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In this paper, we describe the model, theory developed, and deployment of PROTECT, a game-theoretic system
that the United States Coast Guard (USCG) uses to schedule patrols in the Port of Boston. The USCG evaluated
PROTECT’s deployment in the Port of Boston as a success and is currently evaluating the system in the Port
of New York, with the potential for nationwide deployment. PROTECT is premised on an attacker-defender
Stackelberg game model; however, its development and implementation required both theoretical contributions
and detailed evaluations. We describe the work required in the deployment, which we group into five key
innovations. First, we propose a compact representation of the defender’s strategy space by exploiting equiv-
alence and dominance, to make PROTECT efficient enough to solve real-world sized problems. Second, this
system does not assume that adversaries are perfectly rational, a typical assumption in previous game-theoretic
models for security. Instead, PROTECT relies on a quantal response (QR) model of the adversary’s behav-
ior. We believe this is the first real-world deployment of a QR model. Third, we develop specialized solution
algorithms that can solve this problem for real-world instances and give theoretical guarantees. Fourth, our
experimental results illustrate that PROTECT’s QR model handles real-world uncertainties more robustly than
a perfect-rationality model. Finally, we present (1) a comparison of human-generated and PROTECT security
schedules, and (2) results of an evaluation of PROTECT from an analysis by human mock attackers.
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The United States Coast Guard (USCG) continues
to face challenges from potential terrorists within

the maritime environment, which includes both the
maritime Global Commons and the ports and water-
ways that make up the U.S. maritime transporta-
tion system. The former Director of National Intelli-
gence, Dennis Blair, noted in 2010 a persistent threat
“from al-Qaeda and potentially others who share its

anti-Western ideology. A major terrorist attack may
emanate from either outside or inside the United
States” (Blair 2010, p. 8). This threat was reinforced in
May 2011 following the raid on Osama Bin Laden’s
home, where a large trove of material was uncov-
ered, including plans to attack an oil tanker. “There
is an indication of intent, with operatives seeking
the size and construction of tankers, and concluding
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it’s best to blow them up from the inside because
of the strength of their hulls” (Dozier 2011). These
oil tankers transit the U.S. maritime transportation
system. The USCG plays a key role in the secu-
rity of this system and the protection of seaports to
support the economy, environment, and way of life
in the United States (Young and Orchard 2011). These
threats, coupled with challenging economic times,
force the USCG to operate as effectively as possible,
achieving maximum benefit from every hour spent
on patrol.

Recent work has successfully deployed game-theory
models to help plan patrols for certain real-world
security applications. Examples include assistant
for randomized monitoring over routes (ARMOR),
intelligent randomization in scheduling (IRIS), and
game-theoretic unpredictable and randomly deployed
security (GUARDS). The Los Angeles International
Airport police use ARMOR to determine the location
and times of road checkpoints and canine patrols (Pita
et al. 2008). The IRIS software helps the U.S. Fed-
eral Air Marshal Service to schedule air marshals on
international flights (Tsai et al. 2009). GUARDS (Pita
et al. 2011) is under evaluation by the U.S. Trans-
portation Security Administration (TSA) to allocate
the resources available for airport protection.

This paper presents a new game-theoretic secu-
rity application, Port Resilience Operational/Tactical
Enforcement to Combat Terrorism (PROTECT), to aid
the USCG. The USCG’s mission includes maritime
security of the U.S. coasts, ports, and inland water-
ways, a security domain that faces increased risks in
the context of threats such as terrorism and drug traf-
ficking. The USCG conducts patrols, as part of its
ports, waterways, and coastal security (PWCS) mis-
sion, to protect the critical infrastructure and possible
entry locations present at every port, which an adver-
sary may target. Planning PWCS patrols is compli-
cated by limited security resources, implying that
USCG patrols cannot provide 24–7 coverage at any,
let alone all, of the critical infrastructure; in addi-
tion, the adversary has the opportunity to observe
the security patrol patterns. To assist the USCG in
allocating its patrolling resources, similar to previ-
ous applications, PROTECT uses an attacker-defender
Stackelberg game framework, with the USCG as the
defender against terrorist adversaries that conduct

surveillance before potentially launching an attack.
PROTECT’s solution is to provide a mixed strategy,
that is, randomized patrol patterns that take into
account the importance of different targets, the adver-
sary’s surveillance, and the adversary’s anticipated
reaction to USCG patrols. Each patrol is a sequence
of patrol areas and associated defensive activities at
each patrol area, and is constrained by a maximum
patrol time. The output of PROTECT is a schedule of
patrols that includes the time the patrols will begin,
the critical infrastructure each patrol will visit, and
the activities each patrol will perform at each critical
infrastructure.

Although PROTECT builds on previous work on
deployed security games, it extends this work and
provides five key contributions that we present
in this paper. Three contributions correspond to
modeling and algorithmic developments, and the
last two have to do with evaluating the model
and deployed system. First, PROTECT represents the
security game efficiently by using a compact for-
mulation of defender strategies through dominance
and equivalence analysis. Experimental results show
the significant benefits of this compact representation,
which enable the solution of real-world-sized prob-
lems (Shieh et al. 2012).

The second and most important contribution is
PROTECT’s departure from the assumption of per-
fectly rational human adversaries, as previous appli-
cations used. The assumption of perfect rationality
is well-recognized as a limitation of classical game
theory, and several research directions have been
proposed to address this limitation, giving rise
to the field of behavioral game theory (Camerer
2003). From this literature, we borrow the quantal
response (QR) equilibrium model and adapt it to
our security domain. QR models have emerged as a
promising approach to model human-bounded ratio-
nality (Camerer 2003, McKelvey and Palfrey 1995,
Wright and Leyton-Brown 2010), including recent
results that illustrate the benefits of the QR model
in the context of security games (Yang et al. 2011).
We build the PROTECT system using a QR model
of a human adversary in a Stackelberg game to plan
USCG patrols, and believe that this is the first time
that a QR model has been used in a real-world secu-
rity application.
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Third, we developed specialized solution algo-
rithms that are able to solve this problem for real-
world instances and give theoretical guarantees. This
USCG patrolling problem can be approximated arbi-
trarily by a mixed-integer linear programming (MILP)
formulation. This approach allows us to efficiently
compute an arbitrary approximation of the global
optimal defender strategy with MILPs, whose size
depends on the accuracy of the approximation.

Fourth, this paper presents a detailed simulation
analysis of PROTECT’s robustness to uncertainty that
may arise in the real world. Our results show that
PROTECT’s QR-based approach leads to significantly
improved robustness when compared to an approach
that assumes full attacker rationality. PROTECT has
been in use at the Port of Boston since April 2011
(see Figure 1) and under evaluation by the USCG
during this time. This real-world evaluation provides
the final key contribution of this paper: we provide
actual real-world data that compare human-generated
schedules with those generated via a game-theoretic
algorithm. We also provide results from an adversar-
ial perspective team’s (APT) analysis and compare
patrols before and after the use of the PROTECT sys-
tem from a viewpoint of an attacker. Again, to the best
of our knowledge, this is the first time that results are
given on a real-world evaluation of a game-theoretic
security system. Given the success of PROTECT in
Boston, the USCG is currently testing PROTECT in
the Port of New York; based on the outcome, it may
extend the system to other ports in the United States.

Partial results of this work have appeared in a
number of conference papers, including Yang et al.
(2011, 2012), and Shieh et al. (2012). In addition to the
archival benefit of an article that presents this work
as a whole, the current paper expands on the chal-
lenges and lessons learned during the deployment of
the PROTECT system and presents more details of the
real-world evaluation.

We organized the remainder of this paper as fol-
lows: We start with a discussion of related work and
a detailed description of the concept of Stackelberg
equilibrium. We then discuss how to model the real-
world maritime patrolling problem of PWCS patrols
as a Stackelberg game and its efficient compact rep-
resentation. We next discuss the QR-based security

game developed for the PROTECT system. In partic-
ular, we present its mathematical formulation and an
efficient solution algorithm. We describe the details of
the USCG’s implementation, and present the empir-
ical and real-world evaluation of the PROTECT sys-
tem, respectively. Finally, we conclude the paper,
outline some future research directions, and sum-
marize lessons learned from applying PROTECT
in practice.

Related Work
This section reviews related work on operations
research methods for security. We also introduce the
concept of Stackelberg games, which is the foundation
of our PROTECT system for the USCG.

