
SOLVING LARGE-SCALE
PLANNING AND DEEP
LEARNING PROBLEMS

AYE PHYU PHYU AUNG

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

AUGUST, 2022

SOLVING LARGE-SCALE
PLANNING AND DEEP
LEARNING PROBLEMS

AYE PHYU PHYU AUNG

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

A thesis submitted to the Nanyang Technological University

in partial fulfillment of the requirement for the degree of

Doctor of Philosophy

AUGUST, 2022

Statement of Originality

I hereby certify that the work embodied in this thesis is the result of

original research, is free of plagiarised materials, and has not been submitted

for a higher degree to any other University or Institution.

August 30, 2022

———————— —————————————–
Date Aye Phyu Phyu Aung

i

Supervisor Declaration Statement

I have reviewed the content and presentation style of this thesis and declare

it is free of plagiarism and of sufficient grammatical clarity to be examined. To

the best of my knowledge, the research and writing are those of the candidate

except as acknowledged in the Author Attribution Statement. I confirm

that the investigations were conducted in accord with the ethics policies and

integrity standards of Nanyang Technological University and that the research

data are presented honestly and without prejudice.

August 30, 2022

———————— —————————————–
Date Bo An

ii

Type text here

Authorship Attribution Statement

This thesis contains materials from the four papers that are published/

under-review in the following peer-reviewed conferences and journals where

I was the first and/or corresponding author.

Chapter 3 is published as Aye Phyu Phyu Aung, Xinrun Wang, Bo An,

Xiaoli Li. We mind your well-being: Preventing depression in uncertain social

networks by sequential interventions. Proceedings of the 30th International

Conference on Automated Planning and Scheduling (ICAPS’20), pp.499-

507. The contributions of the co-authors are as follows:

• Prof. Bo An provided the initial idea of this work;

• Dr. Xinrun Wang and I investigated the problems and built the model;

• I justified the model, proposed and implemented the algorithms;

• I wrote the manuscript and Dr. Xinrun Wang revised the manuscript;

• Prof. Bo An, Dr. Xiaoli Li provided critical comments to the paper.

iii

Chapter 4 is published as Aye Phyu Phyu Aung, Senthilnath Jayavelu,

Xiaoli Li, Bo An. Planning sequential interventions to tackle depression in

large uncertain social networks using deep reinforcement learning. Neuro-

computing 481 : 182-192 (2022) The contributions of the co-authors are as

follows:

• I provided the idea to extend the work in Chapter 3 to this work;

• Dr. Senthilnath Jayavelu and I investigated the problems, built and

justified the model;

• I proposed and implemented the algorithms and conducted the experi-

ments;

• I wrote the manuscript and Prof. Bo An and Dr. Xiaoli Li revised the

paper.

Chapter 5 is published as Aye Phyu Phyu Aung, Xinrun Wang, Run-

sheng Yu, Bo An, Senthilnath Jayavelu, Xiaoli Li. DO-GAN: A double oracle

framework for generative adversarial networks. Proceedings of the 2022 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR’22). The

contributions of the co-authors are as follows:

• Dr. Xinrun Wang proposed the problem and the model;

• Dr. Runsheng Yu provided critical comments to the model and I justified

the model;

iv

• I proposed, implemented the algorithms and wrote the manuscript;

• Dr. Xinrun Wang and Dr. Senthilnath Jayavelu revised the algorithm

and provided suggestions.

• Prof. Bo An, Dr. Runsheng Yu and Dr. Xinrun Wang provided insight-

ful comments on the manuscript;

• Prof. Bo An, Dr. Senthilnath Jayavelu and Dr. Xiaoli Li revised the

paper.

Chapter 6 under the review as Aye Phyu Phyu Aung, Xinrun Wang,

Hau Chan, Bo An, Senthilnath Jayavelu, Xiaoli Li. DONAS: Double Oracle

and Neural Architecture Search for Adversarial Machine Learning. 36th Con-

ference on Neural Information Processing Systems (NEURIPS’22). The

contributions of the co-authors are as follows:

• Dr. Xinrun Wang and I proposed the problem and the model;

• Dr. Hau Chan provided critical comments to the model and I justified

the model;

• I proposed, implemented the algorithms, ran the experiments and wrote

the manuscript;

• Dr. Xinrun Wang and Dr. Senthilnath Jayavelu revised the algorithm

and provided suggestions.

v

• Prof. Bo An, and Dr. Xinrun Wang, Dr. Senthilnath Jayavelu provided

insightful comments on the manuscript;

• Prof. Bo An, Dr. Senthilnath Jayavelu and Dr. Xiaoli Li revised the

paper.

August 30, 2022

———————— —————————————–
Date Aye Phyu Phyu Aung

vi

Acknowledgements

This four-year Ph.D. journey is an eventful one for both my career and

personal life. During these four years, a lot of eventful moments taught me

to be a professional researcher, a more grown-up who can properly work with

other wonderful researchers and teammates, a mature person who can make

life-changing decisions calmly and when I had to let some things go.

First and foremost, I am greatly indebted to my NTU supervisor, Professor

Bo An. Without his help and suggestion to work as a research officer first

and apply for the scholarship, I would not even be doing a Ph.D. in the first

place. Both during my time as a research officer and four-year Ph.D., he has

provided me with insightful discussions as well as suggestions and allowed to

explore interesting research problems. Moreover, for a student from Myanmar

who does not have the best language ability, he suggested a lot of different

solutions so that I can communicate with other researchers and seniors from

my team. I am very grateful for his patience in helping me until I can show

results. His great ability in research and sense of important topics inspire me

to work on important problems and present them effectively.

Secondly, I would like to thank my A*STAR I2R supervisors Dr. Xiaoli Li

and Dr. Senthilnath Jayavelu for providing the suitable research environment

at A*STAR as well as for their insightful guidance and comments on my

research proposals, writing/ presentation styles and official matters so that

my four-year Ph.D. would go smoothly.

vii

Thirdly, I would like to especially thank my senior Dr. Xinrun Wang for

being very patient being my collaborator in my research work. I initially

had several difficulties discussing and starting my research work. It is for his

guidance and feedback that I finally am able to learn how to professionally

do research work. I would like to express my sincere gratitude to him.

I am also very fortunate to meet and learn from a group of talented people:

Qingyu Guo, Wanyuan Wang, Youzhi Zhang, Xinrun Wang, Lei Feng, Aye

Phyu, Hongxin Wei, Rundong Wang, Wei Qiu, Yakub Cerny, Runsheng Yu,

Yanchen Deng, Shuxin Li, Wanqi Xue, Fei Fei Lin, Zhuyun Yin, Xinyu Cai,

Shuo Sun, Pengdeng Li, Shenggong Ji and Shufeng Kong. I would like to

thank all of them for the warm support they have given me.

I would also like to thank my high school Physics teacher Dr. Htay Htay

Naing for inspiring me by showing her expansive knowledge of her subject.

Her meticulous answers to all my questions made me want to pursue a Ph.D.

degree like her.

I want to thank my friends and sister who were around me in my difficult

times. Wai Yan, Su Wai Yee Aung, Thawtar Lynn, Myat Kay Khine Tun, Ya

Min Nyi Nyi, Shwe Soe Chun, Cho Zin Tun, Phone Myint Han, Thin Thin

Aung and Su Myat Naing Aung.

Finally, I would like to thank my parents, Aung Lwin and Soe Soe Myint,

who are away but always sending their love and support to me. This thesis

is dedicated to all of you. Thank you very much.

viii

List of Figures

1.1 High-level hierarchy of the thesis structure 9

3.1 An illustrative example with 5 students. At round t, UCC
knows the influence between the students w12 and w23, rep-
resented by the solid lines. Influence unknown by UCC are
represented by the dashed lines. Student 3 is picked by UCC
to be intervened at t. w34 and w35 are known by UCC and
students 4 and 5 are also influenced according to Eq. (3.1). . . 29

3.2 An illustrative example of reasoning process. When UCC in-
tervenes student i, UCC observes the value of her mental state
and influence between her neighbours shown in red. Using this
observation, we predict the ranges of j, k, l in blue with ob-
served vi and the ranges from their other in-neighbours in ma-
genta. The predicted ranges are in green. Using these ranges,
we calculate [lbi, ubi] for i, the j, k, l’s ranges are modified if
vi /∈ [lbi, ubi]. The final ranges for j, k, l are shown in blue. . . 37

3.3 Scalability comparison of MLPRAP variants with DC, HEAL
(Figure 3.3a and 3.3b are plotted in log-scale) 47

3.4 Solution quality comparison of MLPRAP variants with DC,
HEAL . 48

3.5 Experiments on real networks 50

4.1 DRLPSO Architecture . 54
4.2 DRLPSO components represented as Markov Model commonly

used in RL . 56
4.3 Peak convergence by varying the number of particles 64
4.4 Performance of learning algorithms in 100k iterations 65
4.5 Overview of the implementation plan 68

ix

4.6 Intervention process: Step 1,6 are planned by the algorithm
while Step 2-5 are performed by the counsellors 70

5.1 Training images with fixed noise for SGAN and DO-SGAN/P
(pruning) until termination. Both during training and after
convergence, DO-SGAN/P can generate better quality images
with FID score of 6.32 against SGAN’s FID score of 6.98. . . . 73

5.2 An illustration of DO-GAN. Figure adapted from [48]. 75
5.3 Comparison of GAN and DO-GAN/P on 2D synthetic Gaus-

sian Mixture Dataset . 86
5.4 Full comparison of GAN and DO-GAN/P on 2D Synthetic

Gaussian Dataset . 87
5.5 Training evolution on 2D Gaussian Dataset with s = 5, 10, 15 . 88
5.6 Taxonomy of GAN Architectures from [99] 89
5.7 Training images with fixed noise for DCGAN and DO-DCGAN/P

until termination. 90
5.8 Training images with fixed noise for SNGAN and DO-SNGAN/P

until termination. 92
5.9 FID score vs. Epochs for SGAN and DO-SGAN trained on

CIFAR-10 . 94

6.1 The CIFAR-10 images randomly generated from DONAS for
GAN . 116

6.2 (a): Linear CKA between layers of the individual searched
networks of DONAS-GAN trained on TinyImageNet dataset.
The downtrend of similarity for later layers is observed. (b):
Linear CKA averaging between the same layers of the searched
networks of DONAS-GAN trained on TinyImageNet. 117

6.3 The search process of DONAS-GAN obtaining diverse archi-
tectures. 118

x

List of Tables

2.1 Two-player two-action normal form game [12] 20
2.2 Normal form game with no pure strategy equilibrium 21
2.3 Comparison of Terminologies between Game Theory and GAN 23

4.1 Reward Comparison for MLPRAP 64
4.2 Reward Comparison for DRLPSO 67

5.1 Hyperparameters used in DO-GAN for different base architec-
tures . 85

5.2 Runtime of DO-GAN/P on 2D Gaussian Dataset with s =
5, 10, 15 . 87

5.3 Inception scores (higher is better) and FID scores (lower is
better) of DO-GAN with pruning (DO-GAN/P) and continual
learning (DO-GAN/C). The mean and standard deviation are
drawn from running 10 splits on 10000 generated images. . . . 93

5.4 Wall-clock time comparison of SGAN variants 95

6.1 Generative results for DONAS-GAN. 114
6.2 Robust accuracy under FGSM and PGD attacks. 119

xi

Contents

1 Introduction 1
1.1 Student Counselling Problem as Large-scale Games 3

1.1.1 Planning Approach . 3
1.1.2 Learning Approach . 4

1.2 Generative Adversarial Networks (GAN) as Large-scale Games 5
1.2.1 Double Oracle Framework for GANs 6
1.2.2 Double Oracle Framework for Adversarial Machine Learn-

ing (AML) . 7
1.3 Thesis Overview . 8

2 Literature Review 10
2.1 Correlation of Stress and Risk of Depression 11
2.2 Influence Maximization . 13
2.3 Adversarial Machine Learning 14

2.3.1 Generative Adversarial Networks (GAN) 14
2.3.2 Adversarial Training (AT) 16
2.3.3 Neural Architecture Search (NAS) for AML 17

2.4 Online POMDP Solvers . 18
2.5 Deep Recurrent Q-learning Architectures 19
2.6 Game Theory . 19

2.6.1 Normal-Form Game and Nash Equilibrium 19
2.6.2 Double Oracle Algorithm 22

3 We Mind Your Well-being: Preventing Depression in Uncer-
tain Social Networks by Sequential Intervention 24
3.1 Motivation Scenario . 27
3.2 Model . 27

3.2.1 Network and Dynamics 28

xii

3.2.2 Uncertainties . 30
3.2.3 POMDP Formulation 31

3.3 MLPRAP . 33
3.3.1 Reasoning . 35
3.3.2 Abstraction of POMDP States 40
3.3.3 Multi-Level Partitions 43

3.4 Experimental Evaluation . 44
3.4.1 Experiment Setup . 45
3.4.2 Experiment Results . 47

3.5 Chapter Summary . 51

4 Planning Sequential Interventions to Tackle Depression in
Large Uncertain Social Networks Using Deep Reinforcement
Learning 52
4.1 Deep Reinforcement Learning with Particle Swarm Optimization 54

4.1.1 DRLPSO Architecture 55
4.1.2 DRLPSO Algorithm 57

4.2 Experiment Results . 61
4.2.1 Experiment Setup . 62
4.2.2 Evaluation . 63

4.3 Discussion . 68
4.4 Chapter Summary . 70

5 A Double-Oracle Framework for Generative Adversarial Net-
works (DO-GAN) 72
5.1 DO-GAN . 75

5.1.1 General Framework of DO-GAN 75
5.1.2 Linear Program for Meta-matrix Game 79
5.1.3 Termination Check . 79

5.2 Practical Implementations . 80
5.2.1 Meta-matrix Pruning (DO-GAN/P) 81
5.2.2 Continual Learning (DO-GAN/C) 82

5.3 Experiments . 84
5.3.1 Value of λ . 85
5.3.2 Evaluation on 2D Gaussian Mixture Dataset 86
5.3.3 Full Training Process of 2D Gaussian Dataset 87

xiii

5.3.4 Choice of GAN Architectures for Experiments 88
5.3.5 Evaluation on Real-world Datasets 89

5.4 Chapter Summary . 95

6 DONAS: Double-Oracle and Neural Architecture Search for
Adversarial Machine Learning 97
6.1 DONAS: The General Framework 100
6.2 Spices of DONAS . 103

6.2.1 DONAS for GAN . 103
6.2.2 DONAS for AT . 109

6.3 Experiments . 112
6.3.1 Experimental Setup . 112
6.3.2 Experiments on DONAS for GAN 113
6.3.3 Experiments on DONAS for AT 118

6.4 Chapter Summary . 120

7 Conclusion 122
7.1 Conclusion . 122
7.2 Future Work . 125

7.2.1 Reducing Training Time for Neural Architecture Search 126
7.2.2 DO-GAN/ DONAS for Time Series Datasets 127
7.2.3 Hybrid (discrete-continuous) Action Space 127

xiv

Solving Large-scale Planning and Deep Learning

Problems

Aye Phyu Phyu Aung

Supervisors: Prof. Bo An, Dr. Xiaoli Li

Abstract

Game theory has been researched and applied in many scenarios. However,

the state, action space and time of most games are set as discrete to find the

optimal strategy. Hence, the primary focus of the research will be on solving

problems with large-scale action space as the direct usage of existing small or

discrete solutions limits the solution quality and brings less resemblance to

the increasingly complex real-life situations. In particular, we approach plan-

ning: student counselling problem with large discrete action space and deep

learning problem: GAN with continuous action space. Then, we propose two

solutions for the counselling problem: 1) Planning Approach and 2) Learn-

ing Approach as well as two solutions for GAN: 1) Double Oracle framework

for GAN (DO-GAN) and 2) Double Oracle and Neural Architecture Search

for Adversarial Machine Learning (DONAS). Finally, we conduct extensive

experiments to show significant improvement of our solution quality against

state-of-the-art algorithms.

xv

Chapter 1

Introduction

Planning and game theory research have been applied in many scenarios

to important problems in modern society such as security games, financial

markets, resource allocation, cyber security and mechanism designs [1, 84, 92,

97]. To apply game theory algorithms to real-life scenarios, the early research

works approached the problems with small or discrete state and action space

and find the optimal strategy [16, 105]. However, as the real-life situations

are becoming increasingly complex, direct usage of existing solutions limits

the solution quality of the equilibrium and brings less resemblance to the

actual situations [98].

