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Abstract

In dynamic and complex negotiation environments, a negotiation agent can
participate or quit negotiation at any time and can reach an agreement with more
than one trading partner as the result of the existence of dynamic outside options.
Thus, it's important for a negotiation agent to make a decision on when to complete
negotiation given market dynamics. Rather than explicitly modelling all the trad-
ing partners, this paper presents a novel decision making strategy that an agent can
use to determine when to complete negotiation based on a tractable Markov chain
model of negotiation process. Experimental results suggest that the proposed strat-
egy achieved more favorable negotiation outcomes as compared with the general
strategy.

1 Introduction
Automated negotiation [12, 14] among software agents is becoming increasingly im-
portant as it enables (self-interested) agents to find agreements and partition resources
efficiently and effectively. Widely studied in Economics, Law and Artificial Intelli-
gence, research in automated negotiation is receiving increasing attention. One key
challenge of automated negotiation is to design negotiation agents that can achieve
good performance in dynamic, complex environments closed to real world domains.
Even though there are many extant negotiation agents for e-commerce (e.g., [3,5]), the
strategies of some of these agents are mostly static and may not necessarily be the most
appropriate for changing market situations since 1) they seldom consider the dynamics
of the market and/or 2) they assume that an agent often has complete information about
others.

This work focuses on automated negotiation in dynamic and complex negotiation
environments which often have the following three characteristics: 1) an agent can
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reach an agreement with more than one trading partner, i.e., there are outside options
in negotiation. Outside options can increase agents’ bargaining power and thus can
influence agents’ reserve proposals or negotiation strategies; 2) agents can dynamically
enter or leave the market (or negotiation); and 3) agents have incomplete information
about the other entities.

Consider the following scenario in an above specified dynamic environment. An
agent receives several proposals at rotiiachd the agent has to make a decision on
whether to accept the best proposal it has received as it's not sure that it can receive a
better proposal in the future negotiation. This deliberation is indeed needed as agents
may dynamically leave or enter the market. If the agent accepts the best proposal at
roundt, it may loose the opportunity to get a better negotiation result in the future. If
it rejects the best proposal at routidhe agent has to face a risk of reaching a worse
agreement (even no agreement) in the future negotiation.

An agent who tries to maximize profit by reaching an agreement at the most favor-
able prices possible (the highest price for the seller or the lowest price for the buyer)
needs to reason about all its trading partners. One reasonable strategy for a negotiation
agent would be to model what each individual agent thinks and will do, and use these
models to figure out its best strategy. For example, in game theory, agents build a model
of each other’s possible moves and payoffs to find out their best moves (e.g., equilib-
rium strategies). However, modelling each of the other agents is often impossible or
impractical in decision problems involving a large number of evolving participants as
the result of agents’ incomplete information and market uncertainty. Instead, we have
developed a Markov chain stochastic modelling technique as part of an agent’s negoti-
ation strategy to make a decision on when to complete negotiation, which we call the
MCDM (Markov chain based decision making) strategy. An agent with the MCDM
strategy can take into account the dynamics and resulting uncertainties of the negotia-
tion process using stochastic modelling of the negotiation process.

The remainder of this chapter is organized as follows. Section 2 presents the ne-
gotiation model and the MCDM strategy algorithm. In Section 3, we will explain the
details of the Markov chain model. In section 4, we examine the performance of the
MCDM strategy through experimentation. Section 5 summarizes related work. In the
final section, some conclusions are presented and ideas for future work are outlined.

2 The Negotiation Model

For ease of analysis, this work focuses on single-issue (single attribute, e.g., price-only)
negotiation rather than multiple-issue negotiation (we leave multiple-issue negotiation,
which is more complex and challenging than a single-issue negotiation [6], for future
research). This section presents 1) the negotiation protocol, 2) agents’ concession strat-
egy, 3) an agent'’s decision making problem in negotiation, and 4) the MCDM strategy
algorithm.

2.1 Negotiation Protocol

To set the stage for specifying the negotiation model, some assumptions are given as
follows:



1. Agents have incomplete information about other agents.
2. An agent concurrently negotiates with its trading partners.
3. Competition isn’t considered.

4. Agents do not form coalitions.

Assumption 1 is intuitive because in practice, agents have private information, and
for strategic reasons, they do not reveal their strategies, constraints (e.g., deadline,
and reserve price), or preferences. In [14, p.54], it was noted that the strategy of a
negotiation agent corresponds to its internal program, and extracting the true internal
decision process would be difficult. Outside options can exist concurrently with a
negotiation thread, or come sequentially in the future. A concurrently existing outside
option is a negotiation thread that the negotiator is involved in simultaneously with
another thread. Generally, a buyer gets more desirable negotiation outcomes when it
negotiates concurrently with all the sellers in competitive situations in which there are
information uncertainty and deadlines [11]. In this chapter, we assume that an agent
negotiates concurrently with its trading partners (Assumption 2). As negotiation is a
private behavior (only known to the two negotiators at most time), Assumption 3 is a
plausible assumption. When buyers and sellers are allowed to group together to exploit
the benefit of grouping, analysis of agents’ strategies as well as market equilibrium
become more complex [17]. At present stage, the design of negotiation agents does not
consider coalition formation (Assumption 4).