OR Models for Security
The related work has four primary lines. The first
applies optimization techniques to model the security
domain, but does not address the strategic aspects
of the problem. These methods provide a randomiza-
tion strategy for the defender, but they do not con-
sider that the adversaries can observe the defender’s
actions and then adjust their behavior. Examples of
such approaches include those discussed in Paruchuri
et al. (2006), which are based on learning, Markov
decision processes (MDPs), and partially observable
MDPs (POMDPs). Other examples are algorithms for
perimeter patrolling in arbitrary topologies (Basilico
et al. 2009), maritime patrols in simulations for deter-
ring pirate attacks (Vanek et al. 2011), and research
that looks at the impact of uncertainty in adversarial
behavior (Agmon et al. 2009). Another example, the
hypercube queueing model (Larson 1974), is based on
queueing theory and depicts the detailed spatial oper-
ation of urban police departments and emergency
medical services. Its applications include police beat
design and the allocation of patrolling time. Such
frameworks can address many of the problems we
raise, including different target values and increas-
ing uncertainty by using many possible patrol routes.
However, they fail to account for the possibility that
an intelligent attacker will observe and exploit pat-
terns in the security policy.

A second set of work uses Stackelberg games to
model a variety of security domains. Bier (2007)
strongly endorses this type of modeling for security
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(a) PROTECT is being used in the Port of Boston
(b) PROTECT is being tested

in the Port of New York

Figure 1: USCG boats patrol the ports of Boston and New York.

problems. Game-theoretic models have been applied
in a variety of homeland security settings, such as
protecting critical infrastructure (Brown et al. 2006,
Nie et al. 2007, Pita et al. 2008). Wein (2009) applies
Stackelberg games in the context of screening visitors
entering the United States. In their work, they model
the U.S. Government as the leader who specifies
the biometric identification strategy to maximize the
detection probability using fingerprint matches, and
the follower is the terrorist who can manipulate the
image quality of the fingerprint. Stackelberg games
have also been used for studying missile defense sys-
tems (Brown et al. 2005a) and for studying the devel-
opment of an adversary’s weapon systems (Brown
et al. 2005b). A family of Stackelberg games known
as inspection games is closely related to the security
games in which we are interested and includes mod-
els of arms inspections and border patrols (Avenhaus
et al. 2002). Another recent work addresses random-
ized security patrolling using Stackelberg games for
generic police-and-robbers scenarios (Basilico et al.
2009) and perimeter patrols (Agmon et al. 2008).
Our work differs from this line of work in two main
aspects. First, we use a new, more efficient game rep-
resentation and a MILP for modeling and solving
the Stackelberg games to enable systems to scale
to complex real-world situations. Second, we model
the games with defender actions that incorporate the
domain constraints (e.g., scheduling constraints) to

more accurately model the specific games in which
we are interested.

The third area of related work is the application
of game-theoretic techniques that are not based on
Stackelberg games to security applications. Security
problems are increasingly being studied using game-
theoretic analysis; these range from computer net-
work security (Srivastava et al. 2005, wei Lye and
Wing 2005) to terrorism (Sandler and Arce 2003). Babu
et al. (2006) model passenger security systems at U.S.
airports using linear programming approaches; how-
ever, their objective is to classify the passengers in
various groups and then screen them based on the
group to which they belong. Thus, although game
theory has been used in security domains in the past,
our work focuses on overcoming the challenges that
arise from its application in the real world.

These three lines of related work that study the
security domain, focus on theoretic analyses of hypo-
thetical scenarios. In contrast, the fourth line of
related work focuses on developing tools based on
Stackelberg games for use in real-world security oper-
ations and addresses many practical aspects of the
problem that only arise in fielded applications. (This
paper belongs to this line of research.) A Stackelberg
security game models an interaction between a
defender and an attacker in which the defender
first commits to a security policy and the attacker
conducts surveillance to learn the defender’s policy
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before launching an attack. Software decision aids
based on Stackelberg games have been successfully
implemented in several real-world domains. ARMOR
(Pita et al. 2008), the first application of this game-
theoretic framework, was successfully deployed at the
Los Angeles International Airport in 2007, and has
been in use since. The second application IRIS, which
the U.S. Federal Air Marshal Service has used since
2009, randomizes deployment of air marshals on U.S.
air carriers (Tsai et al. 2009). The U.S. TSA is evaluating
a third application, GUARDS, for national deployment
across more than 400 U.S. airports (Pita et al. 2011).
The main differences between PROTECT and these
existing applications are as follows: The maritime
security domain introduces new modeling changes
and new scheduling constraints that make comput-
ing the optimal allocation of resources more dif-
ficult. For example, the patrolling actions of the
USCG are geographically constrained and each patrol
must be finished within a specific amount of time.
In addition, protecting each target requires multi-
ple actions, each with a different level of effective-
ness. Existing deployed systems assume fully rational
attackers; PROTECT relaxes this unrealistic assump-
tion and provides the first real-world deployment of
a QR model of the adversary’s behavior. Additionally,
this paper for the first time provides real-world data
that provide a (1) comparison of human-generated
versus PROTECT security schedules, and (2) results
from an APT (i.e., human mock attacker) analysis.

Stackelberg Game Concepts
PROTECT builds on Stackelberg games to reason
about the interaction between the USCG and the
adversary to provide a randomized security policy.
Before introducing how we model the USCG secu-
rity scenario as a Stackelberg game, we explain basic
Stackelberg game concepts.

A generic Stackelberg game has two players:
a leader and a follower (Fudenberg and Tirole 1991).
A leader commits to a strategy and a follower then
optimizes his reward, considering the strategy chosen
by the leader (von Stengel and Zamir 2004). The two
players in a Stackelberg game need not represent
individuals; they could be groups that cooperate to
execute a joint strategy, such as a police force or a
terrorist organization. Each player has a set of possi-
ble specific actions. In the simplest approach, called a

c d

a 311 510
b 210 412

Table 1: This table shows an example of payoffs in a Stackelberg game.
The leader chooses either pure strategy a or pure strategy b; then the
follower chooses c or d. A payoff such as (3, 1) means the leader gains
value 3, and the follower gains value 1.

pure strategy, a player chooses one available action.
Another approach is to assign a probability to each
possible action and then select an action by proba-
bilistic sampling, an approach called a mixed strat-
egy. One leader action accompanied by one follower
action produces an outcome, whose value is called a
payoff. For a mixed strategy, the value of the outcome,
as seen before sampling, is calculated by weight-
ing the possible outcome values by their correspond-
ing probabilities, giving what is termed an expected
value. The follower can observe the leader’s strategy,
whether pure or mixed, and then act to optimize his
orher own payoffs.

Table 1 shows an example with numbers. Sup-
pose the leader chooses pure strategy (i.e., specific
action a) and then the rational follower, seeking the
highest follower outcome value given a, chooses pure
strategy c; the leader gains a payoff of value 3 and
the follower a payoff of value 1, expressed as (311).
If instead the leader chooses b, the rational follower
then chooses d to maximize the follower’s payoff, and
the payoffs change to (412), improving upon the (311).
Now suppose the leader applies a mixed strategy by,
for example, randomly selecting a with probability 0.5
or b with probability 0.5. And suppose the follower
responds with a pure strategy (i.e., a planned defi-
nite action) such that the follower must decide, before
the leader samples, which follower strategy to choose.
Noting that c has an expected follower payoff value
of 0.5 (005×1+005×0), and d has an expected follower
value of 1.0 (005 × 0 + 005 × 2), the rational follower
will choose d, in which case the leader’s correspond-
ing expected payoff is 4.5 (005 × 5 + 005 × 4).

Stackelberg games are used to model the attacker-
defender strategic interaction in security domains;
this class of Stackelberg games (with certain restric-
tions on payoffs) (Yin et al. 2010) is called Stackelberg
security games. The security force (defender) is
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modeled as the leader and the terrorist adversary
(attacker) is in the role of the follower. The defender
commits to a mixed (randomized) strategy, whereas
the attacker conducts surveillance of these mixed
strategies and responds with a pure strategy of an
attack on a target. Thus, the Stackelberg game frame-
work is a natural approximation of the real-world
security scenarios. The objective is to find the optimal
mixed strategy for the defender.

The standard solution concept is a strong
Stackelberg equilibrium (SSE) (Breton et al. 1988,
Leitmann 1978, von Stengel and Zamir 2004). In a SSE,
the defender chooses an optimal strategy, accounting
for the attacker’s best response, under the assumption
that the attacker breaks ties in the defender’s favor.
Strong Stackelberg equilibria exist in all Stackelberg
games (Basar and Olsder 1995). A standard argu-
ment for the tie-breaking assumption of SSEs suggests
that the leader is often able to induce the attacker
by selecting a strategy arbitrarily close to the equi-
librium that causes the follower to strictly prefer the
defender’s desired strategy (von Stengel and Zamir
2004). The SSE solution concept is commonly used
in the related literature and is also used in all the
deployed systems (Pita et al. 2008, 2011; Tsai et al.
2009; An et al. 2011a, b, c, 2012).

