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Evolving Best-Response Strategies for
Market-Driven Agents Using Aggregative Fitness GA

Kwang Mong Sim, Senior Member, IEEE, and Bo An

Abstract—There are very few existing works that adopt genetic
algorithms (GAs) for evolving the most successful strategies for
different negotiation situations. Furthermore, these works did not
explicitly model the influence of market dynamics. The contribu-
tion of this work is developing bargaining agents that can both:
1) react to different market situations by adjusting their amounts
of concessions and 2) evolve their best-response strategies for dif-
ferent market situations and constraints using an aggregative fit-
ness GA (AFGA). While many existing negotiation agents only
optimize utilities, the AFGA in this work is used to evolve best-
response strategies of negotiation agents that optimize their util-
ities, success rates, and negotiation speed in different market sit-
uations. Given different constraints and preferences of agents in
optimizing utilities, success rates, and negotiation speed, different
best-response strategies can be evolved using the AFGA. A testbed
consisting of both: 1) market-driven agents (MDAs)—negotiation
agents that make adjustable amounts of concessions taking into ac-
count market rivalry, outside options, and time preferences and 2)
GA-MDAs—MDAs augmented with an AFGA, was implemented.
Empirical results show that GA-MDAs achieved higher utilities,
higher success rates, and faster negotiation speed than MDAs in a
wide variety of market situations.

Index Terms—Automated negotiation, bargaining, genetic algo-
rithms (GAs), negotiation agents.

I. INTRODUCTION

AUTOMATED negotiation [29] among software agents is
becoming increasingly important because automated in-

teractions between agents can occur in many different contexts,
and research on engineering e-negotiation agents [15], [24]
has received a great deal of attention in recent years (see [15]
and [24] for a survey). Even though there are many existing ne-
gotiation agents for e-commerce (e.g., [10]) and grid resource
management [35], [38], [39], the negotiation strategies of agents
in these systems seldom consider the dynamics of the market.
In highly dynamic environments, such as a computational grid,
it is essential to take market dynamics into consideration be-
cause providers can make resources/services available to and
disconnect from a grid, and consumers can enter and with-
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draw requests, perhaps at machine speed in both cases. Further-
more, to operate successfully in open environments (e.g., a grid
computing environment), bargaining agents must be capable of
evolving their strategies to adapt to prevailing circumstances
and constraints. Bargaining agents negotiating in less favorable
market situations (e.g., facing more competition) and constraints
(e.g., having limited time to negotiate and acquire resources) are
expected to behave differently from those negotiating in favor-
able markets and perhaps without any deadline constraints. To
adequately address real-world negotiation problems involving
large agent populations (e.g., negotiation for resource allocation
in a computational grid), bargaining agents need to be designed
to both: 1) deal with a wide variety of bargaining (and market)
situations and 2) be highly adaptable to learn and evolve to cope
with dynamically changing circumstances.

To this end, the impetus of this work is to devise a mecha-
nism using genetic algorithms (GAs) for learning and evolving
the most effective bargaining strategies of Sim’s market-driven
agents (MDAs) [33], [36], [37], [41]–[43] (Section II) in differ-
ent market situations and constraints. It was noted in [11] that
GA is an alternative to the standard game-theoretic models for
generating optimal solutions in a bargaining problem, particu-
larly in practical situations involving large agent populations.
By considering both market rivalry and outside options, it was
proven in [34] and [37] that MDAs make prudent compromises
(i.e., they do not make either excessive or inadequate conces-
sions) in different market situations. Unlike some of the learning
negotiation agents (e.g. [25]), MDAs in their present forms are
not designed with capabilities that can enhance their perfor-
mance by evolving their strategies. Nevertheless, unlike MDAs,
many of the existing negotiation agents (e.g., [3], [4], [10], [21],
and [25], just to name a few) do not take into consideration the
influence of market factors such as market rivalry and outside
options. To this end, this work will not compete with the existing
works in negotiation agents, but rather it supplements and com-
plements existing literature by developing bargaining agents
that can both: 1) react to different market situations by adjusting
its amounts of concessions and 2) evolve their best-response
strategies for different market situations and constraints using
an aggregative fitness GA (AFGA) (Section III).

Whereas many existing works only adopt utility as the
performance measure for evaluating negotiation, in this work:
1) utility; 2) success rate; and 3) negotiation speed (measured in
number of rounds needed to reach an agreement) are used (see
Section IV). Although designing negotiation agents that only
optimize utility (e.g., negotiating for the lowest possible price)
may be sufficient for generic e-commerce applications, in some
applications (e.g., grid resource management), negotiation
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agents should also be designed to make tradeoff decisions (in
addition to optimizing utility) so that they are more likely to
acquire resources more rapidly and perhaps with more certainty.
For example, in some application domains such as a grid com-
puting environment, failure to obtain the necessary computing
resources before a deadline may have an impact on the job exe-
cutions of some applications and any delay incurred on waiting
for a resource assignment is perceived as an overhead [40].
Hence, an AFGA (Section III) is used to evolve the strategies
of MDAs for optimizing the three performance measures men-
tioned earlier in different market situations and time constraints.

A series of experiments (see Section IV) was carried out to:
1) determine the most successful strategies of MDAs for dif-
ferent market situations and time constraints and 2) compare
the performance of MDAs [33], [36], [37], [41]–[43] against
GA-MDAs (i.e., MDAs that are programmed to evolve the
strategies using the AFGA). Empirical results (Section IV) show
that GA-MDAs achieved higher expected utilities, higher suc-
cess rates in reaching deals, and higher average negotiation
speed than MDAs. While Section V compares the strengths
and weaknesses of GA-MDAs with related systems, Section VI
summarizes the contributions of this work.

II. MARKET-DRIVEN AGENTS

An MDA is an e-negotiation agent that determines the appro-
priate amount of concession using three negotiation decision
functions (NDFs): time (T ), competition (C), and opportunity
(O) [33], [36], [37], [41], [42]. It makes concession by narrowing
the difference kt between its proposal and the counter-proposal
of its opponent in a negotiation round t. To determine the amount
of concession, an MDA uses the T , C, and O functions to deter-
mine the difference kt+1 in the proposal and counter-proposal
in the next round t + 1

kt+1 = f
[
O

(
nB

t , v
B→Sj

t , 〈wSj →B
t 〉

)
,

C
(
mB

t , nB
t

)
, T (t, τ, λ)

]
kt. (1)

In an abstract market-driven model [33], a linear combination
of all three factors is used to determine the overall concession.
For the purpose of experimentation, following [41], this work
used the product of the T , C, and O functions for determining
overall concession.

Time function: In a bilateral negotiation, an MDA’s deci-
sion is generally only influenced by time. T (t, τ, λ) models the
process of an agent making a series of concession to narrow
its difference(s) with other parties as time passes given as fol-
lows [33], [36], [37], [41], [42]: T (t, τ, λ) = 1 − (t/τ)λ, where
t is the current trading time, τ is the deadline, and λ is an
MDA’s time preference. While deadline puts negotiators under
pressure (see [18]), an MDA has different time preferences (e.g.,
negotiators with different time preferences may adopt different
concession rates with respect to time) (see [28, pp. 32–33]).
For instance, an agent may prefer to concede less rapidly in
the early rounds of negotiation and more rapidly as its deadline
approaches. In an MDA, the concession rate is determined with
respect to time preference (0 < λ < ∞) and deadline τ . With

different values of τ , an MDA should adopt different strategies
for making concessions by selecting different values of λ (de-
tails are given below). With infinitely many values of λ, there
are infinitely many possible strategies in making concession
with respect to remaining trading time. However, they can be
classified as follows [37]:

1) Linear: λ = 1 and kt+1 = [T (t, τ, λ)]kt = [1 − (t/τ)]kt .
At any round t, an MDA makes a constant rate of con-
cession �t = kt − kt+1 . At the deadline t = τ , kτ =
[1 − (τ − 1/τ)]kτ−1 and kτ +1 = [1 − (τ/τ)]kτ . Hence,
�τ = kτ − kτ +1 = kτ (an MDA expects and attempts to
narrow the difference completely at the deadline).

