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Sponsored search auctions have attracted much research attention in recent years and different equilib-
rium concepts have been studied to understand advertisers’ bidding strategies. However, the assumption
that bidders are perfectly rational in these studies is unrealistic in the real world. In this work, we in-
vestigate the quantal response equilibrium (QRE) solution concept for sponsored search auctions, in which
advertisers choose strategies based on their relative expected utilities. QRE is powerful in characterizing
the bounded rationality in the sense that it only assumes that an advertiser chooses a better strategy with a
larger probability instead assuming that the advertiser chooses the best strategy deterministically. We first
propose a homotopy-based method, which is potential to be globally convergent, to compute QRE for spon-
sored search auctions. We show that this method is effective in finding a QRE. Then we fit the model into
the datasets from a commercial search engine and develop an estimator to infer the values of advertisers
and click-through rates of their advertisements. Our experiments on several search phrases indicate that
the model works quite well for certain queries and the values we estimated are consistent with the basic
property of sponsored search auctions.
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1. INTRODUCTION
Sponsored search has become a major monetization means for commercial search en-
gines. When a user issues a query to a search engine, in addition to several relevant
webpages, a set of relevant advertisements will also be displayed on the search result
page. To show his/her ad on the search result page, an advertiser/bidder1 is required

1In this paper, we use “advertiser” and “bidder” interchangeably.
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to submit a bid for the query.2 Most of the time, there are many more advertisers bid-
ding for the query than the number of available ad slots. Hence, the search engines
need a mechanism to decide which ads should be shown on the result page, how to
allocate the slots to the shown ads, and how to charge an advertiser if his/her ad is
clicked by the user. The most popular mechanism used by commercial search engines
is the Generalized Second Price (GSP) mechanism, in which the slots are allocated to
advertisers according to a ranking rule, and an advertiser will be charged a price to
maintain his/her current rank position if his/her ad is clicked.

Given its critical role in sponsored search, the GSP mechanism has attracted much
research attention recently and there have been many exciting studies [Jansen and
Mullen 2008; Qin et al. 2014] in this field. Among those studies, equilibrium analysis
is a hot topic to understand advertisers’ behaviors. Varian [2007] studied the concept of
symmetric Nash equilibria for GSP auctions and proved the existence of a symmetric
Nash equilibrium which can achieve the maximal revenue among all Nash equilibria.
Edelman et al. [2005] defined a subset of Nash equilibria called locally envy-free equi-
libria which are essentially equivalent to the symmetric Nash equilibria. Borgers et
al. [2013] further stated the existence of multiple Nash equilibria in GSP auctions.

A limitation of those studies on equilibrium concepts is that they assume the com-
plete rationality of advertisers. That is, advertisers are very smart; they can find their
optimal strategies and take optimal actions. However, in the real world, rationality
of human beings is limited by different kinds of constraints, including the informa-
tion they collect, the cognitive limitations of their minds, and the finite amount of
time available to make a decision. Therefore, it is necessary to study the equilibrium
concepts for sponsored search auctions under the assumption of bounded rationality,
which is exactly the focus of this work.

In this paper, we introduce the quantal response equilibrium [McKelvey and Palfrey
1995; Goeree et al. 2005] into sponsored search auctions considering that it can deal
with limited rationality situations and has presented very good performance in general
normal form games. QRE is a mixed strategy equilibrium, in which strategies with
higher utilities are more likely to be chosen than those with lower utilities, but the best
is not chosen with certainty due to the limited rationality of participants. We assume
that all bidders take actions according to the quantal response model and investigate
QRE for sponsored search auctions from two aspects: computation and inference.

1.1. Our Work
The first part of our work is about computing a QRE. We show that this problem is
equivalent to solving a set of non-linear equations, which can be further transformed
into finding a solution of a continuous non-linear function. Basic Newton-type algo-
rithms are usually locally convergent and work well only when we could provide a
good starting point. Unfortunately, it is difficult to find a good starting point in spon-
sored search auctions. To address this problem, we introduce the homotopy principle
[Allgower and Georg 1990], which has been successfully used for equilibrium computa-
tion [Turocy 2005; Herings and Peeters 2010]. Advantages of homotopy based methods
include their numerical stability and potential to be globally convergent. To design a
homotopy based method for QRE computation, we first define a problem with a unique
easily-computed solution. Then we build a continuous transformation from the easy to
solve artificial problem into the original problem we want to solve. Next, a predictor-
corrector procedure is performed to the problems of the continuous transformation
step by step until finally the problem of interest has been solved. We further show that

2For simplicity, we only consider exact match between a query and keywords. For broad match, please refer
to [Mahdian and Wang 2009; Dhangwatnotai 2012; Chen et al. 2014].
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there are many nice properties of the sponsored search auctions which can be used to
refine the computational procedure.

The second part of our work is to fit the QRE model into the real world sponsored
search auction data and infer the parameters of the model, including the values of bid-
ders and the click-through rates (CTRs) of their ads. We develop a learning algorithm
based on the commonly used Maximum Likelihood Estimation (MLE) method to infer
those parameters. Our experimental results indicate that the QRE model fits well into
the data.