Therefore, it is important to model the problems with large state and ac-

tion space to properly reflect the real-life situations in planning and game

theory domains. By doing so, the algorithm will be able to optimally or

efficiently choose the strategy to allocate the limited resources. This is chal-

lenging mainly due to the complexity from the large action space (exponential

1

growth of available strategies with several choices or continuous action space)

of the players in the problems. This needs the complex, high-performance

computing capabilities to efficiently choose the optimal strategy. Some prob-

lems might even need large memory allocations, making the problems very

difficult to solve. Several other issues such as various uncertainties in the real

world make the problem even more challenging.

Hence, this thesis proposes to adapt and improve multiple algorithms and

approaches from planning, learning, and game theory disciplines to not only

train the large discrete state and action space but also extend to the envi-

ronments with continuous state and action space.

Firstly, we approach a large-discrete problem i.e., the student counselling

problem which has a large number of participants. The action space grows

exponentially with the number of added participants in the network and thus,

makes the problem very difficult to solve. Moreover, the solution does not

have complete information on the initial states of the participants. This

uncertainty makes the problem more difficult to converge to the Nash Equi-

librium (NE) strategy.

Secondly, we approach a continuous large-scale problem: Generative Ad-

versarial Networks (GANs). GANs have been applied in various domains such

as image and video generation, image-to-image translation and text-to-image

synthesis [58, 79, 80, 81]. Various architectures are proposed to generate

more realistic samples [65, 75, 77] as well as regularization techniques [2, 67].

2

GANs can be seen as a two-player zero-sum game of infinite state and ac-

tion choices with generator and discriminator as the two players [24]. They

are alternately trained to maximize their respective utilities till convergence

corresponding to a pure Nash Equilibrium (NE). In this setting, GANs are

challenging as a pure Nash equilibrium may not exist [17, 63] and even finding

the mixed Nash equilibrium is difficult as GANs have a large strategy space.

In the rest part of this chapter, we present a brief review of the problems,

the models, and the contributions made in this thesis.

1.1 Student Counselling Problem as Large-scale Games

The first two parts of this thesis focus on the student counselling problem

which has a large-discrete action set that grows exponentially with the num-

ber of students in the network. Along with mental health becoming a major

public health concern worldwide, we aim to help the social support organiza-

tions (e.g., university counselling centers) sequentially select the participants

for interventions. Our two major contributions are as follows.

1.1.1 Planning Approach

Firstly, we adapt a planning approach to this problem. SOTA approaches

like HEAL only handle the state values as [0, 1]. Thus, solutions adapting

SOTA cannot solve networks with more than 30 students whose mental states

are represented by a range of many values. The uncertainties in the network

3

also cause a loss in solution quality. Thus, we propose a model to address the

sequential intervention of participants while considering the emotion propa-

gation and formulate it as a Partially Observable Markov Decision Process

(POMDP) to handle uncertainties about their mental states and the influ-

ence between them. We then apply reasoning to refine belief to improve

solution quality for the lack of initial information on the mental state values.

We improve the scalability by the abstraction of states to reduce the number

of states by representing the mental states with an abstracted discrete set.

We further improve the scalability by multi-level partitioning to get smaller

POMDPs. We also conduct extensive experiments on both synthetic and real

networks to show that our algorithm significantly improves scalability with

comparable solution quality compared to the state-of-the-art algorithms.

1.1.2 Learning Approach

Secondly, we adapt a learning approach to the same problem by proposing

an algorithm with Deep Reinforcement Learning (DRL). However, the parti-

tioning step in the planning approach breaks up the student network causing

information loss. Using RL to prevent information loss, the traditional DRL

approaches cannot handle belief and observation as well as LSTM cannot

handle the complex large action space. Adding Discrete Particle Swarm Op-

timization (DPSO) to optimize the action space solves the issue. Hence, we

propose DRL with Particle Swarm Optimization (DRLPSO) to plan the op-

4

timal sequential actions in the uncertain dynamic environment with a large

action space. In particular, DRLPSO consists of two stages: the Discrete

Particle Swarm Optimization (DPSO) and Deep Q-learning integrated with

Long Short-Term Memory (DQ-LSTM). In the first stage, we apply DPSO

by initializing n particles that converge to multiple optimal actions for each

belief state. In the second stage, the action with the best Q-value from the

DPSO action set is executed to obtain belief and observation (history of ac-

tion). We evaluated the proposed method empirically with the simulated

student networks with mental state propagation compared to the state-of-

the-art algorithms.

1.2 Generative Adversarial Networks (GAN) as Large-

scale Games

The following two parts of this thesis focus on Generative Adversarial Net-

works (GANs) which can be seen as a two-player continuous state/action

space problem. From the game-theoretic perspective, GANs can be viewed

as a two-player game where the generator samples the data and the discrim-

inator classifies the data as real or generated. Training GANs is challenging

as a pure Nash equilibrium (NE) may not exist [17, 63] and even finding

the mixed Nash equilibrium is difficult as GANs have a large strategy space.

This also leads to unstable training in GANs depending on the data and

5

the hyperparameters i.e., we have to tune the hyperparameters with every

change of datasets for each architecture. To remedy these limitations, mixed

NE is a more suitable solution concept [33]. As a mixed NE approach, we

consider Double Oracle (DO) algorithm [62] which is a powerful framework

to compute mixed NE in large-scale games that has been applied in various

disciplines [7, 37, 48]. Our two major contributions are as follows.

1.2.1 Double Oracle Framework for GANs

Inspired by successful applications of the DO framework, we propose DO-

GAN by extending theDoubleOracle framework toGANs. We first general-

ize the players’ strategies as the trained models of generator and discriminator

from the best response oracles. We then compute the meta-strategies using

a linear program. For scalability of the framework where multiple generators

and discriminator best responses are stored in the memory, we propose two

solutions: 1) pruning the weakly-dominated players’ strategies to keep the or-

acles from becoming intractable; 2) applying continual learning to retain the

previous knowledge of the networks. We apply our framework to established

GAN architectures such as vanilla GAN, Deep Convolutional GAN, Spectral

Normalization GAN and Stacked GAN. Finally, we conduct experiments on

MNIST, CIFAR-10 and CelebA datasets and show that DO-GAN variants

have significant improvements in both subjective qualitative evaluation and

quantitative metrics, compared with their respective GAN architectures.

6

1.2.2 Double Oracle Framework for Adversarial Machine Learning

(AML)

As the next step, we expand our investigation to Adversarial Machine Learn-

ing (AML) which consists of two main schemes: i) generative adversarial

networks (GAN) [9, 24, 39], and ii) adversarial training (AT) [25, 61]. Both

GAN and AT are essentially two-player zero-sum games between genera-

tor/discriminator and classifier/attacker, respectively which are alternately

trained to maximize their respective utilities till convergence correspond-

ing to a Nash Equilibrium (NE) [3]. Mixed-architecture approaches such

as MIX+GAN [3], MGAN [32] and DO-GAN in Section 1.2.1 as well as

NAS approaches such as Adversarial-NAS [20] and AdvRush [69] have also

shown promising results for optimizing the network architecture in AML.

However, mixed-architectures just use predefined networks, while NAS tech-

niques select only one final network from the search space, thus, limiting the

effectiveness of both.

Thus, we propose DONAS, which combines Double Oracle from game

theory and Neural Architecture Search to allow the multi-model search to

mitigate mode-collapse, generating finer results as well as robustness. We

extend the DO framework to NAS for GAN and AT without inducing any re-

striction to NAS to use a mixed-architecture approach with searched networks

from NAS. In particular, we first propose a general algorithm for DONAS to

adapt the DO framework followed by DONAS for GANs with the respective

7

oracles to search multiple discriminators and generators and DONAS for AT

with the classifier/attacker oracles. Finally, we conduct experiments to eval-

uate the performance of DONAS for GAN and AT against different existing

NAS algorithms. Experiment results show that our approach gives signifi-

cant improvements to Adversarial-NAS for GANs as well as in its robustness

against white-box attacks.

1.3 Thesis Overview

The organization of this thesis is as follows. Chapter 2 discusses the back-

ground material and related works of this thesis. Chapter 3 considers the

problem of preventing Depression in Uncertain Social Networks by Sequen-

tial Interventions planned by Partially Observable Markov Decision Process

(POMDP). Chapter 4 solves the same problem with Deep Reinforcement

Learning (DRL) approach. Chapter 5 considers the problem of adapting

the Double Oracle Framework for Generative Adversarial Networks (GANs).

Chapter 6 discusses the Double Oracle for Adversarial Machine Learning, em-

phasizing Adversarial-Neural Architecture Search (Adversarial-NAS). Chap-

ter 7 concludes this thesis and discusses future directions. The high-level

hierarchy of the thesis structure is shown in Figure 1.1.

8

Introduction

Literature Review

Sequential Interventions
in Uncertain Social

Networks by POMDP
DOGAN

Sequential Interven-
tions in Uncertain So-
cial Networks by DRL

DONAS
for AML

Large discrete state/action space Continuous state/action space

Conclusion and Future Directions

Solving Large-scale Planning and Deep Learning Problems

Figure 1.1: High-level hierarchy of the thesis structure

9

Chapter 2

Literature Review

This chapter reviews the background knowledge which supports this thesis

with fundamental theorems, models, and algorithms. The topics discussed

in this thesis fall into two main categories: a) the fundamental theorems and

research works of the real-world environments to be considered as large-scale

problems and b) fundamental models and algorithms used to propose the

new algorithms to solve the considered large-scale problems.

We begin with the basic models and theorems related to student coun-

selling problem: Correlation of Stress and Risk of Depression in Section 2.1

and Influence Maximization in Section 2.2. We then discuss the basic models

related to Adversarial Machine Learning: Generative Adversarial Networks in

Section 2.3.1 and Adversarial Training in Section 2.3.2. Finally, we conclude

the fundamentals for considered problems with Neural Architecture Search

(NAS) for AML in Section 2.3.3.

Next, we discuss the basic models, theorems, and algorithms of our so-

10

lutions. We first discuss online POMDP solvers in Section 2.4 to plan the

sequential interventions for the student counselling problem. We then discuss

Deep Recurrent Q-learning Architectures in Section 2.5 to solve the coun-

selling problem with a deep reinforcement learning algorithm. Afterwards,

we discuss basic models and theorems of game theory in Section 2.6 which

includes normal-form game, concepts of pure and mixed Nash-equilibrium in

Section 2.6.1. Finally, we discuss the double oracle algorithm in Section 2.6.2.

2.1 Correlation of Stress and Risk of Depression

Since our main concern is to prevent depression in a student network of a

university, we found that a major factor leading to depression among univer-

sity students is stress [29]. An epidemiological study also suggests that the

most common factors leading to major depression episodes are high stress

and low social support [6]. The research works such as [43, 60] support the

view that chronic stress leads to anxiety and depression due to stress-induced

behavioural and neuroendocrine responses. Thus, to reduce the stress of stu-

dents and spread the happy mood within the student network, an emotion

propagation model will be needed.

It is stated that an increased level of stress with growing economic and so-

cial demands in the modern age leads to a rapid rise in depressive symptoms.

There has been evidence shown by the studies that emotions spread from per-

son to person via a process known as social contagion, i.e., emotion propaga-

11

tion. The emotion propagation process is properly established in the following

studies. The studies in [19] concluded that a person has a higher probability

of being happy if he/she has more friends who are happy. Similarly, another

research on a social network of adolescents finds that when a participant has

more friends with a worse mental state, it has a higher probability of worsen-

ing the mental state of the participant [15]. Moreover, the study also stated

that although happiness/stress spreads over social networks, depression does

not. Thus, we only model the emotion (happy/ stressed) propagation in the

network and do not consider depression in our propagation model.

Hence, using this well-established process as supported by the mentioned

literature, we construct our emotion propagation model where a person, after

the intervention, spreads his happiness through emotion propagation in the

social network and reduces the stress level of others. Since the neighbors’

mental states affect a person’s mental state both positively and negatively,

we considered the happy/ stress emotions of each neighbor in the propagation

model. This propagation is one degree from the seed node since the influence

propagation does not normally go beyond that in real-world networks [22].

Since the neighbours’ mental states affect a person’s mental state both pos-

itively and negatively [78], we consider the happy/stressed emotions of each

neighbour in the propagation model. We assume that the mental states of in-

tervened students are reduced with certainty considering that unforeseen ex-

ternal factors would not arise while being monitored during intervention [95].

12

2.2 Influence Maximization

Influence maximization on social networks has been modelled as Independent

Cascade (IC) or Linear Threshold (LT) models [41]. There are uncertainties

in social networks such as uncertainty in the edge influence probability and

uncertainty in the initial values of the nodes. There are two lines of works

that address such uncertainty: (1) IC is extended to choose the seed set to

optimally spread influence in a graph [10]; (2) the influencer selects several

seed sets sequentially to intervene the participants and the influencer receives

observations about the participants’ immediate social circles. To sequentially

select the intervention participants, PSINET [106] and HEAL [105] formu-

late the problem as POMDP to handle the uncertainties of connection exis-

tence that are observed in each intervention [105, 106]. As another approach,

DOSIM formulates the problem as a zero-sum game between the algorithm

which picks the optimal policy, and the adversary (nature) which selects the

connection probabilities with uncertainty [102]. However, all adopt IC model

and only consider the spread from the influencer but not the effect of influ-

encee’s neighbours. Moreover, they only consider the node values as binary

and set initial values as 0, i.e., they do not consider uncertainty on the initial

values of the nodes. However, HEAL cannot scale up to realistic networks due

to the huge state and action sets in our model. Hence, we propose abstraction

and multi-level partitioning to improve scalability.

13

2.3 Adversarial Machine Learning

2.3.1 Generative Adversarial Networks (GAN)

Given some random distribution pz(z) on the input noise z and a real data

distribution pdata(x) on training data x, GAN is set up as a two-player zero-

sum game between G and D as follows:

minGmaxD Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z))]. (2.1)

During training, the parameters of G and D are updated alternately until we

reach the global optimal solution D(G(z)) = 0.5. Next, we let Πg and Πd be

the set of parameters for G and D, considering the probability distributions

σg and σd. Then the mixed strategy formulation [33] is defined as:

minσg
maxσd

Eπd∼σd
Ex∼pdata(x)[logD(x, πd)]+

Eπd∼σd
Eπg∼σg

Ez∼pz(z)[log(1−D(G(z, πg), πd)].

Various GAN architectures have been proposed to improve the performance

of GANs. Deep Convolutional GAN (DCGAN) [77] replaces fully-connected

layers in the generator and the discriminator with the deconvolution layer

of Convolutional Neural Networks (CNN). Weight normalization techniques

such as Spectral Normalization GAN (SNGAN) [66] stabilize the training of

the discriminator and reduce the intensive hyperparameters tuning. There

14

are also multi-model architectures such as Stacked Generative Adversarial

Networks (SGAN) [35] that consist of a top-down stack of generators and

a bottom-up discriminator network. Each generator is trained to generate

lower-level representations conditioned on higher-level representations that

can fool the corresponding representation discriminator. Training GANs is

very hard and unstable as pure NE for GANs might not exist and cannot

be reliably reached by the existing approaches [63]. Considering mixed NE,

MIX+GAN [3] maintains a mixture of generators and discriminators with the

same network architecture but have their own trainable parameters. How-

ever, training a mixture of networks without parameter sharing makes the

algorithm computationally expensive. Mixture Generative Adversarial Nets

(MGAN) [32] propose to capture diverse data modes by formulating GAN

as a game between a classifier, a discriminator, and multiple generators with

parameter sharing. However, MIX+GAN and MGAN cannot converge to

mixed NE. Mirror-GAN [33] finds the mixed NE by sampling over the infinite-

dimensional strategy space and proposes provably convergent proximal meth-

ods. The sampling approach may be inefficient to compute mixed NE as the

mixed NE may only have a few strategies with positive probabilities in the

infinite strategy space.

15

2.3.2 Adversarial Training (AT)

As neural architectures become widely researched, investigations on their

intrinsic vulnerability and enhancement of robustness have also increased.

Numerous approaches have been proposed but Adversarial Training (AT)

based methods [61] still remain the strongest defense approach.

