agi, agj, p(agm, ga), ai),
Dep(agj, agk, p(agq, gb), aj), and Adep(agj, ai, a j), the de-
pendence chain from the agent agi to the agent agk is Dpc =
agi

p(agm ,ga),ai ag j
p(agq,gb),aj agk.

For a dependence chain Dpc, Head(Dpc) represents
the agent at the head of the dependence chain, and
Tail(Dpc) represents the agent at the tail of the depen-
dence chain. For an agent agi in a dependence chain Dpc,
ToDep act(agi,Dpc) and Deped act(agi,Dpc) represent
the actions that the agent agi depends on and is depended
upon respectively†. For the dependence chain Dpc in the
last paragraph, Head(Dpc) = agi, ToDep act(agi,Dpc) =
ai, Tail(Dpc) = agk, and Deped act(agk,Dpc) = a j.

Definition 4: Transitive dependence can be described as
Tdep( Depender, Dependee, Dependence chain). For the
sake of simplicity, the direct dependence is regarded as a
kind of special transitive dependence, i.e., the agent agi’s
dependence on the agent ag j about the action ai that be-
longs to the plan p(agk, g) can be described as Tdp(agi, agj,

agi
p(agk ,g),ai ag j). Transitive dependence can be recursively

defined as:
For the agents agi, ag j and agk, Tdep(agi, ag j,Dpc1

)∧Tdep(agj, agk,Dpc2)∧ADep(ag j,Deped act(ag j,Dpc1

)), ToDep act(ag j,Dpc2))⇒ Tdep(agi, agk,Dpc1+Dpc2),
where Dpc1 + Dpc2 represents the connection of Dpc1 and
Dpc2.

According to dependence property, transitive depen-
dence can be divided into strong transitive dependence and
weak transitive dependence. TS dep(agi, agj,Dpc) means
the agent agi strongly transitively depends on the agent ag j

†An agent may appear more than once in a dependence chain.
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and TWdep(agi, ag j,Dpc) represents the agent agi weakly
transitively depends on the agent ag j.

According to definition 3, the transitive dependence
relation Tdep(ag j, agk,Dpc2) in definition 4 should be
strong transitive dependence relation. For the agents agi,
ag j, agk, Tdep(agi, ag j,Dpc1), Tdep(ag j, agk,Dpc2) and
Tdep(agi, agk,Dpc1 +Dpc2). If the agent agi strongly tran-
sitively depends on the agent ag j, the agent agi strongly
transitively depends on the agent agk, otherwise the agent
agi weakly transitively depends on the agent agk.

3. Coalition Formation Framework

In order to enable an agent to co-ordinate its activities with
other agents and to participate in coalitions, one of the
important elements to take into account in its conception
should be a proper social reasoning mechanism that allows
the agent to reason about the other agents. In order to make
the creation of mutually beneficial coalitions possible, we
make the following two assumptions:

Assumption 1: Complete information
We assume that agents’ information about the other

members in MAS is complete. The information is stored
in the data structure described in section 2.

Assumption 2: Personal rationality
We assume that each agent in the environment has per-

sonal rationality, i.e., it joins a coalition only if it can benefit
at least as much within the coalition as it could benefit by it-
self or by joining in other coalitions. For instance, an agent
agi can do an action ai, if another agent ag j ask for its help
with the action ai, and the agent ag j can pay more than it
wants and other agents will pay, the agent agi will join the
coalition to do the action for the agent ag j.

Basically, agents interact and form coalitions because
they depend on one another in order to achieve their own
goals. In our coalition formation framework, the coalition
formation consists of three stages: information gathering,
transitive dependence based reasoning, and coalition reso-
lution.

3.1 Information Gathering Phase

It’s obvious that agents must have some information about
other members in the multi-agent system before reasoning
about possible coalition partners. This kind of information
is acquired during an initial information gathering phase and
can be acquired and updated dynamically. The information
can be acquired by:

• Passive receiving. When an agent joins a multi-agent
system, it must present itself to the others, sending
some information to introduce itself, e.g., capabilities,
resources, goals, etc. While an agent leaves the multi-
agent system, it has to tell the other members about
this.

• Active inquiring. When an agent wants to know some
information about a member in agent society, it can in-
quire directly about the member or ask for other mem-
bers’ help.
• Internal reasoning. Agents can get information about

the other members by internal reasoning.