A Security Game Model for
USCG Patrols
This section discusses the USCG domain and how to
practically cast this maritime patrolling problem of
PWCS patrols as a Stackelberg game. We also show a
compact representation of the game.

Stackelberg games are well-established in the litera-
ture, and PROTECT models the PWCS patrol problem
as a Stackelberg game with the USCG as the leader
(defender) and the terrorist adversary in the role of
the follower. In this Stackelberg game framework, the
defender commits to a mixed (randomized) strategy
of patrols, which is known to the attacker. This is
a reasonable approximation of the practice because
the attacker conducts surveillance to learn the mixed
strategies that the defender carries out, and responds
with a pure strategy of an attack on a target. The opti-
mization objective is to find the optimal mixed strat-
egy for the defender.

To model the USCG patrolling domain as a Stackel-
berg game, we need to define the set of attacker and

defender strategies and the payoff function, which
center on the targets in a port; ports, such as the Port of
Boston, have a significant number of potential targets
(i.e., critical infrastructure).

Player Strategies
The attacks an attacker can launch on different pos-
sible targets are considered that attacker’s pure strat-
egy. However, the definition of defender strategies
is not as straightforward. Patrols last for some fixed
duration during the day (e.g., four hours), as spec-
ified by the USCG. We generate defender strategies
by grouping nearby targets into patrol areas; in real-
world scenarios, such as the Port of Boston, some
targets are very close to each other; thus group-
ing together targets according to their geographic
locations is natural. The presence of patrol areas led
the USCG to redefine the set of defensive activities
to be performed on patrol areas to provide a more
accurate and expressive model of the patrols. Activ-
ities that take a longer time to complete provide the
defender with a higher payoff compared to activi-
ties that take a shorter time. This impacts the final
patrol schedule; one patrol may visit fewer areas but
conduct defensive activities of longer duration at the
areas, and another patrol may visit more areas and
activities of shorter duration.

To generate all the permutations of patrol sched-
ules, we create a graph with the patrol areas as ver-
tices and adjacent areas connected via edges. Using
the graph of the patrol areas, PROTECT generates all
possible patrol schedules; in the graph, each sched-
ule is a closed walk that starts and ends at the patrol
area, which is the base patrol area for the USCG.
Each patrol schedule is a sequence of patrol areas and
the associated defensive activities at each patrol area,
and is constrained by a maximum patrol time. (Even
when the defender just passes by a patrol area, this
is treated as an activity.) The defender may visit a
patrol area multiple times in a schedule because (1) of
geographic constraints, and (2) each patrol is a closed
walk. For example, the defender in each patrol needs
to start the patrol from the base and come back to
the base to finish the patrol; therefore, the defender
should visit the base patrol area at least twice.

The graph, patrol time constraint, and constraint
that each patrol must start from and end at the base
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Patrol schedule Target 1 Target 2 Target 3 Target 4

(1:k1), (2:k1), (1:k1) 501−50 301−30 151−15 −20120
(1:k2), (2:k1), (1:k1) 1001−100 601−60 151−15 −20120
(1:k1), (2:k1), (1:k2) 1001−100 601−60 151−15 −20120
(1:k1), (3:k1), (2:k1), (1:k1) 501−50 301−30 151−15 101−10
(1:k1), (2:k1), (3:k1), (1:k1) 501−50 301−30 151−15 101−10

Table 2: This table shows part of a simplified example of a game matrix
that contains the payoffs for the attacker and defender. The rows denote
the defender’s strategies and the columns represent the attacker’s strate-
gies. 412k15 means that the defender conducts action k1 at patrol area 1.

patrol area, are used to generate the defender strate-
gies (patrol schedules). Given each patrol schedule,
we calculate the total patrol schedule time (this also
includes traversal time between areas, but we ignore
it for expository purposes); we then verify that the
total time is less than or equal to the maximum patrol
time. After generating all possible patrol schedules,
we form a game in which the set of defender strate-
gies comprises patrol schedules and the set of attacker
strategies is the set of targets. The attacker’s strategy
is based on targets instead of patrol areas because an
attacker will choose to attack a single target.

In the example in Table 2, the rows correspond
to the defender’s strategies and the columns corre-
spond to the attacker’s strategies. This example shows
two possible defensive activities: k1 and k2, where
k2 provides more effective protection (but also takes
more time) for the defender than k1. Suppose the time
bound disallows more than two k2 activities (given
the time required for k2) within a patrol. Patrol area 1
has two targets (target 1 and 2), and patrol areas 2
and 3 each have one target (target 3 and 4, respec-
tively). In the example, a patrol schedule consists of
a sequence of patrol areas and a defensive activity in
each area. The patrol schedules are ordered so that
the first patrol area in the schedule denotes which
patrol area the defender must visit first. Patrol area 1
is the base patrol area, and all the patrol schedules
begin and end at patrol area 1. For example, the patrol
schedule in row 2 first visits patrol area 1 with activ-
ity k2, then travels to patrol area 2 with activity k1,
and returns back to patrol area 1 with activity k1.

Payoff Matrix
For the payoffs, if a target is the attacker’s choice
and the attack fails, then the defender gains a reward

and the attacker receives a penalty; otherwise, the
defender receives a penalty and the attacker gains
a reward. Furthermore, if the defender chooses a
patrol and the attacker chooses to attack a target,
the defender’s payoff can be represented as a linear
combination of the defender reward and (or) penalty
on the target and the effectiveness probability of the
defensive activity performed on the target for the
patrol. The effectiveness probability of the defensive
activity performed on a target depends on the most
effective activity on the target in the patrol. The value
of the effectiveness probability is zero if the target is
not in the patrol.

In the USCG problem, rewards and penalties are
based on an analysis completed by a contracted com-
pany of risk analysts that looked at the targets in the
Port of Boston and assigned corresponding values for
each one. The types of factors considered for generat-
ing these values include economic damage and injury
or loss of life. Meanwhile, the effectiveness proba-
bility Aij , for different defensive activities is decided
based on the duration of the activities. Longer activ-
ities lead to a higher possibility of capturing the
attackers.

Although loss of life and property helps in assess-
ing damage in case of a successful attack, assessing
payoffs requires that we determine whether the loss
is viewed symmetrically by the defender and attacker.
Similarly, whether the payoffs are viewed symmet-
rically for the attacker and defender also holds for
the scenario where an attack fails. These questions go
to the heart of determining whether security games
should be modeled as zero-sum games (Tambe 2011).
Past work in security games used nonzero-sum game
models (e.g., one assumption made is that the attacker
might view publicity of a failed attack as a posi-
tive outcome). However, nonzero-sum games require
further knowledge acquisition efforts to model the
asymmetry in payoffs. For simplicity, as the first step,
PROTECT starts with the assumption of a zero-sum
game. However, the algorithm PROTECT uses is not
restricted to zero-sum games, and the USCG has pro-
posed to relax this assumption in the future. We also
note that although Table 2 shows point estimates of
payoffs, we recognize that estimates may not be accu-
rate. Therefore, we evaluate the robustness of our
approach when payoff noise, observation noise, or
execution error exists.
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Compact Representation
In our game, the number of defender strategies (i.e.,
patrol schedules) grows combinatorially, generating
a scale-up challenge. To achieve scale-up, PROTECT
uses a compact representation of the patrol schedules
by combining equivalent patrol schedules and remov-
ing dominated schedules.

With respect to equivalence, different permutations
of patrol schedules provide identical payoff results.
Furthermore, if an area is visited multiple times
with different activities in a schedule, we consider
only the activity that provides the defender with the
highest payoff, not the incremental benefit resulting
from additional activities. This decision considers the
trade-off between modeling accuracy and efficiency.
The additional value of more activities is small. Cur-
rently, the patrol time of each schedule is relatively
short (e.g., one hour), and the defender may visit a
patrol area more than once within the short period
and conduct an activity each time. For example, the
defender may pass by a patrol area 10 minutes after
conducting a more effective activity at the same patrol
area. The additional value of the pass-by activity,
given the more effective activity, is therefore very
small. However, it leads to significant computational
benefits, which we describe in this section if we just
consider the most effective activity in each patrol.