2) Conciliatory: kt+1 = [1 − (t/τ)λ]kt , where 0 < λ < 1.
An MDA makes larger concessions in the early trading
rounds and smaller concessions at the later stage.

3) Conservative: kt+1 =[1−(t/τ)λ]kt , where 1< λ<∞.
An MDA makes smaller concessions in early rounds and
larger concessions in later rounds.

Opportunity function: In a multilateral negotiation, having
outside options may give a negotiator more bargaining “power.”
However, negotiations may still break down if the proposals be-
tween two negotiators are too far apart. The opportunity function

O
(
nB

t , v
B→Sj

t ,
〈
w

Sj →B
t

〉)
= 1 −

nB
t∏

j=1

v
B→Sj

t − w
Sj →B
t

v
B→Sj

t − cB

determines the amount of concession based on: 1) trading al-
ternatives (number of trading parties nB

t ) and 2) differences in
utilities (vB→Sj

t ) generated by the proposal of an MDA and the
counter-proposal(s) of its trading party (parties) (〈wSj →B

t 〉 =

{wS1 →B
t , wS2 →B

t , . . . , w
S

n B
t
→B

t }) [33], [36], [37], [41], [42].
cB is the worst possible utility for agent B. When negoti-
ation ends in a conflict (i.e., B fails to reach an agreement
with its trading parties), B obtains its worst outcome cB .
Whereas v

B→Sj

t − w
Sj →B
t measures the cost of accepting a

trading party’s (Sj ’s) last offer (i.e., difference between the

(counter-)proposals of B and Sj ), v
B→Sj

t − cB measures the
cost of provoking a conflict. Details of deriving the O function
are given in [37, p. 714].

Competition function: MDAs are designed for multilateral
negotiations, and rivalry in an e-market is inherent. The amount
of competition of an MDA is determined by the probability that it
is not being considered as the most preferred trading party. The
competition function C(mB

t , nB
t ) determines the probability

that an agent B is ranked as the most preferred trading party by
at least one other agent at round t [33], [36], [37], [41], [42].
If B has mB

t − 1 competitors, and nB
t trading parties, then

C(mB
t , nB

t ) = 1 − [(mB
t − 1)/mB

t ]n
B
t . Details of deriving the

C function are given in [33], [36], [37], [41], and [42].
The general idea of the opportunity and competition functions

is as follows. In favorable markets (i.e., when they have stronger
bargaining positions), MDAs concede less. In unfavorable mar-
kets (i.e., when they have weaker bargaining positions), MDAs
concede more. Some examples of the works that have followed
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up on the work of MDAs by considering the opportunity and/or
competition functions include [12].

Sim [34], [37] has proven that agents adopting a market-
driven strategy negotiate optimally by making minimally suf-
ficient concession in different market conditions (see [37,
Lemmas 4.1 and 4.2, pp. 718–719]). A concession is minimally
sufficient if it achieves the highest possible utility for an MDA
while maintaining a minimum probability of reaching a consen-
sus (see [37, Definition 4.2, p. 718]). Even though conceding
more increases the probability of reaching a consensus, it is inef-
ficient because an MDA “wastes” some of its utility [37, p. 718].
However, if an MDA concedes too little, it runs the risk of losing
a deal. Hence, MDAs are designed to avoid making excessive
concessions in favorable markets and inadequate concessions
in unfavorable markets. In a given market situation, an MDA is
designed to attain the highest possible utility while maintaining
a reasonable probability of reaching a consensus. With respect
to opportunity and competition, Sim [37] has shown that the
amount of concession made by an MDA is minimally sufficient
(see [37, Lemmas 4.1 and 4.2, pp. 718–719]).

Problem Definition: In response to different bargaining dead-
lines, an agent should adopt different strategies (by selecting
different values of λ) in making concessions with respect to
time. With a longer deadline, an agent may find it advantageous
to adopt a more conservative strategy since it has more time
for negotiation. A conciliatory strategy may be more appropri-
ate if an agent is facing a very tight deadline (e.g., it is co-
erced to acquire a resource rapidly). Sim has proven in [33] that
with a longer (respectively, shorter) deadline τ , agents adopt-
ing conservative (respectively, conciliatory) strategies achieve
higher (respectively, lower) utilities, but face higher (respec-
tively, lower) risks of losing deals to competing agents. How-
ever, [33] has only provided mathematical analysis for showing
that for larger τ (respectively, smaller τ ), an agent should adopt
a larger λ (respectively, smaller λ), corresponding to conserva-
tive (respectively, conciliatory) strategies. Finding an exact (or
approximate) value of λ that would optimize both the utility and
success rate of a market-driven bargaining agent under different
τ is an open problem, and addressing this issue is the main im-
petus of this work. This work attempts to answer the question:
“How should an MDA select the appropriate value of λ for its
time function that determines the changing rate of � with re-
spect to time, such that its utility is optimized with a reasonable
probability that a consensus is reached?”. With infinitely many
values of λ, there are infinitely many time-dependent strategies
for an MDA, and finding a solution to this optimization prob-
lem is difficult. One of the possible approaches for addressing
this problem is to use a heuristic method such as GA to search
the population of strategies for a best-response strategy. For
different deadlines and market situations, the problem in this
work is finding a best-response strategy that would optimize:
1) an MDA’s utility; 2) its success rate; and 3) its negotiation
speed. Please see Section III-B for a detailed problem formu-
lation. Section III presents an AFGA to evolve a best-response
strategy to optimize an MDA’s utility, success rate, and ne-
gotiation speed for different deadlines and in different market
situations.

Negotiation protocol: Negotiation proceeds in a series of
rounds as follows. At round t = 0, the e-market opens. At any
round, at most one agent enters the market randomly. Trading
begins when there are at least two agents of the opposite type
(i.e., at least one buyer and one seller). In the first round of trad-
ing, an agent proposes a deal from its space of possible deals
that includes the most desirable (initial) price (IP), the least
desirable (reserve) price (RP), and those prices in between IP
and RP). Typically an agent proposes its most preferred deal
initially. Adopting Rubinstein’s alternating offers protocol [32,
p. 100], a pair of buyer and seller agents negotiates by mak-
ing proposals in alternate rounds. Many buyer–seller pairs can
negotiate deals simultaneously. If no agreement is reached, ne-
gotiation proceeds to another round. At every round, an agent
determines its amount of concession using the time, opportunity,
and competition functions (see Section II). Negotiation between
two agents terminates: 1) when an agreement is reached or 2)
with a conflict when one of the two agents’ deadline is reached.

e-Market structure: In summary, the e-market can have mul-
tiple buyers and multiple sellers. There can be a varying number
of buyers and sellers in the e-market because agents can ran-
domly enter or leave the market at different times. A buyer
(respectively, seller) agent leaves the e-market when its dead-
line is reached or when it has reached an agreement with a seller
(respectively, buyer) agent. While in the e-market, a buyer (re-
spectively, seller) agent negotiates with all seller (respectively,
buyer) agents in the e-market. Since the number of buyers and
sellers in the e-market can vary, an agent’s bargaining position at
each negotiation round may also change. Based on its bargaining
position, a buyer (respectively, seller) generates its proposal to
each seller (respectively, buyer) using the opportunity, competi-
tion, and time functions that take into consideration the number
of buyers and sellers in the market, the difference between the
buyer’s (respectively, seller’s) proposal and the proposal of each
seller (respectively, buyer), and the remaining trading time.