3.2 Transitive Dependence Based Reasoning Phase

The Transitive dependence based reasoning is the most im-
portant phase in the three stages of coalition formation. In
this phase, the depender reasons about potential partners
based on dependence relations between the potential part-
ners and itself. The dependence relations are got by analyz-
ing the information gathered in the first phase. For example,
agents can reason out transitive dependence relations based
on direct dependence relations and action dependence rela-
tions.

In the transitive dependence based reasoning phase, af-
ter analysis of the dependence relations, the reasoning pro-
cess for potential coalition partners includes the following
steps: 1) dependence tree generation; 2) dependence tree
reduction; 3) plan optimization; and 4) action optimization.

Assume an agent agi has a goal g, and p(agk, g) is a
plan of the agent agk for the goal g. If the agent agi has
no ability to achieve an action ai ∈ p(agk, g), the agent agi

strongly depends on other agents about the action ai that it
can’t achieve; If the agent agi has ability to achieve the ac-
tion ai but it has to spend more than what it pays for some
other agents when it asks for the help of them, the agent
agi weakly depends on other agents about the action ai. The
kind of direct dependence and transitive dependence in solv-
ing a goal are represented with a dependence tree.

Definition 5: A dependence tree DPT is an ordered triple
(V(DPT ), E(DPT ),Ψ(DPT )) consisting of a nonempty set
V(DPT ) of nodes, a set E(DPT ), disjoint from V(DPT ),
of edges and an incidence function Ψ(DPT ) that associates
with each edge of DPT an ordered pair of (not necessarily
distinct) vertices of DPT .

1. The set V(DPT ) = Root ∪ Vplan(Root) ∪ Vag(DPT ) ∪
Vact(DPT ) is the union of four disjoint sets. Root is the
root node of the dependence tree, which represents the
goal of the depending agent, Vplan(Root) is the set of
plans the agents may use to achieve the goal of the Root
node, Vag(DPT ) is the set of agents, and Vact(DPT ) is
the set of actions.

2. The set E(DPT ) is a set of edges.
3. The function ΨDPT : E(DPT ) → V(DPT ) × V(DPT )

is defined as follows:

a. ΨDPT (e1) = (Root, pi) associates an edge e1 with
an ordered pair of vertices (Root, pi), and repre-
sents the fact that the goal of the Root node can be
achieved by the plan pi.

b. ΨDPT (e2) = (pi, ai) associates an edge e2 with an
ordered pair of vertices (pi, ai), and represents the
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fact that the plan pi needs the action ai and the
action can’t be achieved by the depender or the
depender can achieve it but has to spend more.

c. ΨDPT (e3) = (ai, agi) associates an edge e3 with
an ordered pair of vertices (ai, agi), and represents
the fact that the action ai can be performed by the
agent agi.

d. ΨDPT (e4) = (agi, ai)associates an edge e4 with
an ordered pair of vertices (agi, ai), and repre-
sents the fact that the agent agi has an action de-
pendence on the action ai, i.e., ADep(agi, ak, ai),
where the action ak is the origin action node of the
agent agi.

Here we define two notations for the dependence tree.
Let a node x be any node but the Root node in a dependence
tree DPT . f ather(x) represents the father node of the node
x, and sons(x) represents the set of nodes whose father node
is the node x. Each node x has only a father node f ather(x),
and may has more than one son node, i.e., |sons(x)| ≥ 0.

In a dependence tree, an agent node or an action node
may appear more than once. But if an agent node appears
two times in a road from the Root node, their father nodes
should not be the same ( because in this case the depending
agent can not evaluate the dependence chain since there is a
cycle). A dependence tree has the following characteristics:

• For an agent node x in a dependence tree, its father
node, an action node, ai = f ather(x) and any son node
a j ∈ sons(x) (if |sons(x)| ≥ 1) belongs to an action
dependence relation ADep(x, ai, a j).
• Let the node x is an action node in a dependence tree,

for its father node agi = f ather(x)(if it’s an agent node)
and any son node, an agent node, ag j ∈ sons(x) (if
|sons(x)| ≥ 1), it’s obvious that the maximum offer of
the agent agi about the action node x is no less than the
reserve price of the agent ag j.
• For an agent node x in a dependence tree, its father

node is ai = f ather(x) and the set of its son nodes is
sons(x) (|sons(x)| ≥ 1 ). The node x is an “or” node
if the agent x or-depends on the set sons(x) of actions
about the action ai, and the node x is an “and” node
if the agent and-depends on the set sons(x) of actions
about the action ai.