Negotiation Set: As this work focuses on single-issue negotiation, the negotiation
set or agreement sé@, which represents the space of possible deals or proposals (see
[14, p.34]) for an agent is [IP4, RP4] (IP4 and RP, are, respectively, the initial
and reserve prices of). Let D be the eventin whicHl fails to reach an agreement with
its trading partner. Consequently, the utility functionfs defined ag/4 : {®} U
D — [0,1] such that/4(D) = 0 and for allP;* € [P, RP4}, UA(P}*) > U4(D).

In the absence of an agreement, an agent receives a utility of zero, and it prefers all
UA(P{) to UA(D). If Ais a buyer agent, theti(P{*) > U*(Ps') given that
P{t < P, andUA(Pf') < UA(PS) for a seller agent, i > P3'.

Negotiation Protocol: Negotiation proceeds in a series of rounds as follows. At
roundt = 0, the e-market opens. At any round, some new agents enter the market
randomly. Negotiation begins when there are at least two agents of the opposite type
(i.e., one buyer and one seller). In the first round of trading, an agent proposes a deal
from its negotiation set. This work adopts the alternating offers protocol (see [15,
p.100]) so that a pair of buyer and seller agents negotiates by making proposals in
alternate rounds. Many buyer-seller pairs can negotiate deals simultaneously. If no
agreement is reached, negotiation proceeds to another round. Negotiation between two
agents terminates i) when an agreement is reached or ii) with a conflict when one of
the two agents’ deadline is reached.

2.2 Concession Strategy

The main goal of negotiation is to move towards and explore potential agreements
within the common area of interest in order to find the most satisfactory agreement for



the parties. In round < t < min(TE,T5) whereT? andT*: are, respectively, the
deadlines of a buyer B and a sellgy, if the proposalPtS_ifB of its trading partner at
roundt — 1 isn’'t acceptable to the ageRt, the agentB may make a concession

at roundt as reaching an acceptable agreement is always better than failing to reach an
agreement.

Since a bargaining negotiation is fundamentally time-dependent [5], here we as-
sume that both the two agents utilize a time dependent strategy while making a conces-
sion. During negotiation, penalty is incurred by one side or the other with the passage
of time and each agent faces firm deadline.

Whereas deadline puts negotiators under pressure, they have different time prefer-
ences (e.g., negotiators with different time preferences may have different concession
rates with respect to time). For instance, an agent may prefer to concede less rapidly
in the early rounds of negotiation and more rapidly as its deadline approaches. The
proposal of an agent to its trading partner at roundt (¢ < 7) is modelled as a
time dependent function as follows:

PA=A = IPA — A1) x (IPA — RPY) (1)
wheret is current trading time.
The time dependent concession strategy in this work is used to decide the amount
of concession in the price of a commodity. The time-dependent funetitin) is

determined with respect to time preferencé and deadling™* (whereA* > 0, and
T4 > 0is finite) and is given as

¢ (1) = (¢/T4) 2)

Although agents have infinitely many strategies with respect to remaining trading
time (one for each value 0f4), they can be classified as follows [17]:

1. Linear (LNy A\ = 1 and¢(t) = (t/T4). At any roundt, an agent makes a
constant rate of concessiar (t — 1) — ¢p(t) = —1/T4.

2. Conciliatory (CC) ¢A(t) = (t/T4)", whered < A4 < 1. An agent makes
larger concessions in the early trading rounds and smaller concessions at the later
stage.

3. Conservative (CS)A(t) = (t/T4)*", wherel < A < co. An agent makes
smaller concessions in early rounds and larger concessions in later rounds.

4. “Sit-and-wait (SW) In a bilateral negotiation, when both outside option and
competition are not considered f= oo, then an agent adopts a “sit-and-wait”
strategy. We can find that

oA (t) = t/TH>* =0, 0<t<T

o (T = (T4 TH>* =1, t=T"



It is reminded thaf™* is constant. Fot < T4, it follows that(¢/74)> = 0, and

PA—A = [PA. Whent = T4, it follows that(7T4/T4)> = 1, and P24 = RPA.

Let A{ and A%, be the amounts of concessiontak T+ and TfT, respectively.
Before the deadline, an agent does not make any concession but “waits” for its trading
partner to concede, singe/! = PAT4 — PA~4 =0(0 <t < T4). It only concedes

atits deadline witn\#, = P24 — Par @ = IPA — RPA.

The case when = 0 is not considered here because it represents a situation when
no negotiation is needed.

Although there are four kinds of strategies for negotiation agents, in this chapter, we
assume that all the negotiation agents take the “sit-and-wait” strategy since Sim [17,
Proposition 3.1] has proved that the “sit-and-wait” strategy is the dominant strategy
for an agent using time-dependent strategy, regardless of the strategy that its trading
partner adopts. Therefore, a trading partfigof the buyerB will propose its optimal
price I PSi at round0 < j < T% — 1 and will proposeR P at roundT% — 1. This
assumption is consistent with an intuition noted by Raiffa (see [13, p.78]) that very
often the strategic essence of a negotiation is merely a “waiting game”, and a negotiator
who is willing to wait, to probe more patiently, and to appear less eager for a settlement
will be more successful. Although, in a multilateral negotiation, a negotiator that waits
too long faces higher risk of losing a deal due to competition, it is shown in [16] that in
a bilateral negotiation with deadlines, the only sequential equilibrium outcome is where
each agent waits until the first deadline before accepting the proposal of its opponent.