To sum up, our contributions lie in three aspects. First, comparing with Nash equi-
libria, the QRE we introduced into sponsored search auctions is more practical since
it can model bounded rationality of bidders. Second, we design a homotopy-based al-
gorithm to effectively compute a QRE. Third, we develop an estimator to infer the
parameters of QRE for sponsored search auctions.

1.2. Notations and Assumptions
Consider a keyword auction with a set of N bidders denoted by I = {1, 2, . . . , N} com-
peting for a set ofK ad slots denoted by S = {1, 2, . . . ,K}. Usually, we have more adver-
tisers than slots: N ≥ K. Let vi denote the private value of bidder i, which expresses
the maximum per-click price he/she is willing to pay. We use a vector v = (v1, v2, . . . , vN )
to represent the value profile of all the bidders. Let bi denote the bid submitted by ad-
vertiser i to participate in the auction. We use a vector b = (b1, b2, . . . , bN ) to represent
the bid profile of all the bidders. Let θik denote the CTR of bidder i’s ad when it is placed
at slot k, which is usually assumed to be the product of the ad CTR αi and the slot CTR
βk. We use α = (α1, α2, . . . , αN ) and β = (β1, β2, . . . , βK) to represent the profile of ad
and slot CTRs respectively. Without loss of generality, we assume β1 ≥ β2 ≥ · · · ≥ βK .

The GSP mechanism consists of a ranking rule and a pricing rule. The ranking rule
determines the allocation of the ad slots to the bidders and the pricing rule determines
the payment of each bidder when his/her ad is clicked. The rank-by-revenue allocation
rule is widely used, in which bidders are ranked in the descending order of the products
of their bids and ad CTRs. If an ad is clicked, the payment of the corresponding bidder
is the minimum amount that maintains his/her current rank position.

1.3. Organization
The rest of this paper is organized as follows. In Section 2, we introduce the concept
of QRE. We propose a homotopy-based algorithm to compute a QRE in Section 3. In
Section 4, we discuss how to estimate the parameters of the QRE model. Experimental
results are reported in Section 5 and conclusions are given in the last section.

2. QUANTAL RESPONSE EQUILIBRIUM
In this section we introduce the concept of quantal response equilibria for sponsored
search auctions.

2.1. Motivation
Given that GSP is not a dominant-strategy mechanism, Nash equilibrium solutions
become an important means to understand how bidders behave in sponsored search
auctions. While there exist quite a few Nash equilibrium concepts proposed and s-
tudied for sponsored search auctions, symmetric Nash equilibrium [Varian 2007] and
locally envy-free Nash equilibrium [Edelman et al. 2005] are the most famous two:
the symmetric Nash equilibrium captures the notion that there should be no incentive
for any pair of bidders to swap their slots, and the locally-envy free Nash equilibrium
coptures the notion that there should be no incentive for any bidder to exchange bids
with the bidder ranked one position above him/her.
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While those equilibrium concepts have many nice properties, a common limitation
of them is that they assume the perfect rationality of bidders, i.e., bidders have good
knowledge about their utilities and take optimal actions to maximize their utilities.
However, the assumption of perfect rationality of bidders is too good to be true in
real-world sponsored search auctions. As pointed out in [Xu et al. 2013], in practice, an
advertiser may be unwilling, incapable, or constrained to choose “best response” strate-
gies. Therefore, a natural question arises: how can we weaken the perfect-rationality
assumption and still obtain some meaningful solution concept for sponsored search
auctions?

Observing that in real-world sponsored search auctions, an advertiser usually has
uncertainty about his/her utility and is more likely to choose a strategy with high-
er utility instead of always choosing best strategies. We introduce quantal response
equilibrium to model the bounded rationality of bidders in the following subsection.

2.2. Quantal Response Equilibrium
Let O = {o1, o2, . . . , oM} denote the global bid space of all the advertisers and Bi ⊆ O
denote the bid space of an individual advertiser i. Let B−i = B1 × B2 × · · · × B(i−1) ×
B(i+1) × · · · ×BN be the joint bid space of all the other advertisers excluding i. Let b−i
be a realization of B−i, and b−i,k is a realization of Bk in B−i.

Let ri(oj , b−i) denote the slot allocated to bidder i and pi(oj , b−i) denote the payment
of advertiser i when he/she bids bi = oj and the bid profile of all the other advertisers
is b−i. Then the utility of advertiser i is

ui(oj , b−i) = (vi − pi(oj , b−i))αiβri(oj ,b−i). (1)

Let σi denote advertiser i’s mixed strategy over Bi and σi(oj) denote the probability
that advertiser i bids oj . We use σ = (σ1, σ2, . . . , σN ) and σ−i to represent the mixed
strategy profile of all bidders and that of others excluding advertiser i respectively.
Then the expected utility of bidder i choosing oj , given σ−i, is

ui(oj , σ−i) =
∑

b−i∈B−i

P (b−i)ui(oj , b−i), (2)

where P (b−i) =
∏
l∈I\{i} σl(b−i,l).

