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Abstract

It is a challenging problem to find agents’ rational strategies in bargaining
with incomplete information. In this paper we perform a game theoretic anal-
ysis of agents’ rational strategies in finite horizon bilateral bargaining with
one-sided uncertainty regarding agents’ reserve prices. The negotiation setting
considered in this paper has four features: alternating-offers bargaining
protocol, finite horizon, two-type uncertainty about agents’ reserve prices, and
discount factors. The main contribution of this paper is the development of a
novel algorithm to find a pure strategy sequential equilibrium in the setting we
study. Our algorithm is based on the combination of game theoretic analysis
and search techniques which finds agents’ equilibrium in pure strategies when
they exist.

1. Introduction

The research of automated negotiation has received promi-
nent attention in recent years and has been widely used for
allocating resources. In this paper, we focus on the most
common bargaining protocol, i.e., the Rubinstein’s alternating-
offers [11], which captures the most important features of
bargaining: bargaining consists of a sequence of offers and
decisions to accept or reject these offers. We analyze the
situation with one-sided uncertain reserve prices and where
agents have deadlines. This problem is customarily modeled
as a Bayesian extensive-form games with infinite number of
actions. The appropriate solution concept for such a class of
game is sequential equilibrium [8], which specifies a pair: a
system of beliefs that prescribes how agents’ beliefs must be
updated during the game and strategies that prescribe how
agents should act. In a sequential equilibrium there is a sort
of circularity between belief system and strategies: strategies
must be sequentially rational given the belief system and belief
system must be consistent with respect to strategies. The study
of bargaining with uncertain information is well known to
be a challenging problem because of this circularity. There
is no generally applicable algorithm for such problem in the
literature. Operational research inspired algorithms such as
Miltersen-Sorensen [9] work only on games with finite number
of strategies, and therefore cannot be applied to bargaining.
Several attempts (e.g., [4], [5]) to extend the backward in-
duction method [6] have been tried, but the strategies found
by the backward induction approach is not guaranteed to
be sequentially rational given the designed system of beliefs

[7]. This is because in the computation of the equilibrium
they break down the circularity between strategies and belief
system.

The microeconomic literature provides a number of closed
form results with very narrow uncertainty settings. For in-
stance, Rubinstein [12] considered bilateral bargaining with
uncertainty over two possible discount factors. Gatti et al. [7]
analyzed bilateral bargaining with one-sided uncertain dead-
lines. The only known result about bargaining with uncertain
reserve prices is due to Chatterjee and Samuelson [1], [2]
where they studied bilateral infinite horizon bargaining with
two-type uncertainty over the reservation values. The absence
of agents’ deadlines makes these two results non applicable to
the situation we study in the paper.

The main contribution of this paper is the development of a
novel algorithm to find a pure strategy sequential equilibrium
in the setting we study. Our algorithm combines together game
theoretic analysis with state space search techniques and it is
sound and complete. The approach is novel in the literature.
Our approach is based on the following two observations:
1) with pure strategies, the possible classes of agents’ choice
rules are finite (a class specifies only whether different agent
types will behave in the same way or in different ways at
a decision making point), and 2) given a system of choice
rule classes (each time point is assigned a class of choice
rule) we are able to derive theoretically the agents’ optimal
strategies (by a Bayesian extension of backward induction)
and to check whether or not a sequential equilibrium exits
with such belief system (this makes the algorithm sound). Our
algorithm enumerates over the possible systems of choice rules
and for each one checks the existence of the equilibrium (this
makes the algorithm complete).1 To make this enumeration
efficient, we employ state space search techniques.

The rest of this paper proceeds as follows: We start with
complete information negotiation in Section 2. Section 3
discusses bargaining with two possible types of reserve prices.
Section 4 concludes this paper and outlines the ideas of ex-
tending our analysis to bargaining with finitely many possible
types of reserve prices.

1. Enumeration based methods were used in [10] to compute Nash equi-
libria. They enumerate the agents’ strategy supports. In our problem, this
approach cannot be applied because of the infinite number of supports.



2. Bargaining with Complete Information
We follow [7] to describe the non-cooperative bargaining

problem between a buyer b and a seller s. All the agents
enter the market at time 0. The seller agent wants to sell
a single indivisible good for some money. The buyer agent
wants to buy the indivisible good provided by the seller. The
characteristics of a transaction that are relevant to an agent are
the price x and the number of periods t after the agent’s entry
into the market that the transaction is concluded.

We study a discrete time (indexed by integers 0, 1, 2, . . . )
bilateral negotiation in this paper. A finite horizon alternating-
offers bargaining protocol is utilized for the negotiation on
one continuous issue (price of a good). Formally, the buyer b
and the seller s can act at times t ∈ N. The player function
ι : N→ {b, s} returns the agent that acts at time t and is such
that ι(t) 6= ι(t + 1), i.e., a pair of agents bargain by making
offers in alternate fashion. This paper focuses on single-issue
negotiation. However, our model can be easily extended to
handle multi-issue negotiation as in [7].

Possible actions σt
ι(t) of agent ι(t) at any time t > 0 are:

1) offer [x], where x ∈ R is the proposed price for the good;
2) exit , which implies that negotiation between b and s fails;
and 3) accept , which implies that b and s make an agreement.
At time point t = 0 the only allowed actions are 1) and 2). If
σt

ι(t) = accept the bargaining stops and the outcome is (x, t),
where x is the value such that σt−1

ι(t−1) = offer [x]. This is to
say that the agents agree on the value x at time point t. If
σt

ι(t) = exit the bargaining stops and the outcome is FAIL.
Otherwise the bargaining continues to the next time point.