To illustrate the dependence tree, a simple example as
follows is given and the corresponding dependence tree is in
Fig. 1†. An agent ag1 has a goal g1 and it has two alternative
plans, p11 = a0, a1, a2 and p12 = a0, a3 for the goal. Suppose
that the agent ag1 can only perform the action a0, and the
actions a1 and a2 can be performed respectively by the set
of agents {ag2, ag3} and {ag4}. The agent ag5 can achieve
the action a3. An action dependence relation of the agent
ag2 is ADep(ag2, a1, a4). An or-action dependence relation
of the agent ag3 is ADep(ag3, a1, a5 ∨ a6). An and-action
dependence relation of the agent ag5 is ADep(ag5, a3, a7 ∧
a8). The action a5 can be performed by the agent ag6. The
action a7 can be performed by the agents ag7 and ag8. The

Fig. 1 A simple example of dependence tree.

action a8 can be performed by the agent ag9. The actions a4

and a6 can’t be performed by any agent.

Definition 6: (Feasible action) For an action node ai in a
dependence tree, it’s a feasible action if it can be achieved,
which can be defined by:

If the prior node of the action node ai is a plan node,
and the depender has ability to achieve the action ai, the
action ai is a feasible action.

If an edge e associates with an ordered pair of vertices
(ai, agj) and the node ag j is a leaf node, the action ai is fea-
sible.

If an edge e associates with an ordered pair of vertices
(ai, agj), the node ag j is an “or” node, and there is more than
one ordered pair of vertices (ag j, ak), in which the action ak

is feasible, then the action ai is a feasible action.
If an edge e associates with an ordered pair of vertices

(ai, agj), the node ag j is an “and” node, and for every or-
dered pair of vertices (ag j, ak), the action ak is feasible, then
the action ai is a feasible action.

Definition 7: (Feasible plan) For a plan pi in a dependence
tree, if for every ordered pair of vertices (pi, ai), the action
ai is feasible, the plan pi is a feasible plan.

After deletion of the all actions and plans that are not
feasible from a dependence tree, the reduced tree is called a
reduced dependence tree.

Take the dependence tree in Fig. 1 as an example. As-
sume that the agent ag2 has no ability to achieve the action
a4, and the agent ag3 has no ability to achieve the action
a6. Figure 2 shows the reduced dependence tree after de-
pendence tree reduction.

For a reduced dependence tree, if the node Root is a
leaf node, then the goal is not achievable; otherwise, it’s a
feasible goal.

In a reduced dependence tree, there may be more than
one feasible plan for the goal of the Root node. Similarly,
for an action node, there may be more than one agent which
can achieve the action. Thus, the depending agent should
make a decision on choosing the best plan for the goal and
best agent for an action. Best here refers to the plan (action)

†The or-dependence relations are represented with doted lines,
and the and-dependence relations are represented with solid lines
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Fig. 2 A reduced dependence tree.

can bring about the most favorable utility for the depend-
ing agent. It’s obvious that both the two problems are of
high complexity and there is a strong dependence between
the two problems. To avoid the high complexity of the two
problems, here we utilize a solution of bounded rationality.
The two problems with mutual influence are divided into
two independent problems: plan optimization and action op-
timization, which will reduce the computational complexity
of finding the best plan and the best cooperation partner, but,
accordingly, the coalition result is not optimal.

For a feasible goal, there may be more than one fea-
sible plan, and we choose the most favorable plan to form
coalition. This is called Plan optimization. Similarly, for a
feasible action, there may be more than one agent which can
achieve it, and the agent that will result in the most favorable
outcome is chosen to achieve the action. This is called Ac-
tion optimization.

For a reduced dependence tree, after plan optimiza-
tion and action optimization, the reduced dependence tree
is called a coalition tree.

Definition 8: (Dependence based coalition formation)
Given a framework F =< AG,G, Plan,Can,Dp >, an agent
agi ∈ AG has a goal g ∈ G, according to the set of agents’
ability Can and the set of dependence relations Dp, does
there exist a coalition tree over F that is feasible for the goal
g?

Theorem 1: The dependence based coalition formation
problem is NP-complete.
Proof: Proof can be found in Appendix. 	


It is well known that many problems in graph theory
are NP hard on general graphs. Fortunately in most cases
we can limit the graphs to a restricted class to reduce the
computation complexity. In this paper, we give an anytime
algorithm [5] to find the best solution in the allowed time
range. Anytime algorithms has been regarded as novel ef-
fective methods for solving classic planning problems which
are NP complete.