Rational agents want to gain more through participating negotiation. Therefore, a
buyer may let a very low price be its initial proposal and, in contrast, a seller may let
a very high price be its initial proposal. For ease of analysis, this chapter assumes that
an agent’s optimal price isn’t acceptable to its trading partners, i.e., for the negotiation
pair B andS;, IP% > RPB andIP? < RP%:. It can be found that the agreement
can only beRPZ or RP®: (Proposition .

Proposition 1 When a buyei3 negotiates with a sellef; and each agent’s optimal
price isn’t acceptable to its trading partner, the agreement can onlgB& or RP5:
at roundmin(T8 — 1,75 —1).

Proof: Using the “sit-and-wait” strategy, each agent will propose its initial price before
its deadline and will propose its reserve price at its deadline. Therefore, an agent only
makes two different proposes: its initial price and its reserve price. Given the fact that
each agent’s initial price isn’t acceptable to its trading partner, the possible agreement
can only be one of their reserve prices, iRRZ or RPS: for the negotiation between

B andS; at the shorter deadlin@in(T? — 1,7 — 1) of the two agents. O

2.3 An Agent’s Decision Problem

Usually a negotiator can face more than one candidate to reach an agreement, although
only one agreement with a single candidate is allowed. These candidates become out-
side options with respect to each other for the negotiator. The outside options contribute
to the environment of the negotiation with a candidate. Existence of outside options
is typical in matching markets, and also common in commodity and service markets.



We call the negotiation between a negotiator and one of the trading partners a negoti-
ation thread. Modelling the outside options and understanding the interaction between
outside options and a negotiation thread is an essential aspect to design an effective
negotiation strategy in the environment with outside options. The analysis of the deci-
sion model is presented from a buyRis perspective while it negotiates with a set of
sellersS = {51, Ss, ..., Sy} wheren is the number of sellers. A similar model can
be built from a seller's perspective. Note thatay dynamically change as we assume
that agents dynamically enter or leave the market during negotiation. Let the number
of trading partners oB at roundt ben, (0 < ¢t < TB).

The buyerB’s utility function is given as:

B
R e 3)
RPp — IPg
wherePP € [IPg, RPg].
Now we give an analysis of the decision problem in negotiation. At rotnd
(0 < t < TPB), the buyerB negotiates withn; sellers and receives; proposals
PS—B = {Ptsi_’B|z’ = 1,2,...,n;} from its trading partners after it sent propos-
als to these trading partners at round Let the best proposal from B’s perspec-
tive in PS—B be P " i.e., for any proposaP’~" ¢ PS—5, it follows that
UB(P %) > UB(PS~P)1If t = T — 1, the buyerB has to accept the proposal
Ptsj_)B as it has no more time to bargain. tif< T2 — 1, the buyer has to make a
decision on whether to accept the propo@ﬁl’ﬁB. If it accepts the proposeﬂ’tsﬁB,
it will receive a payoff oftU/ Z (Ptsf HB) with certainty. If it rejects the proposal, the ne-
gotiation proceeds to the next round and the buyenay 1) reach a better agreement
than PtsﬁB if there is good chance in the future, 2) reach a worse agreement than
PtSfHB if there is no good chance in the future (e.g., the sélemay quit negotiation
in the next round), or 3) be subjected to a conflict utilitf (D) = ¢? = 0 if there is
no chance for the buyer to reach an agreemeftis the worst possible utility foB.

Let EUZ, be the buyeiB’s expected payoff it can receive in the future negotiation if it

rejects the best proposﬁfj ~B_ B will find that it is advantageous to rejeﬂs-f_'B
at roundt only if

UB(PtSj_)B) < EUft 4)

Otherwise, it will accethS-’*B at roundt.

Therefore, the decision problem for the buygmat roundt is to get the expected
payoff EUZ, in the future negotiation (afte). The agentB can use its beliefs about
the market and its trading partners to compute the expected utility it can gain in the
future negotiation. In this work, we compute the valugidfZ, by use of a stochastic
model in which the negotiation process is modelled by a Markov chain.

1There may be more than one proposaﬂtﬁ“B that generates the best utility for the buygrWithout
loss of generality, assume that each proposal generates different utility.



Function: The MCDM Strategy Algorithm.
Input: The agenB'’s beliefs about the market and its trading partners
Output: The value oEUZ,

Let EUZ, = 0.

Begin
Fort<t <TFB

Build a Markov chain front to ¢ and compute the transition prob-
abilities and rewards;

Compute the expected utilityU? the agentB gains when it ends
negotiation at round’;

If EUZ > EUZ, Then

EUZ, = EUP

End-if
End-For
Return EUZ,
End

Figure 1: The MCDM strategy algorithm.