III. AGGREGATIVE FITNESS GA

Evolutionary algorithms (such as GAs) are appropriate
mechanisms for solving multiobjective optimization problems
because they deal simultaneously with a set of possible
solutions (represented as a population) that allows an entire
set of Pareto optimal solutions to be found in a single run
of the algorithm rather than performing a series of separate
runs [5]. This section introduces an AFGA to learn and evolve
the best-response strategies for different negotiation situations.
An AFGA generates a sequence of populations as the outcome
of a search method, modeled using a selection mechanism,
crossover (recombining existing genetic materials in new
ways) and mutation (introducing new genetic materials by
random modifications). In this work, the individuals of the
population are negotiating agents, and their genetic materials
are the parameters of the market-driven negotiation strategies.
Two populations representing buyer negotiation agents and
seller negotiation agents are used. Both the buyer and seller
populations coevolve simultaneously and dynamically by
learning successful parameter settings for their respective
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survival, and the fitness of an individual in one population is
based on direct competition with individuals from the other
population [30]. While Section III-A describes the chromosome
structure consisting of parameters that affect an MDA, details
of the aggregative fitness of these negotiation strategies are
given in Section III-B, and AFGA’s search algorithm together
with the GA operations are detailed in Section III-C.

A. Chromosome Structure

In determining an appropriate representation of the genes, the
following is considered. Recall that kt+1 determines an MDA’s
amount of concession in the next round (t + 1) (see Section II),
and the value of kt+1 is determined by〈

v
B→Sj

t , w
Sj →B
t , nB

t ,mB
t , t, τ, λ

〉

where v
B→Sj

t , w
Sj →B
t , nB

t , mB
t , and t are determined by the

negotiation situation at round t. v
B→Sj

t is the utility generated
by the proposal of agent B, w

Sj →B
t is the utility generated by

the proposal of its trading party Sj , nB
t is the number of trading

parties, and mB
t is the number of competitors.

Hence, only λ is used to determine the strategy of an MDA,
where different values of λ represent different attitudes toward
deadline (τ ). To evolve the best-response negotiation strate-
gies using AFGA, a society of negotiation agents with different
strategies is created as the individuals of a population. The ge-
netic materials of these individuals consist of the parameters
(i.e., λ and τ ) that affect the MDA strategies. Each agent is rep-
resented as a fixed-length string, and more specifically, the bits
of a string (a chromosome) have the following structure:

1) λ: real. The value of λ determines an agent’s strategy.
Accordingly, genetic operations only take place on the
bits of a chromosome that represent the value of λ.

2) τ : integer. The maximum time an agent can negotiate.
3) f : real. The fitness value.

B. Fitness Functions

An MDA’s fitness value indicates how well it performs with
the λ value that it adopts in comparison to others in the same pop-
ulation. Similar to basic evolutionary ideas, fitness determines
an MDA’s chance of surviving to the next population genera-
tion. With a higher fitness, an MDA is more likely to be selected
for reproduction. To compute an agent’s fitness, a round-robin
tournament is played in which each buyer MDA negotiates with
each seller MDA. Each MDA is assigned a fitness score that
determines the performance of its strategy. The fitness value of
a chromosome (corresponding to a strategy) is determined by
the negotiation results as the chromosome negotiates with other
chromosomes. Since the score of a negotiation strategy is de-
termined by three objectives: utility (U ), success rate (S), and
negotiation speed (T ), for this multiobjective problem, every
solution has three fitness values (one for each objective). For
example, for a negotiation result X = (XU ,XS ,XT ), where
XU , XS , and XT are the negotiation results of all the three
objectives of the negotiation result X, respectively, the function
fI (XI ) is the performance measure I of the result XI , in which

I ∈ {U, S, T}. To normalize the three performance measures
of a negotiation result to the same range (fI (XI ) : XI → [0, 1]
here), the performance measure I of the result XI , i.e., fI (XI ),
is defined as

fU (XU ) =
XU − min(XU )

max(XU ) − min(XU )
(2a)

fS (XS ) =
XS − min(XS )

max(XS ) − min(XS )
(2b)

fT (XT ) =
max(XT ) − XT

max(XT ) − min(XT )
(2c)

where max(XI ) and min(XI ) are, respectively, the maximum
and minimum values of the performance measure I .

Hence, the fitness value f(X) for the multiobjective opti-
mization problem in this work can be expressed as follows:

max
X

f(X) = f(fU (XU ), fS (XS ), fT (XT )). (3)

In defining f(X), two issues need to be considered: 1) MDAs’
constraints on multiple objectives. In this work, the cut-set tech-
nique in fuzzy mathematics [19] is used to describe these con-
straints. For an objective I ∈ {U, S, T}, each constraint can be
described as cI ∈ [0, 1]; and 2) MDAs’ preferences for placing
the importance of the three objectives, which are represented
as their priorities. In this work, the priority of an objective
I ∈ {U, S, T} is represented as wI ∈ [0, 1]. Both the constraints
and preferences of MDAs for the three objectives for a negoti-
ation result X are used to define the function f(X), given as
follows:

f(X) =

∑
I∈{U,S,T }(wI � µI (fI (XI )))

3
(4)

where µI (fI (XI )), I ∈ {U, S, T}, is defined as

µI (fI (XI )) =
{

fI (XI ), if fI (XI ) > cI

0, otherwise

and operator � : [0, 1] × [0, 1] → [0, 1], called a priority opera-
tor, satisfies [9, p. 50]

1) ∀a1 , a2 , a
′
2 ∈ [0, 1], a2 ≤ a′

2 =⇒ a1 � a2 ≤ a1 � a′
2 .

2) ∀a1 , a
′
1 , a2 ∈ [0, 1], a1 ≤ a′

1 =⇒ a1 � a2 ≥ a′
1 � a2 .

3) ∀a ∈ [0, 1], 1 � a = a.
4) ∀a ∈ [0, 1], 0 � a = 0.
In this work, the operator � : [0, 1] × [0, 1] → [0, 1] is given

by1

a1 � a2 = (a2 − 1) × a1 + 1. (5)

Example: Let the priority set be wU = 0.9, wS = 0.3,
and wt = 0.3. Assume that µU (fU (XU )) = 0.8,
µS (fS (XS )) = 0.4, and µT (fT (XT )) = 0.7. Using (4)
and (5), the fitness value f(X) is given by f(X) =
((0.9 � 0.8) + (0.3 � 0.4)+(0.3 � 0.7))/3=((0.8−1) × 0.9 +
1 + (0.4 − 1) × 0.3 + 1 + (0.7 − 1) × 0.3 + 1))/3 = 2.56.

The value of the constraint cI ∈ [0, 1] of objective I acts
as a threshold for calculating the fitness value of a negotia-
tion outcome. A larger value of cI indicates that an MDA has

1The proof for the definition of the priority operator � is omitted due to lack
of space.
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rigorous requirement on objective I . For example, a combi-
nation C = 〈cU = 0, cS = 0, cT = 0〉 models the situation that
an MDA has no constraint on the multiple objectives. In con-
trast, a combination C = 〈cU = 0.8, cS = 0.8, cT = 0.8〉 indi-
cates that an MDA has rigorous requirement on the three objec-
tives.