Therefore, many patrol schedules are equivalent if
the set of patrol areas visited and the most effec-
tive defensive activities in each patrol area in the
schedules are the same, even if their order differs.
We combine such equivalent patrol schedules into a
single compact defender strategy, represented as a set
of patrol areas and defensive activities (and minus
any ordering information). The concept of combin-
ing equivalent actions is similar to action abstraction
for solving large-scale dynamic games (Gilpin 2009).
Table 3 presents a compact version of Table 2, which
shows how the game matrix is simplified by using
equivalence to form compact defender strategies; for
example, the patrol schedules in rows 2 and 3 in
Table 2 are represented as a compact strategy C2

in Table 3.
Next, we illustrate the concept of dominance using

Table 3, and noting the difference between C1 and C2

is the defensive activity on patrol area 1. Because
activity k2 gives the defender a higher payoff than k1,

Compact strategy Target 1 Target 2 Target 3 Target 4

C1 = 8412k151 422k159 501−50 301−30 151−15 −20120
C2 = 8412k251 422k159 1001−100 601−60 151−15 −20120
C3 = 8412k151 422k151 432k159 501−50 301−30 151−15 101−10

Table 3: The table shows an example of compact strategies, which have
at most one action for each patrol area, and a game matrix.

C1 can be removed from the set of defender strategies
because C2 covers the same patrol areas, while giving
a higher payoff for patrol area 1. PROTECT generates
compact strategies in the following manner: We start
with patrols that visit the most patrol areas with the
least-effective activities within the patrol time limit;
these activities take a shorter amount of time; but
we can cover more areas within the given time limit.
Then we gradually consider patrols visiting less patrol
areas, but with increasingly effective activities. This
process stops when we have considered all patrols
in which all patrol areas are covered with the most
effective activities and cannot include any additional
patrol areas.

A QR Model of Human Adversary
This section presents the mathematical formulation
and solution algorithm to solve the Stackelberg secu-
rity game with a QR model for follower behavior.

Problem Formulation
The QR model is important in behavioral game theory
(McKelvey and Palfrey 1995, Rogers et al. 2009).
It suggests that instead of strictly maximizing utility,
individuals respond stochastically in games: the
chance of selecting a nonoptimal strategy increases
as the cost of such an error decreases. Recent work
(Wright and Leyton-Brown 2010) shows that quan-
tal level-k (Stahl and Wilson 1994) is best suited
for predicting human behavior in simultaneous-move
games. (We applied the QR model instead of quan-
tal level-k because in Stackelberg security games, the
attacker observes the defender’s strategy, so level-k
reasoning is not applicable.) Next, we present results
that show that QR-based Stackelberg security mod-
els perform better than perfectly rational models or
prospect theory models in empirical results.

The QR model assumes that humans choose better
actions at a higher frequency, but with noise added
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to the decision-making process. In the case of the
Stackelberg security game we consider, only the fol-
lower has a QR model. This follower selects targets
based on the attacker utility of selecting each target.
The attacker chooses a target with a higher utility at a
higher frequency. The defender aims to maximize the
defender’s expected utility, given that the adversary
attacks a target following the QR model. The prob-
lem of computing the optimal defender strategy,
given a QR model of the adversary, can be formu-
lated as a nonlinear, nonconvex optimization prob-
lem. Appendix A includes the formal formulation of
the QR model and the mathematical formulation of
the defender’s optimization problem P1.

PASAQ Algorithm for Solving the QR Model
We need to solve P1 to compute the optimal
defender strategy, which requires optimally solving
a nonconvex problem—generally an NP-hard prob-
lem (Vavasis 1995). However, P1 has two principle dif-
ficulties: it has a fractional objective and the objec-
tive is composed of nonlinear functions. We present
the Piecewise linear Approximation of the optimal
Strategy Against Quantal response (Pasaq) algorithm
in parts: we first show that a binary search method
can be used to handle the fractional objective func-
tion by successively solving nonlinear problems; then
we present a transformation of these nonlinear opti-
mization problems to a MILP using piecewise linear
functions.

Binary Search Method. The key concept of the
binary search method is to iteratively bound the opti-
mal value of the fractional objective function of P1 by
solving related optimization problems CF-OPT that do
not have a fractional objective. The binary search algo-
rithm first initializes the upper bound U0 and lower
bound L0 of the optimal objective function value.
Then, in each iteration, we solve a related optimiza-
tion problem CF-OPT, and use the result to increase the
lower bound or decrease the upper bound. The search
continues until the upper and lower bounds are
sufficiently close. Appendix B shows the details of
the binary search method. However, the objective
function in the related optimization problem is still
nonconvex; therefore, directly solving it is still a
hard problem. We propose the Pasaq algorithm to
address this.

PASAQ: Algorithm 1+Linear Approximation. The
Pasaq algorithm computes the approximate optimal
defender strategy. The key concept of Pasaq is to use
a piecewise linear function to approximate the non-
linear objective function in CF-OPT, and thus convert
it into a MILP problem. Such a problem can easily
include assignment constraints, giving an approxi-
mate solution for a Stackelberg security game (SSG)
against a QR adversary with assignment constraints.

Pasaq uniformly divides the range 60117 into mul-
tiple pieces (segments); Appendix C shows the details
of the piecewise linear approximation approach. This
piecewise linear approximation leads to a mixed-
integer programming problem. Furthermore, given
a game instance, the solution quality of Pasaq is
bounded linearly by the binary search threshold and
the piecewise linear accuracy (see Appendix C, The-
orem 1). Therefore, the Pasaq solution can arbitrarily
be made close to the optimal solution with sufficiently
small � and sufficiently large K.

Implementation of the PROTECT
Model Within the USCG
We now describe in detail the implementation of the
PROTECT model within the USCG. The end users
of PROTECT are security officers, and the system
must be simple enough so that they are comfortable
using it on a regular basis. In particular, the sys-
tem is designed to hide as much of the complexity
of the game-theoretic models as possible. PROTECT
is a standalone desktop Java application. Because of
security concerns, it is run on machines that are not
connected to any network. The underlying solution
methods use CPLEX to solve the necessary mixed-
integer programs. The core architecture is divided
into three modules, described in detail in the rest of
this section: (1) input: various parameters and domain
knowledge; (2) back end: inputs are translated into a
game model passed to the Stackelberg game solver
and then to a final process that generates a specific
sample schedule based on the computed probabilities;
(3) output: the final schedule is presented to the user.

User Input
We rely on the users and domain experts to pro-
vide the knowledge required to specify the game
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model. The basic inputs that PROTECT requires fall
into five categories, as follows: (1) the number of
available resources (i.e., boats) and possible actions
at each location, and their capabilities (effectiveness
of the actions), (2) the set of targets to be protected,
(3) payoff values for each target, (4) types of schedul-
ing constraints (e.g., time constraints, geographic con-
straints), and (5) supplemental data (e.g., geographic
information). The application allows users to save
and reuse this information across multiple execu-
tions. The USCG and risk analysts provide all the
basic inputs.

In addition to the previously mentioned basic
inputs, for the adversary’s QR model we need to
decide the value of parameter �, which adjusts the
probability that the attacker will select a particular
action (see Appendix A). Clearly, a � value of 0 (uni-
form random) and � (fully rational) are not reason-
able. Comparing the solutions obtained for the pay-
off data for Boston, we observe that an attacker’s
strategy with �= 4 starts approaching a fully-rational
attacker—the probability of attack focuses on a single
target. In addition, an attacker’s strategy with �= 005
is similar to a fully-random strategy that uniformly
chooses a target to attack. USCG experts who have
expertise in terrorist behavior modeling suggested
that we could use a broad range to represent possible
� values used by the attacker. Combining the prior
observations, we determined that the attacker’s strat-
egy is best modeled with a � value that is in the range
6005147, rather than a single-point estimate. We used
a discrete sampling approach to determine a � value
that gives the highest average defender expected util-
ity across attacker strategies within this range to get
� = 105. Specifically, the defender considers different
assumptions of the attacker’s � value and, for each
assumption about the � value, the defender computes
his (her) expected utility against the attacker with
different � values within the range 6005147. We find
that when the defender assumes the attacker is using
the QR model with � = 105, the defender’s strategy
leads to the highest defender expected utility when
the attacker follows the QR model with a � value uni-
formly randomly chosen from the range of 6005147.