2.4 The MCDM Strategy Algorithm

After rejecting the proposeﬂ’ts 775 atround, the buyerB can still reach an agreement
with a seller at round’, t < ¢ < TB. Let EU? be the expected utility the ageBt
gets when it reaches an agreement at ratin@ihe value ofEUZ, is given by:

EUZ, = max, EUP (5)

Fig.1 describes the MCDM strategy. &2/5, = mazy EU[, the buyer computes
EUJ (t <t < TP)respectively and lets the highest valueki? ? be EUZ,. While
computing the value offU/, the buyer first builds a Markov chain frofrto ¢’ and
computes the transition probabilities and rewards.

The MCDM strategy is a heuristic strategy. It models the dynamics of negotiation
stochastically using a Markov chain (MC), assuming that the negotiation behaves as a
random process. The MC model captures the variables that influence the agent’s utility
values and the uncertainties associated with them. The MC model takes those variables
into account in the MC states and the transition probabilities. The details of the Markov
chain model will be given in Section 3.

The MCDM strategy in Fig.1 is for the use of computifd/Z, when the buyer
makes a deliberation at round0 < ¢ < T'7). If the buyer rejectsPtsﬁB after the
deliberation, the buyer still has to make the deliberation at raund as it needs to
computeEUZ, . ,. Therefore, the buyer has to run the MCDM strategy algorithm in



Fig.1 for at mosT'® — 1 times.
|Q\<TB—">71)

The complexity of the MCDM strategy algorithm &((T7 — t) TS,
where 2 is the set of different composition of sellers. Computing the expected util-

ity EUD takes%% time (see Section 3). As the buyer needs to compute a
set of values{ EUZ|t < t' < TP}, the whole MCDM strategy algorithm will take

B_4
o(1T*? - t)%) time. As the buyer has to run the MCDM strategy algorithm

B
for at mostT'® — 1 times, it will takeO (% — 1)T7 '““;l_;l) time to complete the
negotiation.

3 The Markov Chain Model

This section presents the Markov chain model for computing the expected Hilify

if the buyer B completes negotiation at rourtt This model is used for the buyer

B'’s decision making at rountl In Section 3.1, we describe the variables captured in
the MC model. In Section 3.2, how to model the negotiation process by the model
is discussed. How to compute the transition probabilities between the MC states is
described in Section 3.3. Given the MC model, the computation of the expected utility
EU} is discussed in Section 3.4.

3.1 Variables Captured in the MC Model

To get the expected payoffUZ, in the future negotiation, a MCDM strategy buyer
needs to capture in its MC model the variables that influence the expected utility value.
We divide those variables into three groups, as shown in Table 1. These variables
define the buyeB’s belief about the negotiation environments (including the market,
its trading partners and itself). The variables in Table 1 are the information available in
most negotiation scenarios, and we choose to capture all of them in the MC model.

The variable in the first group captures information about outside options. Fol-
lowing a usual way of modelling uncertain arrivals, we assume the arrival of outside
options follows a probability distributio®® (n, ") (in the experiments, we assume
that the arrival of outside options follows a Poisson process), wh€ie, t"') denotes
the probability that there will be. new sellers at round’. This arrival probability
PO (n,t") together with its belief about the trading partners allows the buyer to fore-
cast the number as well as the quality of the outside options arriving during the rest of
the negotiation horizon.

The variables in the second group capture information about the trading partners of
the buyerB. n, is the number of trading partners at roungthen it needs to make a
decision on whether to complete negotiation. A negotiation has twosided incomplete
information: both negotiation parties do not know the reservation price and the deadline
of each other. Assume the buyer has an estimation of the reservation price of a seller,
and the estimation is characterized by a probability distribufiéiiz), where ' ? ()
denotes the probability that the reservation price of a seller is no higherthafi ()
is identical and independent across all sellers. This probability distribution is called the
prior belief of the buyer. Similarly, a buyer also has an estimation of the deadline of a



Table 1: The buyeB'’s beliefs about the market and its trading partners

Information about | P?(n,t) | Probability distribution of the ar

the market rival of outside options
ny Number of standing seller offers
Information
about trading FE(z) | Probability distribution of sellers
partners reserve prices

FP(x) Probability distribution of sellers

deadlines
Information RPB Its offer price
about self N _
Uk Its utility function

seller, and the estimation is characterized by a probability distribufiBr), where
FP(z) denotes the probability that the deadline of a seller is no higherathan

Finally, in addition to the information about the negotiation, the buyer needs infor-
mation about itself — its initial price, its reserve price and its utility function.

3.2 Modelling the Negotiation Process

Using the information about the current status of the negotiation and beliefs about the
negotiation environments, the buyer can determine the set of possible states, including
the initial state, middle states and final states.

A negotiation state represents the status of negotiation. Therefore, a negotiation
state should consist of two components: the set of trading partners and the correspond-
ing negotiation time. Lef be the set of possible composition of trading partners. For
example(; =< 5152 > represents that the buyBris negotiating with two sellers;
andS,. Each state can be represented as a(airt”’) which denotes that the buyer
is negotiating with the set of agents{i at roundt”. For convenience, in this work, a
state(();,t") is represented &'

Initial states: The initial state while building the Markov chain for getting the ex-
pected payofEU[ is the set of sellers the buyer negotiates at rotiricet the initial
state at time beQ? ... .