The quantal response πij of bidder i to others’ mixed strategies σ−i is defined as

πij(ui(σ−i)) =
eui(oj ,σ−i)λi∑M
k=1 e

ui(ok,σ−i)λi

, (3)

where ui(σ−i) is bidder i’s utility profile and λi is the precision parameter of bid-
der i, which is a non-negative real number. Normally, we use the vectors u =
(u1(σ−1), u2(σ−2), . . . , uN (σ−N )) and λ = (λ1, λ2, · · · , λN ) to denote the utility and pre-
cision profiles respectivly.

For simplicity, we define σij = σi(oj), and then a QRE [McKelvey and Palfrey 1995;
Goeree et al. 2005] can be defined as follows.

DEFINITION 1 (QUANTAL RESPONSE EQUILIBRIUM). A quantal response equilib-
rium is a mixed strategy profile σ such that for any i ∈ I and oj ∈ Bi, σij = πij(ui(σ−i)).

A QRE is proven to exist in any normal-form games with homogeneous precision
parameters [McKelvey and Palfrey 1995]. Although our model has heterogeneous pre-
cision parameters, we can easily convert it to a model with homogeneous precision
parameters by defining a new utility function U i = ui(oj , σ−i)λi. Since the sponsored
search auction with the GSP mechanism is a normal-form game, there always exists a
QRE.
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3. COMPUTING QRE FOR SPONSORED SEARCH AUCTIONS
In this section, we discuss how to compute a QRE given v, λ, α and β.

From Definition 1 and Eq. (3), we can see that σ is a QRE if it satisfies the following
set of equations:

σij =
eui(oj ,σ−i)λi∑

ok∈Bi
eui(ok,σ−i)λi

,∀i ∈ I, oj ∈ Bi. (4)

Let U =
∑
i∈I |Bi| denote the number of equations. By rearranging Eq. (4) we obtain a

continuous function F : RU 7→ RU as below:

Fij(σ) =

(∑
ok∈Bi

eui(ok,σ−i)λi

eui(oj ,σ−i)λi

)−1
− σij

=

( ∑
ok∈Bi

e(ui(ok,σ−i)−ui(oj ,σ−i))λi

)−1
− σij , i ∈ I, oj ∈ Bi. (5)

Now we can see that computing a QRE of sponsored search auctions is equivalent to
finding a zero point of the nonlinear function F (σ). If a good initial point which is close
to a zero point of F is available, starting from this initial point, we can directly apply
Newton-style iteration methods to find a zero point of F and so a QRE of the auction.
However, it is very difficult to find such a good initial point because of the non-linearity
of F . As pointed by Allgower and Georg [1990], Newton-style iteration methods often
fail because poor start points are very likely to be chosen. In this work, we make use
of the homotopy principle, which has been widely used for equilibrium computation,
and design an efficient homotopy-based algorithm by leveraging the special properties
of sponsored search auctions. We first describe the algorithm in Section 3.1 and then
show how to speed up the algorithm based on the peculiarities of sponsored search
auctions in Section 3.2.

3.1. The Homotopy-based Algorithm
The basic idea of the homotopy principle is composed by two steps: given a problem we
want to solve, (1) deform the problem to one with a unique easily-computed solution
and build a continuous transformation from the original problem into the deformed
problem that is easy to solve; (2) reverse the deformation to trace solutions of the asso-
ciated problems during the deformation until finally finding a solution of the original
problem.

To design a homotopy-based algorithm, our first step is to find a degenerated form of
the original equations. In our problem F has a degenerated formG by setting λi = 0,∀i:

Gij(σ) =
1

|Bi|
− σij , i ∈ I, oj ∈ Bi. (6)

Then we define a homotopy function between F (σ) and G(σ) as H : RU × [0, 1] 7→ RU

with H(σ, 0) = G(σ) and H(σ, 1) = F (σ):

Hij(σ, t) =

( ∑
ok∈Bi

e(ui(ok,σ−i)−ui(oj ,σ−i))λit

)−1
− σij , i ∈ I, oj ∈ J. (7)

It is easy to get that H(σ, 0) has a unique zero point σij = 1
|Bi| . Further, we define

the solution set of H as

H−1(0) = {(σ, t)|H(σ, t) = 0}. (8)
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Since a QRE always exists in normal-form games, for a given t there exists a σ(t) such
that H(σ(t), t)) = 0.

The remaining problem is to trace out a path consisting of zeros (σ(t), t) ∈ H−1(0),
which starts at (σ(0), 0) and ends at (σ(1), 1). Considering the possibility of the exis-
tence of turning points [Judd 1998], increasing t monotonically when tracing the path
may lead to points far away from zero points of H. A common practice to avoid the dis-
turbance of turning points is to view the σ and t as functions of an implicit parameter a
simultaneously and to compute a parametric path c(a) = (σ(t(a)), t(a)) which satisfies

H(c(a)) = 0. (9)