Back End: Game Generation and Solving
Based on all of the data provided by domain ex-
perts, we generate a Stackelberg game as previously

Graph
Compact
strategies

Final patrol
schedule for

USCG

Game matrix

Sampling Expand compact
strategies with
probability > 0

PASAQ

Probability
distribution over

compact strategies

Figure 2: The flowchart shows the seven steps of the PROTECT system.

described. However, the definition of defender strate-
gies is not as straightforward. Patrols last for some
fixed duration during the day, as specified by the
USCG (e.g., four hours). Our first attempt was to
model each target as a node in a graph and allow
patrol paths to go from each individual target to
(almost all) other targets in the port, generating an
almost complete graph on the targets. This method
yields the most flexible set of patrol routes that can fit
within the maximum duration, covering any permu-
tation of targets within a single patrol. This method
unfortunately faced significant challenges, as follows:
(1) it required determining the travel time for a patrol
boat for each pair of targets, a daunting knowledge-
acquisition task given the hundreds of pairs of tar-
gets; (2) it did not maximize the use of port geography,
whereby boat crews could observe multiple targets
at once; and (3) it was perceived as micromanaging
the activities of USCG boat crews, which was unde-
sirable. We group nearby targets (according to their
geographic locations) into patrol areas and generate
defender strategies based on patrol areas.

Once we generate the explicit game model, we
pass it as input to the Pasaq algorithm. Note that
the Pasaq algorithm only solves the compactly rep-
resented games and its output is a probability distri-
bution over compact strategies. Then we generate the
probability of full patrol schedules. Figure 2 shows a
high-level view of the steps of the algorithm using the
compact representation. The compact strategies are
used instead of full patrol schedules to generate the
game matrix. Once the optimal probability distribu-
tion is calculated for the compact strategies, the strate-
gies with a probability greater than zero are expanded
to a complete set of patrol schedules.

In this expansion from a compact strategy to a full
set of patrol schedules, we must determine the prob-
ability of choosing each patrol schedule, because a
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compact strategy may correspond to multiple patrol
schedules. Our focus is to increase the difficulty for the
attacker to conduct surveillance by increasing unpre-
dictability, which we achieve by randomizing uni-
formly over all expansions of the compact defender
strategies. (Creating optimal Stackelberg defender
strategies that increase the attacker’s difficulty of
surveillance is an open research issue in the litera-
ture; we choose to maximize unpredictability as the
first step.) The uniform distribution provides the max-
imum entropy (greatest unpredictability). Thus, all
the patrol schedules generated from a single compact
strategy are assigned a probability of vi/wi where vi is
the probability of choosing a compact strategy i and wi

is the total number of expanded patrol schedules for
compact strategy i. The complete set of patrol sched-
ules and the associated probabilities are then sampled
and provided to the USCG, along with the start time
of the patrol generated via uniform random sampling.

Output
From the randomized schedule, we generate a sample
schedule for USCG. This sample schedule specifies
exactly when each boat leaves the base, the sequence
of patrol areas to be visited, and the action at
each patrol area. The final schedules conform to the
domain constraints that the USCG entered. The user
can then review the schedule and accept it, or add
additional constraints and run the scheduling process
again. Table 4 shows one USCG sample schedule for
five days. Each row in the table represents one patrol
for one day. The second column corresponds to the
starting time of each patrol and the third column cor-
responds to the detailed patrol schedule, which forms

Day Hour: 0000–2300 Patrol

Day: 1 Hour: 1500 Patrol: [(1:A), (5:C), (6:A), (8:A), (9:B), (8:B),
(6:A), (5:A), (1:A)]

Day: 2 Hour: 0300 Patrol: [(1:A), (5:A), (6:A), (8:A), (9:A), (8:A),
(6:A), (5:C), (1:A), (2:A), (1:A)]

Day: 3 Hour: 1700 Patrol: [(1:A), (2:C), (4:B), (2:A), (1:B), (2:B),
(1:A)]

Day: 4 Hour: 1600 Patrol: [(1:A), (2:B), (4:B), (2:A), (1:B)]
Day: 5 Hour: 1800 Patrol: [(1:A), (5:A), (6:A), (8:A), (9:B), (8:A),

(6:A), (5:B), (1:A)]

Table 4: Sample schedules for five days are sampled from the mixed
strategy.

a closed walk with different actions at each patrol
area. For example, the patrol on Day 1 starts at 3 pm
from base patrol area 1, using patrol action A. Then
the boat goes to patrol area 5 and conducts patrol
action C. After that, the boat goes to patrol area 6 and
takes patrol action A. The patrol continues by visiting
patrol area 8 (action A), 9 (action B), 8 (action B), and
then returns back to the base patrol area 1 via patrol
areas 6 and 5, while performing action A.

Experimental Results
This section presents our evaluations of the model
and algorithm based on planned experiments. These
experiments explore the efficiency of a QR-based
security game when facing human adversaries, and
sensitivity analysis of the results for the USCG patrol
planning problem. The first set of experiments pre-
sented considers a simple abstract security game
that can be explained easily to human participants.
The rest of the experiments, including the payoff val-
ues and graph (composed of nine patrol areas), are
based off the Port of Boston. We ran the solutions
for all experiments on a computer with an Intel Dual
Core 1.4 GHz Processor and 2 GB of RAM.

Human Subject Experiment
We conducted empirical tests in which human sub-
jects play an online game to evaluate the performance
of different defender strategies. For this experiment,
we consider a simple security game domain, which is
easy to explain to human participants and in which
they require little information. In this domain, which
corresponds to the problem considered in Pita et al.
(2008), a human attacker selects one of eight tar-
gets and the defender decides, without additional
side constraints, where to place up to three security
resources that perfectly detect an attack.

To test defender strategies, human subjects play
the role of adversaries. The human subject is able to
observe the leader’s mixed strategy and the complete
payoff matrix. The subject also knows the number of
resources the defender can use, and with this informa-
tion selects a target to attack. Subjects are rewarded
based on the reward and (or) penalty shown for each
target and the probability that a guard is behind
the target (i.e., the exact randomized strategy of the
defender). To motivate the subjects, they can earn or
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lose money based on whether they succeed in attack-
ing a target; a subject who opens a gate not protected
by the guards wins; otherwise, the subject loses. Each
subject starts with $8 and each point won or lost in
a game instance is worth $0.10. On average, subjects
earned about $14.10.

We considered seven different payoff matrices: four
are representative payoff matrices for a clustering-
based classification of randomly generated payoff
matrices (Yang et al. 2011). The other three payoffs
are originally from Pita et al. (2009). For each payoff
structure, we tested the mixed strategies generated by
five algorithms, as follows:

1. BRPT: a MILP formulation for the optimal
leader strategy against players whose response fol-
lows a prospect theory (PT) model (Kahneman and
Tversky 1979).

2. RPT: a modified BRPT method that takes into
account the uncertainty present in the adversaries’
selection, caused (for example) by imprecise compu-
tations (Simon 1956).

3. BRQR: the approximate solution of (P1) by solv-
ing Pasaq.

4. DOBSS: a Stackelberg security game that as-
sumes perfectly rational adversaries.

5. COBRA: a modified DOBSS that assumes (1) the
follower might deviate within � > 0, and (2) humans
exhibit an anchoring bias to protect against limited-
observation conditions.

The specific details of each of these algorithms can
be found in the conference articles that introduced
them. Specifically BRPT, RPT, and BRQR are in Yang
et al. (2011), DOBSS is in Paruchuri et al. (2008), and
COBRA is in Pita et al. (2010).

For each payoff matrix and the five optimal
defender strategies, Figure 3 displays the average
and standard deviation of the defender’s expected
utility with responses coming from 40 adversaries.
The performance of the strategies is closer in payoffs
5∼7 than in payoffs 1∼4. The main reason is that
strategies are not very different in payoffs 5∼7 in
terms of the Kullback-Leibler divergence. We evaluate
the statistical significance of our results using the
bootstrap-t method (Wilcox 2003), and summarize the
comparison as follows:

• BRQR outperforms COBRA in all seven payoff
structures. The result is statistically significant in three
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Figure 3: The average expected utility of the defender is based on different
payoff structures.

cases (p < 00005) and borderline (p = 0005) in payoff 3
(p < 0006). BRQR also outperforms DOBSS in all cases,
with statistical significance in five of them (p < 0002).

• RPT outperforms COBRA, except in payoff 3.
The difference is statistically significant in payoff 4
(p < 00005). In payoff 3, COBRA outperforms RPT
(p > 0007). Meanwhile, RPT outperforms DOBSS in
five payoff structures, with statistical significance in
four of them (p < 0005). In the other two cases, DOBSS
has better performance (p > 0008).

• BRQR outperforms RPT in three payoff struc-
tures with statistical significance (p < 00005), and
shows similar performance in the other four cases.

• BRPT is outperformed by BRQR in all cases with
statistical significance (p < 0003). It is also outper-
formed by RPT in all cases, with statistical signifi-
cance in five of them (p < 0002), and one borderline
situation (p < 0006). BRPT’s failure to perform better
(and worse than COBRA) is surprising.