Given a fixed classifier with parameters θ, a dataset X (e.g., an image x

with true label y), and classification loss l, a bounded non-targeted attack is

done by

max
δ

l(x+ δ, y, θ), δ ∈ S, (2.2)

where S = {δ | ||δ||p ≤ ϵ} is the space for the perturbation, || · ||p is the

p-norm distance metric of adversarial perturbation and ϵ is the manipulation

budget. We leverage Projected Gradient Descent (PGD) which uses the sign

of the gradients and projects the perturbations into the set S, to construct

an adversarial example for each iteration t with step size ϵ.

xt = Πx+S(x
t−1 + ϵ · sgn(∇xl(x

t−1, y, θ))). (2.3)

K-PGD [61] is the iterative attack of the adversarial examples constructed

in Eq. (2.3) with uniform random noise as initialization, i.e., x0 = x + ζ

where ζ is from noise distribution. The strength of PGD attacks to generate

adversarial examples depends on the number of iterations. It has an inner

loop that constructs adversarial examples, while its outer loop updates the

16

model using mini-batch stochastic gradient descent on the generated exam-

ples. However, it is generally slow. Thus, we adapt Free AT [89] as the AT

algorithm of our work. It computes the ascent step by re-using the back-

ward pass needed for the descent step. To allow for multiple adversarial

updates to the same image without performing multiple backward passes,

Free AT trains on the same mini-batch several times in a row. Among the

defense architectures, RobNet [26], randomly samples architectures from a

search space and adversarially trains each of them. However, this is very

computationally expensive. Moreover, evolutionary algorithm architectures

such as R-NAS [45] and RoCo-NAS [21] are restricted to only black-box at-

tacks. Lastly, AdvRush [69] proposes an adversarial robustness-aware neural

architecture search algorithm using the input loss landscape of the neural

networks to represent their intrinsic robustness.

2.3.3 Neural Architecture Search (NAS) for AML

With Automatic Machine Learning (AutoML) [57], Neural Architecture Search

(NAS) has become one of the most important directions for machine learn-

ing. The goal of NAS is to automatically search for an effective architec-

ture that satisfies certain demands. The DARTS in one-shot literature is

the first approach that relaxes the search space to be continuous and con-

ducts searching in a differentiable way. The architecture parameters and

network weights can be trained simultaneously. However, they are extremely

17

time-consuming to obtain the generators. In the context of generative net-

works, Adversarial-Neural Architecture Search (Adversarial-NAS) proposes

to search the generator and discriminator architectures simultaneously in

a differentiable manner [20] . However, in both GAN and AT, NAS only

samples the architectures from search space by picking the operations with

maximum weights. To improve the modes that are missed for training, we

propose DONAS for GANs and AT by sampling and finetuning multiple net-

works instead of just selecting the maximum [20]. DONAS does not induce

any restriction to NAS.

2.4 Online POMDP Solvers

We focus on online algorithms for solving POMDPs that are more scalable

and suitable for our problem with huge state and action sets than offline

algorithms. Monte Carlo Sampling-based online solvers, POMCP [90] and

DESPOT [108], use Monte Carlo tree search and maintain a search tree for

all sampled histories. Thus, they have better solution quality but reduce scal-

ability. HEAL does not maintain a search tree and uses QMDP heuristics [56]

to find the best action.

18

2.5 Deep Recurrent Q-learning Architectures

DRL is widely used to solve large sequential decision-making problems. In

particular, for uncertain environments, Deep Recurrent Q-learning (DRQN)

has shown significant performance over the existing approaches. Hence, we

focus on DRQN methods. The problem is formulated as a POMDP to rep-

resent the uncertain environment, and the solution is obtained using DRL.

For instance, Egorov (2015) solved the POMDP problem with a deep neural

network and represented the Q-function of POMDP with belief and action

instead of state and action. Later works such as [27] proposed a recurrent

model with convolutional layers and an LSTM layer to solve the POMDP

environments of ALE. This model represents the Q-function with observa-

tion as a parameter instead of using the state. More recently, DDRQN [18],

and ADRQN [111] improved the work by adding a history of actions to the

Q-function’s parameters. However, these works have either considered belief

or observation (history of action) individually but not both together. They

also do not consider the large action space of dynamic environments.

2.6 Game Theory

2.6.1 Normal-Form Game and Nash Equilibrium

Game theory helps people understand by representing competitive or cooper-

ative situations in which participants make decisions rationally [35, 36]. The

19

most famous representation in game theory is the normal form game.

Definition 2.1: A normal form game is defined by:

1. the set of players N = {1, 2, · · · , N},

2. the set of pure strategies (actions) S = {S1, S2, · · ·SN}

3. payoff functions for the players: ui : S1 × S2 × · · ·SN → R

Table 2.1: Two-player two-action normal form game [12]

c1 c2
r1 2,1 4,0
r2 1,0 3,1

In a normal form game, all players aim to choose from their strategies in

such a way as to maximize their utilities. To represent a two-player normal

form game, consider N = 2 i.e., column player c and the row player r;

S1 = {ri|1 ≤ i ≤ m} and S2 = {cj|1 ≤ j ≤ n} then the representation of

the game considered is shown in Table 2.1. To analyze the possible outcomes

of the game, we need to determine other additional information such as the

sequence of the player’s moves and the reasonability of the players. In the

simultaneous-move case, each player assumes that other players are perfectly

rational and choose the optimal action to maximize their own payoffs.

For this game, c will determine that r will always play r1 because r1’s payoff

is always higher than r2 no matter what c plays. Therefore, the column player

c will play c1 to maximize her own payoff. Thus, the final outcome {r1, c1}

is an equilibrium of the game where no player wants to deviate unilaterally.

20

However, the equilibrium with pure strategies does not exist in all games.

An example without any pure strategy equilibrium is shown in Table 2.2 [12].

Table 2.2: Normal form game with no pure strategy equilibrium

c1 c2
r1 1,-1 -1,1
r2 -1,1 1,-1

In this game, we allow the player to randomize his action, which is called

mixed strategy to get the equilibrium. The mixed strategy σi ∈ ∆i is a prob-

ability distribution over all strategies/actions in the strategy set Si where ∆i

is the set of all mixed strategies and σi(sj) is the probability that player i

will play sj ∈ Si. We denote the strategy profile of all players as ⟨σi, σ−i⟩

where σ−i is the strategy profile of the players except player i. The common

solution concept in simultaneous-move and the non-cooperative game is Nash

equilibrium where no player has an incentive to deviate by playing a different

(mixed) strategy [72]. This work by Nash also proved that every normal-

form game with finite actions for N players has at least a mixed strategy

Nash equilibrium. Hence, the Nash Equilibrium is defined by:

Definition 2.2: A strategy profile ⟨σi, σ−i⟩ forms a Nash equilibrium if and

only if:

Ui(σ
∗
i , σ

∗
−i) ≥ Ui(σi, σ

∗
−i);∀σi ∈ ∆i (2.4)

where Ui(σi, σ−i) is the utility, i.e., expected payoff, of the strategy profile

⟨σi, σ−i⟩.

21

2.6.2 Double Oracle Algorithm

Double Oracle (DO) algorithm starts with a small restricted game between

two players and solves it to get the players’ strategies at Nash Equilibrium

(NE) of the restricted game. The algorithm then exploits the respective best

response oracles for additional strategies of the players. The DO algorithm

terminates when the best response utilities are not higher than the equilib-

rium utility of the current restricted game, hence, finding the NE of the game

without enumerating the entire strategy space. Moreover, in two-player zero-

sum games, DO converges to a min-max equilibrium [62]. DO framework is

used to solve large-scale normal-form and extensive-form games such as secu-

rity games [37, 94], poker games [100] and search games [8]. DO framework is

also used in MARL settings [48, 71]. Policy-Space Response Oracles (PSRO)

generalize the double oracle algorithm in a multi-agent reinforcement learning

setting [48]. PSRO treats the players’ policies as the best responses from the

agents’ oracles, builds the meta-matrix game, and computes the mixed NE

but it uses Projected Replicator Dynamics (PRD) that updates the changes

in the probability of each player’s policy at each iteration. Since PRD needs

to simulate the update for several iterations, the use of PRD takes a longer

time to compute the meta-strategies and does not guarantee to compute an

exact NE of the meta-matrix game. However, in DO-GAN, we can use a

linear program to compute the players’ meta-strategies in polynomial time

since GAN is a two-player zero-sum game [86]. We present the corresponding

22

terminologies between GAN and game theory in the following table.

Table 2.3: Comparison of Terminologies between Game Theory and GAN

Game Theory terminology GAN terminology

Player Generator/ discriminator

Strategy
The parameter setting of generator/ discriminator,
e.g., πg and πd

Policy
The sequence of parameters (strategies) till epoch t,
e.g., (π1

g , π
2
g , ..., π

t
g)

Note: Not used in DO-GAN.

Game The min-max game between generator and discriminator

Meta-game/ meta-matrix
The min-max game between generator & discriminator with
their respective set of strategies at epoch t of DO framework

Meta-strategy The mixed NE strategy of generator/discriminator at epoch t

23

Chapter 3

We Mind Your Well-being:

Preventing Depression in Uncertain

Social Networks by Sequential

Intervention

Nowadays, depression and other mood disorders have become major pub-

lic health concerns worldwide. The World Health Organization (WHO) es-

timates that 350 million people are affected by depression throughout the

world, reducing their ability to work and socialize, as well as increasing the

rate of mortality from suicides [15]. Since counselling and social support help

mitigate this problem by reducing people’s stress [78], counselling services

are emerging to provide interventions where a counsellor conducts dialogue

sessions with several participants, finds out about their mental states and

provides therapy. In this work, we use University Counselling Center (UCC)

24

1 as an example. UCC is set up to monitor the stress level and well-being of

students and decrease their stress level by interventions.

However, there are several challenges faced. Firstly, according to 2016

AUCCCD Survey, only 6−7% of the students seek for counselling. Although

we need to invite all the students for counselling to provide more effective

social support, there are some limitations in the capacity of intervention

such as the availability of counsellors in a university. Secondly, UCC cannot

obtain the complete information about the students’ mental states and the

relationship between them at the beginning of the intervention. Thirdly,

the large number of students makes it difficult to scale up to the real-world

networks. Hence, it is not easy for UCC to efficiently decide the intervention

plan to invite the students to counselling.

There are existing works to deal with such kind of problems using se-

quential planning algorithms. PSINET [106], HEAL [105] and CAIMS [107]

maximize the HIV information spread in uncertain networks by formulating

as POMDPs addressing the uncertainty of the influence between the partici-

pants. DOSIM [102] formulates the problem as a zero-sum game between the

influencer and the adversary (uncertainty). However, these algorithms can-

not be directly extended to solve our problem due to two main issues. Firstly,

they do not consider the initial uncertainty of mental state values which leads

to poor solution quality. Secondly, the extensions of these algorithms fail to

1https://www.american.edu/ocl/counseling/

25

scale up to realistic networks due to the huge state space of our problem.

This chapter highlights four key contributions. Firstly, we propose a novel

model for intervention to prevent depression in an uncertain network. The

model considers the different values of nodes and the propagation which is not

only affected by the influencer but also by influencee’s neighbours. We for-

mulate the problem as POMDP to address the uncertainties of mental state

values and influence which we observe along the interventions. Secondly, we

propose a reasoning algorithm on the students’ mental states upon observa-

tion to refine the belief of the POMDP. Refining the belief with reasoning

reduces the loss of solution quality by the initial uncertainty of students’ men-

tal states. Thirdly, we propose MLPRAP (Multi-Level Partition algorithm

with Reasoning and Abstracted Planning) with the following novelties: (i)

we abstract the POMDP states to reduce the state space; (ii) we provide

theoretical bounds on uniform networks for solution quality loss due to ab-

straction; (iii) we partition the graph into smaller partitions by two folds: (1)

balanced partitioning (MLP-B); (2) cluster partitioning (MLP-C) so that the

algorithm scales up to plan interventions for a network of at least 1000 stu-

dents. Finally, we provide extensive experimental analysis on scalability and

solution quality of MLPRAP compared to the state-of-the-art algorithms.

26

3.1 Motivation Scenario

Though our model can be applied to many scenarios such as mental health

care for a public sector and counselling services for employees, we motivate

our model by a specific case where UCC conducts a series of interventions to

students. At each round of intervention, UCC invites a group of students for

the counselling session. Through the intervention, UCC knows the mental

states of the intervened students and the students within one degree of them

[83], i.e., the influence between the counselled students and their friends.

Since the counsellors have the student registry and the collected information

in the previous interventions, UCC has initial mental states and influence

estimation of the students.

3.2 Model

We consider Q rounds of UCC’s interventions of a group of students and

at each intervention, UCC selects K students. For each intervention, UCC

obtains the observations about mental states of the selected students and

influence between the selected students and their neighbours. Belief for the

next intervention is updated according to the newly obtained observations.

The objective of UCC is to decrease the global stress level of all students to

prevent depression.

27

3.2.1 Network and Dynamics

The connection network of N students is represented by a directed graph

G = ⟨V,E⟩ with the node set V (|V | = N) and the edge set E. Every

i ∈ V represents a student in the connection network. Moreover, every

e = {(i, j)|i, j ∈ V } ∈ E represents that student i is a friend of student

j and is associated with real value wij, which terms the influence that i

induces to j. Since the friendship between a pair of students is mutual [88],

if (i, j) ∈ E then (j, i) ∈ E. However, different wij and wji values indicate

the different influence i and j have on each other and we set wii = 0. For

the sake of description, let N in(i) be student i’s in-neighbours where (j, i) ∈

E with 0 < wji ≤ 1 for j ∈ N in(i) and N out(i) as out-neighbours where

(i, j) ∈ E, 0 < wij ≤ 1 for j ∈ N out(i), respectively. The mental state of

a student is one of the values in the discrete set M = {0, 1, 2, · · · , µ} 2 in

which 0 represents the least stressed mental state and µ represents the most

stressed mental state. Therefore, the students’ mental states are represented

by v = ⟨v1, ..., vN⟩ where vi ∈M, i ∈ V is the mental state of student i.

We assume that in each intervention, UCC reduces the selected student’s

stress level by δ 3. Due to her mental state change, her emotion propagates

to her friends j ∈ N out(i) by the propagation where the extent of influence

varies by influence wij. The process is illustrated in Figure 3.1.

2In current literature, mental states can only be roughly evaluated inexplicitly as mild, moderate and
severe [101].

3δ = f(vi). If vi < δ, we assign vi = 0 after decrease. This also applies to ∆j in Eq (3.2).

28

1

3

4

2

5w12

w23

w34

w41

w15

w35

1

3

4

2

5w12

w23

w34

w41

w15

w35

t t+ 1

Figure 3.1: An illustrative example with 5 students. At round t, UCC knows the influence between
the students w12 and w23, represented by the solid lines. Influence unknown by UCC are represented
by the dashed lines. Student 3 is picked by UCC to be intervened at t. w34 and w35 are known by
UCC and students 4 and 5 are also influenced according to Eq. (3.1).

The extent of influence on j by i is represented by ∆i→j which is defined

as:

∆i→j = ⌊
wij(µ− vi)

wij(µ− vi) +
∑

k∈N in(j)\{i} vk · wkj
· δ⌋ (3.1)

which implies that when vi is smaller, i.e., the influencer i is less stressed,

∆i→j is larger. When
∑

k∈N in(j)\{i} vk ·wkj is larger, i.e., her other neighbours

have more stressed mental states, ∆i→j is smaller. This is inspired by the

studies that the happiness/stress of the neighbours also affect the extent of

influence [78, 83].

Hence, the total mental state value decrease on j is:

∆j = aj · δ +
∑

ai=1,i∈V \{j}
∆i→j (3.2)

where a = ⟨ai⟩, ∀i ∈ V such that ai = 1 if student i is selected and ai = 0

otherwise. The first term aj · δ is the influence induced by UCC and the

second term is the influence induced by the propagation from the intervened

29

neighbours of j such that ∆i→j are aggregated for all neighbours i of j who

are intervened.

3.2.2 Uncertainties

UCC does not have complete information of the students’ mental states and

influence initially. Hence, we model the uncertainty of students’ mental states

at the tth intervention by defining an N × (µ+ 1) matrix P̂t−1 and each row

p̂t−1
i = ⟨p̂t−1i (m)⟩ is the probability distribution over the discrete set M of

student i. p̂t−1i (m) expresses the probability of student i being evaluated as

mental state value m at t. For the uncertain influence, we also define an

N × N matrix Ŵ0 which represents the estimates of influence between each

pair of students. The values in Ŵ0 are estimated by the counsellors based on

the information collection before the intervention process.

Initially, UCC has mental state estimates P̂0 and influence estimates Ŵ0.

In each intervention, the mental states of the selected students and influence

are observed. Hence, in tth intervention, UCC derives P̂t from the belief which

is updated during the intervention. The rule for belief update is described in

POMDP formulation section. Ŵt is also updated by assigning ŵij = wij,∀j ∈

N out(i) and ŵji = wji,∀j ∈ N in(i) for each intervened student i.

30

3.2.3 POMDP Formulation

POMDPs are sequential decision making models under uncertainty [76]. For-

mally, a POMDP is defined as P = ⟨S,A,O, T,Ω, R, b0⟩.