Algorithm Suppose Index() is the index function to
evaluate a solution. It returns a numeric value. The smaller
number indicates a better solution. The minimum index
value indicates the optimal solution.

Fig. 3 A coalition tree.

1. if there is no feasible plan/action, return;
2. select a feasible plan/action;
3. compute its index value using index function;
4. if it is the first solution, keep the solution and the index

value;
5. else if the index value is less than the kept one, replace

the solution with the current one and keep the index
value;

6. else go to 1. 	

From the anytime algorithm, we can find that the best

solution so far will be chosen as the final solution when the
deadline approaches. Thus, at any time, there is a dynamic
coalition can be formed.

Take the reduced dependence tree is in Fig. 2 as an ex-
ample. Let us assume that the agent ag1 has to pay much
more if it adopts the plan p11 than that if it adopts the plan
p12, and the reserve price of the agent ag7 is less than that of
the agent ag8 for the action a7. Figure 3 shows the coalition
tree after plan optimization and action optimization.

3.3 Coalition Resolution Phase

In this phase, the depending agent invites all the agents in
the coalition tree to form a coalition. According to assump-
tion 1 and assumption 2, all the agents in the coalition tree
will agree to join in the coalition for cooperative problem
solving.

4. Discussions

4.1 Nested Coalitions

The coalition formation framework in this paper is based on
transitive dependence, in which the coalition formation will
result in nested coalitions [8].

When reasoning about the other agents to establish a
coalition, an agent can adopt two different perspectives: a
global perspective, which corresponds to a reasoning about
all the dependence relationships among the agents that can
participate in the coalition (including transitive dependence
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Fig. 4 Nested coalitions.

and direct dependence), and a local perspective, in which
the agent only reasons about direct dependence.

In our framework, every agent node in the dependence
tree adopts the global perspective to reason about the ful-
fillment of its goal based on transitive dependence, and it
adopts the local perspective to form nested coalitions. The
achievement of the goals of nested coalitions will results in
the success of the goal of their father agent node.

With an approach based on a local perspective, the
achievement of a goal for which an agent is not autonomous
may originate not only one coalition, but a group of nested
coalitions. The nested coalitions of the coalition tree in
Fig. 3 are showed in Fig. 4.

4.2 With Incomplete Information

In dynamic, distributed and heterogeneous multi-agent sys-
tems, the information may be incomplete. Now if we relax
the assumption 1, i.e., the information may be not complete,
does our coalition formation framework based on transitive
dependence still work? If so, how to form coalitions with
incomplete information?

In this situation, each agent in the dependence tree
has incomplete knowledge of all the social members, which
means that each agent doesn’t clearly know all the details
about the accomplishment of the intended goal. Therefore,
the agent has to take the local perspective. The depending
agent makes a list of possible partners, ordered by a pref-
erence measure. It then asks each agent from the list, from
the top to the bottom, if it is willing to take part into the
coalition. Then every agent in the list reasons about transi-
tive dependence in the same way. The procedure stops when
some agent accepts to take part into the coalition, and then
the depending agent sends it a coalition formation message.

5. Related Work

Distributed artificial intelligence (DAI) is concerned with
problem solving in which several agents interact in order

to execute tasks. Coalition formation and coalition planning
is a well-investigated area in the field of DAI. Coalition
formation can be categorized into two approaches: utility-
based and complementary-based [6]. Most classic meth-
ods for forming stable coalitions among rational agents fol-
low the utility-based approach and rely on derived concepts
from cooperative game theory. However, game theoreti-
cal approaches are typically centralized and computation-
ally infeasible. MAS researchers, using game theory con-
cepts, have developed algorithms for coalition formation in
MAS environments. However, many of them suffer from
a number of important drawbacks, for example: they only
consider super-additive environments [11], [17]. Sandholm
and Lesser have developed a coalition formation model for
bounded rational agents and present a general classifica-
tion of coalition games [9]. Shehory and Kraus present sev-
eral solutions to the problem of task allocation among au-
tonomous agents [12]. Sandholm et al. present an algorithm
that establishes a tight bound within this minimal amount of
search [10]. [13] presents algorithms for coalition formation
and payoff distribution in non-super-additive environments.
Compared with the game theory based coalition formation
mechanisms, our method seems more intuitive since depen-
dence is the reason for forming coalitions. Moreover, game
theory based algorithms generally can only be applied to
super-additive environments and are of high computational
complexities.