As agent designers may have different preferences for dif-
ferent objectives, it seems intuitive to place “weights” on the
individual fitness values taking into account the constraints of
the multiple objectives using the priority operator �, and aggre-
gating individual fitness using the weights to produce a single
fitness value for every negotiation outcome, thus allowing the
AFGA to rank all the negotiation outcomes. The priority oper-
ator � is used to express agents’ different preferences on the
three objectives. For instance, if an MDA has sufficient time
for negotiation (e.g., 70 rounds—it was found by experimental
tuning that the upper limit of deadlines is 70) and higher chance
to reach an agreement, then it may place more emphasis on op-
timizing its utility, and less emphasis on negotiation speed and
success rate. In contrast, when an MDA has shorter deadline for
negotiation (e.g., 15 rounds—it was found by experimental tun-
ing that the lower limit of deadlines is 15) and lower chance to
reach an agreement, it may place more emphasis on negotiation
speed and success rate.

The set of priority values of all the objectives can be elicited
according to the relative importance of a subset of the three
objectives. The value of wI may be classified as follows:

1) wI = 0 represents that an MDA does not consider the
performance measure I .

2) 0 < wI < 0.3 represents that an MDA places low empha-
sis on the performance measure I .

3) 0.3 ≤ wI < 0.7 represents that an MDA places moderate
emphasis on the performance measure I .

4) 0.7 ≤ wI ≤ 1 represents that an MDA places high em-
phasis on the performance measure I .

For example, a combination W = 〈wU = 0.9, wS =
0.3, wT = 0.3〉 indicates that an MDA places very high pri-
ority in optimizing its utility but at the same time, hopes to
complete negotiation in a short time and maintains a certain
level of possibility of reaching an agreement. Another combina-
tion W = 〈wU = 1, wS = 1, wT = 1〉 indicates that an MDA
places equal emphasis on all the three performance measures.

C. Genetic Algorithm

Details of the AFGA (see Fig. 1) are given as follows:
1) Generation of the first population (Step 1). In this step,

the initial population is created by randomly generating
chromosomes representing (both buyer and seller) MDAs
with different values of λ.

2) Fitness calculation (Step 2). When a new population is
generated, each chromosome representing a buyer (re-
spectively, seller) MDA first negotiates with other chro-
mosomes representing seller (respectively, buyer) MDAs,
and the negotiation result obtained by each chromosome is
used to determine its fitness using f(X) (see Section III-
B). The evolution of the strategies of individuals in the

Fig. 1. Algorithm for getting the best-response negotiation strategy.

population representing buyer (respectively, seller) MDAs
affects the strategies of individuals in the population repre-
senting seller (respectively, buyer) MDAs. For instance, as
a buyer MDA adapts and evolves its strategy, the amounts
of concessions it made to other seller MDAs would also
cause other seller MDAs to revise and adapt their own
strategies because other seller MDAs are also evolving
their strategies as they negotiate with the buyer MDAs.

3) Elitist selection [1], [7] (Step 3). The chromosome with
the highest fitness BestPt

in the current population Pt is
selected and included as part of the new population Pt+1
in the next round t + 1. Selection, crossover, and mutation
are applied to the other n − 1 individuals (let them be P ′

t+1
here) in Pt .

4) Tournament selection process (Step 4). Tournament selec-
tion is used in the AFGA for selecting individuals from
Pt for inclusion in the mating pool. Through tournament
selection, k individuals are randomly selected from Pt .
The individual with the highest fitness among the selected
k individuals is placed in the mating pool. This process is
repeated n − 1 times, where n is the size of the popula-
tion. k is called the tournament size (in this work, k is 2)
and it determines the degree to which the best individuals
are favored. The tournament selection process generates
n − 1 new chromosomes (that forms P ′

t+1) for applying
the crossover and mutation operations. Tournament selec-
tion is adopted in the AFGA in this work because using
tournament selection, it is more likely that the mating pool
will comprise a more diverse range of chromosomes (i.e.,
negotiation agents in this work). This is essential for facil-
itating a more thorough exploration of the search space,
especially in the early stages.

5) Crossover process (Step 5). Crossover between chromo-
somes is carried out as follows. Two individuals from P ′

t+1
are randomly selected. The crossover operation is only per-
formed on the bits representing the value of λ. Crossover
points are randomly selected and sorted in ascending order.
The chromosomes between successive crossover points
are alternately exchanged between the individuals, with a
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probability Pc. Through experimental tuning, a value of
Pc = 0.6 is adopted.

6) Mutation process (Step 6). Mutation is carried out as fol-
lows. Like crossover, it is only performed on the bits repre-
senting the value of λ. Some of the chromosomes in P ′

t+1
are randomly selected for mutation. For the selected chro-
mosomes, a random value chosen from the domain of the
chromosome is used to replace the value of selected bits
representing the value of λ. The remaining chromosomes
have a probability Pm(t) of undergoing mutation where
Pm(t) is defined following [2] and is given as follows:

Pm(t) =
(

2 +
l − 2
T − 1

t

)−1

(6)

where l is the length of the string used to encode agents’
strategies and T is the maximum number of iterations
that the AFGA may run. From (6), it can be seen that:
1) at the start of the AFGA, the mutation rate is rel-
atively high, e.g., when t = 0 (the initial population),
Pm(t) = 1/2; 2) the mutation rate finishes with an opti-
mal mutation rate [27] Pm(t) = 1/n (that is proportional
to l) when t = T − 1; and 3) Pm(t) decreases with the in-
crease of t since d

(
Pm(t)

)
/dt = −(l − 2)/(T − 1)(2 +

(l − 2)/(T − 1)t)−2 < 0, which is helpful with respect to
the convergence reliability and velocity of a GA.

After applying selection, crossover, and mutation, the
population in the next generation (Pt+1) is composed of
the fittest individuals from the population Pt in the previ-
ous round together with n − 1 newly created individuals
P ′

t+1 .
7) Stopping criterion (Step 8). The algorithm stops when the

population is stable (e.g., 95% of the individuals have the
same highest fitness) or the number of iterations reaches
a predetermined maximum (e.g., 100).

In summary, AFGA is applied to evolve an agent’s
best-response strategy in different negotiation environments
(see Table III, for a summary of the different negotiation envi-
ronments in terms of market density, market type, and deadline).
In each negotiation environment, when the AFGA terminates,
the chromosome in the final population that has the highest fit-
ness is extracted. The value of λ of this chromosome, which
has the highest fitness, is the best-response strategy for that
negotiation environment.

For each given market situation, the λ value of the chromo-
some with the highest fitness will be adopted by the GA-MDA
when it negotiates with other MDAs (adopting randomly se-
lected value of λ) in the virtual e-market during the simulation.

IV. EVALUATION AND EXPERIMENTATION

A. TestBed

To evaluate the performance of GA-MDAs (i.e., enhanced
MDAs [33], [36], [37], [41]–[43] that are programmed to
evolve the best-response strategies for different market situa-
tions and deadline constraints using an AFGA), a testbed is
built. The testbed consists of: 1) a virtual e-market; 2) a society

TABLE I
INPUT DATA SOURCES

of negotiation agents comprising both MDAs and GA-MDAs;
and 3) a controller (manager) agent. While the design of an MDA
is described in Section II, a GA-MDA is an MDA that is aug-
mented with an AFGA for evolving the best-response strategies
in different market situations. The controller agent generates
negotiation agents (both MDAs and GA-MDAs), randomly de-
termines their parameters (e.g., their roles as either buyers or
sellers, IP, RP, negotiation strategies, and deadlines), and simu-
lates the entrance of agents to the virtual e-market. Agentsin the
e-market adopt the following negotiation protocol in Section II.

Using the testbed and adopting the negotiation protocol de-
scribed in Section II, a series of experiments was carried out to
compare the performance of GA-MDAs with that of the best-
performing, the average-performing, and the worst-performing
MDAs in a very wide variety of test environments. In the exper-
iments, both GA-MDAs and MDAs were subjected to different
market densities, different market types, and different deadlines
(Table I).