In summary, the QR-based BRQR algorithm
achieved higher defender utilities than algorithms
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based on the PT model and perfect rationality. Based
on this observation from experiments employing
in the security domain, we used the QR-based model
as the decision-making function for the adversaries in
the PROTECT system.

Utility Analysis
It is useful to understand whether PROTECT using
Pasaq with � = 105 provides an advantage when
compared to: (1) a uniform random defender’s strat-
egy, (2) a mixed strategy with the assumption that
the attacker attacks any target uniformly at random
(�= 0), or (3) a mixed strategy that assumes a fully
rational attacker (� = �). The previously existing
DOBSS algorithm was used for � = � (Paruchuri
et al. 2008). Additionally, a comparison with the �= �

approach is important because previous applications
extensively use this assumption (for our zero-sum
case, DOBSS is equivalent to minimax, but the utility
does not change). Typically, we may not be able to
estimate the exact value of the attacker’s � value,
only a possible range. Therefore, we ideally wish
to show that PROTECT (using � = 105 to compute
the optimal defender strategy) provides an advantage
over a range of � values assumed for the attacker
(not just over a point estimate) in that attacker’s best
response, justifying our use of the Pasaq algorithm.
That is, we are distinguishing between (1) the actual
� value employed by the attacker in best responding,
and (2) the � assumed by Pasaq in computing the
defender’s optimal mixed strategy. Our objective is to
see how sensitive the choice of (2) is, with respect to
prevailing uncertainty about (1).

To achieve this, we compute the average defender
utility of the four aforementioned approaches as
the � value of the attacker’s strategy changes from
60167, which subsumes the range 6005147 of reasonable
attacker strategies. The defender’s payoff values have
a range of 6−10157, and the attacker’s payoff values
have a range of 6−51107. In Figure 4, the y-axis rep-
resents the defender’s expected utility and the x-axis
is the � value used for the attacker’s strategy. Both
uniform random strategies perform well when the
attacker’s strategy is based on � = 0. However, as �

increases, both strategies drop quickly to a very low
defender-expected utility. In contrast, the Pasaq strat-
egy with � = 105 provides a higher expected utility
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Figure 4: The defender’s expected utility changes with the � value for the
attacker’s strategy.

than that assuming a fully rational attacker over a
range of attacker � values (and indeed over the range
of interest), not just at �= 105.

Robustness Analysis
In the real world, observation, execution, and pay-
offs are not always perfect because of the following:
noise in the attacker’s surveillance of the defender’s
patrols, the many tasks and responsibilities of the
USCG that may cause the crew to be pulled off a
patrol, and limited knowledge of the attacker’s pay-
off values. Our hypothesis is that Pasaq with �= 105
is more robust to such noise than a defender strategy
that assumes full rationality of the attacker, such as
DOBSS (i.e., Pasaq’s expected defender utility will not
degrade as much as DOBSS over the range of attacker
� of interest). We illustrate this by comparing both
Pasaq and DOBSS against observation, execution, and
payoff noise (Kiekintveld et al. 2011, Korzhyk et al.
2011, Yin et al. 2011).

Figure 5 shows the performance of different strate-
gies while considering execution noise. The y-axis
represents the defender’s expected utility and the
x-axis is the attacker’s � value. If the defender
covers a target with probability p, this probability
now changes to be in [p − x1p + x], where x is
the noise. The low execution error corresponds to
x = 001, whereas high execution error corresponds
to x = 002. The key conclusion here is that execu-
tion error leads to Pasaq dominating DOBSS over all
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Figure 5: The defender’s expected utility changes with the � value in
consideration of execution noise.

tested values of �. For both algorithms, the defender’s
expected utility decreases as more execution error is
added, because the defender’s strategy is impacted by
the additional error. When execution error is added,
Pasaq dominates DOBSS because the latter seeks to
maximize the minimum defender’s expected utility;
therefore, multiple targets have the same minimum
defender utility. For DOBSS, when we add execution
error, the probability that one of these targets will
have less coverage increases, resulting in a lower-
expected utility for the defender. For Pasaq, typically
only one target has the minimum defender expected
utility. As a result, changes in coverage do not impact
it as much as DOBSS. As execution error increases, the
advantage in the defender’s expected utility of Pasaq
over DOBSS increases. This section only shows the
execution noise results; Shieh et al. (2012) provide the
details of the observation and payoff noise results.

USCG Real-World Evaluation
In addition to the results obtained from our planned
experiments, the USCG conducted its own real-world
evaluation. With USCG’s permission, we present
some aspects of the evaluation in this paper.

Real-world scheduling data: Unlike prior publica-
tions on real-world applications of game theory for

C
ou

nt

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Figure 6: Pre-PROTECT patrol visits per day by area are shown, one line
per area.

security, a key innovation of this paper is the inclu-
sion of actual data from USCG patrols before and after
the deployment of PROTECT at the Port of Boston.
Figures 6 and 7 show the frequency of visits by the
USCG to different patrol areas over a number of
weeks. Figure 6 shows pre-PROTECT patrol visits per
day by area; Figure 7 shows post-PROTECT patrol
visits per day by area. The x-axis is the day of the
week, and the y-axis is the number of times a patrol
area is visited for a given day of the week. The y-axis
is intentionally blurred for security reasons because it
represents real data from the Port of Boston. Figure 6
shows more lines than in Figure 7 because during the
implementation of PROTECT, new patrol areas that
contained more targets and thus fewer patrol areas
in the post-PROTECT figure were formed. Figure 6
depicts a definite pattern in the patrols. Although the
patrols executed on Day 5 show a spike, Day 2 shows
a dearth of patrols. In addition to this pattern, the

C
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Base patrol area

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Figure 7: Post-PROTECT patrol visits per day by area are shown, one line
per area.
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lines in Figure 6 intersect, indicating that a higher-
value target was visited more often on some days; on
other days, it was visited less often. This means that
a consistently high frequency of coverage of higher-
value targets did not exist before PROTECT.

Figure 7 shows that the pattern of low patrols on
Day 2 (see Figure 6) disappears. Furthermore, lines
do not frequently intersect (i.e., higher-valued targets
are visited consistently across a week). The top line in
Figure 7 is the base patrol area, which is visited at a
higher rate than all other patrol areas.

Adversary perspective team 4APT5: To obtain a bet-
ter understanding of how the adversary views the
potential targets in the port, the USCG created the
adversarial perspective team (APT), a mock attacker
team. The APT provides assessments from the terror-
ist perspective and, as a secondary function, assesses
the effectiveness of the patrol activities before and
after PROTECT’s deployment. In its evaluation, the
APT incorporates the adversary’s known intent, capa-
bilities, skills, commitment, resources, and cultural
influences. In addition, it screens attack possibilities
and assists in identifying the level of deterrence pro-
jected at and perceived by the adversary. For the pur-
poses of this research, we define the adversary as an
individual(s) with ties to Al-Qaeda or its affiliates.

The APT conducted a pre- and post-PROTECT
assessment of the system’s impact on an adversary’s
deterrence at the Port of Boston. This analysis uncov-
ered a positive trend in which the effectiveness of
deterrence increased from the pre-PROTECT to post-
PROTECT observations.

Additional real-world indicators: PROTECT and APT’s
improved guidance, which APT gave to boat crews
to teach them how to conduct the patrol, jointly
provided a noticeable increase in the patrols’ qual-
ity and effectiveness. Prior to the implementation
of PROTECT, no documented reports of illicit activ-
ity existed. After its implementation, USCG crews
reported some illicit activities within the port (there-
fore, justifying PROTECT’s effectiveness) and pro-
vided a noticeable on-the-water presence with indus-
try port partners commenting, that the Coast Guard
seems to be everywhere, all the time. With no actual
increase in the number of resources applied, and
therefore no increase in capital or operating costs,
these outcomes support the practical application of
game theory in the maritime security environment.

Conclusions and Lessons Learned
This paper reports on PROTECT, a game-theoretic
system, that the USCG has deployed in the Port of
Boston since April 2011 to schedule its PWCS patrols.
The USCG has deemed the deployment of PROTECT
in the Port of Boston a success, and efforts are under-
way to deploy PROTECT in the Port of New York
and in other ports in the United States. PROTECT
uses an attacker-defender Stackelberg game model,
and includes five key innovations.