Each agent a ∈ {b, s} has a utility function Ua : (R × N
) ∪ FAIL → R, which represents its gain over the possible
bargaining outcomes. Each utility function Ua depends on a’s
reserve price RPa ∈ R+, temporal discount factor δa ∈ (0, 1],
and deadline Ta ∈ N, Ta > 0. If the bargaining outcome is
(x, t), then the utility function Ua is defined as:

Ua(x, t) =





(RPa − x) · δt
a if t ≤ Ta and a is a buyer

(x− RPa) · δt
a if t ≤ Ta and a is a seller

ε < 0 otherwise

If the outcome is FAIL, Ua(FAIL) = 0. Notice that the
assignment of a strictly negative value to Ua after a’s deadline
allows one to capture the essence of the deadline: an agent,
after its deadline, strictly prefers to exit the negotiation rather
than to reach any agreement. Finally, we assume the feasibility
of the problem, i.e., RPb ≥ RPs, and the rationality of the
agents, i.e., each agent acts to maximize its utility. [RPs,RPb]
is the zone of potential agreements.

With complete information the appropriate solution concept
for the game we are dealing with is the subgame perfect
equilibrium. In subgame perfect equilibrium, agents’ strategies
are in equilibrium in every possible subgame. Such a solution
can be found by backward induction [7].

Initially, it is determined the time T = min(Tb, Ts) where
the game rationally stops. The equilibrium outcome of every

subgame starting from t ≥ T is FAIL, since at least one
agent will make exit. Therefore, at t = T agent ι(T ) would
accept any offer x which gives it a utility not worse than
FAIL, namely, any offer x such that Uι(T )(x, T ) ≥ 0. From
t = T − 1 back to t = 0 it is possible to find the optimal
offer agent ι(t) can make at t, if it makes an offer, and the
offers that it would accept. x∗(t) denotes the optimal offer
of agent ι(t) at t. x∗(t) is the offer such that, if t < T − 1,
agent ι(t + 1) is indifferent at t + 1 between accepting it
and rejecting it to make its optimal offer x∗(t + 1) and, if
t = T−1, agent ι(t+1) is indifferent at t+1 between accepting
it and exiting from negotiation. Formally, x∗(t) is such that
Uι(t+1)(x∗(t)), t) = Uι(t+1)(x∗(t + 1), t+1) if t < T − 1
and Uι(t+1)(x∗(t), t) = 0 if t = T − 1. The offers agent ι(t)
would accept at t are all those offers that give it a utility no
worse than the utility given by offering x∗(t). The equilibrium
strategy of any sub-game starting from 0 ≤ t < T prescribes
that agent ι(t) offers x∗(t) at t and agent ι(t + 1) accepts it
at t + 1.

Backward propagation is used to provide a recursive for-
mula for x∗(t): given value x and agent a, we call backward
propagation of value x for agent a the value y such that
Ua(y, t−1) = Ua(x, t); we employ the arrow notation x←a for
backward propagations. Formally, x←b = RPb−(RPb−x)·δb
and x←s = RPs + (x − RPs) · δs. If a value x is back-
ward propagated n times for agent a, we write x←n[a], e.g.
x←2[a] = (x←a)←a. If a value is backward propagated for
more than one agent, we list them left to right in the subscript,
e.g., x←b2[s] = ((x←b)←s)←s. The values of x∗(t) can be
calculated recursively from t = T−1 back to t = 0 as follows:

x∗(t) =

{
RPι(t+1) if t = T − 1

(x∗(t + 1))←ι(t+1) if t < T − 1

It can be observed that x←b ≥ x as x←b − x = RPb −
(RPb−x) ·δb−x = (1−δb)(RPb−x) ≥ 0, and x←s ≤ x as
x←s−x = RPs+(x−RPs) ·δs−x = (δs−1)(x−RPs) ≤ 0.

Finally, the equilibrium strategies of b can be defined as
(the equilibrium strategies of s can be defined analogously)

σ
∗
b(t)=





t=0 offer [x∗(0)]

0<t<T

{
if σs(t−1)=offer [x] with x≤x∗(t)←b accept

otherwise offer [x∗(t)]

T ≤ t≤Tb

{
if σs(t−1)=offer [x] with x≤RPb accept

otherwise exit

Tb <t exit

Therefore, at equilibrium, the two agents will reach an
agreement at time t = 1 and the agreement price is x∗(0).

3. Two-Types of Reserve Prices
This section considers the case where there are two possible

reserve prices for the buyer.

3.1. Introducing Uncertainty
With uncertain information, the appropriate solution concept

for an extensive-form game is Kreps and Wilson’s sequential



equilibrium [8]. A sequential equilibrium is a pair a = 〈µ, σ〉
(also called an assessment) where µ is a belief system that
specifies how agents’ beliefs evolve during the game and
σ specifies agents’ strategies. At an equilibrium µ must be
consistent with respect to σ and σ must be sequentially
rational given µ.

In this section we assume that the buyer b can be of two
types: buyer bh with a reserve price RPh and buyer bl with
a reserve price RPl such that RPh > RPl. The initial belief
of s on b is µ(0) = 〈∆0

b, P 0
b〉 where ∆0

b = {bh,bl} and
P 0

b = {ω0
bh

, ω0
bl
} where ω0

bh
(ω0

bl
, respectively) is the priori

probability that b is of type bh (bl, respectively). It follows
that ω0

bh
+ ω0

bl
= 1. The belief of s on the type of b at

time t is µ(t). The probability assigned by s to b = bh at
time t is denoted ωt

bh
; the probability assigned to b = bl is

ωt
bl

= 1−ωt
bh

. Given an assessment a = 〈µ, σ〉, there are two
possible bargaining outcomes: outcome obh