Contrast to the initial state, there are also middle states and final states. f/state
(t < t” < t')is called a middle state and a st&lg is called a final state.

From the initial state, the MC models how the negotiation will proceed. As sellers
may dynamically enter or leave the market, an initial state at ralinday arrive at
different states at round’ + 1. Assuming that at most one trading partner leaves
negotiation and at most one new trading partner enters negotiation, the negotiation can
go to any of the following states from tif¥ =< 5,9, > state:
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Figure 2: The MC model of the negotiation.

< 5152 >: No trading partner quits negotiation and no new trading partner
enters negotiation.

< 51 >: S5 quits negotiation and no new trading partner enters negotiation.

< Sy >: S quits negotiation and no new trading partner enters negotiation.

< 5153 >: S5 quits negotiation and a new trading partisgrenters negotiation.

< 52853 >: 57 quits negotiation and a new trading partisgrenters negotiation.

< 515253 >: No trading partner quits negotiation and a new trading pargger
enters negotiation.

All the remaining state transitions can be built in a similar way, and an example of
a MC model is shown in Figure 2. From the initial stétg,,,,,,, of the negotiation, the
process transitions to a set of possible middle sl@iést < t"” < ', and then to other
middle states, and so on, until it goes to the final st@ﬁésThere are’ — ¢+ 1 layers
of states in the MC model for computing the valuefef 2, t < ¢’ < T5.

3.3 Computation of the Transition Probabilities

To complete the MC model, the buyer needs to compute the transition probabilities
between the MC states. Note that although we describe building the MC model and
computing its transition probabilities separately, they are in fact a one-step process: the
buyer B computes the transition probabilities while building the MC model.

We use the transition from the st&¥¢’ =< S, S, > attimet” (t <t < ') to the

Q;”“ =< 5153 > state at timeg” + 1 as our example to illustrate the process. The
following events result in the transition from the stéXe to QE.”“:
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I;: The sellerS; still doesn’t quit negotiation.

I5: The sellerSy quits negotiation.

I3: Only one new sellef; enters negotiation.

Let transition probabilit fjf' be the conditional probability that the process in state

Q" makes a transition into stafé! .

The eventdy, I, and; result in the occurrence of the state transition. Therefore,
the transition probability from the state S;.5, > at timet” to the state< S;.55 > at
timet” + 1, for example, is given as:

Pl = POV =< 5185 > |0 =< 518, >} = P(I)P(I,)P(Is)  (3.1)

WhereP(I,), P(Iy) andP(I3) are, respectively, the probabilities of the occurrence of
the eventd,, I, andIs.

P(1I) is the probability that the sellef,'s deadline is longer that{ +1 —T3,4(S1)
given that the selle6,’s deadline is longer thatl’ — T;,4(S1), where0 < Tp4(S1) <
T5 is the time when the sellef; begins to negotiate with the buy8r. Therefore,

P(I,) = 1-— Fg(t// +1- Tbg(Sl))
VT I FR (1 Thyy(S1))

(3.2)

whereF% (" +1—T,,(51)) is the probability that the sellef; 's deadline is no longer
thant” + 1 — T;,,(S1).

P(I,) is the probability that the sell&f,’s deadline ig” + 1 — T4 (.S2) given that
the sellerS,’s deadline is longer thatt’ — Tp,,(S2), where0 < T,,,(S2) < TP is the
time when the sellef, begins to negotiate with the buy&. Therefore,

FO#" +1—Tyg(S2)) — FE (" — Tyy(S2))

P(I5) = L= FE (" = Thy(52))

(3.3)

P(Is) is the probability that only one new trading partner enters negotiation at
roundt” + 1. Therefore,

P(I3) = PO(1,t" +1) (3.4)

Similarly, the transition probability of any other transition process can be computed
in the similar way.

3.4 Computing the Expected Utility Value

This section explains in detail how to compute the utility vali&? for a given
Markov chain Model.

The reward of a state represents the expected utility the buyer agent can gain from
that state. Let the reward of a st&¥¢’ be R(Q!"). For any stat€!”, t < " < t/, it
follows that R(€2!") = 0 as the buyer will reject all the proposals before titheFor
a stateQﬁ', R(Q;?’) depends on the quality of all the sellers’ proposals. Take the state

11



Qf/ =< 515255 > as an example. The reward of the state depends on the quality of the
proposals of the sellerS; , S, andS3. As 1) the agreement between two negotiation
agents with the “sit-and-wait” strategy can only be one of their reserve prices and 2)
each seller will propose its reserve price at its deadline, the expected utility the buyer
can gain depends on 1) the probability that the séllés deadline i’ + 1 — T3, (S1)

and 2) the expected reserve price of the seédler Therefore, the expected utility the
buyer can gain from the selléh in Q' is:

R, S,) = PP (t’ r1- Tbg(Sl))UB ( /O h B (x)dx)

where PE (¢ +1 = Thy) = (FE (' +1 = Tyy(S1) — FE (¢ = Thy(51)) /(1 -
FP (¢ - Tbg(Sl))> is the probability that the sellef;’s deadline ig’ + 1 — T, (S1)

and [, f& (z)dx is the expected reserve price of the sefierin which f& (z) is the
probability densny function of the expected reserve price of the s8]ler
Similarly, let the expected utilities the buyer can gain from the sefierand S5 be
R(QY, S,) andR(Q', S3) respectively. The reward of a sta will be the maximum
of the three expected utilities, i.62(Q) = maz (R(QL, S1), R(QL, S2), R(Q, S3)).
Formally, the reward?(Q2!') of the final staté!" can be defined as:

R(OY) = mazg, thIPS (t +1—-Ty,(S UB / fs (3.5

whereP® (¢ + 1= Ty () = (FE (' +1-Tyy(S;)) - FE(¥ - Tbg(sj)))/(l -

FE(t' = Thy(5)))).
Given the reward of each state, the transition probability from one state to another

state and the initial stat@? the expected utility2U?2 if the buyer completes

Initial?
negotiation at round can be given as (assume tlt, = Q§):

itral
= > PLv(@t (3.6)
Q,eQ

whereV (Q!"),t < ¢ < t'is given as:

p R(Qt.”) if " = ¢’
t _ [
V(Qz ) - { R( )_|_ ZQ eQ V(Qt +1) if t” < t/ (3-7)

As R(Q!") = 0 whent < t” < t', (3.7) can be rewritten as

oy (Qt”) if ¢ =t/
Vi )‘{ So,eq PLVQTY) it <t (3:8)

It can be found from (3.6) and (3.8) that the time complexity of compulingf’ is
Q=01
Q-1

12



Table 2: Input data sources

Input Data Possible Values
Market Density | Sparse | Moderate Dense
Ngen 0.5 2 4
Nyen: Theaverage numbeof agents generategber round
Deadline Short | Moderate Long
Trnaa 18—-25 | 35—-45 60 — 70
4 Experimentation
4.1 Testbed

To realize the idea of the Markov chain based decision making model, a simulation
testbed consists of a virtual e-Marketplace, a society of trading agents and a controller
(manager) was implemented. The controller generates agents, randomly determines
their parameters (e.g., their roles as buyers or sellers, initial proposals, reserve price,
negotiation mechanisms, deadlines), and simulates the entrance of agents to the virtual
e-Marketplace. Using the testbed a series of experiments were carried out in order to
evaluate the effectiveness of the Markov chain based decision making model. In order
to demonstrate the performance of the Markov chain based decision making model by
comparison, the general decision strategy was also evaluated.

General strategyAn agent with the general decision strategy will reach an agree-
ment while one of its trading partners’s counter-proposals is better than its proposal,
and accepts the best proposal of the proposals from its trading partners. Therefore,
an agent with the general strategy will not make any deliberation during negotiation
but accepts the best proposal at the last round. In contrast, an agent with the MCDM
strategy will make a deliberation during each round and may finish negotiation before
its deadline.

To evaluate the performance of the two decision strategies in a wide variety of test
environments, agents are subject to different market densities and different deadlines
(Table 2).

4.2 Experimental Settings

Both the two input parameters in Table 2 are generated randomly following a uniform
distribution. Market density depends on average number of agents generated per round.
The lifespan of an agent, i.e., its deadline, is randomly selected[ir&f0]. The range
of [15, 70] for deadline is adopted based on experimental tuning and agents’ behaviors.
In current experimental setting, it was found that: 1) for very short deadtings,
very few agents could complete deals, and 2) for deadline®), there was little or
no difference in performance of agents. Hence, for the purpose of experimentation, a
deadline between the rangel®— 25 (respectively3s — 45 and60 — 70) is considered
as short (respectively, moderate and long).

This work assumes that the arrival of outside options and agents’ deadlines follows
a Poisson process. An agent (e.g., a buyer)’s beliefs about the market and its trading
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Table 3: Performance Measure

SUCCGSS Rate Rsuccess = Nsuccess/Ntotal
EXpeCted Utlllty Uezpected = Usuccess X Rsuccess + Ufail X (1 -
Rsuccess) = Usuccess X Rsuccess

Average Negotiation TimeRy;,,. = Zfﬁ;t‘” T ./ Niotal

Niotal Total number of agents
Navccess No. of agents that reached consensus
Usuccess Average utility of agents that reached consensus
Ufait =0 Average utility of agents that didn’t reach consen-
sus
T The time spent in negotiation by the agént
Short Deadline Moderate Deadline
_ 06 -
0.6 P . "
05 1 05 o
2 " 2 . ot
7; 04 ] rey ¢ = 04 v . *
2 . o o Geed | 2 . o Generdl
7 03 — B 03 .
& . » MCDM % Vo - MCDM
Q 02 L a 02
X * X I3
) " [N L[|
01 |5 01 |
0 0

01051152 3 456 810 01051152 3 456 810
Ngen Ngen

Figure 3: Expected utility and market diigure 4: Expected utility and market dy-
namics. namics.

partners are affected by the above two input data. For example, in dense market where
there are more new negotiators, an agent will believe that the probability of arriving
more new trading partners is higher than that in moderate market and sparse market.