The method we use to trace the path is called predictor-corrector (PC) [Allgower and
Georg 1990], the basic idea of which is to numerically trace the path c by generating a
sequence of points vi = (σ, t)i, i = 1, 2, . . . along the path satisfying a chosen tolerance
criterion, say ‖H(vi)‖ ≤ ε for some ε > 0. In particular, given that we have found a
point vi on the path c, an Euler predictor step is used to predict the next point vi+1 on
c:

vi+1 = vi + ∆ · c′(a)
∣∣
c(a)=vi

, (10)

where ∆ > 0 is the step length. Then a corrector phase is necessary to refine the
accuracy of vi+1. We make use of Gauss-Newton method as presented below:

vri+1 = vi+1 −H ′(vi+1)+H(vi+1), (11)

where H ′(vi+1)+ is the Moore-Penrose inverse3 of the Jacobian matrix H ′(vi+1) of H
at point vi+1 and vri+1 is the refined point of vi+1. If ‖H(vri+1)‖ > ε, we will substitute
vri+1 into the right side of Eq. (11) to find another refined point and check whether it
satisfies the tolerance criterion. This procedure is performed again and again until we
find an acceptable point which will be used in the predictor phase to infer the next
point. The PC method, starting with (σ(0), 0), is applied step by step until the (σ(1), 1)
is reached.

The derivative c′(a) of c in Eq. (10) and the Jacobian matrix H ′(vi+1) of H in Eq. (11)
are unknown at this stage. We first consider how to calculate c′(a). By differentiating
Eq. (9) we get the following equation.

H ′(c(a))c′(a) = 0. (12)

The solution of Eq. (12) is

c′(a) = ±



(−1)1 · det
(
(H ′(c(a)))−1

)
(−1)2 · det

(
(H ′(c(a)))−2

)
...

(−1)d · det
(
(H ′(c(a)))−d

)
...

(−1)U+1 · det
(

(H ′(c(a)))−(U+1)

)


, d = 1, · · · , U+1, (13)

where (H ′(c(a)))−d denotes the Jacobian matrix H ′(c(a)) with the d-th4 column re-
moved and det

(
(H ′(c(a)))−d

)
is its determinant. We know from Eq. (13) that once

3The Moore-Penrose inverse of a matrix A is defined by A+ = AT (AAT )−1.
4σij is assumed to be assigned to c in lexicographic order, namely, the mixed strategies of bidder 1 are
listed first, in ascending order, followed by those of bidder 2, and so on. The last component of the vector
corresponds to t.
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H ′(c(a)) is given, the value of c′(a) could be obtained directly. Eq. (11) also involves
the problem of computing H ’s Jacobian matrix, which is explained next.

We use ũij to represent ui(oj , σ−i)λi for simplicity in the remaining part of this paper.
Since function H is a mapping from RU × [0, 1] to RU , its Jacobian matrix contains
U · (U + 1) partial derivatives, which can be divided into four cases:

Case 1. i ∈ I and oj ∈ Bi,
∂Hij

∂σij
= −1; (14)

Case 2. i ∈ I, oj and ok ∈ Bi, but j 6= k,
∂Hij

∂σik
= 0; (15)

Case 3. i and l ∈ I, oj ∈ Bi and om ∈ Bl, but i 6= l,

∂Hij

∂σlm
= −

(
te−ũijt

∑
ok∈Bi

eũikt

(
∂ũik
∂σlm

− ∂ũij
∂σlm

))−2
; (16)

Case 4. i ∈ I and oj ∈ Bi,

∂Hij

∂t
= −

(
e−ũijt

∑
ok∈Bi

eũikt(ũik − ũij)

)−2
. (17)

Note that the sign of c′ is not determined in Eq. (13). We choose the sign of c′ to
ensure the derivative of t to a, which corresponds to the (U + 1)-th component in c′, is
positive at (σ(0), 0), i.e.,

µ · (−1)U+1det
(

(H ′(c(a)))−(U+1)

)
> 0, (18)

where µ = 1 or −1 is the sign of c′ to be chosen. Substituting t = 0 into Eq. (18) and
combining with Eqs. (14)-(17) we get

µ · (−1)U+1 · (−1)U > 0, (19)

which indicates that
(−1)2U+1µ > 0. (20)

Hence we could conclude that µ = −1 at (σ(0), 0).
By now we have discussed how to compute Eqs. (10) and (11). Then we can use the

PC method to find the point (σ(1), 1) ∈ H−1(0) in which σ(1) is exactly the solution of
F .

The completed process of our proposed method is summarized in Algorithm 1. In
lines 1 and 2 we initialize t with 0 and the starting point v1 with (σ(t), t). Lines 3-9 use
the PC method to generate a set of points vi, i = 2, 3, . . . along the path until eventually
the point (σ(1), 1) is found. Line 4 is the Euler predictor step which computes the next
point vi+1 given vi according to Eq. (10). The Gauss-Newton corrector step is performed
repeatedly in lines 5-7 to improve the accuracy of the point predicted by the predictor
phase till it is within the tolerance ε. t is updated in line 8 and the result is returned
in line 10.

3.2. Efficient Computation for Sponsored Search Auctions
Algorithm 1 and Eq. (13) indicate that we need to compute the Jacobian matrix H ′ of
H at each predictor and corrector step when tracing the path with PC method. Since
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ALGORITHM 1: Computing a QRE
Input: Bidder set I, slot set S, advertiser effect profile α, position effect profile β, each bidder’s

bid strategy space, precision profile λ, step length ∆, and tolerance criterion ε.
Output: A QRE strategy profile σ.