if b = bh and obl

if b = bl. We denote bargaining outcome as o = 〈obh
, obl

〉.
With pure strategies, buyer types’ possible behaviors regard-

ing whether they behave in the same way on the equilibrium
path at each decision making node are finite. We use the
term “choice rule” to characterize agents’ strategies regarding
whether they behave in the same way at a specific decision
making point. Easily, at a decision making node bl and bh

can make the same offer (in this case, choice rules are said
pooling) or can make different offers (in this case, choice rules
are said separating). On the basis of this consideration, we
can make some assumptions over the belief system without
loosing generality. On the equilibrium path µ(t) = 〈∆t

b, P t
b〉

of s on b at any time t is one the following. After a time point t
where buyer types’ choice rule is pooling, µ(t+1) = µ(t), i.e.,
∆t+1

b = ∆t
b and P t+1

b = P t
b. After a time point t where buyer

types’ choice rule is separating, there could be two possible
beliefs: if the equilibrium offer of bh has been observed, then
∆t+1

b = {bh} (s believes b = bh with certainty), which
implies ωt+1

bh
= 1 and ωt+1

bl
= 0; if instead the equilibrium

offer of bl has been observed, ∆t+1
b = {bl} (s believes

b = bl with certainty), which implies ωt
bh

= 0 and ωt+1
bl

= 1.
We need also specify the belief system off the equilibrium
path, i.e., when an agent makes an action that is not optimal.
We use the optimistic conjectures [12]. That is, when b acts
off the equilibrium strategy, agent s will believe that agent b
is of its “weakest” type, i.e., of the type that would gain the
least in a complete information game. This choice is directed
to assure the existence of the equilibrium for the largest subset
of the space of the parameters. In our case, the weakest type
is bh (we prove it in the following section). We can therefore
specify µ(t) by specifying ∆t

b. We will write µ(t) = {bh,bl},
or µ(t) = {bh}, or µ(t) = {bl}.

3.2. Off the Equilibrium Path Optimal Strategies

Before analyzing equilibrium strategies when the buyer can
be of two types, we provide the optimal strategies in the
situations s believes the buyer of one single type. There are
two cases: 1) Seller s has the right belief about the type

of the buyer b. In this case, agents’ equilibrium strategies
are the equilibrium strategies of the corresponding complete
information bargaining discussed in Section 2. Let x∗bh

(t)
(x∗bl

(t), respectively) be any agent optimal offer at time t when
b is of type bh (bl, respectively) in this case. 2) Seller s has
the wrong belief about the type of the buyer b, i.e., bh is
believed to be bl and bl is believed to be bh.

Lemma 1: x∗bh
(t) ≥ x∗bl

(t).
The proofs are omitted for reasons of space. We can see

that bh is weaker than bl in terms of its offering price at each
time point in complete information bargaining.

Theorem 2: If seller s has the wrong belief about the type
of b, the optimal strategies of agent s are those in complete
information bargaining. The optimal strategies σ∗bh

(t)|{bl} of
buyer bh when it’s believed to be bl are:

σ∗bh
(t)|{bl} =

{
accept y if y ≤ (x∗bl

(t))←bh

offer x∗bl
(t) otherwise

The optimal strategies σ∗bl
(t)|{bh} of the buyer bl when

it’s believed to be bh are:
• If ι(T ) = b, accept y if y ≤ min{(x∗bh

(t))←bl
,RPl}.

Otherwise, offer min{x∗bh
(t),RPl}.

• If ι(T ) = s, accept y if y ≤ min{(x∗bh
(t))←bl

,
(RPs)←(T−t)[bl]. Otherwise, offer min{x∗bh

(t),
(RPs)←(T−1−t)[bl]}.
Proof: Case 1 (bh is believed to be bl). If the seller

offers x∗bl
(t − 1), buyer bh’s optimal strategy is to accept

it as the minimum price that the seller would accept at time
t+1, i.e., x∗bl

(t), gives bh a utility lesser than x∗bl
(t−1) since

(x∗bl
(t))←bh

> (x∗bl
(t))←bl

= x∗bl
(t−1). If the seller acts off

the equilibrium path and offers a price y lower than x∗bl
(t−1),

the optimal strategy of bh is obviously to accept y. If the seller
offers a price y greater than x∗bl

(t − 1), the optimal strategy
of bh is to accept y only if y ≤ (x∗bl

(t)←bh
, otherwise bh’s

optimal strategy is to reject y and to offer x∗bl
(t). Note that

x∗bh
(t) ≤ RPh and x∗bl

(t) ≤ RPh.
Case 2 (bl is believed to be bh). This case is more com-

plicated as seller’s optimal offer x∗bh
(t−1) on its equilibrium

path is not acceptable to bl as when bl offers x∗bh
(t) at time

t, (x∗bh
(t))←bl

< (x∗bh
(t))←bh

= x∗bh
(t − 1). In addition,

bl may not offer x∗bh
(t) if it’s advantageous to wait for the

agreement at time T . There are two situations: 1) ι(T ) = b.
In this case, s will propose RPh at time T − 1, which is not
acceptable to buyer bl as RPh is higher than bl’s reserve price.
Therefore, bl’s optimal offer at time t is min{x∗bh

(t),RPl}.
Note that x∗bl

(t) is always not acceptable to s. 2) ι(T ) = s. In
this case, bl will propose RPs at time T − 1, which will be
accepted by seller s at time T . Therefore, bl’s optimal offer
at time t is min{x∗bh

(t), (RPs)←(T−1−t)[bl]}.