An important aim in the field of Multi-agent Systems
is to study emergent social structures, such as groups and
collectives. Some approaches aimed in exploring social re-
lations like power and dependence are based on Decision-
theoretic techniques [14]. Boella et al. distinguish four
structural viewpoints on multi-agent systems in an abstrac-
tion hierarchy: mind view, power view, dependence view
and coalition view [2]. From the point view of depen-
dence property, Alonso divides dependence relation into two
kinds: strong dependence and weak dependence [1]. De-
pendence relations are also used in coalition formation [14].
According to the nature of the dependum, Yu et al. divides
dependence relation into goal dependency, task dependency,
resource dependency, and soft-goal dependency [16]. The
related research on dependence theory ignored the impor-
tance of transitive dependence. In contrast, this research
proposes a set of formal definitions of transitive dependence.

Dependence relations, to our knowledge, are firstly
used in coalition formation in [14]. David et al. present a
utility-driven rationality and a complementary-driven ratio-
nality based model, relative to multiple partner coalitions.
Morgado and Graca present a social reasoning mechanism
that extends previous works [8]. In [7], a comparison anal-
ysis of a utility-driven method and a complementary-driven
method is introduced. The proposed mechanism in this pa-
per advocates the importance of transitive dependence and
discusses the process of searching the potential formation
partners.
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6. Conclusions and Future Work

There are two major questions concerning coalition forma-
tion [11]: 1) how should a group of autonomous agents form
a coalition? and 2) among all possible coalitions, what coali-
tion will form, and what reasons and processes will lead the
agents to form that particular coalition? The theory of di-
rect dependence and transitive dependence tries to answer
the first question, and it has been the direction followed by
some previous works as presented in [4], [7], [15].

The main contributions of this paper include: 1) We
identify, define and model a novel dependence relation-
ship called transitive dependence relation. It extends the
related research work on dependence based social reason-
ing by considering transitivity in dependence relations. De-
pendence relationships among agents are important for au-
tonomous agents in MAS [3], [4], [7], [14], [15]. However,
to date little work has been reported in defining the transitive
relationships. Transitive dependence helps to agents’ repre-
senting and reasoning social relations in MAS. Moreover,
transitive dependency can help agents to reach a goal more
fast with less cost since agents are goal oriented; 2) With
the proposed transitive dependence theory, a novel coalition
formation mechanism is worked out. Although there are
some efforts using dependence relations in coalition forma-
tion, but transitive dependence has not been identified and
utilized in the related work though it can bring great mu-
tual benefit to agents in MAS. Moreover, transitive depen-
dence based reasoning is proposed for the search of poten-
tial partners in coalition formation, which can answer the
second question concerning coalition formation. Compared
with other coalition formation methods, the transitive de-
pendence based ones are more intuitive. With the anytime
algorithm, the depending agent can find the best solution so
far, which means that, at any time, there is a dynamic coali-
tion can be formed; and 3) Nested coalition formation and
how to deal with incomplete information in coalition forma-
tion are also discussed in this paper.

The proposed framework based on the proposed tran-
sitive dependence theory consists of information gathering,
coalition formation reasoning and coalition formation. The
framework is inspiring for dynamic coalition formation. Al-
though of high complexity (which is also the problem of
other proposed methods), with the anytime algorithm, the
proposed coalition formation framework can be applied in
many application domains (especially for applications with
relatively small scale), such as, the application in autonomic
and service oriented computing, dynamic web/Grid service
composition, VOs (Virtual Organizations) formation in ser-
vice oriented Grid where all the entities can be treated as
autonomous agents, supply chain management, workflow,
enterprise integration, etc. Our on-going research is focused
on meeting the balance between optimal rationality and the
large complexity of the transitive dependence based reason-
ing, which will be reported in the future papers.
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Appendix: Proof of Theorem 1

Suppose that an agent agi has a goal gi. There are k plans
for the goal gi and each plan consists of a set of actions. To
find the optimal plan, the depending agent should get the
least cost of each plan. To get the the least cost of each plan,
the depending agent should compute the least cost of each
action in the plan that the agent depends on other agents. To
get the least cost of an action in a plan, the agent should get
the least cost when it asks an agent to achieve the action. For
instance, in Fig. 1, to decide which plan to use, the agent ag1

should get the least cost of the plans p11 and p12. To get the
least cost of the plan p11, the agent ag1 should get the least
cost of the actions a1 and a2. To get the least cost of the ac-
tion a1, the cost of asking the agents ag2 and ag3 to achieve
the action a1 should be calculated first. Obviously, to prove
that the dependence based coalition formation problem is
NP-complete, we just need to prove that the computation of
the least cost of asking an agent to achieve an action in a
plan (CLCAA) is NP-complete.