States and Initial Belief. S is the state set. A state is defined as s =

⟨v, Ŵ ⟩ where v denotes the students’ mental states and Ŵ is defined as

ŵij = wij if the influence of student i on j is known by UCC and ŵij = ŵ0
ij

otherwise where ŵ0
ij is the initial estimation of wij by UCC. UCC has an initial

belief over states b0 which is a distribution over S and b0s is the probability

that the POMDP is at s at the beginning of the interventions.

Actions and Observations. UCC’s selection of K students at each inter-

vention is defined as action a where ai = 1 means student i is selected and

ai = 0 otherwise, given the constraint
∑

i∈V ai = K. All actions belong to

the set A. UCC’s observation by taking the action a ∈ A at state s is defined

as o(s, a) = {vi, wij, wji|∀ai = 1, j ∈ V,v ∈ s}, i.e., the mental states and

the associated influence of the intervened students. All observations belong

to the set O. Ω is the observation function of the POMDP which is uniquely

defined by the action a and the state s:

Ω(o, s, a) =

 1, if o = o(s, a);

0, otherwise.
(3.3)

Transition Probabilities Heuristic. T (s, a, s′) is the transition probabil-

ity of reaching s′ from s by taking action a. UCC takes action a and the

31

change in students’ mental states is calculated as by Eq (3.2). Therefore, we

can define T (s, a, s′) as:

T (s, a, s′) =

 1, if s′ = ⟨v′, Ŵ ′⟩;

0, otherwise.
(3.4)

where v′ and Ŵ ′ are students’ mental states and influence of the new state

s′ that are updated as:

v′j = vj −∆j; (3.5)

ŵ′ij =

 wij, if ai = 1 or aj = 1;

ŵij, otherwise.
(3.6)

where v′j ∈ v′, ŵ′ij ∈ Ŵ ′,∀i, j ∈ V .

Reward and Policy. The reward R(s, a) of taking action a ∈ A in state

s = ⟨v, Ŵ ⟩ is defined by:

R(s, a) =
∑

s′∈S
T (s, a, s′)

(∑
i∈V

(vi − v′i)
)

(3.7)

We define the history at intervention t as a sequence of past actions and ob-

servations Ht = ⟨a1, o1, a2, . . . , at, ot⟩. We denote Ht as the set of all possible

histories at t. The policy is defined as π : Ht → A which takes history Ht as

input and outputs the action a. The expected reward for π starting from b0

is defined as V π(b0) =
∑Q

t=1 E[R(s, a)|b0, π]. E[·] outputs the expected value

32

of the input. The optimal policy π∗ is the policy that maximizes V π(b0).

Formally, π∗ = argmaxπ V
π(b0).

Belief Update. Since in each state s, we have the deterministic value of Ŵ

where each element is either ŵij or wij, the initial belief b
0 can be defined by

P̂0 and Ŵ0 such that for s = ⟨v, Ŵ ⟩:

b0s =

∏

vi∈v p̂
0
i (vi), if Ŵ = Ŵ0

0, otherwise.
(3.8)

At intervention t, each state s = (v, Ŵ) with belief bt−1s transits to s′ =

(v′, Ŵ ′) upon taking action a. UCC observes o ∈ O with the probability of

Ω(o, s′, a). Hence we update the belief by

bts′ = γ · Ω(o, s′, a) ·
∑

s∈S
T (s, a, s′) · bt−1s (3.9)

where γ is the normalizing constant: γ = 1/(
∑

s′∈S Ω(o, s
′, a)·∑s∈S T (s, a, s

′)·

bt−1s). After that, we update P̂t based on the belief update with p̂tj(m) =∑
s′∈S,v′j=m bts′.

3.3 MLPRAP

To solve the formulated problem, we first tried online POMDP solvers such

as DESPOT [108] and POMCP [90] which can scale up to large networks.

These solvers, however, limit the size of initial belief set. This makes them

33

not suitable for our setting since the initial belief set may be as large as the

state set.

We propose MLPRAP (Multi-Level Partition algorithm with Reasoning

and Abstracted Planning), extended from the algorithms for the dynamic

influence maximization in social networks to improve scalability and solution

quality. MLPRAP sequentially selects the students in an uncertain large net-

work with three novelties: reasoning on the estimated mental states of stu-

dents to refine the belief before each intervention, abstraction of the POMDP

states to solve large POMDPs and multi-level partitioning of the graph.

Algorithm 3.1 describes the flow of MLPRAP. We partition the graph G

with multi-level partitioning by Algorithm 3.4 or 3.5 to obtain a map P of

partition par and k (line 1). Then, we generate abstracted POMDPs for each

par (line 2). Next, we refine belief bt−1 with reasoning by Algorithm 3.2 (line

4). Each POMDP is solved to find the optimal one-node action with QMDP

Heuristics (lines 6-8). We choose K actions from A according to multi-level

partitioning variants to get a which is added to policy π and belief bt is

updated (lines 9-10).

In the rest of this section, we will discuss all the components of MLPRAP:

(i) reasoning on the estimated mental states; (ii) abstraction of states; and

(iii) multi-level partitioning of the graph.

34

Algorithm 3.1: MLPRAP(G)

1 Obtain P with multi-level partitioning (Algorithm 3.4/ 3.5) ; // P is a map of par and k

2 Generate abstracted POMDPs P ′
k and assign k for ⟨par, k⟩ ∈ P;

3 for t = 1 : Q do
4 Reason to refine bt−1 of each P ′

k (Algorithm 3.2);
5 Initialize A = ∅ ; // A is a map of action and k

6 for P ′
k do

7 action = FindBestAction(P ′
k);

8 add ⟨action, k⟩ to A;

9 Choose K actions from A and assign to a;
10 Add a to π, and update bt of P ′

k according to (bt−1, a);

11 return π

3.3.1 Reasoning

In our POMDP, the initial students’ mental states and influence (P̂0 and

Ŵ0) are inaccurate since they are estimated by UCC without evaluation.

This leads to poor solution quality as the algorithm sequentially selects the

participants from inaccurate initial beliefs. At every intervention t, as we get

information about selected students’ mental states and real influence between

the students, we do reasoning on the estimated students’ mental states and

refine bt so that the belief estimates are closer to the true mental states.

The change in her emotions propagates to her neighbours in the social

network as emotions can spread from one person to another. Moreover, her

mental state is also affected by the mental states of her neighbours. There are

two main conclusions that describe the relationship about the mental states

in a social network: (i) the close friends in the network have similar mental

state values [31]; (ii) the mental state of a student is not just affected by one of

35

her friends independently but affected by the mental states of all her friends

[15]. These existing findings can be represented by the State Relationship

Rule (SRR).

State Relationship Rule (SRR). A student’s mental state lies within the

range defined by the weighted average of all her neighbours’ mental state

ranges. Given each neighbour i’s mental state range as [lbi, ubi] where lbi ≤

vi ≤ ubi, j’s range [lbj, ubj] is defined as:

lbj = ⌊
∑

i∈N in(j) lbi · ŵij∑
i∈N in(j) ŵij

⌋; (3.10)

ubj = ⌈
∑

i∈N in(j) ubi · ŵij∑
i∈N in(j) ŵij

⌉ (3.11)

Accordingly, the prediction of the mental state depends not only on the

mental state of the neighbours but also on the influence of the neighbours. We

also allow uncertainty of the range predicted by SRR. Therefore, there will be

a probability to predict a student to be stressed although she is surrounded

by all neighbours in happy mental states.

So far, we assume that all mental state values can occur in our POMDP.

There might be some states in the belief with the mental state values that

are inconsistent with SRR. During the reasoning process, we take SRR into

account and set the probabilities of the states in the belief that violate SRR to

0. This process can reduce the uncertainty on mental state values and thus,

improve the solution quality. A concrete example is shown in Figure 3.2 to

36

describe how the belief is refined during the reasoning process according to

the State Relationship Rule (SRR).

o

[0, µ]

p

[0, µ]

q

[0, µ]

k

[lb′k, ub
′
k]

[lbk, ubk]

l

[lb′l, ub
′
l]

[lbl, ubl]

i

vi

j

[lb′j , ub
′
j]

[lbj , ubj] m

[0, µ]

n

[0, µ]

1

1

1

ŵki

ŵik

ŵli

ŵil

ŵji

ŵij

1

1

Figure 3.2: An illustrative example of reasoning process. When UCC intervenes student i, UCC
observes the value of her mental state and influence between her neighbours shown in red. Using
this observation, we predict the ranges of j, k, l in blue with observed vi and the ranges from their
other in-neighbours in magenta. The predicted ranges are in green. Using these ranges, we calculate
[lbi, ubi] for i, the j, k, l’s ranges are modified if vi /∈ [lbi, ubi]. The final ranges for j, k, l are shown
in blue.

Example 1. We consider an example in Figure 3.2 with µ = 10 where {vi =

5, wij = 1, wji = 1, wik = 0.5, wki = 1, wil = 0.25, wli = 0.25} is observed.

First, with Eq. (3.11), we can predict the mental state ranges for j, k, l as

[1, 9], [0, 10], [0, 10] respectively. Using these ranges, we find that we get ubi =

4 and lbi = 6 after calculating i’s range with vk = 0 and vk = 10. Hence,

0 and 10 are removed from k’s range. Thus, we get [1, 9], [1, 9], [0, 10] as

the refined ranges for j, k, l. During reasoning process, we set bs as zero if

s contains inconsistent mental states that are not in the refined ranges and

violates SRR.

According to SRR, we do the reasoning as follows. When UCC intervenes

37

student i, UCC gets an observation {vi, wij, wji|j ∈ V }. With this observa-

tion, we predict the range for student j’s mental state where j ∈ N out(i). We

set the mental state range for other unobserved students as [0, µ] and influence

as the maximum, i.e., 1 to make the predicted range wider to compensate

for uncertain values. For the robust prediction of mental states, UCC defines

that the predicted range for j’s mental state has the width of at least ω i.e.,

ubj− lbj ≥ ω. Hence, if the width of the range predicted by Eq. (3.11) is less

than ω, we modify the range as [θj−ω/2, θj+ω/2] 4 where θj = ⌊(lbj+ubj)/2⌋.

On the other hand, we need to make sure that the observed value vi is in the

range [lbi, ubi] which is calculated by the predicted ranges for vj,∀j ∈ N in(i).

For each value α in range [lbj, ubj], we use [lbk, ubk] for k ∈ N in(i) \ {j} to

find [lbi, ubi] and α is removed from the range if ubi < vi or lbi > vi. We run

the refining process until all the observed vi values are in the range [lbi, ubi]

which is calculated by all the predicted ranges for j ∈ N in(i).

We refine the belief before each intervention so that the algorithm selects

action based on the belief closer to the real network. We do reasoning on the

network, predict the range and check for each belief state where bt−1s > 0 if

all mental state values of s are in respective predicted ranges.

Algorithm 3.2 checks each state where bt−1s > 0 if the students’ men-

tal states are in the range predicted by SRR (line 1). We define a vec-

tor d where di = 1 if student i is observed and di = 0 otherwise. The
4If θj − ω/2 < 0, lbj = 0. If θj + ω/2 > µ, ubj = µ.

38

Algorithm 3.2: Reasoning(bt−1,d)

1 for s ∈ S, bt−1
s > 0 do

2 lb,ub = PredictMentalStateValues(s,d);
3 for vj ∈ s do
4 if vj /∈ [lbj, ubj] then bt−1

s = 0 ;

5 b′t−1
s = bt−1

s /
∑

s′∈S b
t−1
s′ ,∀s ∈ S;

6 return b′t−1;

range for each student’s mental state value is predicted according to SRR

in PredictMentalStateValues(.) which is described in Algorithm 3.3. After

that, the algorithm checks if the mental state of all students are in the respec-

tive predicted ranges and sets bt−1s to 0 otherwise (line 4). Finally, non-zero

belief values are rescaled to sum up to 1 (line 5).

Predicting Mental State Values by SRR. Algorithm 3.3 returns the predicted

ranges for the students. lbi, ubi are set as certain mental state of i and w̃ij

is set as certain influence of i and j if i is observed, i.e., di = 1, and set to

lbi = 0, ubi = µ, w̃ij = 1 otherwise (lines 1-7). Given the observed student

i, the mental state range for her out-neighbour j is predicted by applying

SRR (lines 8-15). Lines 16-22 describe that the mental state range [lbi, ubi]

of observed student i is calculated using the predicted ranges for her in-

neighbours. If α ∈ [lbj, ubj],∀j ∈ N in(i) predicts the range [lbi, ubi] and

vi /∈ [lbi, ubi], it is removed from [lbj, ubj] (line 22).

39

Algorithm 3.3: PredictMentalStateValues(s,d)

1 for i ∈ V do
2 if di == 1 then
3 lbi = ubi = vi;
4 for j ∈ V do w̃ij = wij ;

5 else
6 lbi = 0; ubi = µ ;
7 for j ∈ V do w̃ij = 1 ;

8 for i ∈ V, di == 1 do
9 for j ∈ N out(i), dj == 0 do

10 lbj = ⌊
∑

k∈N in(j) lbk·w̃kj∑
k∈N in(j) w̃kj

⌋;

11 ubj = ⌈
∑

k∈N in(j) ubk·w̃kj∑
k∈N in(j) w̃kj

⌉;
12 θj = (lbj + ubj)/2;
13 lb′j = θj − ω/2, ub′j = θj + ω/2 ;

14 if lb′j < lbj then lbj = lb′j ;

15 if ub′j > ubj then ubj = ub′j ;

16 for i ∈ V, di == 1 do
17 for j ∈ N in(i), dj == 0 do
18 for α ∈ [lbj, ubj] do

19 lbi = ⌊
α·w̃ji+

∑
k∈N in(i)\{j} lbk·w̃ki∑
k∈N in(i) w̃ki

⌋;

20 ubi = ⌈
α·w̃ji+

∑
k∈N in(i)\{j} ubk·w̃ki∑
k∈N in(i) w̃ki

⌉;
21 if lbi > vi or ubi < vi then
22 remove α from [lbj, ubj] ;

23 return lb,ub;

3.3.2 Abstraction of POMDP States

We reduce the huge state space by defining σ such that a student’s mental

state is one of the values in the abstracted discrete setM′ = {0, σ, 2σ, ..., µ}

and we define the state set S ′ with M′. Hence, the non-abstracted total

number of states, i.e., (µ+ 1)N is reduced to ⌈(µ+ 1)/σ⌉N .

Every state in S ′ belongs to S, i.e., S ′ ⊂ S. Given action a ∈ A and state

40

s ∈ S ′, the successive state ŝ ∈ S is obtained according to the transition

function of original POMDP P . The change in mental states is computed

with observed vi for ai = 1 and abstracted v′j for aj = 0. If ŝ /∈ S ′, we replace

with s′ ∈ S ′ such that 0 < v′i − v̂i ≤ σ,∀i ∈ V . The policy evaluated with S ′

is denoted as π′. We denote the optimal policy of the abstracted POMDP as

π′∗ and the expected reward as V π′∗
.

Although the abstraction method improves scalability, there is some loss of

solution quality due to the approximation, i.e., V π∗−V π′∗
. Hence, in Lemma

1, we prove a theoretical bounded error, V π∗−V π′∗
, for independent network

at the end of round Q.

Lemma 1. For a certain network with independent students, V π∗ − V π′∗ ≤

Q · (σ − 1) ·K.

Proof. The maximum difference between vi and v′i is (σ − 1) since we have

s′ if 0 < v′i − v̂i ≤ σ. Hence, for Q rounds where K nodes are chosen at each

round, the maximum difference between the total expected rewards of the

optimal policies π∗ and π′∗ is Q · (σ − 1) ·K.

In Lemma 2, we prove the bound for certain networks with connections

between the students. For general networks, we cannot prove the bounds since

the influence propagation greatly depends on the neighbours’ mental states

and influence. Hence, we consider a complete graph with wij = w,∀i, j ∈ V .

Lemma 2. For a certain network where the students’ mental state values and

41

influence are known,

V π∗ − V π′ ≤ Q ·K ·
(δ · (N · µ− 2)

µ+N − 2
− δ + σ − 1

)
(3.12)

Proof. Let π∗ be the optimal policy of the original POMDP P with initial

state s0. At round t, given the state st−1 and action at, st−1 transits to st.