3.3. Solving Algorithm

Our algorithm combines game theoretic analysis and state
space search techniques and it is sound and complete. By
applying state space search, we enumerate all possible choice
systems. A choice system specifies buyer types’ choice rule at
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{bh,bl} {bh}{bh} {bl} {bl}
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{bh,bl}

t = 3

t = 2

t = 1

t = 0

t = 4

{bh,bl}

{bh,bl}{bh,bl}

Fig. 1. Choice systems for bilateral bargaining with two-
type uncertainty where ι(0) = b and T = 4.

all decision making points along the negotiation horizon. By
exploiting game theoretic analysis we design a pair composed
of choice rules and belief system for each possible choice
rules. More precisely, we design a pair for pooling choice
rule and a pair for separating choice rule. These pairs are
parameterized: agents’ optimal offers and acceptance at time
t depend on the agents’ strategies in the following time points
till the end of the bargaining. Furthermore, we assign each pair
some conditions: if they are satisfied, then there is a sequential
equilibrium in the subgame starting from time t. For each
choice system, we employ a Bayesian extension of backward
induction to derive agents’ optimal strategies. Agents’ optimal
strategies at time t is built on agents’ equilibrium strategies
from time t + 1 to T . In summary, we employ a forward-
backward approach to find sequential equilibria: we search
forward to find all the choice systems and we construct
backward agents’ equilibrium strategies and belief systems.

Given s’s belief on the type of b, different buyer types
can choose different choice rules: either behave in the same
way or behave in different ways. While it is very involved
to compute sequential equilibria considering all the options
at each decision making point, we explicitly fix the choice
rule at each decision making point and then compute the
sequential equilibrium of the bilateral game where buyer types’
choices are specified in the choice system. To guarantee the
completeness of our approach, we enumerate all possible
choice systems. Our approach can be treated as a way of
shifting the difficulty of finding a sequential equilibrium in
a bargaining game where the buyer has multiple choices to
finding a sequential equilibrium in multiple bargaining games
in which the buyer’s choice is fixed.

We explain our approach through a bilateral bargaining
example where ι(0) = b and T = 4. As there are two
types, there exist only two choice rules: 1) different buyer
types behave in the same way (i.e., make the same offer)
or 2) different buyer types behave in different ways (i.e.,
make different offers). Once the buyer chooses to differentiate
its two types at time point t, the later bargaining becomes
complete information bargaining. At time t = 0, the belief of
s on the type of b is {bh,bl} and b’s different types can
choose to make the same offer or make different offers. If b
chooses the separating rule, seller s will update its belief at

time t = 1 and bargaining from time t = 1 to the deadline
becomes complete information bargaining. If b chooses the
pooling rule at time t = 0, seller s’s belief at time t = 1
will still be {bh,bl}. Then at time t = 2, buyer types can
still choose to behave in the same way or behave in different
ways. No matter what the choice rule is at time t = 2, b has
no choice at its deadline t = 4. There are totally three choice
systems: 1) different buyer types always use the pooling choice
rule; 2) different buyer types apply the pooling choice rule at
time t = 0 and apply the separating choice rule at time t = 2;
and 3) different buyer types apply the separating choice rule
at time t = 0. Fig. 1 shows the three choice systems for the
bilateral bargaining. A node ∆b (e.g., {bh}) at time t implies
that s’s belief at the beginning of t is ∆b. A node {∆a

b,∆r
b}

(e.g., {{bh}, {bl}}) at time t implies that 1) s’s belief at the
beginning of time t is either ∆a

b or ∆r
b; 2) the offers of buyer

types ∆a
b and ∆r

b are different at time t− 1.
Given a choice system, we adopt a modified backward

induction approach to compute the sequential equilibrium. In
the rest of this section, we first consider two special situations
where buyer types always choose the pooling choice rule or
always choose the separating choice rule. Then we construct
sequential equilibria for general cases based on our analysis
of the two special situations.

3.4. Always Use Pooling Choice Rule
In this section we study agents’ equilibrium strategies when

different buyer types always behave in the same way at each
decision making point. Accordingly, seller’s belief will always
be its initial belief. We start considering a bargaining with
deadline T = 2. There are two situations: ι(T ) = s or
ι(T ) = b. The former case is simple as both bh and bl will
propose s’s reserve price RPs at t = 1 and s will propose its
best offer based on its initial belief at t = 0. s has two choices:
(RPs)←bl

with an expected utility EUs((RPs)←bl
) =

Us((RPs)←bl
, 1) and (RPs)←bh

with an expected util-
ity EUs(RPh) = ω0

bh
Us((RPs)←bh

, 1) + ω0
bl

Us(RPs, 2).
The bargaining outcome is 〈((RPs)←bl

, 1), ((RPs)←bl
, 1)〉 if

ω0
bh

≤ ((RPs)←bl
− RPs)/((RPs)←bh

− RPs). Otherwise,
the bargaining outcome is 〈((RPs)←bh

, 1), (RPs, 2)〉.
Now consider the case ι(T ) = b. At time t = 1, agent s can

choose between the offer RPh and RPl. While offering RPh,
it can get an expected utility EUs(RPh) = ω0

bh
Us(RPh, T )

as bl will not accept the offer RPh. While offering RPl,
it can get an expected utility EUs(RPl) = Us(RPl, T ).
Let e1 the equivalent price of the optimal offer of agent s
in the subgame beginning from time 1 where it begins to
bargaining. Formally, e1 is a price such that Us(e1, T ) =
max{EUs(RPh), EUs(RPl)}. Accordingly, e1

←s is the lowest
offer agent s would accept at time t = 1 with the initial belief.
Therefore, the optimal offer of the buyer is e1

←s. Note that if
e1
←s > RPl, it is not rational for bl to offer e1

←s. In this case,
there is no sequential rational strategy while always using the
pooling choice rule.