1 t← 0;
2 v ← (σ(t), t);
3 while t 6= 1 do
4 v ← v + ∆ · c′(a)

∣∣
c(a)=v

;
5 while ‖H(v)‖ > ε do
6 v ← v −H ′(v)+H(v);
7 end
8 t← the last component of v;
9 end

10 (σ, t)← v;

the dimension of H could be large, the efficiency of calculating H ′ will significantly
affect the speed of the algorithm. In this subsection, we discuss how to speed up the
proposed algorithm through efficient calculation of H ′ by leveraging the properties of
sponsored search auctions.

The elements in H ′ are classified into four cases as shown in Eqs. (14)-(17). The
partial derivatives in the first two cases are quite easy to work out, and that in the
last two cases involve computing ũij = ui(oj , b−i) · λi and ∂ũij

∂σlm
=

∂ui(oj ,b−i)
∂σlm

· λi. So the
main effort on computing H ′ is to solve ui(oj , b−i) and ∂ui(oj ,b−i)

∂σlm
for all the bidders.

Eq. (2) implies that ui(oj , b−i) is bidder i’s expected utility over B−i when he/she
chooses oj . A naive approach is to traverse the space B−i with

∏
l∈I\{i} |Bl| realizations

when computing ui(oj , b−i). The computation of ∂ui(oj ,b−i)
∂σlm

is similar except that bidder
l’s strategy is given by om and we just consider the remaining N − 2 bidders’ joint
bid space. Clearly, the naive traversal method (TM for short) for computing H ′ is very
time-consuming.

Fortunately, the expected utilities in sponsored search auctions with the GSP mech-
anism have many special properties that could be utilized to reduce the computational
complexity. Here we take bidder i and his/her bid oj as an example to show the prop-
erties of his/her utility based on the GSP mechanism.

Let Ig denote the set of other bidders l 6= i such that αl · bl > αi · bi. Similarly, Ie(Il)
denotes the set of other bidders with their bids multiplied by the corresponding ad
CTRs equal to (less than) αi · bi. We assume the tie is broken randomly. It thus follows
that:

(1) When |Ig| ≥ K, i’s utility is zero.
(2) When |Ig| < K and |Ig| + |Ie| ≥ K, bidder i has a probability 1

|Ie|+1 to be allocated
at a slot ranging from |Ig|+ 1 to K and his/her expected payment according to our
assumption on the tie is pi = 1

|Ie|·αi

∑
l∈Ie αlbl. The utility of i in such case is

1

|Ie|+ 1
(vi − pi)

K∑
s=|Ig|+1

αiβs.

(3) When |Ig|+ |Ie| < K, i’s location will be any one from slot |Ig|+1 to slot |Ig|+ |Ie|+1
with an identical probability 1

|Ie|+1 . His/her payment will be pi = 1
|Ie|·αi

∑
l∈Ie αlbl

if ranked at the slot between |Ig| + 1 and |Ig| + |Ie|. On the other hand, his/her
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payment will be the maximum (αk · bk)/αi for k ∈ Il if allocated at slot |Ig|+ |Ie|+ 1
respectively. We use pmax to represent this payment and then his/her final utility
is

1

|Ie|+ 1
((vi − pi)

|Ig|+|Ie|∑
s=|Ig|+1

αiβs + (vi − pmax)αiβ|Ig|+|Ie|+1),

When computing the ui(oj , b−i) and ∂ui(oj ,b−i)
∂σlm

, instead of traversing the joint strat-
egy space, we just assign all the other bidders into Ig, Ie and Il, which will lead to at
most

(
N−1
|Ig|
)
·
(N−1−|Ig|

|Ie|
)

results5. Since we only care about the situations where |Ig| < K,
the most total number of cases we take into account in sponsored search auctions is

K−1∑
|Ig|=0

N−1−|Ig|∑
|Ie|=0

(
N − 1

|Ig|

)
·
(
N − 1− |Ig|
|Ie|

)
=

K−1∑
|Ig|=0

(
N − 1

|Ig|

)
· 2N−1−|Ig| (21)

= 2N−1 +

K−1∑
|Ig|=1

(
N − 1

|Ig|

)
· 2N−1−|Ig|

< 2N−1 +

K−1∑
|Ig|=1

(N − 1)|Ig|

2|Ig|−1
2N−1−|Ig| (22)

= 2N−1 +

K−1∑
|Ig|=1

(N − 1)|Ig|2N−2|Ig|

= 2N−1 +
(N − 1)K2N−2K+2 − (N − 1)2N

N − 5
(23)

=
2N−1[23−2K(N − 1)K −N − 7]

N − 5
. (24)

Generally, there is always a large number of bidders competing for several fixed s-
lots, so the amount of the situations is mainly based on 2N which is a reduction of∏
l∈I\{i} |Bl| since |Bl| ≥ 2 in most cases. Besides, a direct deduction of the properties

is
∂ui(oj , b−i)

∂σlk
=
∂ui(oj , b−i)

∂σlm
, l 6= i;αlom, αlok > αioj , (25)

which can be used to further avoid redundancy.
There is an obvious relationship between ui(oj , b−i) and ∂ui(oj ,b−i)

∂σlm
in all normal form

games including sponsored search auctions such that

ui(oj , b−i) =
∑
om∈Bl

σlm
∂ui(oj , b−i)

∂σlm
, l 6= i, (26)

which implies that once ∂ui(oj ,b−i)
∂σlm

is obtained, ui(oj , b−i) could be calculated according-
ly.