We refer to the mental states at t as vti ,∀i ∈ V where vti ∈ vt,vt ∈ st. In a

complete graph, the influence level on j at round t is defined using Eq. (3.2)

as:

∆t
j = atj · δ +

∑
ati=1,∀i∈V \{j}

(µ− vt−1i) · δ
(µ− vt−1i) +

∑
k∈N\{i} v

t−1
k

(3.13)

Hence, we calculate Rt as:

Rt = K · δ + (N − 1) ·
∑

ati=1,∀i∈V
(µ− vt−1i) · δ

(µ− vt−1i) +
∑

k∈N\{i} v
t−1
k

(3.14)

vt−1i = 1,∀i ∈ V gives the largest propagation to find the maximum total

estimated reward possible for P . Hence,

Rt ≤
K · δ · (N · µ− 2)

µ+N − 2
(3.15)

To find the lower bound, we ignore the propagation process of the abstracted

POMDP P ′. Hence,

R′t ≥ K · (δ − σ + 1) (3.16)

42

Hence, we have the bound for V π∗ − V π′
as:

V π∗ − V π′ ≤ R̂ = Q ·K ·
(δ · (N · µ− 2)

µ+N − 2
− δ + σ − 1

)
(3.17)

Since V π′∗ ≥ V π′
, we proved that V π∗ − V π′∗ ≤ R̂.

3.3.3 Multi-Level Partitions

We improve the scalability further by multi-level partitioning of the graph.

The most intuitive way is to partition the graph into K partitions, i.e., the

number of selected students. But the POMDPs are still very large to be

solved. Hence, we divide each of K partitions into smaller subpartitions.

The first variant is MLP-B which has ηK balanced partitions, i.e., each

partition contains a similar number of nodes. Algorithm 3.4 starts with

initializing P, a map of partitions and their indices, as an empty set (line 1).

We use the METIS algorithm [40] to partition the graph G while minimizing

cross-edge influence between partitions so as not to lose the network structure

of the graph (line 2). It returns a list of partitions, i.e., pars. Each partition

is indexed (line 4) and ensembled as POMDP to compute the optimal one-

node action. Finally, actions with the best K rewards are chosen to get an

action of K nodes.

As balanced partitioning may not maintain the network structure, in the

second variant, MLP-C, we cluster the graph into K partitions by finding

minimum cross-edge cuts without keeping the partitions balanced. Let l be

43

Algorithm 3.4: MLP− B(η)

1 Initialize P = ∅ and k = 0 ; // P is a map of par and k

2 pars = METIS(G, ηK);
3 for par ∈ pars do
4 add ⟨par, k⟩ to P; k ++;

5 return P;

the maximum limit of a partition that can be solved. If a partition is larger

than l, we divide the partition into smaller subpartitions.

In Algorithm 3.5, we first cluster the graph G into K partitions by finding

minimum cut and store the partitions in pars (line 1). We initialize the map

P as an empty set (line 2). The partitions are indexed and added to P (line

8). If a partition has more than l nodes, we divide it into ⌈nodecount/l⌉ sub-

partitions using METIS and store in subpars. We use METIS over clustering

to avoid having many levels of partitioning to get subpartitions. The subpar-

titions are kept with same index and added to P to indicate that only one

node from the partitions with same index will be chosen for an action of K

nodes (lines 4-7). After obtaining the optimal action from each POMDP, the

action with maximum reward from the partition with same index is chosen.

3.4 Experimental Evaluation

In this section, we analyze the performance of MLPRAP-B and MLPRAP-

C, i.e., MLPRAP with MLP-B and MLP-C with different settings. All our

experiments are run on a 3.2 GHz 4-core Intel machine having 16 GB of RAM.

44

Algorithm 3.5: MLP− C(l)

1 pars = minimumCutClustering(G,K);
2 Initialize P = ∅ and k = 0;
3 for par ∈ pars do
4 if nodecount(par) > l then
5 subpars = METIS(par, ⌈nodecount(par)/l⌉) ;
6 for subpar ∈ subpars do
7 add ⟨subpar, k⟩ to P

8 else add ⟨par, k⟩ to P ;
9 k ++;

10 return P;

The results are averaged over 30 trials. We use runtime and total reward as

metrics to evaluate scalability and solution quality on both synthetic and

real networks. The 95% confidence intervals are drawn in all figures which

show that all the results are statistically significant. During experiments,

we first compute UCC’s policy and simulate on the networks without any

uncertainties to compute the real reward obtained by the policy during the

intervention process.

3.4.1 Experiment Setup

Problem Instance Generation. We run the lab experiments to evaluate the

performance of the algorithm. We synthesize the problem instances since

real-world experiments on the study of intervention process in a social net-

work is challenging and there is no publicly available data which studies the

stress level of the people in a network. However, evaluations of algorithms

on synthetic data are widely accepted [102, 105, 106] as they serve as an

45

important first step towards future applications of the model. We generate

networks with realistic mental state values while using reasonable measures

according to [15, 31] so that the network reflects the mental state values of

each individual in the network. There are two kinds of networks considered:

• synthetic networks: We generate the synthetic network G by two

methods. First, Barabási-Albert scale-free networks, where each new

vertex is connected to ξ vertices using a preferential attachment mecha-

nism [4]. Since the students stay in groups of 3 or 4 which is the size of

a team for a group project, we let ξ = 3. Second, Erdos-Ŕenyi random

networks ER(N, |E|), where exactly |E| edges are randomly constructed

between each pair of nodes [14]. We set |E| = 3N to let each node have 3

connections on average. Then, we assign ŵij ∈ W0 as randomized values

from [0, 1].

• real networks: The first network is Zachary Karate Club dataset

(Karate) with 34 nodes and 78 edges [110] which is the friendship data

of the members of a university karate club. This will closely reflect the

relationship between students in the network and the effectiveness of in-

terventions. We assign ŵij ∈ W0 as randomized values from [0, 1]. The

second dataset is Mobile-1 dataset (Mobile) which has 107 nodes and

513 edges [93]. It consists of the logs of calls and cell tower IDsx of users

for ten months. We assign communication count between users i and j

as ŵij.

46

After we have obtained the network, we set µ = 9, pick a student i ∈ V

and assign the uniformly sampled value from [0, µ]. For all other j ∈ V \ {i},

we iteratively predict the mental state ranges according to SRR and assign

the sampled value from the predicted range. We repeat the process until

convergence where all the nodes are assigned with the mental state values.

Baselines. We use two algorithms as baselines: (1) Degree Centrality (DC)

which selects the highest degree node first; (2) K-variant HEAL as it is the

most relevant algorithm which has been demonstrated to perform much better

than earlier algorithms.

3.4.2 Experiment Results

DC HEAL MLPRAP-B MLPRAP-C

0 100200300400500600700
10−1

101

103
104

R
u
n
ti
m
e(
s)

No. of students (N)

(a) BA

0 100200300400500600700

10−1

101

103
104

No. of students (N)

(b) ER

5 6 7 8 9 10

0

50

100

150

Time Horizon (Q)

(c) BA

5 6 7 8 9 10

0

50

100

150

Time Horizon (Q)

(d) ER

Figure 3.3: Scalability comparison of MLPRAP variants with DC, HEAL (Figure 3.3a and 3.3b
are plotted in log-scale)

Scalability Analysis. We compare the runtimes of our algorithms and base-

lines by varying network sizes. We set Q ∈ {5, ..., 10}, δ = 2, K = 5, σ = 3,

η = 2 and l = 10. In Figure 3.3a, we compare the runtime of each algorithm

47

DC HEAL HEAL+R MLPRAP-B MLPRAP-C

25 100 300 500 700

50

100

150

No. of students (N)

T
ot
al

R
ew

ar
d

(a) BA

25 100 300 500 700

50

100

150

No. of students (N)

(b) ER

6 7 8 9 10

60

80

100

120

140

Time Horizon (Q)

(c) BA

6 7 8 9 10

50

100

Time Horizon (Q)

(d) ER

Figure 3.4: Solution quality comparison of MLPRAP variants with DC, HEAL

along the y-axis w.r.t varying network sizes along the x-axis. For example,

for a problem with a network of 30 students, it takes 0.07 s for DC, 375.383

s for HEAL, 0.149 s for MLPRAP-B and 0.748 s for MLPRAP-C. While DC

is the fastest, it does not result in good solution quality as we will discuss in

solution quality analysis. HEAL can only solve up to 30 students. It runs

out of memory for larger networks. Moreover, HEAL runs very slowly even

for small networks. We also run HEAL+R (HEAL with Reasoning) and it

has similar runtime with HEAL. While the running time is faster in smaller

networks, MLPRAP-B runs out of memory on the network of more than 100

students with η = 2. MLPRAP-C can solve larger networks than all other

algorithms. In this experiment, we show up to network with 700 students

which the system can solve within the time limit of 3600s. The system can

solve 1000 students network in 6141.92s. We find the same trends for ER

networks shown in Figure 3.3b.

The second experiment runs the algorithms on BA and ER networks of 25

students (N = 25) with fixed η = 2 and l = 10. In Figures 3.3c and 3.3d,

we vary time horizons along the x-axis on the same network to record the

48

runtime along the y-axis. For a BA network of 25 students, HEAL takes 50s

to plan for 5 interventions whereas DC and both variants of MLPRAP take

just a fraction of a second, i.e., 0.07s, 0.195s and 0.202s respectively. While

all algorithms have linearly increasing runtimes with increasing time horizon,

MLPRAP algorithms do not significantly increase and have better scalability.

Although we only scale up to a network with 700 nodes for the scalability

analysis since we limit the solving time to 1hr, MLPRAP-C algorithm can

solve much larger networks since the multi-level partitioning algorithm keeps

partitioning the network until the partitions can be solved by the MLPRAP

algorithm. With a more powerful machine and longer time, MLPRAP-C can

solve much larger networks.

Solution Quality Analysis. Figures 3.4a and 3.4b show the rewards of the

different algorithms along y-axis on the varying sizes of the student networks

along the x-axis. We keep N=25, 100, 300, 500, 700 to highlight the limi-

tations of baseline algorithms. E.g., for BA network of 25 nodes, the total

reward is 45.2, 48.17, 54.33, 50.1, 51.17 for DC, HEAL, HEAL+R, MLPRAP-

B and MLPRAP-C respectively. The trends show that HEAL+R improves

solution quality better than simply running HEAL and the approximated

solution with abstraction does not suffer a significant loss. As networks be-

come larger, MLPRAP variants have a larger advantage over DC. Therefore,

MLPRAP-B and MLPRAP-C are more suitable to solve larger networks.

49

Mobile Karate

60

80

100

Network

T
ot
al

R
ew

ar
d

DC HEAL

HEAL+R MLPRAP-B

MLPRAP-C

(a) Real world networks

4 6 8 10
40

60

80

100

Possible no. of mental states

Mobile Karate

(b) Effect of estimates

Figure 3.5: Experiments on real networks

In Figure 3.4c and 3.4d, we compare the total reward (y-axis) with in-

creasing time horizon (x-axis) for both types of random networks with 25

nodes. The trends show that MLPRAP variants result in better solution

quality than DC and HEAL. While HEAL+R is the best for a network of 25

students, we have shown that it cannot scale up to larger networks. On the

other hand, MLPRAP-B and MLPRAP-C do not lose much solution quality

compared to HEAL+R.

Effect of uncertainty. We also analyze the effect of uncertainty of the student

networks on the solution quality. The uncertainty for initial mental state val-

ues is reflected by the initial estimated mental state range. In Figure 3.5b, the

value 4 on the x-axis represents that there are 4 possible mental state values

with 0.25 probability for each student while the y-axis represents the total re-

ward. We can conclude from the results that the homogeneous distribution,

i.e., |M| = 10, gives the best total reward. This is because homogeneous

50

distribution assigns all the mental states with equal probability lowering the

chances of incorrectly estimating the mental states and losing the solution

quality in contrast to smaller ranges.

Real Networks. We also evaluate the scalability and solution quality of the

algorithms on real networks (Mobile and Karate). Figure 3.5a describes the

rewards of each network for 5 interventions withK = 6. HEAL and HEAL+R

cannot solve Mobile and MLPRAP-C gives the best solution quality. Simi-

lar to synthetic networks, HEAL+R gives the best total reward for Karate.

While MLPRAP-B only gives a similar solution quality as HEAL, MLPRAP-

C gives much higher solution quality than DC and HEAL and comparable to

HEAL+R.

3.5 Chapter Summary

In this chapter, we propose a novel model that considers emotion propaga-

tion from not only the influencer but also neighbours of the influencee while

selecting the students for interventions in uncertain networks. We propose

MLPRAP algorithm with reasoning, abstraction of states and multi-level par-

titioning of the graph into smaller POMDPs to sequentially plan to select the

students for each intervention. Finally, experiments with synthetic networks

as well as real networks show that MLPRAP approach has significantly better

scalability and solution quality comparable to existing algorithms.

51

Chapter 4

Planning Sequential Interventions to

Tackle Depression in Large Uncertain

Social Networks Using Deep

Reinforcement Learning

In this section, we focus on handling the student counselling problem dis-

cussed in Chapter 3 using Deep reinforcement learning (DRL), which adapts

the students’ changing mental states and connections in a dynamic environ-

ment. DRL has shown great success in solving problems with uncertainty and

high dimensional state space such as continuous control [55, 103] and Atari

Learning Environment (ALE) [5]. In the planning apporach, the student

counselling problem is formulated as Partially Observable Markov Decision

Process (POMDP) and solved by designing a POMDP solver with abstrac-

tion and graph partitioning techniques to break up the social network to

52

make the problem solvable. This approach breaks up the student network

causing information loss. To overcome this, we propose DRL with Particle

Swarm Optimization (DRLPSO) to plan the optimal sequential actions in

the uncertain dynamic environment with large action space.

We made 5 key contributions in this chapter: 1) We propose Deep Q-learning

integrated with Long Short-Term Memory (LSTM) to handle dynamic influ-

ence maximization problems with large action space; 2) To handle a very

large action space of POMDP formulation in DRL, one straightforward way

to solve this problem is by randomly sampling a smaller action set, but this

may not lead to the optimal solution as the particle cannot explore the entire

action space. To overcome this problem Discrete Particle Swarm Optimiza-

tion (DPSO) is applied by initializing n particles that search through the

entire action space for the optimal action based on a belief state. The Q-

network subsequently chooses the action with maximum reward as the pre-

dicted action for each round; 3) The main advantage of DPSO is to optimize

the search of the maximum Q-value action by generating n particles which

effectively capture multiple optima in the multi-modal action space; 4) We

demonstrate the efficiency and effectiveness of DRLPSO in comparison with

the five existing DRL algorithms using Monte Carlo simulation. We also

compare the proposed DRLPSO solution with the previous POMDP solver

solution. The results show that the DRLPSO outperforms the POMDP solver

solution in terms of effectiveness.

53

4.1 Deep Reinforcement Learning with Particle Swarm

Optimization

Testing
Env

Simulated
Env

M
o
d
el

LF

Stored
every
10,000
iter

DPSO

- Sample n states from belief set

- Initialize n particles

- Intialize a1, a2, ..., an

A

C

B

D

L
S
T
M

At at

b

b

θt+1

θ−

+P̂ , Ŵ

(N ×M)+
(N ×N)

Q(〈bt, ht〉, a1)
Q(〈bt, ht〉, a2)
Q(〈bt, ht〉, a3)

maxaR1−n(bt, a1−n) maxa∈At Q(〈bt−1, Ht〉, a|θ)

(R(s, a), ot+1)

θ̂

H{(at−1, ot),
(at, ot+1)}

Figure 4.1: DRLPSO Architecture

As discussed in section 2 (Related Works), dynamic influence maximiza-

tion is NP-Hard which is a challenging task to obtain the optimal solution.

Thus, solving by the brute force method is infeasible. Moreover, being formu-

lated as POMDP, the traditional RL method and DQN are infeasible due to

Q-function being represented with state values instead of partial observation

and no historical information is preserved. Thus, we use deep Q-learning

integrated with the LSTM layer (DQ-LSTM). However, the state and action

54

space of this problem grows exponentially with the number of students in

the network i.e., (µ + 1)N states and the number of chosen students at each

round i.e.,
(
N
K

)
actions. For this problem, the output layer of LSTM could be

complicated as it cannot handle the large action space and results in a large

number of outputs, which could reduce the performance of the deep recur-

rent Q-network. Hence, in this study, we embed DPSO to pick the optimal

action. By doing so, the training phase of DQ-LSTM can converge to an

optimal policy.

Instead of randomly selecting an action, DPSO initializes n particles to

optimize the reward function and later converges to a set of optimal actions

for a given belief. At each step, DQ-LSTM gets the action set optimized by

DPSO and also makes the DRL converge to the optimal solution. Therefore,

we propose DRLPSO (Deep Reinforcement Learning with Particle Swarm

Optimization), where DPSO finds the optimal action for each step and Deep

Q-learning integrated with LSTM ensures the optimal policy for the dynamic

environment.