B. Experimental Settings

All the three input parameters in Table I are randomly gen-
erated following a uniform distribution. Both market type and
market density, respectively, depend on the probability of the
agent being a buyer (or a seller) and the probability of generat-
ing an agent in each round. From a buyer agent’s perspective,
for a favorable (respectively, an unfavorable) market, an agent
enters a market with lower (respectively, higher) probability of
being a buyer agent and higher (respectively, lower) probability
of being a seller. The lifespan of an agent in the e-market, i.e.,
its deadline, is randomly selected from [15, 70]. The range of
[15, 70] for deadline is adopted based on experimental tuning
and agents’ behaviors. In current experimental setting, it was
found that: 1) for very short deadline (<15), very few agents
could complete deals and 2) for deadlines >70, there was little
or no difference in the performance of agents. Hence, for the
purpose of experimentation, a deadline between the range of
18–25 (respectively, 35–45 and 60–70) is considered as short
(respectively, moderate and long).

To enable GA-MDAs to evolve the best-response negoti-
ation strategies for different negotiation environments in a
wide strategy space, the search strategy space (the scope of
λ) of GA-MDAs is [0.001, 100] because through experimental
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TABLE II
PERFORMANCE MEASURE

tuning, it was found that when λ > 100 (respectively, λ <
0.001), agents made little (respectively, large) compromises at
the beginning of negotiation and there was almost no differ-
ence in performance of agents. After exploring different search
spaces (e.g., [0.001, 100], [0.0005, 100], [0.001, 300]) of λ in
different negotiation environments, it was found that the values
of λ for GA-MDAs in different negotiation environments con-
verged to the range [0.1, 10] (see the values in Table III). To
compare the performance of GA-MDAs and MDAs in the same
strategy space, the values of λ used by MDAs in the experiments
were generated randomly following a uniform distribution from
the range [0.1, 10]. Following the guidelines prescribed in
[34, Propositions 5 and 6], for long deadlines (60 − 70)
(see Table I), an MDA selects from the range [>1, 10] (i.e., the
class of conservative strategies in the range of [0.1, 10]), and for
short deadlines (18−25), it selects from the range [0.1, <1] (i.e.,
the class of conciliatory strategies in the range of [0.1, 10]). Sim
has proven in [34, Proposition 5, respectively, Proposition 6] that
with a longer (respectively, shorter) deadline τ , agents adopt-
ing conservative (respectively, conciliatory) strategies achieve
higher (respectively, lower) utilities, but face higher (respec-
tively, lower) risks of losing deals to competing agents.

C. Performance Measure

Expected utility, success rate, and average negotiation speed
are used as performance measures in the experiments (Table II).
It was pointed out in [15] and [42] that other than optimizing
agents’ utility, enhancing the success rate is also an important
evaluation criterion for designing negotiation agents. Since ne-
gotiation outcomes of each agent are uncertain (i.e., there are
two possibilities: eventually reaching a consensus or not reach-
ing a consensus), it seems more prudent to use expected utility
(rather than average utility) as a performance measure because it
takes into consideration the probability distribution over the two
different outcomes [42]. Average negotiation speed is a measure
of the average number of negotiation rounds needed to reach an
agreement.

D. Results

An extensive amount of stochastic simulations was carried
out for all the combinations of market density (dense, moderate,
sparse), market type (favorable, almost balanced, unfavorable)

TABLE III
THE BEST-RESPONSE STRATEGIES OF GA-MDAS IN DIFFERENT MARKETS(

cU = 0, cS = 0, cT = 0, wU = 0.9, wS = 0.3, wT = 0.3
)

and deadline (short, moderate, long). A total of 27 (3 × 3 × 3)
combinations of the input parameters representing different ne-
gotiation environments were used. In addition, there are dif-
ferent combinations of constraints on multiple objectives and
3 × 3 × 3 = 27 combinations of priority values for each nego-
tiation environment. For a specific experimental environment,
we tried different scenarios (more than 100) and obtained the
average values for all performance measures. Even though ex-
periments were carried out for all the situations subject to the
constraint set, evaluation function, market density, market type,
and deadline, due to space limitation, only some representa-
tive results are presented in this section. For the empirical re-
sults presented in this section, the combination of constraints
C = 〈cU = 0, cS = 0, cT = 0〉 is used in the experiments. Two
sets of empirical results are presented in this section: 1) the
best-response negotiation strategies evolved and obtained from
the AFGA (Section IV-E) and 2) empirical results that com-
pare the performance of GA-MDAs with MDAs (Section IV-
F–H). Whereas Table III summarizes the best-response nego-
tiation strategies for different market situations evolved using
the AFGA, the empirical results that compare the performance
of GA-MDAs with MDAs are plotted and shown in Figs. 2–
19. In each of the graphs in Figs. 2–19, there are four curves:
“GA-MDA,” “Best-MDA,” “MDA,” and “Worst-MDA,” re-
spectively, representing the performance of GA-MDA, the best-
performing MDA, the average-performing MDA, and the worst-
performing MDA for the three performance measures: utility,
success rate, and negotiation speed.

E. Evolving Best-Response Strategies

Sim [34] has proven that by adopting a larger value of λ,
an MDA is more likely to achieve higher utilities, but at the
same time, it may face higher risks of losing deals and per-
haps more likely to reach agreements later. Hence, despite the
variations in input parameters, any variation in the value of λ

will also result in varying all the three performance measures
in different negotiation situations. Since there are 27 combi-
nations for the input parameters and 27 combinations of con-
straints on multiple objectives (see Section IV-D), there are
27 × 27 = 639 combinations of negotiation situations in which
best-response strategies need to be evolved. Table III reports
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the best-response strategies of GA-MDAs for different market
densities, market types, and deadlines for the priority combina-
tion W = 〈wU = 0.9, wS = 0.3, wT = 0.3〉 (i.e., a GA-MDA
places very strong emphasis on optimizing its utility, but hopes
to complete negotiation in a reasonably short time and main-
tains a certain level of success rate in reaching an agreement).
Similar experiments were also carried out for other representa-
tive combinations of the priority combinations, e.g., for W =
〈wU = 0.3, wS = 0.9, wT = 0.3〉 and W = 〈wU = 0.3, wS =
0.3, wT = 0.9〉. With W = 〈wU = 0.3, wS = 0.9, wT = 0.3〉,
the GA-MDA places very strong emphasis on reaching agree-
ments successfully, but hopes to complete negotiation in
a reasonably short time and maintains a certain level of
utility. With W = 〈wU = 0.3, wS = 0.3, wT = 0.9〉, the GA-
MDA places very strong emphasis on completing negotiation
rapidly, but hopes to achieve a certain level of utility and
maintains a reasonably good chance of successfully reach-
ing agreements. For W = 〈wU = 0.3, wS = 0.9, wT = 0.3〉
and W = 〈wU = 0.3, wS = 0.3, wT = 0.9〉, empirical results
similar to those for W = 〈wU = 0.9, wS = 0.3, wT = 0.3〉
were obtained. However, space limitation precludes the results
for W = 〈wU = 0.3, wS = 0.9, wT = 0.3〉 and W = 〈wU =
0.3, wS = 0.3, wT = 0.9〉 from being included here.

Table III shows the best-response values of λ subjected to
different market densities, market types, and deadlines. From
Table III, it can be observed that:

1) Given the same market density and market type, but with
shorter deadlines, GA-MDAs make more concessions by
adopting a smaller value of λ. This observation corre-
sponds to the intuition that with shorter deadlines, an
agent faces higher risk of not reaching an agreement if it
makes too small amounts of concessions. Failing to reach
an agreement is not only an agent’s worst outcome, but it
will also lower the agent’s success rate. Consequently, GA-
MDAs react to more stringent time constraints by making
larger amounts of concessions (i.e., adopting smaller val-
ues of λ).