To get the least cost of asking an agent to achieve an
action that the depending agent depends on other agents, the
depending agent should analyze all the action dependence
relations related to achieving the action. We introduce a di-
rected search graph to describe the process of computing the
least cost of asking an agent to achieve an action. Suppose
that there are n agents in MAS and each agent can achieve at
most m actions, there are at most n × m valid nodes and one
invalid node in the search graph. Each valid node, repre-
sented as (agi, a j), represents that the agent agi can achieve
the action a j. If an agent agi has an action dependence re-
lation on the action a j about the action ai, and an agent ag j

can achieve the action a j, then there is an edge from the
node (agi, ai) to the node (ag j, a j). But if there is no agent
can achieve the action a j, then there is an edge from the node
(agi, ai) to the invalid node.

To get the least cost of asking an agent to achieve an
action (represented by a node in the search graph), the de-
pending agent should search all the feasible paths from the
node and find the least cost of all the feasible paths. A fea-
sible path here means that 1) there are no repeated nodes in
the path, 2)the tail of the path isn’t the invalid node, and 3)
there is no edge from the tail of the path.

Membership of NP is easy: given an instance, simply
guess a path is feasible in a search graph. The size of the
path is bounded above by (n × m) and, since n and m are
finite, guessing can be done in polynomial time. Thus, veri-
fying the feasibility and cost of a path in a search graph can
be done in polynomial time.

For completeness, we must show that CLCAA is in
some sense no easier than all other NP-complete problems.
To do this, it suffices to show that any instance I of some

known NP-complete problem can be transformed into an in-
stance of τ(I) of CLCAA such that the transformation can
be done in polynomial time, and the transformed problem
τ(I) has a solution only if the original problem I has a solu-
tion. For CLCAA, we define a reduction from a version of
the wellknown 0-1 Knapsack problem.

Formal definition of 0-1 Knapsack problem: There is
a knapsack of capacity c > 0 and N items. Each item has
value vi > 0 and weight wi > 0. Find the selection of items
(δi = 1 if selected, 0 if not) that fit,

∑N
i=1 δiwi ≤ c, and the

total value,
∑N

i=1 δivi, is maximized.
To see how the reduction works, consider the example

Knapsack-01 illustrated in Table A· 1. The most valuable set
of items in this example is {2, 3}. We transform the example
into an instance τ(Knapsack − 01) of CLCAA. To do this,
we first create all the nodes for the search graph. We create
two nodes for each item i: i0 and i1. We also create a Root
node and an invalid node. The edges between the nodes are
defined as: 1) there is one edge from the Root node to the
two nodes of item 1; 2) for each node of item i (i = 1, 2,3),
there is an edge from the node to the nodes (i + 1)0 and
(i + 1)1 respectively. There is no edge connected with the
invalid node.

The search graph transformed from the example
Knapsack-01 is showed in Fig. A· 1. Then the depending
agent begin to search all the feasible paths from the Root

Table A· 1 A 0-1 Knapsack problem instance.

N = 3 c = 10

i 1 2 3

vi 2 5 4

wi 5 7 6

Fig. A· 1 Search graph for example Knapsack-01.

Let N be the number of items of different values
and volumes

For each item i, create two nodes i0 and i1.
Create a Root node and an invalid node

Draw one edge from the Root node to the two
nodes of item 1
For each node i0 or i1 , i < n

Draw one edge from the node to the nodes (i + 1)0 and
(i + 1)1 respectively

Fig. A· 2 Reducing the 0-1 Knapsack problem to CLCAA.
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node, for example, Root → 10 → 21 → 30. The node i0
means that the item i isn’t in the selection of items and the
node i1 means that the item i is in the selection of items.
From all the feasible paths from the Root node, the path that
fits in the fixed volume of the knapsack and has the most
valuable set of items will be chosen as the solution. For the
example Knapsack-01, the path results in the the most valu-
able set of items that fit in a knapsack of fixed volume is
Root→ 10 → 21 → 31.

The transformation from the 0-1 Knapsack problem to
CLCAA is entirely automatic (see Fig. A· 2), and is polyno-
mial.
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