Theorem 3: Assume that T = 2 and ι(T ) = b, if RPl ≥
e1
←s, there is one and only one sequentially rational pure
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strategy profile given the system of beliefs

µ(1) =

{
∆0

b if σ∗b(0) = offer e1
←s

{bh} otherwise

The strategies σ∗bh
(0), σ∗bl

(0), and σ∗s (1) are: σ∗bh
(0) =

σ∗bl
(0) = offer e1

←s, and σ∗s (1) = accept y if y ≥ e1
←s. The

bargaining outcome is 〈(e1
←s, 1), (e1

←s, 1)〉.
Proof: We first analyze the strategies on the equilibrium

path. We assume that the buyer behaves according to the
prescribed equilibrium strategies and we analyze th optimal
strategy of the seller. The seller can accept e1

←s and gain
Us(e1

←s, T − 1) or reject it and make an offer. However,
the maximum expected utility the seller can have from the
subgame from time 1 is just Us(e1, T ) = Us(e1

←s, T − 1).
Thus, seller’s optimal strategy is to accept e1

←s.
We assume that the seller behaves according to the pre-

scribed equilibrium strategies and we analyze the optimal
strategy of the buyer. We start considering the strategy of bh.
If bh offers e1

←s, it gains Ubh
(e1
←s, T − 1). If bh offers a

price y no less than σ∗bh
(T − 1)←s, the seller will accept

it and bh gains a utility lower than Ubh
(e1
←s, T − 1) since

σ∗bh
(T − 1)←s > e1

←s. If bh offers a price y 6= e1
←s which

is less than σ∗bh
(T − 1)←s, the seller will reject it and will

propose σ∗bh
(T −1) at time T −1 which will give bh a utility

lower than Ubh
(e1
←s, T − 1) since σ∗bh

(T − 1)←bh
> e1

←s.
Similarly, we can get that bl has no incentive to propose a
price not equal to e1

←s.
There is no sequential rational pure strategy when RPl <

e1
←s since it supposes that both the buyer’s types behave in

the same way, whereas the optimal strategy of bl is to not
propose e1

←s as it will get a negative utility by doing so.
Fig. 2 shows an example of backward induction construction

with T = 2, ι(T ) = b, RPh = 100, ω0
bh

= 0.7, RPl = 60,
ω0

bl
= 0.3, RPs = 10, δs = δb = 0.6. At time t = 1, s can

offer either 60 or 100: If it offers 60, its expected utility is
(60 − 10)0.62 = 18; If it offers 100, its expected utility is
0.7(100 − 10)0.62 = 22.68. Thus, the optimal offer of s at
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Fig. 3. Backward induction construction with the same
setting as in Fig. 2 except RPl = 30.

time t = 1 is 100 and the equivalent price is e1 = 73. Then
we have e1

←s = 47.8. As RPl > e1
←s, there is a sequential

equilibrium within the belief system while always using the
pooling choice rule. If we change RPl to 30 (Fig. 3). At time
t = 1, s can offer either 30 or 100. If it offers 30, its expected
utility is (30− 10)0.62 = 7.2. Thus, the optimal offer of s at
time t = 1 is 100 and the equivalent price is e1 = 73. Then
we have e1

←s = 47.8. As RPl < e1
←s, there is no sequential

rational strategy within the belief system while always using
the pooling choice rule.

In a signaling game, there are often multiple equilibrium
outcomes and these equilibria are not equivalent from the point
of view of utility of each agent and social welfare (i.e., the
sum of utilities of all agents). The multiplicity of equilibria
means that, without refinement, equilibrium theory provides
few clear predictions. A number of refinements (e.g., pareto
efficiency) has been proposed. In this work, we do not consider
the pooling choice rule in which all buyer types make a
rejectable offer since, given the same equilibrium strategies in
the subgame, the equilibrium outcome when all buyer types
make an acceptable offer pareto dominates the equilibrium
outcome when all buyer types make a rejectable offer.

We now consider an arbitrary deadline T . We apply the
backward induction starting from deadline T and inductively
determine agents’ equilibrium strategies. Let et be the equiva-
lent price of the optimal offer of s at time t. First we consider
the case ι(T ) = b. At any time t, b’s optimal offer is et+1

←s .
At time T − 1, s’s equivalent price eT−1 of the optimal offer
satisfies Us(eT−1, T ) = max{EUs(RPh), EUs(RPl)} where
EUs(RPh) = ω0

bh
Us(RPh, T ) and EUs(RPl) = Us(RPl, T ).

At time t < T − 1, s’s equivalent price et of its optimal offer
satisfies Us(et, t + 1) = max{EUs(et+2

←sbl
), EUs(et+2

←sbh
)}

where EUs(et+2
←sbl

) = Us(et+2
←sbl

, t + 1) and EUs(et+2
←sbh

) =
ω0

bh
Us(et+2

←sbh
, t + 1) + ω0

bl
Us(et+2

←s , t + 2). Following Theo-
rem 3, the condition of existence is that RPl ≥ et+1

←s at any
time t < T − 1 such that ι(t) = b.

Now we consider the case ι(T ) = s. b’s optimal offer



at time T − 1 is RPs. s chooses between (RPs)←bh
and

(RPs)←bl
at time T−2. s’s equivalent price eT−2 of its optimal

offer satisfies Us(eT−2, T−1) = max{EUs((RPs)←bh
), EUs

((RPs)←bl
)} where EUs((RPs)←bl

) = Us((RPs)←bl
, T −

1) and EUs((RPs)←bh
) = ω0

bh
Us((RPs)←bh

, T − 1) +
ω0

bl
Us(RPs, T ). We can construct the value of et in the

same way for t < T − 1. The condition of existence is that
et+1
←s ≤ min{RPl, (RPs)←(T−1−t)[bl]} at any time t < T − 1

such that ι(t) = b. Note that (RPs)←(T−1−t)[bl] is the
maximum offer buyer bl is willing to pay.