5We first determine the bidders in Ig , and then Ie. The rest of bidders are all in Il.
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We make a summary of our improved method (IM for short). First we take advantage
of the three properties in sponsored search auctions to efficiently compute ∂ui(oj ,b−i)

∂σlm
,

then we further reduce redundant calculations on ∂ui(oj ,b−i)
∂σlm

by Eq. (25), next we use
Eq. (26) to compute ui(oj , b−i), and finally by combining ui(oj , b−i) and ∂ui(oj ,b−i)

∂σlm
with

Eqs. (14)-(17) we get H ′ which is frequently used in Algorithm 1.

4. PARAMETER ESTIMATION
In this section, we investigate how to infer the valuation profile v and the precision
profile λ of the advertisers together with the ad CTR profile α and slot CTR profile β
given that a QRE σ has been reached. We propose an algorithm based on the princi-
ple of likelihood maximization, which is very popular in machine learning domain for
parameter estimation.

Given a QRE strategy σ, the logarithmic likelihood of the unknown parameters
v, λ, α and β is

L(v, λ, α, β|σ) = log

∏
i∈I

∏
oj∈Bi

(πij(ui(σ−i)))
σij

 (27)

=
∑
i∈I

∑
oj∈Bi

σij log(πij(ui(σ−i))). (28)

Combining with Eq. (3), we have

L(v, λ, α, β|σ) =
∑
i∈I

(λi ·
∑
oj∈Bi

σijui(oj , σ−i))−
∑
i∈I

log(
∑
ok∈Bi

eui(ok,σ−i)λi). (29)

Then the parameters can be estimated by maximizing the likelihood as shown in the
following optimization problem.

max
v,λ,α,β

L(v, λ, α, β|σ) (30)

s.t.



vi > 0,

λi ≥ 0,

0 < αi < 1,

0 < βs < 1,

βs ≥ βs+1

(31)

Since in sponsored search auctions, the allocation rule is not a continuous function
of ad CTR profile α, the utility of a bidder is not continuous with respect to α; as a
result, the likelihood defined in Eq. (29) is not continuous with respect to α.

To address the discontinuity of the likelihood function, we split the unknown param-
eters into two groups and sequentially optimize them in each iteration: we treat v, λ, β
as a group and α as the other group; in each iteration, we first optimize v, λ, β and then
α.

The function L(v, λ, α, β|σ) in Eq. (32) is continuous with respect to the parameters
in the first group. We can learn a better set of v, λ, β by solving the following sub
optimization problem.

max
v,λ,β

L(v, λ, α, β|σ) (32)
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s.t.


vi > 0

λi ≥ 0

0 < βs < 1

βs ≥ βs+1

(33)

Since the above optimization problem is non-convex, it is difficult to find the global
maximum. We turn to find a set of local maxima with different starting points and
then choose the best one to improve the possibility of reaching the global maximum of
the sub problem.

As aforementioned, the likelihood function is not continuous with respect to α. Here
we do not optimize bidders’ ad CTRs simultaneously. Instead, we deal with them one
by one. Let us take the ad CTR αi of bidder i as an example and keep αj ,∀j 6= i fixed.
Given all the other parameters are fixed, it is easy to know that the likelihood has at
most K discontinuous points at

{
α(1)b(1)

bi
,
α(2)b(2)

bi
, · · · ,

α(K)b(K)

bi
} ∩ (0, 1),

where α(k)b(k) denotes the k-th largest ranking score among all the other N−1 bidders
except i. Then we can partition the feasible domain of αi into at most K + 1 intervals
and the likelihood function L is continuous with respect to αi in each interval. Let Ik
denote the k-th interval (e.g., Ik = [

α(5)b(5)
bi

,
α(4)b(4)
bi

)). Thus, by solving at most K + 1

optimization problem (see Eq.(34) and (35)), we can find a better αi given all the other
parameters.

max
αi

L(v, λ, α, β|σ) (34)

s.t. αi ∈ Ik (35)

Similarly, the above optimization problem is not convex. To avoid being tracked into
a bad local maximum, we can also find a set of local maxima with different starting
points and choose the best one.

The whole procedure is presented in Algorithm 2. In line 1 we initialize the likeli-
hood of the original optimization problem with negative infinity. Line 2 sets an initial
α. Lines 3-15 iteratively optimize the two groups of parameters. Line 4 fixes α and
updates (v, λ, β). Lines 5-7 fix (v, λ, β) and update α. Line 8 checks the performance
of the updated parameters. Lines 9-14 control the optimization process: if we make
progress in this iteration, we continue the optimization; otherwise, we terminate the
optimization and return the latest parameters. Again, to avoid a bad local maximum,
we run the algorithm multiple times with different initial α’s in Line 2 and choose the
best learned parameters as the final output in our experiments.

5. EXPERIMENTAL EVALUATION
We conducted a set of experiments to test the proposed algorithm for QRE computation
and the algorithm for parameter estimation. We report the experimental results in this
section.