4.1.1 DRLPSO Architecture

The overview of DRLPSO is shown in Figure 4.1. We initialize the problem

as a discrete environment that takes action as input and outputs observation

and reward. The system consists of 4 major components (Blocks A, B, C and

D of Figure 4.1).

55

• Deep Q-learning with LSTM as the top layer (Block A)

• Discrete Particle Swarm Optimization Model to predict the best action

(Block B)

• Simulated Environment to train the network (Block C)

• Testing Environment (Block D)

Agent
Block A + Block B

Environment
Block C or Block D

at

bt

ot+1

rt

Figure 4.2: DRLPSO components represented as Markov Model commonly used in RL

Block A used for training the parameters to predict the Q-values. The deep

Q-learning consists of ReLU as activation function, 3 hidden layers of neurons

and learning is performed by backpropagation. LSTM is integrated to retain

historical information. The training procedure consists of 1) Choose the

action for best Q-value using DPSO (Block B); 2) Execute the action in

the simulated environment (Block C), obtain observation and reward; 3)

Optimize parameter θ by backpropagation until the loss converges. After

the training, we test the model in the testing environment (Block D). The

components are represented as a Markov Model in Figure 4.2.

56

4.1.2 DRLPSO Algorithm

The proposed DRLPSO is described in Algorithm 4.1. We first initialize

the experience replay similar to the existing DRL methods, the number of

iterations to train, the initial belief according to the environment and the

parameters for Q-network and target network (Lines 1-2). For each iteration,

we simulate the environment for training, initialize the action, history and

assign the initial belief across the state set. Next, we perform T rounds of in-

tervention. During each round of intervention, we predict the optimal action

set with DPSO by randomly initializing n particles with different positions

in the discrete action space until they converge to multiple optimal positions

(actions) (line 7). DPSO finds the actions with the best reward based on

the belief bt−1. From the optimal action set of DPSO, we choose the action

where the particle gives the maximum predicted Q-value (line 8). This action

is executed in the simulated environment to obtain reward R and observa-

tion ot+1 and update bt (lines 9-10). We then store the transition sequence in

experience replay (line 12). After that, we randomly sample the transition

sequences as a mini-batch and update parameter θ by Eqs. (15-18) (lines

13-16). Finally, we obtain the converged parameter θ̂ (line 18).

Discrete Particle Swarm Optimization. In training the deep recurrent Q-

network, existing methods randomly sample an action, without consider-

ing the observation received from the environment. Instead, DRLPSO uses

57

Algorithm 4.1: DRLPSO

Result: Parameter θ
1 Initialize the experience replay D, # of iterations M ;
2 Initialize Q-network and Target-Network with θ and θ− respectively;

/* train the network shown in Block A in Figure 4.1 */

3 for iteration= 1 to M do
4 Simulate environment and b0 ; // Block C in Figure 4.1

5 Initialize the first action a0 = noaction, h1 = ∅, o1 = ∅;
6 for t = 1...T rounds do
7 At = best action set from DPSO module where velocity and position updates

using Eqs. (4.1) and (4.2) ; // Block B in Figure 4.1

8 at = argmaxa∈At
Q(⟨bt−1, Ht⟩, a|θ);

9 Execute action at to obtain reward Rt(.) and observation ot;
10 Update bt according to ot using Eq. (3.9);
11 Store transition {⟨bt−1, ht⟩, at, rt, bt} in D ;
12 Randomly sample a mini batch of transition sequences from D and index as j;

13 yj =

{
rj, if t = T
Eq.(4.4), otherwise

14 Compute gradient using the loss function (Eq. (4.6));
15 Update θ according to Eq. (4.7);

16 end

17 end

18 Save model as θ̂;

DPSO (Block B), which takes belief state updated with the observation. We

initialize n particles to explore and exploit by parallelly converging to multi-

ple optima. For DQ-LSTM, we adapt the action set from the convergence of

the DPSO particles to the output layer of LSTM.

We modified the traditional continuous PSO [42] to the Discrete PSO.

We initialize the position boundary B to be nCr(N,K) i.e., the number of

different, unordered combinations of K students from the network with N

students. We randomize the swarm positions from 0 to B − 1 as the initial

discrete actions. While optimizing the objective function defined in Eq. (3.7),

58

we update the velocity V⃗i and position Xi values of each particle by:

V⃗i(t + 1) = V⃗i(t) + (c1r1)(pbesti − Xi(t)) + (c2r2)(gbesti − Xi(t)) (4.1)

Xi(t+ 1) =

0, if ⌈Xi(t) + V⃗i(t+ 1)⌉ < 0

B, if ⌈Xi(t) + V⃗i(t+ 1)⌉ > B

⌈Xi(t) +V⃗i(t+ 1)⌉, otherwise

(4.2)

where c1, c2 are self confidence values, r1, r2 are randomized values and pbesti

is the maximum reward position (action) the particle has visited, and the

best among all the subswarm particles is stored in gbesti. Generally, gbesti

will converge to a single solution if there exists only one optimum. In this

problem, the search space consists of multiple optimal solutions. Hence, the

particles will form a subswarm and converge to multiple peaks to map with

the output layer of DQ-LSTM.

Deep Recurrent Q-learning. After we obtain the predicted action, we execute

the action to the simulated environment (Block C) to obtain the reward

R(s, a) and observation ot+1. We then update belief bt and history ht+1 to

calculate the predicted loss ŷ and the actual loss y. DQN uses experience

replay and two networks to train parameter θ: main network to optimize

θ value and targeted network to retain θ− which is updated every 10,000

59

iterations [68]. Similarly, we adapt experience replay, the two networks and

use the stale updated θ− given by the target network to get the actual Q-

values. This technique has been empirically shown to be tractable and stable.

Generally, the state transition problems with MDP considers the Q-update

using state and action given by:

Q(st, at) = Q(st, at) + α(R(st, at) + γmax
a

Q(st+1, a) − Q(st, at)) (4.3)

where α is learning rate and γ is discount factor. This Q-function is well-

suited for MDP where the states are fully observed. But for the problems

involving POMDP, Q-function is parametrized by belief (b), action (a) and

observation (o) since s ̸= o due to the partial observability and we cannot ob-

serve the current state st in POMDP. We have to use a deep network to better

estimate Q-values from belief and observation. We denote weights and biases

of the Q-networks as θ and the function can be denoted by Q(⟨bt−1, Ht⟩, at|θ).

We first calculate the Q-values for each belief, history of action and observa-

tion and subsequently update the parameters of the deep network by mini-

mizing the loss function at each iteration i of the training phase.

Actual Q-value is calculated by:

y = R(st, at) + γmax
a

Q(⟨bt, Ht+1⟩, a|θ−i) (4.4)

60

Predicted Q-value is calculated by:

ŷ = Q(⟨bt−1, Ht⟩, at|θi) (4.5)

The l2 loss function (LF) is given by:

L(⟨bt, Ht⟩, at|θi) = (y − ŷ)2 (4.6)

Finally, we perform backpropagation to train θ which is updated using:

θi+1 = θi + α∇θL(θi) (4.7)

When the training converges, we save the model θ̂ and execute the testing

environment (Block D) for the T rounds to get the optimal policy.

4.2 Experiment Results

In this section, we evaluate the proposed DRLPSO and compare it with the

five existing methods for large sequential decision-making problems. We run

the simulated student networks with mental state propagation to evaluate the

performance of DRLPSO. We synthesize the problem instances since there is

no publicly available data that studies the stress level of the people in a net-

work. However, evaluations of algorithms on simulated networks are widely

applied [102, 105, 106] as they serve as an important reference towards the

real-world applications of the architecture. Further, we plan to do the exper-

61

iments and carry out interventions for the university students to know about

their stress levels, give them counselling and improve their performance.

4.2.1 Experiment Setup

We simulate a student network G by leveraging Erdos-Ŕenyi random network

generation [14], where exactly |E| edges are randomly constructed between

each pair of nodes (students). Assuming that the students usually study or

stay in groups of 3 or 4 which is also the size of a team for a regular group

project, we set |E| = 3N to let each node have at least 3 connections on

average. Then, we assign ŵij ∈ W0 as randomized values between [0, 1].

After that, we set µ = 9 and randomly assign the nodes with mental state

values between [0− 9].

We compare the performance of proposed DRLPSO against the five base-

line methods such as Degree Centrality (DC) [38]; HEAL [105]; DBQN [13];

DRQN [18] and ADRQN [111]. Since DRQN and ADRQN use the convo-

lutional layers as input, we convert the observed states as 84x84 grey-scale

images through Python Pillow Module and train both networks accordingly.

To mitigate the problem of handling large action space, we randomly sample

the action space of the problem with 30 actions to train using DBQN, DRQN

and ADRQN. To make a par comparison, we assign the LSTM output layer

of DRLPSO to have 30 outputs. We assign the randomized initial estimate

mental state and influence values for all the methods.

62

Our experimental settings are as follows: we set (T, K, δ, µ) as (5, 1, 2, 9)

for networks of 5 nodes, (5, 5, 2, 9) for networks of 30 nodes and (10, 5, 2, 9)

for even larger networks. We implement all the aforementioned programs in

Python and run all the experiments on a system of 3.2GHz 4-core Intel CPU

and NVIDIA DGX-1 with 32 GB of RAM.

4.2.2 Evaluation

Parameter setting of DPSO. We set the parameter values of c1 and c2 with

SwarmOps [74]. Since we define the LSTM output as 30 Q-values, we aim to

map the size of the converged optimal action set to 30. Figure 4.3 illustrates

the number of unique peaks captured by varying the number of particles in

the DPSO to search for the best action set for a dynamic environment having

a network of 30 students. Here, the minimum and average peak captures are

shown after 10 runs. From the results, we can infer that DPSO with at least

90 particles has to be initialized.

Training Rewards. Figure 4.4 shows the training curves of the deep Q-learning

algorithms with 100,000 iterations. After every 500 iterations, we predict the

actions for 5 rounds on 30 problem instances of the testing environment and

record the total reward. From the figure, we observe that DRLPSO converges

within the limited number of iterations and achieves much higher reward val-

ues in comparison with the other learning methods.

63

30 40 50 60 70 80 90 100
0

10

20

30

40

No. of Particles (#)

N
o.

of
P
ea
k
C
ap

tu
re

(#
)

Min No. of Peaks Captured
Avg No. of Peaks Captured

Figure 4.3: Peak convergence by varying the number of particles

Table 4.1: Reward Comparison for MLPRAP

Nodes DC (µ± σ) HEAL (µ± σ) DBQN (µ± σ)
5 9.9± 1.668 13.43± 1.96 10.56± 1.977
30 45.03± 2.809 47.2± 3.59 31.76± 15.36
100 102.6± 9 - 155.4± 25.53
200 119.53± 18.584 - 128.9± 16.572
500 118.53± 20.91 - 133.93± 17.3

Nodes DRQN (µ± σ) ADRQN (µ± σ) DQ-LSTM DRLPSO (µ+ σ)
5 11.56± 1.716 11.53± 1.81 13.48± 1.743 13.8± 1.69
30 38.33± 13.514 48.8± 11.74 - 62.3± 3.9
100 162± 21.94 168.3± 37.47 - 225± 12.62
200 138.33± 17.516 171.5± 24.81 - 232.1± 16.04
500 143.13± 19.72 175.17± 18.27 - 233.06± 12.31

Performance Analysis. We train each algorithm to analyze the total reward

after T rounds of intervention with 30 problem instances of the testing en-

vironment for each network size. Table 4.1 shows the reward comparison

of different sizes of networks with the aforementioned experimental settings.

We use
∑T

t=1Rt(s, a) as evaluation metric which is the total overall stress

level reduced in the process of intervention. From the table, we observe that

rewards of the previous dynamic influence maximization methods such as

64

Figure 4.4: Performance of learning algorithms in 100k iterations

DC and HEAL are lower reward values than the proposed DRLPSO. This

is because DC does not consider uncertainty and partial observation, while

HEAL does not consider the uncertainty of initial mental state values. How-

ever, HEAL cannot scale up for networks larger than 30 nodes.

Similarly, when the comparison is made among 5 learning algorithms. Ta-

ble 4.1 shows DQ-LSTM is only feasible for 5 students but it stops running

for 30 students and above as it fails to handle larger state and action space

i.e., state space of 1030 and action space of
(
30
5

)
= 142506. The proposed

DRLPSO outperforms DBQN, DRQN and ADRQN in the total reward with

a high mean reward value and lower standard deviation over T rounds with

30 runs. This is because, in DBQN, DRQN and ADRQN, the action sets

65

are randomly sampled to a set of 30 actions instead of a large action space

unlike DRLPSO uses DPSO to optimize the action set before mapping to the

Q-values from LSTM.

We also propose the Average Percentage of Reward Increase (APRI), to

compare our proposed DRLPSO with baseline methods defined by:

APRI =
µ(RDRLPSO)− µ(RAlgo)

µ(RDRLPSO)
× 100% (4.8)

where µ(.) is the mean reward value from the Monte Carlo simulation of the

respective algorithms. We calculate APRI for the network size of 30 nodes

where we observe that our proposed DRLPSO significantly outperforms DC,

HEAL, DBQN, DRQN, ADRQN by 27.7%, 24.2%, 49%, 38.4% and 21.6%

respectively. Thus, the overall stress level in the network will be best reduced

after T rounds of intervention with the counsellors by selecting the students

by the DRLPSO method at each round.

Comparison with MLPRAP method. Here, we will compare with our previ-

ous method, MLPRAP: Multi-Level Partition algorithm with Reasoning and

Abstracted Planning, which uses POMDP solver and multi-level partitioning

of the original graph in Chapter 3. We only compare with the technique

proposed in this chapter, MLPRAP-C, which hierarchically partitions the

original student network in clusters until each partition has under l students

which is the maximum limit of the students that can be solved by the afore-

66

mentioned hardware configuration.

We have also compared using the realistic networks against the MLPRAP

method and observe better results. The first network is the Zachary Karate

Club dataset (Karate) with 34 nodes and 78 edges [110] which is the friendship

data of the members of a university karate club. This will closely reflect

the relationship between students in the network and the effectiveness of

interventions. We assign ŵij ∈ W0 as randomized values from [0, 1]. The

second dataset is the Mobile-1 dataset (Mobile) which has 107 nodes and 513

edges [93]. It consists of the logs of calls and cell tower IDsx of users for ten

months. We assign communication count between users i and j as ŵij.

Table 4.2: Reward Comparison for DRLPSO

Nodes MLPRAP-B(µ+ σ) MLPRAP-C (µ+ σ) DRLPSO (µ+ σ)
100 133± 4.74 154.17± 6.06 225± 12.62
200 - 150.23± 5.14 232.1± 16.04
500 - 161.5± 5.17 233.06± 12.31
1000 - 160.8± 6.88 210.27± 13.20
1500 - 161.3± 5.43 217.60± 12.42
Karate 80± 0.7 84.6± 1.22 89.2± 1.51
Mobile 62.1± 1.21 62.7± 1.88 66.4± 1.83

The comparison is as shown in Table 4.2. Although it takes longer to

train to be able to start using to select the students for intention, DRLPSO

has better results than MLPRAP-C and MLPRAP-B since there is no loss

of information due to the partitioning with the DRL methods.

67

4.3 Discussion

The overview of evaluation with the actual study is as shown in Figure 4.5.

We will collaborate with University Counselling Center (UCC) to conduct a

Preparation by the Counsellors

Collect Student Information

Intervention Process

Algorithm Inputs

Set up parameters

Adding student
information to the
Algorithm’s student

network

Figure 4.5: Overview of the implementation plan

real scenario with graduate students. Student data and mental state assess-

ments are masked with a pseudonym and direct ID links will be destroyed

after the counselling process. The participants are given a consent form and

free to withdraw anytime. The detailed plan is as follows.

• We prepare the well-documented implementation plan of the interven-

tion process and design the stress assessment questionnaire according

to the questionnaires from the established literature such as (Perceived

Stress Scale, 1994).

• We then submit the documents to the review process from Institutional

68

Review Board for Research Involving Human Subjects to ensure that

the research activity follows applicable legislation of Singapore.

• After the approval from the board, we perform the necessary data collec-

tion to estimate the students’ mental state and influence values. We first

get the students’ consents with a consent form where the consequence of

the study/ interventions is explained in detail, understandable language

usage. Afterwards, we collect the following information from the stu-

dents: 1. College; 2. Supervisor, Co-supervisor; 3. Course Enrollment;

4. Physical Location (Lab/Office location, Home/ Dormitory Address);

5. Participation in student clubs; 6. Publication List; 7. Academic

Performance: Grades; 8. Performance: Evaluation by Supervisor.

• Next, we set up the environment according to the collected student in-

formation (mental states and influence).