2) Given the same market density and deadline, but in an
unfavorable market, a GA-MDA makes more concessions
by adopting a smaller value of λ. In an unfavorable market,
a GA-MDA’s bargaining position is weak, and it faces
higher risk of not reaching an agreement if it makes too
small amounts of concessions.

3) Given the same market type and deadline, but with lower
market density, a GA-MDA makes more concessions by
adopting a smaller value of λ. With low market densities,
GA-MDAs have lower chance of reaching an agreement.
To increase their probabilities of reaching an agreement,
GA-MDAs make more concessions by adopting a smaller
value of λ.

It is noted that each value of λ in Table III has two decimal
places, and hence, the maximum error of representing the val-
ues of λ is lower than 0.01. Similarly, other values of λ can
also be obtained for other different negotiation situations and
fitness functions using the proposed AFGA. In the series of ex-
periments that compares the performance of GA-MDAs with
MDAs (see Section IV-F–H), GA-MDAs were programmed to

Fig. 2. Expected utility and deadline.

Fig. 3. Expected utility and deadline.

adopt the values of λ in Table III while the values of λ of MDAs
were generated randomly. Even though experiments were car-
ried out to compare the performance of GA-MDAs and MDAs
in dense, moderate, and sparse markets, space limitations pre-
clude all the results from being included in Section IV-F–H.
In Section IV-F–H, only results comparing the performance of
GA-MDAs with that of MDAs in dense markets are presented.

F. Observation 1

When both MDAs and GA-MDAs are subjected to differ-
ent deadlines and market types, GA-MDAs achieved higher
Uexpected than MDAs.

It can be observed from Figs. 2–4 that for all deadlines and
market types, GA-MDAs achieved higher utilities than MDAs
(for example, in Fig. 2, when the deadline is between 35 and
39, the expected utilities are 0.54 for GA-MDAs, and 0.35 for
MDAs, respectively). However, in unfavorable markets, the dif-
ference between the utilities of GA-MDAs and MDAs tapers.
For example, in Figs. 2–4, when the deadline is between 35 and
39, the expected utilities are 0.54 for GA-MDAs and 0.35 for
MDAs in favorable markets, respectively; 0.51 for GA-MDAs
and 0.37 for MDAs in balanced markets, respectively; and 0.46
for GA-MDAs and 0.33 for MDAs in unfavorable markets, re-
spectively. This is because in unfavorable markets, the bargain-
ing positions of both GA-MDAs and MDAs are weaker and if
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Fig. 4. Expected utility and deadline.

Fig. 5. Expected utility and buyer–seller ratio.

agreements are reached, both GA-MDAs and MDAs are likely
to make relatively more concessions.

Additionally, it can also be observed from Figs. 5–7 that
GA-MDAs achieved higher utilities than MDAs for all buyer–
seller ratios and all deadlines. However, from Fig. 7, it can
be observed that in favorable markets and when both types of
agents have longer deadlines, the difference in their utilities
tapers, particularly, for buyer-favorable markets such as buyer–
seller ratios of 1:10, 1:30, and 1:50. Even though the strategies
of both GA-MDAs and MDAs are designed for both buyers and
sellers, for ease of exposition, the empirical results in this section
are plotted from the perspectives of buyer GA-MDAs and buyer
MDAs only. Hence, buyer–seller ratios such as 1:10, 1:30, and
1:50 are favorable for buyer GA-MDAs and buyer MDAs. In
favorable markets and when both types of agents are subjected
to longer deadlines, they have stronger bargaining positions and
they are both likely to make less concessions.

From Figs. 2–7, it can be seen that GA-MDA generally
achieved higher Uexpected than Best-MDA, and the Uexpected
of Worst-MDA is much lower than that of MDA, Best-MDA,
and GA-MDA.

G. Observation 2

When both MDAs and GA-MDAs are subjected to different
deadlines and market types, GA-MDAs achieved higher Rsuccess
than MDAs.

Fig. 6. Expected utility and buyer–seller ratio.

Fig. 7. Expected utility and buyer–seller ratio.

Fig. 8. Success rate and deadline.

It can be observed from Figs. 8–10 that for all deadlines
and market types, GA-MDAs achieved higher Rsuccess than
MDAs. For example, in Fig. 8, the success rates are 0.95 for
GA-MDAs and 0.48 for MDAs when the deadline is between
35 and 39. However, for very short deadlines (i.e., shorter than
20), Rsuccess of both GA-MDAs and MDAs are relatively lower
(Fig. 11). Under very extreme (or very adverse) trading con-
ditions (e.g., with very short deadlines), it is extremely diffi-
cult for both GA-MDAs and MDAs to reach agreements. From
Fig. 13, it can be observed that for longer deadlines (e.g., 50 and
longer), Rsuccess of both GA-MDAs and MDAs almost coincide
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Fig. 9. Success rate and deadline.

Fig. 10. Success rate and deadline.

(the same behavior is also recorded for deadlines longer than 70).
With long deadlines, both GA-MDAs and MDAs have plenty of
time for trading and they are both likely to complete deals suc-
cessfully. Additionally, from Figs. 8–10, it can also be observed
that in unfavorable markets, the difference in success rates be-
tween GA-MDAs and MDAs tapers. In unfavorable markets,
both GA-MDAs and MDAs have weaker bargaining positions
and it would be relatively more difficult for both GA-MDAs and
MDAs to complete their deals successfully.

From Figs. 8–13, it can be seen that even though the success
rate of Best-MDA is close to that of GA-MDA, the success rate
of GA-MDA is still slightly higher than that of Best-MDA in
most cases. However, the success rate of Worst-MDA is much
lower than that of MDA, Best-MDA, and GA-MDA.

H. Observation 3

When both MDAs and GA-MDAs are subjected to different
deadlines and market types, GA-MDAs generally take fewer
negotiation rounds for reaching agreements than MDAs.

From Figs. 14–19, it can be observed that GA-MDAs gener-
ally achieved lower Rtime than MDAs. For example, in Fig. 14,
when the deadline is between 35 and 39, the average number
of negotiation rounds are 23 for GA-MDAs, and 33 for MDAs,
respectively. However, for very short deadlines (i.e., less than
40), the Rtime of GA-MDAs is not significantly lower than the

Fig. 11. Success rate and buyer–seller ratio.

Fig. 12. Success rate and buyer–seller ratio.

Fig. 13. Success rate and buyer–seller ratio.

Rtime of MDAs, especially when the deadline is less than 30
(see Figs. 14–16). With (very) short deadlines, both GA-MDAs
and MDAs have very little time for trading and GA-MDAs did
not outperform MDAs in terms of Rtime for all buyer–seller
ratios (see Fig. 17). With longer deadlines, GA-MDAs clearly
outperformed MDAs in terms of Rtime for all buyer–seller ratios
(see Figs. 18 and 19).

From Figs. 14–19, it can be observed that GA-MDA generally
took shorter average negotiation time than Best-MDA, and the
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Fig. 14. Average negotiation speed and deadline.

Fig. 15. Average negotiation speed and deadline.

Fig. 16. Average negotiation speed and deadline.

average negotiation time of Worst-MDA is much longer than
that of MDA, Best-MDA, and GA-MDA.

V. RELATED WORK

The literature of automated negotiation and negotiation agents
(e.g., [10], [20], [33], [36], [37], [41]–[43]) forms a very large
collection and space limitations preclude introducing all of them
here. For a survey on negotiation agents for e-commerce and grid
resource management, see [15], [24], and [40], respectively. This
section only introduces and discusses related work on applying

Fig. 17. Average negotiation speed and buyer–seller ratio.