Theorem 4: The bilateral bargaining has a unique sequen-
tially rational pure strategy profile given the following belief
system where µ(t + 1) is given by
• If µ(t) = {bh} or µ(t) = {bl}, µ(t + 1) = µ(t).
• µ(t) = µ(0) and there are four cases. 1) If t = 0 and

σb(t) = offeret+1
←s , µ(t + 1) = µ(0) = {bh,bl}; 2)

If t > 0 and b rejects y ∈ (et+1
←sbh

,+∞] and σb(t) =
offer et+1

←s , µ(t + 1) = µ(0) = {bh,bl}; 3) If t > 0 and
b rejects y ∈ (et+1

←sbl
, et+1
←sbh

] and σb(t) = offer et+1
←s ,

µ(t + 1) = {bl}; 4) otherwise, µ(t + 1) = {bh}.
if RPl ≥ et+1

←s when ι(T ) = b and et+1
←s ≥ (RPs)←(T−1−t)[bl]

when ι(T ) = s. The equilibrium strategies σ∗s (t)|{bh,bl} of
agent s are:
{

accept y if y ≤ et
←s

offer y = arg maxy∈{et+2
←sbh

,et+2
←sbl

}EUs(y) otherwise

and the equilibrium strategies of the buyer are:

σ∗bh
(t)|{bh,bl} =

{
accept y if y ≤ et+1

←sbh

offer ≤ et+1
←s otherwise

σ∗bl
(t)|{bh,bl} =

{
accept y if y ≤ et+1

←sbl

offer ≤ et+1
←s otherwise

Agents’ equilibrium strategies when µ(t) is a singleton
is given by Section 3.2. The bargaining outcome is 1)
〈(e1

←s, 1), (e1
←s, 1)〉 if ι(0) = b; 2) 〈(e2

←sbl
, 1), (e2

←sbl
, 1)〉

if ι(0) = s and ω0
bh

≤ (e2
←sbl

− RPs)/(e2
←sbh

− e2
←sδs −

(1 − δs)RPs); 3) 〈(e2
←sbh

, 1), (e2
←s, 2)〉 if ι(0) = s and

ω0
bh

> (e2
←sbl

− RPs)/(e2
←sbh

− e2
←sδs − (1− δs)RPs).

Proof: The sequential rationality is easily seen from the
backward construction. Consistency can be proved by the
assessment sequence an = (µn, σn) where σn is the fully
mixed strategy profile such that for the seller and bh there
is probability 1− 1/n of performing the action prescribed by
the equilibrium strategy profile and the remaining probability
1/n is uniformly distributed among the other allowed actions;
while for bl, there is probability 1− 1/n2 of performing the
action prescribed by the equilibrium strategy profile and the
remaining probability 1/n2 is uniformly distributed among the
other allowed actions, and µn is the system of beliefs obtained
applying Bayes rule starting from the same priori probability
distribution P 0

b . As n →∞, the above mixed strategy profile
converges to the equilibrium strategy profile. In addition, the
beliefs generated by the mixed strategy profile converges to

the priori probability distribution. Thus, the assessment is
consistent.

3.5. Always Use Separating Choice Rule

Here we consider the belief system in which two buyer
types behave in different ways. Then the seller will learn the
buyer’s type after it observes the buyer’s first offer. Therefore,
if ι(0) = b (ι(0) = s, respectively), agent s will learn b’s
type at beginning of time point t = 1 (t = 2, respectively)
and the later bargaining is complete information bargaining.

We start considering a bargaining with an arbitrary deadline
T and ι(0) = b. Different from the approach in the previous
section where we start backward induction from the deadline,
we move forward from time t = 0. Let the equilibrium offers
of bh and bl at time 0 be x and y such that x 6= y. If agent s
accepts both offers x and y, at least one type has an incentive
to offer min{x, y}. Therefore, the offer min{x, y} will be
rejected by s. There are two cases: x > y and x < y. First we
consider the case x < y. Then bh will make a low offer (e.g.,
RPs) which be rejected by s. Then at time 1, s will make the
offer x∗bh

(1) and bh will accept it. The optimal offer of bl at
time t = 0 is the lowest price agent s would accept at time
1 while believing b to be bl, i.e., (x∗bl

(1))←s = x∗bl
(0). bh

has no incentive to behave as bl if (x∗bh
(1))←bh

≤ x∗bl
(0).

However, according to Lemma 1 and the definition of back-
ward propagation, we have 1) (x∗bh

(1))←bh
≥ (x∗bl

(1))←bh

and 2) (x∗bl
(1))←bh

> (x∗bl
(1))←s = x∗bl

(0). It follows
that (x∗bh

(1))←bh
> x∗bl

(0). Thus, the equilibrium is not
sequential rational as bh has an incentive to behave as bl.

Then we consider the case x > y. The optimal offer of bh

is the lowest price agent s would accept at time 1 believing
its opponent bh is obviously (x∗bh

(1))←s = x∗bh
(0). For agent

bl, any offer y such that y ∈ [RPs, x
∗
bh

(0)) will be rejected
by seller. By convention that the equilibrium offer of bh is
RPs. The existence of a such equilibrium depends on two
conditions: bh must have no incentive to behave as bl, i.e.,
x∗bh

(0) ≤ (x∗bl
(1))←bh

, and bl must have no incentive to
behave as bh, i.e., (x∗bl

(1))←bl
≤ x∗bh

(0).
Theorem 5: Bilateral bargaining such that ι(0) = b has one

and only one stationary sequential equilibrium profile in pure
strategies given the system of beliefs:

µ(1) =

{
{bl} if σb(0) = offer RPs

{bh} otherwise

if x∗bh
(0) ≤ (x∗bl

(1))←bh
and (x∗bl

(1))←bl
≤ x∗bh

(0). The
equilibrium strategies of agent b are: σ∗bh

(0)|{bh,bl} =
offer x∗bh

(0), σ∗bl
(0)|{bh,bl} = offer RPs. Agents’ strate-

gies when µ(t) is singleton are specified in Section 3.2. The
bargaining outcome is 〈(x∗bh

(0), 1), (x∗bl
(1), 2)〉.