First, to improve the efficiency of PROTECT, we
generate a novel compact representation of the
defender’s strategy space, exploiting equivalence and
dominance. Second, PROTECT moves away from the
assumption of perfect adversary rationality seen in
previous work, relying instead on a QR model of
the adversary’s behavior. Although the QR model has
been extensively studied in the realm of behavioral
game theory, to the best of our knowledge, this is its
first real-world deployment. Third, this work presents
a new algorithm Pasaq to overcome the difficulties
in computing the best defender strategy assuming
a QR adversary, including solving a nonlinear and
nonconvex optimization problem and handling con-
straints on assigning security resources in designing
defender strategies. Pasaq provides efficient compu-
tation of the defender strategy with near-optimal solu-
tion quality. Fourth, we provide experimental results
illustrating that PROTECT’s QR model of the adver-
sary is better able to handle real-world uncertainties
than a perfect-rationality model. Finally, for the first
time in a security application evaluation, we use real-
world data to provide: (1) a comparison of human-
generated security schedules versus those generated
via a game-theoretic algorithm, and (2) results from
an APTs analysis of the impact of the PROTECT sys-
tem. As a result, PROTECT has advanced the state of
the art beyond previous applications of game theory
for security. Building on PROTECT’s initial success,
we hope to deploy it at more and much larger ports.
In doing so, we will consider significantly more com-
plex attacker strategies in the future, including poten-
tial real-time surveillance and coordinated attacks.
We will also consider (1) more complex defender
strategies because of larger ports, and waterways and
heterogeneous defense resources, (2) better models
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of human behavior in security games, and (3) better
algorithms.

Developing the PROTECT system was a collabo-
rative effort that involved university researchers and
USCG personnel who represented decision makers,
planners, and operators. Building on the lessons that
Pita et al. (2011) report for working with security orga-
nizations, we informed the USCG of (1) the assump-
tions underlying the game-theoretic approaches (e.g.,
full adversary rationality, and strengths and limita-
tions of different algorithms, rather than preselecting
a simple heuristic approach, (2) the need to define
and collect correct inputs for model development,
and (3) a fundamental understanding of how the
inputs affect the results. As a result of this project,
we gained three new insights involving real-world
applied research, as follows:

(1) Unforeseen positive benefits because security
agencies were compelled to reexamine their assump-
tions. During the project, the USCG was compelled
to reassess its operational assumptions as a result of
working through the research problem. A positive
result of this reexamination prompted the USCG to
develop new PWCS mission tactics, techniques, and
procedures. Through the iterative development pro-
cess, the USCG reassessed the reasons why boat crews
perform certain activities and whether these activi-
ties are sufficient. For example, instead of “covered”
or “not covered” as the only two possibilities at a
patrol point, each patrol point now has multiple sets
of activities.

(2) Requirement to work with multiple teams in a
security organization at multiple levels of their hier-
archy. Applied research requires the research team to
collaborate with planners and operators on the multi-
ple levels of a security organization to ensure that the
model considers all aspects of a complex real-world
environment. When we initially started working on
PROTECT, our focus was on patrolling each individ-
ual target. This appeared to micromanage the activ-
ities of boat crews; through their input, we grouped
individual targets into patrol areas associated with a
PWCS patrol. Input from USCG headquarters and the
APT also led to other changes in PROTECT (e.g., from
a fully-rational model of an adversary to a QR model).

(3) The need to prepare answers to practical end-
user questions that are not always directly related

to the meaty research problems. One example of the
need to explain results involved a user who cited
that one patrol area was being repeated and hence,
randomization did not seem to occur. After assessing
this concern, we determined that the cause for the
repeated visits to a patrol area was its high reward—
an order of magnitude greater than the rarely vis-
ited patrol areas. In another example, the user noted
that PROTECT did not assign any patrols to start
at 4:00 am or 4:00 pm over a 60-day test period.
The user expected patrols to be scheduled to start at
any hour of the day, and asked if the program had
a problem. This required us to develop a layman’s
briefing on probabilities, randomness, and sampling.
With 60 patrol schedules, we might not choose a few
start hours, given our uniform random sampling of
the start time. These practitioner-based issues demon-
strate the need for researchers to be not only con-
versant in the algorithms and math underlying the
research, but also be able to explain, from a user’s
perspective, how solutions are accurate. An inability
to address these issues would result in a lack of real-
world-user confidence in the model.

Appendix A. The Quantal Response Model
Formulation
The QR model assumes that humans will choose better
actions at a higher frequency, but with noise added to the
decision-making process. The model assumes that a player
will select action i with probability qi given by

qi =
e�G

a
i 4xi5

∑T
j=1 e

�Ga
j 4xj 5

0 (A1)

Here, xi =
∑J

j=1 ajAij is the marginal coverage on target i.
The parameter � ∈ 601�5 represents the amount of noise
in the attacker’s strategy. As � approaches 0, the attacker’s
strategy approaches pure random selection. As the value
of � increases, the probabilities qi become closer to a pure
strategy indicating the action with largest value of Ga

j 4xj5.
In the case of the Stackelberg security game we consider,

only the follower has a QR model. This follower selects tar-
gets corresponding to the probability qi, where Ga

j 4xj5 now
corresponds to the attacker utility of selecting target j . Let-
ting Ra

j and P a
j (or Rd

j and P d
j ) correspond to the reward and

penalty to the adversary (or defender) of selecting target j ,
respectively, we have

Ga
j 4xj5= xjP

a
j + 41 − xj5R

a
j =Ra

j − xj4R
a
j − P a

j 53

Gd
j 4xj5= xjR

d
j + 41 − xj5P

d
j = P d

j + xj4R
d
j − P d

j 50
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T Number of targets
J Total number of compact strategies
Rd
i Defender reward on covering target i if it is attacked

P d
i Defender penalty on not covering target i if it is attacked
Ra
i Attacker reward on attacking target i if it is not covered

P a
i Attacker penalty on attacking target i if it is covered
� Noise parameter in QR model
Aij Effectiveness probability of compact strategy j on target i
aj Probability of choosing compact strategy j
xi Marginal coverage on target i

Table A.1: This table lists some PASAQ notations.

The defender aims to maximize the defender’s expected
utility, given that the adversary attacks target i with prob-
ability qi. Given T targets, the coverage vector x, the
defender’s expected utility against a QR adversary, is:

U d4x5=

T
∑

i=1

qi4x5U
d
i 4xi5=

T
∑

i=1

qi4x54xiR
d
i + 41 − xi5P

d
i 50

Therefore, given J compact strategies and effectiveness
matrix Aij , the problem of computing the optimal defender
strategy, given a QR model of the adversary, can be formu-
lated as the following nonconvex optimization problem P1:

P12



















































max
x1a

∑T
i=1 e

�Ra
i e−�4Ra

i −Pa
i 5xi 44Rd

i − P d
i 5xi + P d

i 5
∑T

i=1 e
�Ra

i e−�4Ra
i −Pa

i 5xi

xi =
J
∑

j=1

ajAij1 ∀ i

J
∑

j=1

aj = 1

0 ≤ aj ≤ 11 ∀ j0

For ease of reference, we summarize the notation in P1 in
Table A.1.

Appendix B. Binary Search Method
For simplicity of the notation, let us define �i 2= e�R

a
i > 0,

�i 2= �4Ra
i − P a

i 5 > 0, and �i 2= Rd
i − P d

i > 0. Using this
notation, we can express the objective function of P1 as
N4x5/D4x5, where

• N4x5=
∑T

i=1 �i�ixie
−�ixi +

∑T
i=1 �iP

d
i e

−�ixi3
• D4x5=

∑T
i=1 �ie

−�ixi > 0.
Also let Xf be the feasible region of P1 and p∗ the

optimal value. Therefore, we can write P1 as

p∗
= max

4x1 a5∈Xf

N4x5

D4x5
0

We can use a binary search method to handle the fractional
objective of this type of problem.

The key concept of the binary search method is to itera-
tively bound the optimal value (p∗) of the fractional objec-
tive function of P1 by solving related optimization problems

that do not have a fractional objective. Given a real value r ,
we define the optimization problem:

CF-OPT2 �∗

r = min
x∈Xf

{

rD4x5−N4x5
}

0

The following result shows that r ≤ p∗ is equivalent to
�∗
r ≤ 0.

Lemma 1. Let N4x5, D4x5 be continuous functions defined
on a closed, bounded set Xf . Let D4x5 > 0 ∀x ∈ Xf . If p∗ =

maxx∈Xf
4N 4x5/D4x55, r ∈R, and �∗

r as defined in CF-OPT, then
r ≤ p∗ ⇔ �∗

r ≤ 0.