4.3 Performance Measure

The performance measures include expected utility, success rate and average nego-
tiation time (Table 3). Other than optimizing agents’ utility, enhancing the success
rate is also an important evaluation criteria for designing negotiation agents as pointed
out in [4, 19]. Since negotiation outcomes are uncertain (i.e., there are two possibil-
ities: eventually reaching a consensus or not reaching a consensus), it seems more
prudent to use expected utility [2] (rather than average utility) as a performance mea-
sure since it takes into consideration the probability distribution over the two different
outcomes [19]. Average negotiation time examines the average amount of time spent
in negotiation.
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Figure 5: Expected utility and market digigure 6: Average negotiation time and
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Figure 7: Average negotiation time aRtjure 8: Average negotiation time and
market dynamics. market dynamics.

4.4 Results

An extensive amount of stochastic simulations were carried out for all the combina-
tions of market density (dense, moderately dense, sparse)and deadline (short, mod-
erate, long). An extensive amount of experiments were carried out for alxX93)
combinations of the input data and some representative results are presented in Figs.
3-11.

4.5 Observation 1

When both agents with the general strategy and agents with the MCDM strategy are
subject to different market densities, agents with the MCDM strategy always achieved
higherUezpecteq than agents with the general strategy. For example, in Fig. 4, when
the average number of new trading partners is 2 in each round, the expected utilities are
0.44 for agents with the MCDM strategy, and 0.33 for agents with the general strategy
respectively.
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When the market becomes more dynamic, the advantage of utilities of agents with
the MCDM strategy over agents with the general strategy increases. This corresponds
to the intuition that the potential of increasing agents’ utilities increases in dynamic
environments where agents can dynamically enter or leave negotiation. For example, in
Fig. 4 where agents have moderate deadlines, the expected utilities are 0.25 for agents
with the MCDM strategy, 0.18 for agents with the general strategy whign = 0.5
respectively; 0.44 for agents with the MCDM strategy, 0.33 for agents with the general
strategy whenV,.,, = 2 respectively; and 0.53 for agents with the MCDM strategy,
0.41 for agents with the general strategy wiés,, = 5 respectively.

With the increase of deadline, the advantage of utilities of agents with the MCDM
strategy over agents with the general strategy decreases. This also corresponds to the
intuition that the potential of increasing agents’ utilities increases when deadlines be-
come shorter, which will make the market more dynamic. In Figs. 3, 4 and 5, when
the average number of new trading partners in each round is 5, the expected utilities
are 0.52 for agents with the MCDM strategy, 0.37 for agents with the general strategy
when agents have short deadlines respectively; 0.53 for agents with the MCDM strat-
egy, 0.41 for agents with the general strategy when agents have moderate deadlines
respectively; and 0.54 for agents with the MCDM strategy, 0.44 for agents with the
general strategy when agents have long deadlines respectively.

4.6 Observation 2

Through the experimental results in Figs. 6-8, we can find that: with different levels of
market dynamics, agents with the MCDM strategy always achieved I&8ygr. than
agents with the general strategy. For example, in Fig. 7, when the average number of
new trading partners in each round is 2, the average negotiation times are 31 for agents
with the MCDM strategy, and 43 for agents with the general strategy respectively.

When the market becomes more dynamic, the advantage of negotiation time of
agents with the MCDM strategy over agents with the general strategy increases. For
example, in Fig. 7 where agents have moderate deadlines, the average negotiation times
are 35 for agents with the MCDM strategy, 43 for agents with the general strategy when
Ngernn = 0.5 respectively; 31 for agents with the MCDM strategy, 43 for agents with
the general strategy whe¥,., = 2 respectively; and 25 for agents with the MCDM
strategy, 42 for agents with the general strategy wNgn, = 5 respectively.

Through comparison of the negotiation results in Figs. 6, 7 and 8, we can also find
that with the increase of deadline, the advantage of negotiation time of agents with the
MCDM strategy over agents with the general strategy increases.

4.7 Observation 3

When both agents with the general strategy and agents with the MCDM strategy are
subject to different market densities, agents with the MCDM strategy always achieved
higher R,..ccss than agents with the general strategy. For example, in Fig. 10, when
the average number of new trading partners is 2 in each round, the success rates are
0.38 for agents with the MCDM strategy, and 0.22 for agents with the general strategy
respectively.
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Figure 11: Success rate and market dynamics.

We can also find that, when the market becomes more dynamic, the advantage of
success rates of agents with the MCDM strategy over agents with the general strat-
egy increases. This corresponds to the intuition that the potential of increasing agents’
chance of reaching agreements increases in dynamic environments where more agents
can dynamically enter or leave negotiation. Moreover, with the increase of deadlines,
the advantage of success rates of agents with the MCDM strategy over agents with
the general strategy increases. This phenomenon corresponds to the intuition that the
potential of increasing agents’ success rate decreases under very extreme (or very ad-
verse) trading conditions like short deadlines.

5 Related Work

The literature of automated negotiation and negotiation agents forms a very huge col-
lection, and space limitations preclude introducing all of them here. For a survey on
automated negotiation, see [4,9]. The rest part of this section only introduces and dis-
cusses some important related work with respect to negotiation agents in complex and
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dynamic environment.