Now we consider the case ι(0) = s. Agent s knows
that at time t = 1 1) bh will offer x∗bh

(1) and 2)
bl will offer offer RPs. Therefore, s’s optimal offer to
bh at time t = 0 is (x∗bh

(1))←bh
= x∗bh

(0). s’s op-
timal offer to bl at time t = 0 is (x∗bl

(2))←2[bl]. s’s
expected utility while offering x∗bh

(0) is EUs(x∗bh
(0)) =



ω0
bh

Us(x∗bh
(0), 1) + ω0

bl
Us(x∗bl

(2), 3). s’s expected utility
while offering (x∗bl

(2))←2[bl] is EUs((x∗bl
(2))←2[bl]) =

Us((x∗bl
(2))←2[bl], 1). s will choose the offer which gives it

the highest expected utility at time 0.
Theorem 6: Assume that the following belief system is

used: if b rejects s’s offer y ∈ ((x∗bl
(2))←2[bl],+∞) and

offers RPs at time 1, then µ(2) = {bl}. Otherwise, µ(2) =
{bh}. Bilateral bargaining such that ι(0) = s has a unique
stationary sequential equilibrium profile in pure strategies if
x∗bh

(1) ≤ (x∗bl
(2))←bh

and (x∗bl
(2))←bl

≤ x∗bh
(1). The

equilibrium strategies σ∗s of agent s are:

σ∗s (0)|{bh,bl} = offer arg max
y∈{x∗bl

(2))←2[bl]
,x∗bh

(0)}
EUs(y)

σ∗bh
(1)|{bh,bl} =

{
accept y if y ≤ x∗bh

(0)
offer x∗bh

(1) otherwise

σ∗bl
(1)|{bh,bl} =

{
accept y if y ≤ x∗bl

(2))←2[bl]

offer RPs otherwise

Agents’ strategies when µ(t) is singleton are those in
complete information bargaining. The equilibrium out-
come is 〈((x∗bl

(2))←2[bl], 1), ((x∗bl
(2))←2[bl], 1)〉 if ω0

bh
≤

((x∗bl
(2))←2[bl]−RPs−(x∗bl

(2)−RPs)δ2
b)/(x∗bh

(0)−RPs−
(x∗bl

(2) − RPs)δ2
b). Otherwise, the equilibrium outcome is

〈(x∗bh
(0), 1), (x∗bl

(2), 3)〉.
We can observe that the conditions for the existence of the

above equilibrium are defined at the beginning of bargaining
and the existence of the above equilibrium does not require the
existence of a such equilibrium in later negotiation. Consider
the sequential equilibrium when buyer types always choose
different actions in the bilateral bargaining in Fig. 2. We have
x∗bh

(0) = 64 and x∗bl
(1) = 60. bh has no incentive to behave

as bl since x∗bh
(0) = 64 < 76 = (x∗bl

(1))←bh
, and bl has no

incentive to behave as bh since (x∗bl
(1))←bl

= 60 < 64 =
x∗bh

(0). However, there is no sequential equilibrium within the
belief system for the bilateral bargaining in Fig. 3. We have
x∗bh

(0) = 64 and x∗bl
(1) = 30. However, this strategy is not

rational for bh as it has an incentive to behave as prescribed
for bl since x∗bh

(0) = 64 ≥ 58 = (x∗bl
(1))←bh

.

3.6. Combining Pooling and Separating Choice Rules

In this section we consider agents’ equilibrium strategies
while employing a belief system which combines the pooling
choice rule and the separating choice rule. The only reasonable
combination is to employ the pooling choice rule from time 0
to some time τ ≤ T and to employ the separating choice rule
from time τ to the deadline T . The reason is simple: once
different buyer types behave in different ways, seller s will
learn the type of the buyer and then agents conduct complete
information bargaining. Then we have the following result and
its proof is trivial.

Theorem 7: For a finite horizon bargaining with two possi-
ble reserve prices of the buyer, if there is no sequential equi-
librium in pure strategies, there is no sequential equilibrium in

pure strategies within the belief system which employs both
pooling and separating choice rules.

Theorem 8: For a finite horizon bargaining with two pos-
sible reserve prices of the buyer, there may be no sequential
equilibrium in pure strategies.

Proof: As the deadline of the bilateral bargaining in Fig. 3
is 2, if there is a sequential equilibrium in pure strategies, the
choice rule at time t = 0 can only be pooling or separating. As
there is no pure strategy sequential equilibrium in both cases,
there is no pure strategy sequential equilibrium while applying
both choice rules for the bilateral bargaining in Fig. 3. Thus,
there is no pure strategy sequential equilibrium for the bilateral
bargaining in Fig. 3 (Theorem 7).

There may be more than one sequential equilibrium for a
bilateral bargaining problem with two possible types of reserve
price. For example, there are two sequential equilibria for the
bilateral bargaining in Fig. 2: one with only using the pooling
choice rule and one with only using the separating choice rule.

If there is a pure strategy sequential equilibrium, there
should be a time point τ such that there is a sequential
equilibrium for subgame Γ[τ,T ] which uses the separating
choice rule and a sequential equilibrium for subgame Γ[0,τ ]

which only uses the pooling choice rule. Let the system
of beliefs and equilibrium strategies for subgame Γ[τ,T ] be
µ[τ,T ] and σ∗,[τ,T ], respectively. Let the system of beliefs and
equilibrium strategies for subgame Γ[0,τ ] be µ[0,τ ] and σ∗,[0,τ ],
respectively. The two equilibria form a sequential equilibrium.