Proof. “⇒”: Because p∗ is the optimal solution value of a
continuous objective over a closed, bounded set, then there
exists an optimal solution x∗ such that p∗ =N4x∗5/D4x∗5≥ r .
By rearranging p∗ = N4x∗5/D4x∗5 ≥ r , we can get the result.
“⇐”: Similarly, there exists x̄ such that �∗

r = rD4x̄5−N4x̄5≤ 0,
which means that r ≤N4x̄5/D4x̄5≤ p∗. �

Therefore, by solving this related optimization problem
and checking if �∗

r ≤ 0, we can answer whether a given r
is larger or smaller than the global maximum. Algorithm 1
presents the binary search method for problem P1 using as
inputs the tolerance �, the payoff matrix (PM ), and the total
number of security resources (numRes).

Algorithm 1 (Binary Search)
Input: �, PM and numRes
4U01L05← EstimateBounds(PM1numRes),

4U1L5← 4U01L05,
while U −L≥ � do

r ←
U +L

2
Solve CF-OPT, let xr1�∗

r be the optimal solution
and optimal solution value

if �∗
r ≤ 0 then L← r

else U ← r

endwhile

Algorithm 1 first initializes the upper bound (U0) and
lower bound (L0) of the optimal objective function value on
Line 2 (EstimateBounds4PM1numRes5). Then, in each itera-
tion, r is set to be the mean of U and L. Line 6 solves CF-OPT
to check whether the current r ≤ p∗. If so, the lower bound
of the binary search needs to be increased and this pro-
cess also returns a valid strategy xr . Otherwise, p∗ < r and
the upper bound of the binary search should be decreased.
The search continues until the upper and lower bounds are
sufficiently close (i.e., U − L < �). The number of iterations
in Algorithm 1 is bounded by O4log44U0 − L05/�55. Specifi-
cally for SSGs, we can estimate the upper and lower bounds
(corresponding to EstimateBounds4PM1numRes5 on line 2)
as follows:

Lower bound: Let su be any feasible defender strategy.
The defender utility based on using su against an adver-
sary’s QR is a lower bound of the optimal solution of P1.
A simple example of su is the uniform strategy.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

15
5.

69
.4

.4
] 

on
 2

8 
N

ov
em

be
r 

20
13

, a
t 0

1:
47

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



An et al.: Deployed Quantal Response-Based Patrol Planning System
Interfaces 43(5), pp. 400–420, © 2013 INFORMS 417

Upper bound: Because P d
i ≤ U d

i ≤ Rd
i , we have U d

i ≤

maxT
i=1 R

d
i . We compute the defender’s utility as

∑T
i=1 qiU

d
i ,

where U d
i is the defender utility on target i, and qi is the

probability that the adversary attacks target i. Thus, the
maximum Rd

i serves as an upper bound of U d
i .

Appendix C. Piecewise Linear Approximation
To demonstrate the piecewise approximation in Pasaq, we
rewrite the nonlinear objective function of CF-OPT as

T
∑

i=1

�i4r − P d
i 5e

−�ixi −

T
∑

i=1

�i�ixie
−�ixi 0

The goal is to approximate the two nonlinear functions,
f
415
i 4xi5 = e−�ixi and f

425
i 4xi5 = xie

−�ixi , as two piecewise lin-
ear functions in the range xi ∈ 60117, for each 1 ≤ i ≤ T .

We first uniformly divide the range 60117 into K pieces
(segments). Simultaneously, we introduce a set of new vari-
ables 8xik1 k = 1 0 0 0K9 to represent the portion of xi in each
of the K pieces, 864k − 15/K1k/K71k = 11 0 0 0 1K9. Therefore,
xik ∈ 6011/K71 ∀k = 11 0 0 0 1K and xi =

∑K
k=1 xik. To ensure that

8xik9 is a valid partition of xi, all xik must satisfy: xik > 0, only
if xik′ = 1/K1 ∀k′ < k. In other words, xik can be nonzero
only when all the previous pieces are completely filled.

Figures C.1(a) and C.1(b) display two examples of such a
partition.

Thus, we can represent the two nonlinear functions as
piecewise linear functions using 8xik9. Let 84k/K1f 415

i 4k/K551
k = 01 0 0 0 1K9 be the K + 1 cut points of the linear segments
of function f

415
i 4xi5, and 8�ik1 k = 11 0 0 0 1K9 be the slopes of

each of the linear segments. Starting from f
415
i 405, the piece-

wise linear approximation of f 415
i 4xi5, denoted as L

415
i 4xi5, is:

L
415
i 4xi5= f

415
i 405+

K
∑

k=1

�ikxik = 1 +

K
∑

k=1

�ikxik0

Similarly, we can obtain the piecewise linear approximation
of f 425

i 4xi5, denoted as L
425
i 4xi5:

L
425
i 4xi5= f

425
i 405+

K
∑

k=1

�ikxik =

K
∑

k=1

�ikxik1

where 8�ik1 k = 100K9 is the slope of each linear segment,
and 84K/K1f

425
i 4K/K551 k = 01 0 0 0 1L9 is the L+ 1 endpoints

of linear segments of function f
425
i 4xi5. To represent the

objective function of CF-OPT as a piecewise linear function,
we divide each variable xi into L parts, 8xik1 k = 11 0 0 0 1L9,
with each part related to the lth linear segments of the func-
tion. Therefore, we could write the objective function of
CF-OPT as

T
∑

i

�i4k− P d
i 5

(

1 +

K
∑

k=1

�ikxik

)

−

T
∑

i

�i�i

K
∑

k=1

�ikxik1

where �ik represent the slope of the lth line segment of func-
tion e−�ixi and �ik represent the slope of lth linear segment
of function xie

−�ixi .
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Figure C.1: Piecewise linear approximation is based on dividing the
strategy space in pieces.

Pasaq consists of Algorithm 1, but with CF-OPT rewritten
as follows:

min
x1z1a

{ T
∑

i=1

�i4r − P d
i 5

(

1 +

K
∑

k=1

�ikxik

)

−

T
∑

i=1

�i�i

K
∑

k=1

�ikxik

}

s.t. 0 ≤ xik ≤
1
K
1 ∀ i1 k = 11 0 0 0 1K1 (C1)

zik
1
K

≤ xik1 ∀ i1 k = 11 0 0 0 1K − 11 (C2)

xi4k+15 ≤ zik1 zik ∈ 801191 ∀ i1 k = 11 0 0 0 1K − 11 (C3)

K
∑

k=1

xik =
∑

Aj∈A

ajAij1 ∀ i1 (C4)

∑

Aj∈A

aj = 11 (C5)

0 ≤ aj ≤ 11 ∀ j0 (C6)
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� 2=
T

min
i=1

�i R̄d 2=
T

max
i=1

�Rd
i � �̄ 2=

T
max
i=1

�i

�̄ 2=
T

max
i=1

�i P̄ d 2=
T

max
i=1

�P d
i � �̄ 2=

T
max
i=1

�i

Table C.1: This table shows notations for error-bound proof.

Let us refer to the previous MILP formulation as
PASAQ-MILP.

The solution provided by Pasaq is in the feasible region
of P1 as shown in Lemma 2.

Lemma 2. The feasible region for x = �xi =
∑K

k=1 xik11 ≤

i ≤ T � of PASAQ-MILP is equivalent to that of P1.

Justification. The auxiliary integer variable zik indicates
whether xik = 1/K. Equation (C2) enforces that zik = 0 only
when xik < 1/K. Simultaneously, Equation (C3) enforces that
xi4k+15 is positive only if zik = 1. Hence, 8xik1 k = 1 0 0 0K9 is a
valid partition of xi, xi =

∑K
k=1 xik, and xi ∈ 60117. Thus, the

feasible region of PASAQ-MILP is equivalent to P1. However,
Pasaq approximates the minimum value of CF-OPT by using
PASAQ-MILP, and furthermore approximately solves P1 using
binary search. Hence, we need to show an error bound on
the solution quality of Pasaq.

We define two constants that are decided by the game
payoffs: C1 = 4�̄/�5e�̄84R̄d + P̄ d5�̄ + �̄9 and C2 = 1 + 4�̄/�5e�̄

(the notation is defined in Table C.1). In the following,
we are interested in obtaining a bound on the differ-
ence between p∗ (the optimal result obtained from P1) and
ObjP14x̃

∗5, where x̃∗ is the strategy obtained from Pasaq.

Theorem 1. Let x̃∗ be the defender strategy computed by
Pasaq, p∗ is the optimal defender expected utility

0 ≤ p∗
− ObjP14x̃

∗5≤ 2C1
1
K

+ 4C2 + 15�0

The proof of Theorem 1 can be found in Yang et al. (2012).
Theorem 1 suggests that, given a game instance, the solu-
tion quality of Pasaq is bounded linearly by the binary
search threshold � and the piecewise linear accuracy 1/K.
Therefore, the Pasaq solution can be made arbitrarily close
to the optimal solution with sufficiently small � and suffi-
ciently large K.
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