Fig. 18. Average negotiation speed and buyer–seller ratio.

Fig. 19. Average negotiation speed and buyer–seller ratio.

GAs to automated negotiation. In general, GAs are used to
enhance automated negotiation in two ways: 1) GAs were used
as a decision making component at every round, e.g., [22] and
[23] and 2) GAs were used to learn the best strategies, e.g., [25].
The GA used in this work falls into the second kind.

Determining successful negotiation strategies: Matos et al.
[25] have utilized GA for learning the most successful bargain-
ing strategies in different circumstances (e.g., when an agent
is facing different opponents). The negotiation model in [25]
is based on the negotiation model in [10], in which an agent
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has a range of strategies based on time-dependent, resource-
dependent, and behavior-dependent NDFs. Time-dependent
NDFs consist of: 1) the Boulware tactic; 2) the Conceder tactic;
and 3) the Linear tactic. Whereas the Boulware tactic main-
tains an agent’s bid/offer until almost toward the end of trading
(whereupon it concedes up to the reservation value), in the Con-
ceder tactic, an agent rapidly concedes to its reservation value.
Resource-dependent NDFs (consisting of impatient, steady, and
patient tactics) generate proposals based on how a particular re-
source (e.g., remaining bandwidth) is being consumed. Agents
become more conciliatory as the quantity of resource dimin-
ishes. In behavior-dependent NDFs, an agent generates its pro-
posal by replicating (a portion of) the previous attitude of its
opponent. An agent’s strategy is based on a combination of the
time-dependent, resource-dependent, and behavior-dependent
NDFs. By placing different weightings for the time-dependent,
resource-dependent, and behavior-dependent NDFs, different
strategies can be composed. In [25], each agent is represented
as a chromosome (or a string of fixed length). The bits of a string
(or a chromosome) encode the parameters of an agent’s strat-
egy. In [25], agents negotiate over two issues, hence each of the
strings encodes the two negotiation issues, the negotiation dead-
line, and the weighting of each of the combinations of tactics. In
their GA, tournament selection is used to create the mating pool
of the chromosomes that form the basis for the next population.
The three basic genetic operators: reproduction, crossover, and
mutation were used for generating new (and better) strategies.
Whereas empirical studies seem to indicate the agents in [25]
are generally effective in learning the best-response strategies
for different circumstances, they are only designed to model bi-
lateral negotiations, and notions of competition and opportunity
are not explicitly modeled.

Evolutionary Learning and Adaptive Negotiation Agents: Lau
et al. [22], [23] present an evolutionary learning approach
for designing negotiation agents. Adopting GA as a heuristic
search for deriving potential negotiation solutions, their negoti-
ation agents adapt to changing behaviors of their opponents by
learning about their preferences through their previous counter-
offers. In [22], [23], negotiation agents are designed with the
intuition of not only optimizing an agent’s individual payoff but
also striving to ensure that a consensus is reached. The authors
represent a subset of feasible offers in a negotiation round as
a population of chromosomes, and their GA approach evalu-
ates the effectiveness of a negotiation solution using a fitness
function that determines both: 1) the similarity of a negotia-
tion solution to that of an opponent’s proposal according to a
weighted Euclidean distance function and 2) the optimality of
the negotiation solution. In their GA approach, each chromo-
some encodes an offer using a fixed number of fields. The genes
(fields) of each chromosome encode the unique identity of the
chromosome, its fitness, and the attributes of an offer such as
price, quantity, and shipment. Similar to [25], the GA in [22]
and [23] utilizes the three genetic operators of reproduction,
crossover, and mutation, and, at each iteration, either the tourna-
ment or Roulette-wheel selection is used to select chromosomes
from the current population for creating a mating pool. Empir-
ical results obtained by the authors seem to indicate that their

GA-based negotiation agents can acquire effective negotiation
tactics. Like agents in [25], the agents in [22] and [23] do not
explicitly model outside options and market rivalry.

Tracking shifting tactics and changing behaviors: Krovi
et al. [21] have devised a GA-based model for negotiation.
Their work addressed the issue of tracking the shifting negoti-
ation tactics and changing preferences of negotiators. In Krovi
et al.’s [21] adaptive negotiation agents (ANAs), decision mak-
ing of a negotiator is modeled with computational paradigms
based on GAs. Novel features of ANA include: 1) the adoption
of different tactics in response to opponents’ tactics; 2) mod-
eling the knowledge of opponents’ preferences; 3) considering
the cost of delaying settlements; 4) achieving different levels of
goals in negotiation; and 5) considering the different magnitude
of initial offers. The GA-based negotiation mechanism is used
to model the dynamic concession matching behavior arising in
bilateral negotiation situations. In [21], the set of feasible offers
of an agent is represented as a population of chromosomes, and
the “goodness” of each chromosome (i.e., each feasible offer)
is measured by a fitness function derived from Social Judgment
Theory (SJT). Similar to [22], [23], and [25], the three basic
genetic operators of reproduction, crossover, and mutation were
used in the GA in [21], and using a predefined number of iter-
ations, the fittest chromosomes from the current population is
selected as a tentative solution that represents the counter-offer.
One of the disadvantages of ANA is that since the fitness func-
tion is based on SJT, an agent’s evaluation of its opponent’s
counter-offer(s) may be subjective. Furthermore, agents in [21],
like those in [22], [23], and [25], are only designed for bilateral
negotiations.

Trade GA: Montano–Rubenstein and Malaga proposed an ap-
proach that employs a GA for finding solutions for multilateral
negotiation problems involving multiple attributes [31]. In addi-
tion to the basic genetic operators such as crossover, and muta-
tion, Trade GA is characterized by having a new genetic operator
called trade for addressing problem specific characteristics. The
trade operator models a concession making mechanism that is
often used in negotiation systems. It simulates the exchange of a
resource of one negotiator with a resource of another negotiator.
When the trade operator is applied, participants (negotiators)
and resources are randomly selected based on their willing-
ness to trade. In [31], the performance of Trade GA is compared
with traditional GA, random search, hill climbing algorithm, and
nonlinear programming, and empirical results seem to suggest
that Trade GA outperformed all the other approaches. However,
like [21]–[23] and [25], Trade GA does not explicitly model
market factors such as market rivalry and outside options.

Learning Negotiation Rules: In [26], GA is used to learn
effective rules for bolstering a bilateral negotiation process. Un-
like the work in [25] and [21]–[23] in which chromosomes are
used to encode strategies and offers respectively, chromosomes
in [26] represent (classification) rules. In [26], the fitness of a
rule (choromosome) is determined by the frequency that the rule
is used to contribute to a successful negotiation process (i.e., the
number of times the rule is used to contribute to reaching a con-
sensus). The basic genetic operators of reproduction, crossover,
and mutation were used. Empirical results seem to indicate that

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 8, 2009 at 14:31 from IEEE Xplore.  Restrictions apply.



296 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 3, MAY 2009

genetically learned rules are effective in supporting users in
several bilateral negotiation situations. The results in [26] also
show that in a bargaining process, an effective negotiation rule is
one that prescribes small step concessions and introduces new
issues into the negotiation process. However, it is noted that
in [26] only simple examples of bilateral bargaining (e.g, a two-
party bargaining over house purchase) are used. Nevertheless, it
is acknowledged that [26] is one of the earliest works that utilize
a GA for bolstering negotiation support systems.