After the preparation step is done, we begin the intervention process.

UCC initiates the intervention process in coordination with the algorithm.

The intervention process is illustrated in Figure 4.6. At each round, UCC

invites the candidate students who are selected by the algorithm. During

the intervention round, the counsellors conduct a therapy session with the

selected students, evaluate/assess their mental states based on a set of de-

signed questionnaires and learn their social-circles. When the intervention is

over the counsellors update the newly collected information to the algorithm.

69

Step 2:
Counsellors

invite k students

Step 1:
Algorithm

selects k students

Step 6:
Algorithm

prepares for

the next round

Step 5:
Counsellors

update observa-

tions to algorithm

Step 4:
Counsellors

conduct the

therapy sessions

Step 3:
Counsellors

access the stress

level of students

Figure 4.6: Intervention process: Step 1,6 are planned by the algorithm while Step 2-5 are performed
by the counsellors

The algorithm then updates the network, estimates the stress levels of other

students by the reasoning module and selects the students to be invited for

the subsequent rounds.

4.4 Chapter Summary

In this chapter, we propose DRLPSO which uses the Deep Q-learning inte-

grated with LSTM (DQ-LSTM) and DPSO to optimally select the predicted

action, obtain Q-values and train the partially observable network. We use

belief and history of action and observation as input to DQ-LSTM. Results

have shown that in a dynamic environment with a large action space, the

proposed DRLPSO achieves a higher total reward compared to the exist-

70

ing DRL approaches by an average of 32%. Moreover, comparing with the

POMDP solver, DRLPSO takes time for training but outperforms in terms

of effectiveness. In future, we plan to evaluate the algorithm with the real-

world setting and further explore online reinforcement learning methods so

that the training time for DRLPSO can be reduced.

71

Chapter 5

A Double-Oracle Framework for

Generative Adversarial Networks

(DO-GAN)

Generative Adversarial Networks (GANs) [24] have been applied in various

domains such as image and video generation, text-to-image synthesis and

equipment condition monitoring [58, 79, 80, 81]. Various architectures are

proposed to generate more realistic samples [65, 75, 77] as well as regulariza-

tion techniques [2, 67]. From the game-theoretic perspective, GANs can be

viewed as a two-player game where the generator samples the data and the

discriminator classifies the data as real or generated. They are alternately

trained to maximize their respective utilities till convergence corresponding

to a pure Nash Equilibrium (NE).

However, pure NE cannot be reliably reached by existing algorithms as

pure NE may not exist [17, 63]. This also leads to unstable training in

72

Figure 5.1: Training images with fixed noise for SGAN and DO-SGAN/P (pruning) until termina-
tion. Both during training and after convergence, DO-SGAN/P can generate better quality images
with FID score of 6.32 against SGAN’s FID score of 6.98.

GANs depending on the data and the hyperparameters. Therefore, mixed NE

is a more suitable solution concept [33]. Several recent works propose mixture

architectures with multiple generators and discriminators that consider mixed

NE such as MIX+GAN [3] and MGAN [32] but they cannot guarantee to

converge to mixed NE. Mirror-GAN [33] computes the mixed NE by sampling

over the infinite-dimensional strategy space and proposes provably convergent

proximal methods. However, the sampling approach may not be efficient as

mixed NE may only have a few strategies in the support set.

Double Oracle (DO) algorithm [62] is a powerful framework to compute

mixed NE in large-scale games. The algorithm starts with a restricted game

that is initialized with a small set of actions and solves it to get the NE

strategies of the restricted game. The algorithm then computes players’ best-

73

responses using oracles to the NE strategies and add them into the restricted

game for the next iteration. DO framework has been applied in various dis-

ciplines [7, 37], as well as Multi-agent Reinforcement Learning (MARL) [48].

Inspired by successful applications of DO framework, we, for the first time,

propose a Double Oracle Framework for Generative Adversarial Networks

(DO-GAN). In this chapter, we present four key contributions. First, we

treat the generator and the discriminator as players and obtain the best re-

sponses from their oracles and add the utilities to a meta-matrix. Second, we

propose a linear program to obtain the probability distributions of the play-

ers’ pure strategies (meta-strategies) for the respective oracles. The linear

program computes an exact mixed NE of the meta-matrix game in polyno-

mial time. Third, since multiple generators and discriminator from the best

responses oracles are stored in the memory, the algorithm may be memory-

inefficient for problems to train GAN with large-scaled real-world datasets.

Thus, we propose two solutions for the scalable double oracle framework: 1)

a pruning method for reducing the support set of best response strategies to

prevent the oracles from becoming intractable as there is a risk of the meta-

matrix growing very large with each iteration of oracle training; 2) applying

continual learning to retain the previous knowledge of the networks for the

best responses from the generator and discriminator oracles in the multi-

task learning setup. We also address the problems in continual learning such

as catastrophic forgetting. Finally, we provide comprehensive evaluation on

74

the performance of DO-GAN with different GAN architectures using both

synthetic and real-world datasets. Experiment results show that DO-GAN

variants have significant improvements in terms of both subjective qualitative

evaluation and quantitative metrics such as inception score and FID score.

5.1 DO-GAN

As discussed in previous sections, computing mixed NE for GANs is chal-

lenging as there is an extremely large number of pure strategies, i.e., possible

parameter settings of the generator and discriminator networks. Thus, we

propose a double oracle framework for GANs (DO-GAN) to compute the

mixed NE efficiently. DO-GAN builds a restricted meta-matrix game be-

tween the two players and computes the mixed NE of the meta-matrix game,

then DO-GAN iteratively adds more generators and discriminators into the

meta-matrix game until termination.

5.1.1 General Framework of DO-GAN

Start

Meta-matrix Game

Solve Meta-matrix Game
NE=〈(3/4, 1/4), (1/2, 1/2)〉

Compute Best Responses

Expand Meta-matrix Game

New generator/discriminator 〈π′
g, π

′
d
〉 are added

Terminate

Best responses do not improve results

End

πd(1) πd(2)
πg(1) -2 -1
πg(2) 0 -3

Figure 5.2: An illustration of DO-GAN. Figure adapted from [48].

GAN can be translated as a two-player zero-sum game between the gen-

erator player g and the discriminator player d. To compute the mixed NE

75

of GANs, at iteration t, DO-GAN creates a restricted meta-matrix game U t

with the trained generators and discriminators as strategies of the two play-

ers, where the generators and discriminators are parameterized by πg ∈ G and

πd ∈ D. We use U t(πg, πd) to denote the generator player’s payoff when play-

ing πg against πd, which is defined as LD. Since GAN is zero-sum, the discrim-

inator player’s payoff is −U t(πg, πd). We define σt
g and σt

d as the mixed strate-

gies of generator player and discriminator player, respectively. With a slight

abuse of notation, we define the generator player’s expected utility of mixed

strategies ⟨σt
g, σ

t
d⟩ as U t(σt

g, σ
t
d) =

∑
πg∈G

∑
πd∈D σ

t
g(πg) ·σt

d(πd) ·U t(πg, πd). We

use ⟨σt∗
g , σ

t∗
d ⟩ to denote mixed NE of the restricted meta-matrix game U t. We

solve U t to obtain the mixed NE, compute best responses and add them into

U t for next iteration. Figure 5.2 presents an illustration of DO-GAN and

Algorithm 5.1 describes the overview of the framework.

Algorithm 5.1: DO− GAN()

1 Initialize generator and discriminator arrays G = ∅ and D = ∅;
2 Train generator & discriminator to get the first πg and πd;
3 G ← G ∪ {πg}; D ← D ∪ {πd};
4 Compute the adversarial loss LD and add it to meta-matrix U0;
5 Initialize σ0∗

g = [1] and σ0∗
d = [1];

6 for epoch t ∈ {1, 2, ...} do
7 π′

g ← generatorOracle(σt∗
d ,D);

8 G ← G ∪ {π′
g};

9 π′
d ← discriminatorOracle(σt∗

g ,G);
10 D ← D ∪ {π′

d};
11 Augment U t−1 with π′

g and π′
d to obtain U t and compute missing entries;

12 Compute mixed NE ⟨σt∗
g , σ

t∗
d ⟩ for U t with linear program; // Section 5.1.2

13 if TerminationCheck(U t, σt∗
g , σ

t∗
d) then break; // Section 5.1.3

Our algorithm starts by initializing two arrays G and D to store multiple

76

generators and discriminators (line 1). We train the first πg and πd with

the canonical training procedure of GANs (line 2). We store the parame-

ters of trained models in G and D (line 3), compute the adversarial loss LD

and add it to the meta-matrix U 0 (line 4). We initialize the meta-strategies

σ0∗
g = [1] and σ0∗

d = [1] since there is only one pair of generator and discrim-

inator available (line 5). For each epoch, we use generatorOracle() and

discriminatorOracle() to obtain best responses π′g and π′d to σt∗
d and σt∗

g

via Adam Optimizer, respectively, then add them into G and D (lines 7-10).

We then augment U t−1 by adding π′g and π′d and calculating U t(π′g, π
′
d) to ob-

tain U t and compute the missing entries (line 11). We compute the missing

payoff entries U t(π′g, πd),∀πd ∈ D and U t(πg, π
′
d),∀πg ∈ G by sampling a few

batches of training data. After that, we compute the mixed NE ⟨σt∗
g , σ

t∗
d ⟩

of U t with linear programming (line 12). The algorithm terminates if the

criteria described in Algorithm 5.4 is satisfied (line 13).

In generatorOracle(), we train π′g to obtain the best response against σt∗
d ,

i.e., U t(π′g, σ
t∗
d) ≥ U t(πg, σ

t∗
d),∀πg ∈ Πg. Similarly, in disciminatorOracle(),

we train π′d to obtain the best response against σt∗
g , i.e., U

t(σt∗
g , π

′
d) ≥ U t(σt∗

g , πd),

∀πd ∈ Πd. Full details of generator oracle and discriminator oracle can be

found in Algorithms 5.2 and 5.3.

We train the oracles for some iterations which we denote as k0,1,2,.... For

experiments, we train each oracle for an epoch for the real-world datasets

and 50 iterations for the 2D Synthetic Gaussian Dataset. At each iteration t,

77

Algorithm 5.2: GeneratorOracle(σt∗
d ,D)

1 Initialize a generator G with random parameter setting π′
g;

2 for iteration k0 . . . kn do
3 Sample noise z;
4 πd = Sample a discriminator from D with σt∗

d ;
5 Initialize a discriminator D with parameter setting πd;
6 Update the generator G’s parameters π′

g via Adam optimizer:

▽π′
g
log (1−D(G(z)))

Algorithm 5.3: DiscriminatorOracle(σt∗
g ,G)

1 Initialize a discriminator D with random parameter setting π′
d;

2 for iteration k0 . . . kn do
3 Sample a minibatch of data x;
4 for a minibatch do
5 Sample noise z;
6 πg = Sample a generator from G with σt∗

g ;

7 Initialize a generator G with a parameter setting πg;
8 Generate and add to mixture G(z);

9 Update the discriminator D’s parameters π′
d via Adam optimizer:

10

▽π′
d
log D(x) + log (1−D(G(z)))

we sample the generators from the support set G with the meta-strategy σt∗
g

to generate the images for evaluation. Similarly, we conduct the performance

evaluation with the generators sampled from G with the final σ∗g at termi-

nation. SGAN consists of a top-down stack of GANs, e.g, for a stack of 2,

Generator 1 is the first layer stacked on Generator 0 with each of them con-

nected to Discriminator 1 and 0 respectively. Hence, in DO-SGAN, we store

the meta-strategies for the Generator 0 and 1 in σt∗
g and the Discriminator 1

and 0 for σt∗
d . In GeneratorOracle(), we first sample Discriminator 1 and 0

from discriminator distribution σt∗
d and train Generator 1 first then followed

78

by calculating loss with Discriminator 1 and train Generator 0 subsequently,

and finally calculate final loss with Discriminator 0 and train the whole model

end to end. We perform the same process for DisciminatorOracle().

5.1.2 Linear Program for Meta-matrix Game

Since the current restricted meta-matrix game U t is a zero-sum game, we

can use a linear program to compute the mixed NE in polynomial time [86].

Given the generator player g’s mixed strategy σt
g, the discriminator player

d will play strategies that minimize the expected utility of g. Thus, the

mixed NE strategy for the generator player σt∗
g is to maximize the worst-case

expected utility, which is obtained by solving the following linear program:

σt∗
g = argmaxσt

g
{v : σt

g ≥ 0,
∑

i∈G
σt
g(i) = 1, U t(σt

g, πd) ≥ v,∀πd ∈ D}. (5.1)

Similarly, we can obtain the mixed NE strategy for the discriminator σt∗
d by

solving a linear program that maximizes the worst-case expected utility of

the discriminator player. Therefore, we obtain the mixed NE ⟨σt∗
g , σ

t∗
d ⟩ of the

restricted meta-matrix game U t.

5.1.3 Termination Check

DO terminates the training by checking whether the best response π′g (or

π′d) is in the support set G (or D) [37], but we cannot apply this approach

to DO-GAN as GAN has infinite-dimensional strategy space [33]. Hence,

79

Algorithm 5.4: TerminationCheck(U t, σt∗
g , σ

t∗
d)

// U t is of size m× n

// |G| = m, |D| = n

1 Compute U t(σt∗
g , σ

t∗
d);

2 Compute U t(σt∗
g ,D[n]);

3 Compute U t(G[m], σt∗
d);

4 genInc = U t(G[m], σt∗
d)− U t(σt∗

g , σ
t∗
d);

5 disInc = −U t(σt∗
g ,D[n])− (−U t(σt∗

g , σ
t∗
d));

6 if genInc < ϵ && − disInc < ϵ then
7 return True

8 else return False ;

we terminate the training if the best responses cannot bring a higher utility

to the two players than the entries of the current support sets, as discussed

in [48, 71]. Specifically, we first compute U t(σt∗
g , σ

t∗
d) and the expected utilities

for new generator and discriminator U t(G[m], σt∗
d), U

t(σt∗
g ,D[n]) (line 1-3).

Then, we calculate the utility increment (lines 4-5) and returns True if both

U t(G[m], σt∗
d) and U t(σt∗

g ,D[n]) cannot bring a higher utility than U t(σt∗
g , σ

t∗
d)

by ϵ (lines 6-8).

5.2 Practical Implementations

As the number of epochs grows during the training of DO, the number of

networks and the size of the meta-matrix also grows. Hence, there is a risk

that the support strategy set becomes very large and G and D become in-

tractable. To make the algorithm practical and scalable, we propose two

methods: DO-GAN with meta-matrix pruning (DO-GAN/P) and DO-GAN

with continual learning (DO-GAN/C).

80

5.2.1 Meta-matrix Pruning (DO-GAN/P)

Algorithm 5.5: DO-GAN/P

// I stores indices to be pruned from G and D
// G stores models to be pruned from G and D

1 DO− GAN();
2 Ig = ∅; Id = ∅
3 Kg = ∅;Kd = ∅ if |G| > s then
4 for i ∈ {0, . . . , |G| − 1} do
5 if σt∗

g (G[i]) == min σt∗
g then Ig ← Ig ∪ {i}; Kg ← Kg ∪ {G[i]} ;

6 if |D| > s then
7 for j ∈ {0, . . . , |D| − 1} do
8 if σt∗

d (D[j]) == min σt∗
d then Id ← Id ∪ {j}; Kd ← Kd ∪ {D[j]} ;

9 G ← G \Kg; D ← D \Kd;
10 U ← JIg ,m · U t · JT

Id,n

The first method is to prune the meta-matrix. Here, we adapt the greedy

pruning algorithm, as depicted in Algorithm 5.5. When either |G| or |D| is

greater than the limit of the support set size s, we prune at least one strategy

with the least probability, which is the strategy that contributes the least to

the player’s winning. Specifically, we define JI,b where I is the set of row

numbers to be removed, b is the total rows of a matrix. To remove the 2nd row

of a matrix having 3 rows, we define I = {1}, b = 3 and J{1},3 =

1 0 0

0 0 1

.

If |G| > s, at least one strategy with minimum probability is pruned from G,

similarly for D (lines 3-9). Finally, we prune the meta-matrix using matrix

multiplication (line 10).