Theorem 9: If there is a τ such that
1) ι(τ) = s;
2) There is a separating choice rule based sequential equi-

librium 〈µ[τ,T ], σ∗,[τ,T ]〉 for subgame Γ[τ,T ]. Let eτ be
s’s equivalent price at time τ ;

3) There is a pooling choice rule based sequential equi-
librium 〈µ[0,τ ], σ∗,[0,τ ]〉 for subgame Γ[0,τ ] such that s
accepts (eτ )←s at time τ ;

then 〈{µ[0,τ ], µ[τ,T ]}, {σ∗,[0,τ ], σ∗,[τ,T ]}〉 form a pure strategy
sequential equilibrium.
The proof is omitted: Sequential rationality is obvious given
the backward induction construction and consistency can be
proved in the same way as in Theorem 4.

If there is a sequential equilibrium for such a τ value in The-
orem 9, the equilibrium is unique for the specific τ given the
backward induction process. Therefore, to find out a sequential
equilibrium, we just need to search all the possible values of
τ ≤ T . If there is no sequential equilibrium for all values of τ ,
we can conclude that there is no sequential equilibrium. The
computational complexity of finding a sequential equilibrium
for a specific value of τ is O(T ). Thus, the computational
complexity of finding a sequential equilibrium for a bilateral
bargaining with two possible types of reserve price is O(T 2).

We show how to compute agents’ equilibrium offers on the
equilibrium path while using both the pooling choice rule and
separating choice rule. We use the example in Fig. 2 and
change the deadline to T = 4. Fig. 1 shows that there are
three choice systems for the bilateral bargaining game. First
we consider the choice system in which the pooling choice rule



is used at both time t = 0 and t = 2. The optimal offer of s at
time t = 3 is 100 and the equivalent price is e3 = 73. At t = 2,
both buyer type will offer e3

←s = 47.8. At t = 1, s can offer
1) (47.8)←bh

= 68.68, which will give s an expected utility
with 0.7(68.68 − 10)0.62 + 0.3(47.8 − 10)0.63 = 17.2368;
2) (47.8)←bl

= 52.68, which will give s an expected utility
with (52.68−10)0.62 = 15.3648. Therefore, the optimal offer
of s at t = 1 is (47.8)←bh

= 68.68 and the equivalent
price is e1 = 57.88. At t = 0, both buyer type will offer
e1
←s = 38.728. It’s easy to see that all equilibrium existence

conditions are satisfied. Thus, there is a sequential equilibrium
with the choice system.

Next we consider the choice system in which the separating
choice rule is used at time t = 0. First we assume the existence
of sequential equilibrium and we have x∗bh

(0) = 51.04 and
x∗bl

(1) = 48. bh has no incentive to behave as bl since
x∗bh

(0) = 51.04 < 68.8 = (x∗bl
(1))←bh

. However, bl has
an incentive to behave as bh since (x∗bl

(1))←bl
= 52.8 >

51.04 = x∗bh
(0). Therefore, there is no sequential equilibrium

with this choice system.
Finally, we consider the choice system in which the pooling

choice rule is used at t = 0 and the separating choice rule is
used at t = 2. We first consider the subgame starting from
t = 2, which is equivalent to the bargaining game in Fig. 2.
Thus, there is a sequential equilibrium for the subgame with
the separting choice rule in which bh’s optimal offer at time
t = 2 is x∗bh

(2) = 64, bl’s optimal offer at time t = 2 is RPs,
and s will offer x∗bl

(3) = 60 at time t = 3 if it receives offer
RPs at time t = 2. Then we consider the subgame from the
beginning to time t = 2. At t = 1, s can offer 1) (64)←bh

=
78.4, which will give s an expected utility 0.7(78.4−10)0.62+
0.3(60−10)0.64 = 19.1808 (note that if b is of type bl, it will
offer RPs at time t = 2 and make an agreement with s at time
t = 4); 2) (x∗bl

(3))←2[bl] = 60, which will give s an expected
utility (60−10)0.62 = 18. Therefore, the optimal offer of s at
t = 1 is 78.4 and the equivalent price is e1 = 63.28. At t = 0,
both buyer types will offer e1

←s = 41.968, which is lower
than both types’ reserve prices. Thus, there is a sequential
equilibrium within this choice system.

4. Conclusion

This paper analyzes agents’ rational behavior in alternating-
offers bilateral bargaining with one-sided uncertainty on re-
serve prices. Our approach searches all choice systems and
compute sequential equilibria employing a Bayesian extension
of backward induction. Our approach is sound, complete, and
can be applied to other uncertainty settings.

Our approach can be extended to handle the setting where
there is finitely many types of reserve prices. When there are
only two types and the two buyer types behave in different
ways at a time point, the only choice rule is that the type
with higher reserve price offers an acceptable price and the
other type offer a price that will be rejected. With more
types, the buyer has more options (i.e., choice rules) of
differentiating its types. To find sequential equilibrium, we just

need to search all possible choice systems (each specifying
the buyer’s choice rule at each time point when the buyer
is the offering agent, i.e., whether different buyer types will
behave in the same way or not) and compute agents’ optimal
(equilibrium) strategies for each choice system. The presence
of many types increases the computational complexity of the
procedure to find equilibrium strategies and requires more
stringent equilibrium existence conditions.

One major motivation of the study of bargaining theory is
designing successful bargaining agents in practical applica-
tions where agents often have incomplete information. One
future research direction is to experimentally evaluate the
performance of the derived fully rational equilibrium strategies
as compared with other heuristics based negotiation strategies
(e.g., negotiation decision functions [3]). Another future re-
search direction is finding mixed equilibrium strategies for
scenarios in which there is no pure strategy equilibrium.
Another challenging topic is finding sequential equilibrium for
bargaining with two-sided uncertainty.
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