Bargaining With Discount Factors and Outside Options: Jin
and Tsang [16] constructed a two-population coevolutionary
system implemented using genetic programming (GP) for solv-
ing a two-player bargaining game. Each population modeled a
strategy pool consisting of candidate solutions for each player
to maximize its payoff from bargaining agreements. The strate-
gies of the two players coevolved at the same time so that
strategies that performed well were more likely to be chosen
to undergo progressive modifications to be more competitive
in forthcoming bargaining. Using a population size of 100, at
each iteration, the GP in [16] utilized tournament selection for
selecting chromosomes from the current population for creat-
ing a strategy pool, and crossover and mutation were used to
operate on each strategy pool. An incentive method was used to
handle constraints in [17] to define the fitness function for the
individuals in the population. Empirical results in [16] showed
that the GP generates solutions that can closely approximate
game-theoretic solutions. Whereas a player in [16] can only ei-
ther accept or reject an offer, a player in [17] chooses to end
the bargaining by opting out (i.e., having the alternative to se-
cede after rejecting an offer and take up an outside option). Jin
and Tsang [17] modified the coevolutionary system in [16] to
satisfy the additional requirement introduced by having outside
options. In the co-evolutionary system in [17], outside option
is an additional determinant of the bargaining outcomes. Even
though the introduction of an additional determinant has made
the bargaining problem more complex, empirical results in [17]
show that the coevolutionary system in [17] can generate reason-
ably good strategies that approximate game-theoretic solutions.
Whereas [16], [17], and this work adopt the same motivation
that an evolutionary approach (e.g., GA or GP) may be an al-
ternative to game-theoretic solutions for bargaining problems,
a notable difference between this work and [16], [17] is that
market rivalry was not explicitly modeled in [16] and [17].

VI. CONCLUSION

The novel feature of this work is designing and developing
bargaining (negotiation) agents that can both: 1) evolve their
optimal strategies and 2) adjust the amounts of concessions by
reacting to changing market situations. Whereas several existing
works (discussed in Section V) adopt GAs for evolving the most
successful or best-response strategies for different negotiation
situations, agents in these works mainly focused on bilateral
negotiations and did not explicitly model the influence of mar-
ket dynamics. Agents in this work are designed to evolve the
best-response strategies for a wide variety of market situations

(e.g., when agents are facing very stiff competitions, and when
there is a very large number of agents in an e-market).

The contributions of this work are detailed as follows.
1) Although this work does not focus on inventing a new

GA, it applies AFGA (Section III) to solve a difficult
multiobjective optimization problem in multilateral nego-
tiations (i.e., finding the best-response strategy that would
generally optimize utility, speed, and success rate). This
work is among the few works that applied GA for find-
ing potential solutions in automated negotiation. Whereas
[21]–[23], [25], and [26] used a GA for deriving potential
solutions for two-party (bilateral) negotiations, this work
adopts AFGA for evolving the best-response strategies
in multilateral (many-to-many) negotiations. In addition,
although both [25] and this work adopt time-dependent ne-
gotiation strategies, Matos’ GA [25] evolves negotiation
strategies that only optimize utilities. The AFGA in this
work evolves negotiation strategies that optimize expected
utilities, success rates, and negotiation speed, in response
to different market situations. Furthermore, in the fitness
function (Section III-B) of the AFGA in this work, both
the constraints and preferences of GA-MDAs on the three
objectives to be optimized (i.e., expected utilities, success
rates, and negotiation speed) are modeled using a priority
operation [9, p. 50], and by placing weights on the con-
straints. This allows different preferences and constraints
to be programmed into GA-MDAs for different require-
ments in different applications. Finally, even though [31]
applies GA for deriving solutions for multilateral negotia-
tions involving multiple issues, in their setting, agents are
cooperative agents. In this work, AFGA is applied to mul-
tilateral negotiations in which agents are competitive, and
market factors such as market rivalry and outside options
are explicitly modeled.

2) A testbed (Section IV-A) for evaluating the performance of
GA-MDAs in different market situations was developed.
The differences between the author’s previous testbeds
in [36], [38], [41], [42] and this work are as follows. The
testbed in [41] consists of only MDAs, and it examined the
impact of factors such as, deadline, buyer–seller ratio, and
the difference in proposals between negotiation agents, on
the negotiation outcomes of MDAs. The testbeds in [36]
and [42] consist of both MDAs and EMDAs (enhanced
MDAs with fuzzy decision controllers for relaxing bar-
gaining terms), and they compared the performance of
MDAs and EMDAs in terms of the tradeoff between suc-
cess rates and expected utilities in negotiation. The testbed
in [38] compares the performance of MDAs and EMDAs
(in terms of success rates and utilities) with NDF [10]
and Kasbah [4] agents in a grid-commerce environment.
The testbed in this work compares the performance of GA-
MDAs with MDAs (in terms of negotiation speed, success
rates, and utilities) in a wide variety of market situations.

3) Empirical results (Section IV-F–H) show that in a wide
variety of market situations (i.e., different market den-
sities, market types, and deadlines), GA-MDAs generally
achieved higher expected utilities and higher success rates,
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and reached agreements using fewer negotiation rounds
than MDAs. These results complement and supplement
previous theoretical results obtained in [33], [34], and [37].
Even though Sim [34], [37] has proven that MDAs nego-
tiate optimally by making minimally sufficient conces-
sion with respect to opportunity and competition (see [28,
Lemmas 4.1 and 4.2, pp. 718–719]), there is no univer-
sal best-response time-dependent strategy (i.e., an appro-
priate value of λ) for different market situations. Given
both the constraints and preferences of GA-MDA, differ-
ent values of λ (i.e., different best-response strategies)
of GA-MDAs can be evolved using the AFGA in this
work (see Table III). To this end, this work elaborates
and expands [34, Propositions 5 and 6, pp. 627–628]:
“For larger τ (respectively, smaller τ ), an MDA should
adopt a larger λ (respectively, smaller λ).” For example,
in Table III, it can be seen that in an unfavorable and
moderately dense market, the best-response strategies for
GA-MDAs are: 1) adopting a λ-value of 0.63 for a short
deadline and 2) adopting a λ-value of 1.42 for a long
deadline.

Whereas the AFGA in its present form is only used to evolve
the best-response strategies of GA-MDAs to optimize utility,
success rate, and average negotiation speed, perhaps, it may
also be used to optimize other objectives in negotiation (e.g.,
optimizing resource utilization). Another possible future direc-
tion for this work is perhaps designing GAs that can perhaps
converge faster by pruning the initial search space of GA-MDAs
in some situations. For instance, for evolving the best-response
strategies when GA-MDAs have longer deadlines, a search
space of [>1, 100] may be used, since in [34, Proposition 5,
p. 627] prescribes the adoption of a conservative strategy (i.e.,
>1) when agents have plenty of time for negotiation. However,
this may be done at the expense of obtaining agreements at a
later stage and perhaps lowering the success rates of negotia-
tion. Nevertheless, future experimentations are needed to verify
these claims and this is among the list of agendas for future
work.

In the problem setting in this work, real-world users adopt
MDAs or GA-enhanced MDAs (GA-MDAs) to negotiate on
their behalf, and each real-world user can potentially have
his/her own different preferences and priorities for the utility,
success rate, and negotiation speed. Hence, each real-world user
can specify different weightings for each of the performance
measures (i.e., utility, success rate, and negotiation speed). Us-
ing an AFGA enables agent designers to specify different pref-
erences and priorities for different objectives. Whereas in their
present form, GA-MDAs adopt an AFGA for evolving their
negotiation strategies, one possible future work is to adopt mul-
tiobjective GAs such as those in [6]–[8] in place of the present
AFGA in the current work. Whereas this work takes the first
step in showing that GA-MDAs that adopt GA to evolve best-
response strategies under different deadline constraints and mar-
ket situations outperform MDAs that do not have the capability
to adapt and evolve their strategies, another future enhancement
of this work is to adopt a real-coded GA [13], [14] for evolving
the strategies of GA-MDAs.
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