5.1. Effectiveness of the Homotopy Method
We first make a comparison between the TM and the IM declared in Section 3.2 for
computing H ′ with 24 different size of games as depicted in Table I. We let the total
number of slots K = bN/2c and assumed all bidders share the same bid strategy space.
For each game, we applied the two methods to 100 instances with randomly generated
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ALGORITHM 2: Parameter estimation
Input: A QRE profile σ, the stopping criterion δ
Output: Estimated value profile v, precision profile λ, ad CTR profile α, position CTR profile β,

and logarithmic likelihood L.
1 L← −∞;
2 Randomly generate an ad CTR profile α;
3 while True do
4 Fix α and update v, λ, β by solving the optimization problem shown in Eq. (32) and (33);
5 for i← 1, 2, · · · , N do
6 Fix αj ,∀j 6= i, v, λ, β and update αi by solving at most K + 1 sub problem as shown in

Eq. (34) and (35);
7 end
8 Calculate the likelihood L̂ with the updated parameters v, λ, α, β;
9 if L̂− L > δ then

10 L← L̂;
11 end
12 else
13 Return the learned parameters v, λ, α, β;
14 end
15 end

Table I. Runtime of TM and IM for computing H′

Runtime(sec) M
5 6 7 8 9 10

N

5
TM 0.789 1.458 3.040 5.876 10.648 16.220
IM 0.670 0.937 1.236 1.850 2.114 2.647

Improvement 11.59% 35.75% 59.33% 68.53% 80.15% 83.68%

6
TM 4.218 11.079 25.525 54.882 110.122 202.182
IM 3.554 4.731 6.588 8.712 11.615 13.859

Improvement 15.76% 57.29% 74.18% 84.12% 89.45% 93.15%

7
TM 23.891 79.180 215.892 528.704 1170.764 2396.645
IM 11.164 16.020 22.159 29.414 37.864 46.299

Improvement 53.27% 79.77% 89.74% 94.44% 96.76% 98.07%

8
TM 155.292 593.852 1835.082 5022.691 12286.726 29958.058
IM 53.607 80.960 111.254 148.542 190.038 234.271

Improvement 65.48% 86.37% 93.94% 97.04% 98.45% 99.22%

v, α, β and computed their average runtime. We also calculated the improvement6 of
the runtime of IM compared with that of TM.

From Table I we know that both of the two methods are efficient and the improve-
ment of IM is not apparent when game size is small. When N gradually increases
from 5 to 8, the runtime of IM increases by about 90 times with M fixed. However, the
speed of TM slows down dramatically with N increasing especially when M is large,
say by 1847 times when M = 10. This result is expected, because Section 3.2 demon-
strates that IM only need to consider about 2N situations but IM will traverse about
MN cases. We illustrate the runtime of TM and IM in Figure 1 with N fixed and M
increasing, which clearly represents the sharp degradation of TM’s performance when
M becomes larger. The efficiency of IM is not affected obviously, which further confirms
the conclusions in Section 3.2.

Next we will evaluate the runtime performance of our proposed homotopy method
for computing a QRE for sponsored search auctions. We conducted our experiments on
32 games with N ranging from 3 to 6 and M increasing from 3 to 10. Again, we made

6The improvement is calculated by the formula |(runtime of IM)− (runtime of TM)|/(runtime of TM).
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(a) N=5 (b) N=6

(c) N=7 (d) N=8

Fig. 1. Runtime of TM and IM with N fixed and M increasing.

Table II. Runtime of Algorithm 1 for different size of games

Runtime(sec) M
3 4 5 6 7 8 9 10

N

3 0.101 0.163 0.243 0.299 0.408 0.478 0.701 0.777
4 0.386 0.759 1.186 1.766 2.588 3.565 4.745 5.695
5 2.197 4.568 7.461 12.100 18.977 23.026 28.185 39.778
6 7.928 18.095 31.454 51.560 71.750 94.026 118.073 160.464

K = bN/2c and assumed all participants share the same strategy space. The average
runtime of 100 instances randomly generated for each game is shown in Table II.

We see from Table II that when N and M are small, Algorithm 1 runs very fast. We
find that the runtime in the last column of Table II is always about 20 times that in
the first column. In contrast, when M = 3, the runtime in the last row is 70 times
that of in the first row, but when M = 10, this proportion soars to about 210. We
can conclude through the above observation that the speed of Algorithm 1 slows down
more significantly with N increasing than with M increasing since in the predictor
and corrector phase we need to calculate the Jacobian matrix of H whose computation
cost is mainly related with N as declared in Section 3.2. Although M does not visibly
affect the cost for computing the components of H ′, the size of H ′ and σ will largen
correspondingly with M growing which results in the increasement of the runtime of
Algorithm 1.