The environment that a negotiator is situated in greatly impacts the course of nego-
tiation actions. Instead of focusing on analyzing the strategy equilibrium as a function
of (the distribution of) valuations and historical information as in game theory, re-
searchers in Al are interested in designing flexible and sophisticated negotiation agents
in complex environments. Faratin et al. [3] devised a negotiation model that defines
a range of strategies and tactics for generating proposals based on time, resource, and
behaviors of negotiators, which are widely used in automated negotiation. However,
they didn't consider the influence of outside options. Moreover, market dynamics were
ignored in their work.

Nguyen and Jennings [10, 11] have developed and evaluated a heuristic model that
enables an agent to participate in multiple, concurrent bilateral encounters in com-
petitive situations in which there is information uncertainty and deadlines. The main
findings through empirical evaluation include: 1) The time to complete the negotiation
is less for the concurrent model than for the sequential one; 2) To realize the benefits of
concurrent negotiation, the buyer agent’s deadline must not be too short; 3) The final
agreements reached by the concurrent model have, on average, higher or equal utility
for the buyer than those of the sequential model; 4) Changing the strategy in response
to the agent’s assessment of the ongoing negotiation is equal or better than not doing
s0; 5) To improve the performance of the concurrent model, the analysis time should
be moderately early but not too early; 6) The tougher the buyer negotiates the better
the overall outcome it obtains. In [10, 11], multiple negotiation threads are assumed to
be independent on one another. In contrast, in this work, outside options’ influence is
considered in an agent’s decision making for a single negotiation thread.

Although strategies in [3] are based on time, resource, and behaviors of negotia-
tors, other essential factors, such as competition, trading alternatives, and differences
of negotiators are not considered. To take the important factors ignored in [3] into
account while designing e-negotiation agents, Sim et al. [17-20] have designed and
implemented a society of market-driven agents that make adjustable amounts of con-
cession by reacting to market dynamics. Previous empirical results in [18] show that in
general, market-driven agents achieve trading outcomes that correspond to intuitions
in real-life trading. The market situations include trading opportunities, competition,
remaining trading time, and eagerness. Multiple trading opportunities in the market
can be regarded as outside options against each other for a negotiator. In their model
the number of trading opportunities influences the aggregated probability of conflict,
which determines the probability of completing a deal in the current negotiation cycle.
With more trading opportunities, the probability of completing a deal is higher, and it
follows that the negotiator’s concession is smaller in the next cycle based on the spread
decision function. This work complements their work by considering outside options’
effect on negotiation results and agents can make decisions accordingly.

Li et al. [7, 8] present a model for bilateral contract negotiation that considers the
uncertain and dynamic outside options. Outside options affect the negotiation strategies
via their impact on the reserve price. The model is composed of three modules: single-
threaded negotiation, synchronized multi-threaded negotiation, and dynamic multi-
threaded negotiation. These three models embody increased sophistication and com-
plexity. The single-threaded negotiation model provides negotiation strategies without
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specifically considering outside options. The model of synchronized multi-threaded
negotiation builds on the single-threaded negotiation model and considers the presence
of concurrently existing outside options. The model of dynamic multi-threaded nego-
tiation expands the synchronized multi-threaded model by considering the uncertain
outside options that may come dynamically in the future. The discrete time concurrent
one-to-many negotiation model by Li et al. [7,8] assumes that an agent has information
about the expected utility of an outside option but such information is difficult to get.

In contrast, this work assumes that an agent only has information about the probability
distribution of its trading partners’ reserve price.

6 Conclusions

This research investigates an agent’s decision making on when to complete negotiation
in dynamic and complex negotiation environments. Unlike the existing general deci-
sion strategy in which an agent accepts the best proposal by its deadline, an agent using
the MCDM strategy can make a decision on when to complete negotiation according to
its beliefs about market dynamics and its trading partners, which will help with agents’
utility optimization as validated in our experiments.

We have empirically evaluated the performance of the MCDM strategy. First, we
have compared the MCDM strategy agents to agents using the general strategy under
various environments. The results indicate that the MCDM strategy outperforms the
general strategy. The simulation outcomes in Section3 4.5-4.6 suggest that MCDM
strategy always gets results of higher utility (respectively, shorter average negotiation
time and higher success rate) with different market densities and deadlines. In partic-
ular, the MCDM strategy agents perform well in dynamic environments. For exam-
ple, when there are many new negotiators appear in each round, the advantages of the
MCDM strategy over the general strategy is high.

In summary, the proposed MCDM strategy introduced in this research helps to
agents’ utility optimization and adaptation to market dynamics. The proposed strategy
can be applied in open, dynamic, and complicated negotiation environments (such as,
service oriented Grid, supply chain and workflow). However, this research makes no
claim that our strategies are sufficiently accurate or powerful to solve all or most of the
problems in automated negotiation. When agents with our negotiation strategies are
engineered with some elements that model how negotiators in reality may behave, it
is not the intention of this research to create an exact replica of negotiators in realistic
markets.

Finally, a future agenda of this work is engineering behavior-based tactics [3] and
learning techniques [21] into agents’ decision making in automated negotiation. An-
other interesting extension is analyzing agents’ decision making within the continuous
time negotiation mechanism [1].
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