In the future work, we will conduct more extensive experiments to evaluate the
algorithm’s performance on large-scale games and propose new approaches to improve
the scalability of our algorithm.
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Table III. Estimated parameters in query 1

N
L1 2 3

v 2996 2048 4548

-3.3526λ .4064 .7766 .0579
α .0463 .0990 .0906
β (.0998, .0364, .0363)

Table IV. Estimated parameters in query 2

N
L1 2 3

v 1237 769 400

-1.8529λ 1.6487 12.5776 1.8914
α .0446 .0517 .0721
β (.0844, .0842, .0840)

Table V. Estimated parameters in query 3

N
L1 2 3

v 628 130 513

-2.6095λ 29.2835 558.8019 24.3247
α .0364 .0752 .0410
β (.0501, .0343, .0285)

5.2. Evaluating the Parameter Estimation Algorithm
In this subsection we present the experimental evaluation of Algorithm 2 on real data.
We first estimate the parameters v, λ, α, β using Algorithm 2 and then check whether
bidders’ real strategies keep consistent with those predicted by the QRE model given
those estimated parameters.

Our experiments are based on a log file of a commercial search engine over three
months, which contains the information about advertisers’ bids, ranks and CTRs. For
ease of analysis, we tested our algorithm on some queries with a relative small number
of bidders. We further removed the bidders who give a very high or low bid and never
make a change since these bidders seem not to participate in the competition. We
use three representative queries here to show the estimation results. After the data
preprocessing, we finally got three bidders in each query. Bidders’ real mixed strategy
profile σ was computed with the log file. Then we employed Algorithm 2 to infer the
parameters for each query and obtained the following three sets of results as depicted
in Tables III-V.

By substituting the estimated parameters into Eq. (3) we got the predicted mixed
strategies of bidders for each query as depicted in Tables VI-VIII7. σi is bidder i’s real
mixed strategy profile over his/her bid space and πi corresponds to that predicted by
the QRE model. The error represents the absolute difference between σi and πi.

We learn from the estimation results that bidders’ precision parameters differ from
each other dramatically. An observation of bidders’ values and their strategies shows
that most of the time bidders will not overbid in the auction which is consistent with
our experience. We see that the QRE model fits the data in query 2 and query 3 very
well. One possible reason for the deviation of the estimation for query 1 is that Algo-
rithm 2 may find a not-very-good local optimal solution. Overall, the QRE model works
well for the reality.

7The symbol “–” at row i and column j in the tables represents that oj is not an element of Bi. Besides, we
use πij to denote πij(ui(σ−i)) for briefness.
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Table VI. Real and predicted mixed strategies for query 1

O = {1000, 1500, 2000, 2500, 3000, 3500}
o1 o2 o3 o4 o5 o6

σ1 .1261 .3025 .4202 – .1513 –
π1 .2829 .2829 .2829 – .1513 –

error .1569 .0196 .1373 – .0000 –
σ2 .2975 – .5950 .1074 – –
π2 .2972 – .5952 .1076 – –

error .0003 – .0002 .0001 – –
σ3 – .2609 – .3565 – .3826
π3 – .2603 – .3662 – .3735

error – .0005 – .0097 – .0091

Table VII. Real and predicted mixed strategies for query
2

O = {400, 650, 800, 850, 1000}
o1 o2 o3 o4 o5

σ1 – .6417 – – .3583
π1 – .6417 – – .3583

error – .0000 – – .0000
σ2 – – .7660 – .2340
π2 – – .7660 – .2340

error – – .0000 – .0000
σ3 .6348 – – .3652 –
π3 .6348 – – .3652 –

error .0000 – – .0000 –

Table VIII. Real and predicted mixed strategies for query 3

O = {100, 200, 250, 300, 350, 400, 450, 500}
o1 o2 o3 o4 o5 o6 o7 o8

σ1 – .2927 – .2439 – – .4634 –
π1 – .2929 – .2437 – – .4634 –

error – .0002 – .0002 – – .0000 –
σ2 .6897 – .1466 .1207 – – – .0431
π2 .6889 – .1037 .1037 – – – .1037

error .0007 – .0429 .0170 – – – .0606
σ3 – – .0522 – .1304 .8174 – –
π3 – – .0386 – .1560 .8054 – –

error – – .0135 – .0256 .0120 – –

We next evaluate the estimated CTRs of our model by compare the clicks computed
with the parameters in Tables III-V and the real clicks in the log file. Let τi and τ∗i
be the estimated and the real clicks of bidder i respectively. Then we calculated the
relative error as follows:

REi =
|τi − τ∗i |
τ∗i

(36)

The results are illustrated in Figure 2, which indicates that the estimated CTRs are
acceptable since the largest relative error is no more than 10%.

6. CONCLUSION
In this paper we introduced the quantal response equilibrium concept into sponsored
search auctions to model bidders’ bounded rationality. In addition to introducing QRE,
this paper provided two other key contributions. First, we proposed a homotopy-based
algorithm to compute a QRE and analyze how to leverage the special properties of
sponsored search auctions to make the algorithm more efficient. Second, we fitted the
QRE model into real-world sponsored search auction data to infer bidders’ values,
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Fig. 2. Clicks prediction.

CTRs and the parameters representing bidders’ rationalities. Experimental results
showed that the algorithm for computing QRE is promising and the QRE model fits
the real data well.

As for future work, we plan to improve the scalability of the proposed algorithms and
apply the QRE model to large-scale datasets to check its effectiveness. We assumed
that queries exactly match keywords in this work. We will consider broad match auc-
tions in the future.
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