81

Algorithm 5.6: DO-GAN/C

1 Initialize generator and discriminator task arrays G = ∅ and D = ∅;
2 Train generator & discriminator to get with the first task to get π0

g and π0
d;

3 G ← G ∪ {πg}; D ← D ∪ {πd};
4 Compute the adversarial loss LD and add it to meta-matrix U0;
5 Initialize σ0∗

g = [1] and σ0∗
d = [1];

6 for epoch t ∈ {1, 2, ...} do
7 Create new tasks πt

g and πt
d;

8 πt
g ← generatorOracle(σt∗

d ,D);
9 G ← G ∪ {πt

g};
10 πt

d ← discriminatorOracle(σt∗
g ,G);

11 D ← D ∪ {πt
d};

12 if t ≥ 2 then
13 G \ {πt−2

g } and D \ {πt−2
d } ;

14 Create U t with πt−1
g , πt

g and πt−1
d , πt

d;

15 Compute mixed NE ⟨σt∗
g , σ

t∗
d ⟩ for U t with linear program; // Section 5.1.2

16 if TerminationCheck(U t, σt∗
g , σ

t∗
d) then break; // Section 5.1.3

5.2.2 Continual Learning (DO-GAN/C)

Our ablation studies show that we still need a support set of at least s = 10 for

DO-GAN/P to converge and the time complexity grows as s increases. Thus,

we further reduce both time and space complexity by making the network

retain the knowledge of previous networks so that the algorithm will converge

with even smaller support set. Hence, we propose to adapt continual learning

to consolidate the knowledge of multiple networks to a single network while

setting s = 2 to reduce the space complexity as much as possible. We treat

each network as a task to train the adaptive continual learning network while

having a distribution over the tasks to represent the player’s strategies.

To remedy the catastrophic forgetting i.e., all the generator tasks focus

only towards fooling the newest discriminator, we adapt Elastic Weight Con-

82

solidation (EWC) method [54]. We change the generator loss function from

non-saturating to saturating and add a penalty function accordingly. Let G

be trained on task t − 1 to have optimal parameters πt−1
g , the Fisher infor-

mation F is:

F = Ez∼p(z)

[(δ

δπt−1
g

logD(G(z)|πt−1
g)

)2
]

(5.2)

After obtaining the Fisher information, we directly use F as a regulariza-

tion loss to penalize the weight change during the training. Hence, G’s loss

function is augmented as:

LG = Ez∼pz(z)[− logD(G(z) + λ · σt∗
g ·

∑
i
Fi(πi − πt−1,i

g)2 (5.3)

where πt−1
g represents the parameters learned for task t− 1, i is the index of

each parameter of the generator model, and λ is the regularization weight.

Algorithm 5.6 describes the changes to DO− GAN algorithm with continual

learning. Instead of arrays G and D in DO− GAN, we initialize tasks arrays for

generator and discriminator (line 1). At every epoch, we create new tasks and

train the generator and discriminator networks to outperform the previous

optimal parameters with the distribution at NE σt∗
d and σt∗

g respectively (lines

7-11). Then, we keep the previously and currently trained optimal parameters

(line 13) to create meta-matrix, solve it to compute mixed-NE (lines 14-15).

Finally, we perform the termination check (line 16).

Complexity. Given the same architectures, the space complexity of DO-GAN

83

is O(t) where t is the number of epochs until convergence. In contrast, the

space complexity of DO-GAN/P is O(s) where s is the size of the support set.

DO-GAN/C has the minimum storage complexity which is O(1).

In DO-GAN, we add a pair of generator and discriminator for every epoch

of training. Thus, the space complexity of DO-GAN is O(t), making the

algorithm memory-inefficient to train with real-world datasets where it needs

a large number of epochs to converge. The space complexity of DO-GAN/P is

O(s) since we prune the meta-matrix and the players’ strategies if the |G| > s

or |D| > s where s is the limit of the support set size. In DO-GAN/C, we

train a single adaptive network storing the optimal strategies only for the

tasks created at (t − 1)th and tth epochs. Thus, the space complexity of

DO-GAN/C is kept at O(1).

5.3 Experiments

We conduct our experiments on a machine with Xeon(R) CPU E5-2683

v3@2.00GHz and 4× Tesla v100-PCIE-16GB running Ubuntu operating sys-

tem. We evaluate DO-framework for established GAN architectures such as

vanilla GAN [24], DCGAN [77], SNGAN [66] and SGAN [35]. We adopt the

parameter settings and criterion of the GAN architectures as published. We

set s = 10 unless mentioned otherwise. We compute the mixed NE of the

meta game with Nashpy. According to the ablation studies by [54, 87], we

84

set λ as 1000 for MNIST, 5000 for CIFAR-10 and 5× 108 for CelebA.

Table 5.1: Hyperparameters used in DO-GAN for different base architectures

GAN DCGAN SNGAN SGAN

Generator Learning Rate 0.0002 0.0002 0.0002 0.0001
Discriminator Learning Rate 0.0002 0.0002 0.0002 0.0001
batch size 64 64 64 100
Adam: beta 1 0.5 0.5 0.5 0.5
Adam: beta 2 0.999 0.999 0.999 0.999

We implement our proposed method with Python 3.7, Pytorch=1.4.0 and

Torchvision=0.5.0. We set the hyperparameters as the original implementa-

tions. We present the hyperparameters set in Table 5.1. We use Nashpy to

compute the equilibria of the meta-matrix game.

5.3.1 Value of λ

The experiment in [54] has done ablation studies for FFHQ dataset which

are emoji faces and hence we used the λ value for CelebA. Meanwhile, we

adopted the results from [87] and set 1000 for MNIST and the maximum value

of ablation study for SVHN dataset to train CIFAR-10 as we want to use λ

values from the most similar datasets. The experiments in [87] reported that

they observed little difference in visual quality regarding with ablation study

but high values of λ cause no loss in visual fidelity when beginning training

on a new task rather than lower value of λ. Hence, we use the maximum

value for λ.

85

Figure 5.3: Comparison of GAN and DO-GAN/P on 2D synthetic Gaussian Mixture Dataset

5.3.2 Evaluation on 2D Gaussian Mixture Dataset

To illustrate the effectiveness of the architecture, we train a double oracle

framework with the simple vanilla GAN architecture on a 2D mixture of

8 Gaussian mixture components with cluster standard deviation 0.1 which

follows the experiment by [64]. Figure 5.3 shows the evolution of 512 samples

generated by GAN and DO-GAN/P through 20000 epochs. The goal of GAN

and DO-GAN/P is to correctly generate samples at 8 modes as shown in the

target. The results show that GAN can only identify 6 out of 8 modes of

the synthetic Gaussian data distribution, while the DO-GAN/P can obtain

all the 8 modes of the distribution. Furthermore, DO-GAN/P takes shorter

time (less than 5000 epochs) to identify all 8 modes of the data distribution.

We present a more detailed evolution of data samples through the training

process on 2D Gaussian Mixtures in Section 5.3.3.

86

(a) GAN (b) DO-GAN/P

Figure 5.4: Full comparison of GAN and DO-GAN/P on 2D Synthetic Gaussian Dataset

5.3.3 Full Training Process of 2D Gaussian Dataset

Figure 5.4 shows the full training process of DO-GAN/P and GAN on 2D

Synthetic Gaussian Dataset. From the results, we find that GAN struggles

to generate the samples into 8 modes while DO-GAN/P can generate all the

8 modes of the distribution. Furthermore, DO-GAN/P takes shorter time

(less than 5000 iterations) to identify all 8 modes of the data distribution.

Table 5.2: Runtime of DO-GAN/P on 2D Gaussian Dataset with s = 5, 10, 15

Support Set Size Runtime (GPU hours)

s = 5 > 1
s = 10 0.5627
s = 15 0.9989

Ablations. We vary the support set size s to 5, 10, 15 and record the training

evolution and the running time as presented in Table 5.2 and Figure 5.5. We

find that if the support size is too small, e.g., s = 5, the best responses which

are not optimal yet have better utilities than the models in the support set

87

are added and pruned from the meta-matrix repeatedly making the training

not able to converge. However, s = 15 takes a significantly longer time as the

time for the augmenting of meta-matrix becomes exponentially long with the

support set size. Hence, we chose s = 10 as our experiment support set size

since we observed that there is no significant trade-off and shorter runtime.

Figure 5.5: Training evolution on 2D Gaussian Dataset with s = 5, 10, 15

5.3.4 Choice of GAN Architectures for Experiments

We carried out experiments evaluate the performance of the DO framework by

choosing several established GAN architectures from GAN as the backbone.

We refer to the taxonomy of GANs [99] and choose each architecture from the

groups of GANs focused on Network Architectures i.e., convolutional layers

for deep neural networks of GAN: DCGAN, stacked architecture: SGAN as

well as Latent Space and Normalization techniques: SNGAN as shown in

Figure 5.6. We have also included comparisons with mixture architectures

such as MIXGAN and MGAN.

88

Figure 5.6: Taxonomy of GAN Architectures from [99]

5.3.5 Evaluation on Real-world Datasets

We run experiments on MNIST [50], CIFAR-10 [46] and CelebA [59]. MNIST

contains 60,000 samples of handwritten digits with images of 28×28. CIFAR-

10 contains 50, 000 training images of 32 × 32 of 10 classes. CelebA is a

large-scaled face dataset with more than 200K images of size 128× 128.

Qualitative Evaluation.

We choose the CelebA dataset for the qualitative evaluation since the training

images contain noticeable artifacts (aliasing, compression, blur) that make

the generator difficult to produce perfect and faithful images. We compare

89

performances of DO-DCGAN/P, DO-SNGAN/P and DO-SGAN/P with their

counterparts. SNGAN which is trained for 40 epochs with termination ϵ

of 5 × 10−5 for DO-SNGAN/P where other architectures are trained for 25

epochs with termination ϵ of 5×10−5 for DO variants. The generated CelebA

images of DCGAN and DO-DCGAN/P are shown in Figure 5.7, where we

find that DCGAN suffers mode-collapse, while DO-DCGAN/P does not. We

also present the generated images of SNGAN vs DO-SNGAN/P using fixed

noise at different training epochs in Figure 5.8. From the results, we can see

that SNGAN, SGAN, DO-SNGAN/P and DO-SGAN/P are able to generate

various faces, i.e., no mode-collapse. Judging from subjective visual quality,

we find that DO-SNGAN/P and DO-SGAN/P are able to generate plausible

images faster than SNGAN and SGAN during training, i.e., 17 epochs for

DO-SGAN/P and 20 epochs for SGAN.

Figure 5.7: Training images with fixed noise for DCGAN and DO-DCGAN/P until termination.

90

Quantitative Evaluation.

Inception Score. We first leverage the Inception Score (IS) [85] by using

Inception v3 [91] as the inception model. To compute the inception score, we

first compute the Kullback-Leibler (KL) divergence for all generated images

and use the equation IS = exp(Ex[KL(D(p(y|x) ∥ p(y)))]) where p(y) is the

conditional label distributions for the images in the split and p(y|x) is that

of the image x estimated by the reference inception model. Inception score

evaluates the quality and diversity of all generated images rather than the

similarity to the real data from the test set.

FID Score. Fréchet Inception Distance (FID) measures the distance be-

tween the feature vectors of real and generated images using Inception v3

model [30]. Here, we let p and q be the distributions of the representations

obtained by projecting real and generated samples to the last hidden layer

of Inception model. Assuming that p and q are the multivariate Gaussian

distributions, FID measures the 2-Wasserstein distance between the two dis-

tributions. Hence, FID Score can capture the similarity of generated images

to real ones better than inception score.

Results. The results are shown in Table 5.3. In CIFAR-10 dataset, the

pruning method i.e., DO-GAN/P, DO-DCGAN/P and DO-SNGAN/P obtain

much better results (7.2 ± 0.16, 7.86 ± 0.14 and 8.55 ± 0.08) than GAN,

91

Figure 5.8: Training images with fixed noise for SNGAN and DO-SNGAN/P until termination.

DCGAN and SNGAN (3.84 ± 0.09, 6.32 ± 0.05 and 7.58 ± 0.12). However,

we do not see a significant improvement in DO-SGAN/P compared to SGAN

8.62± 0.12 and 8.69± 0.10 since SGAN already can generate diverse images.

We did not include IS for CelebA dataset as IS cannot reflect the real image

quality for CelebA, as observed in [30]. In CIFAR-10 dataset, DO-GAN/P,

DO-DCGAN/P, DO-SNGAN/P and DO-SGAN/P obtain much lower FID

scores (31.44, 22.25, 16.56, 18.20) respectively. The trend follows in CelebA

obtaining 7.11 for DO-DCGAN/P while 10.92 for DCGAN, 7.62 for SNGAN

while 6.92 for DO-SNGAN/P, 6.98 for SGAN and 6.32 for DO-SGAN/P

respectively. Although we see a significant improvement in the quality of

DO-SGAN/P images, FID score for DO-SGAN/P is affected by distortions.

We observe the competitive results for continual learning method with

the pruning method: DO-GAN/C, DO-DCGAN/C, DO-SNGAN/C and DO-

92

Table 5.3: Inception scores (higher is better) and FID scores (lower is better) of DO-GAN with
pruning (DO-GAN/P) and continual learning (DO-GAN/C). The mean and standard deviation are
drawn from running 10 splits on 10000 generated images.

Inception Score FID Score

MNIST CIFAR-10 CIFAR-10 CelebA

GAN 1.04± 0.05 3.84± 0.09 71.44 -
DCGAN 1.26± 0.05 6.32± 0.05 37.66 10.92
SNGAN 1.35± 0.11 7.58± 0.12 25.50 7.62
SGAN 1.39± 0.09 8.62± 0.12 24.83 6.98

MIX+DCGAN - 7.72± 0.09 - -
MGAN - 8.33± 0.10 26.70 -
DCGAN+ EWC - 7.58± 0.07 25.51 -

DO-GAN/P 1.39± 0.09 (+0.35) 7.20± 0.16 (+3.36) 31.44 (−40.00) -
DO-DCGAN/P 1.42± 0.11 (+0.16) 7.86± 0.14 (+1.54) 22.25 (−15.41) 7.11 (−3.81)
DO-SNGAN/P 1.42± 0.07 (+0.07) 8.55± 0.08 (+0.97) 18.20 (−7.30) 6.92 (−0.70)
DO-SGAN/P 1.42± 0.09 (+0.03) 8.69± 0.10 (+0.07) 16.56 (−8.27) 6.32 (−0.66)
DO-GAN/C 1.42± 0.10 (+0.38) 7.32± 0.30 (+3.48) 26.93 (−44.51) -
DO-DCGAN/C 1.43± 0.13 (+0.17) 8.04± 0.22 (+1.72) 21.50 (−16.16) 7.16 (−3.76)
DO-SNGAN/C 1.43± 0.08 (+0.08) 8.54± 0.16 (+0.96) 19.57 (−5.93) 6.74 (−0.88)
DO-SGAN/C 1.45± 0.15 (+0.06) 9.78± 0.11 (+1.16) 16.07 (−8.76) 6.30 (−0.68)

Note: MIX+DCGAN and MGAN results are directly copied from [3, 32]. The magenta values are the
improvements from non-DO counterparts.

SGAN/C obtain inception scores of 7.32± 0.30, 8.04± 0.22, 8.54± 0.16 and

9.78± 0.11 respectively as well as FID scores of 26.93, 21.50, 19.57 and 16.07

respectively for CIFAR-10 dataset. Moreover, 7.16, 6.74 and 6.30 respectively

for CelebA dataset. We also compared with DCGAN+EWC which uses con-

tinual learning without the double oracle framework for CIFAR-10 dataset

and obtained better results where DCGAN+EWC obtained inception score

of 7.58± 0.07 and FID score of 25.51.

From the results, we can see that DO framework performs better than

each of their original counterpart architectures with both methods: pruning

and continual learning. More details can be found in Figure 5.9 where we

93

computer FID score against training epochs for CIFAR-10 dataset for SGAN

and DO-SGAN/P. We can also see that continual learning method that uses

least storage space can obtain competitive results with DO-GAN/P without

memory storage limitations or pruning the players’ strategies.

FID score against training epochs for CIFAR-10 dataset

50 100 150 200 250 300 350 400 450 500
101

101.5

102

Epochs

F
ID

S
co
re

SGAN
DO-SGAN

Figure 5.9: FID score vs. Epochs for SGAN and DO-SGAN trained on CIFAR-10

To compute FID score, we use Inception v3 model with max pool of 192

dimensions and the last layer as coding layer as mentioned in [30]. We resized

MNIST, CIFAR-10 generated and test images to 32× 32 and CelebA images

to 64 × 64. According to the figure, while both SGAN and DO-SGAN/P

perform relatively well in generating plausible images, we can see that DO-

SGAN/P terminates early at epoch 288 and has a better FID score of 16.56

compared to 24.83 at 300 epoch until 21.284 at 500 epoch for the training of

SGAN.

94

Wall-clock Runtime

We also compare the wall-clock running times of DO-SGAN/P and DO-

SGAN/C with SGAN as shown in Table 5.4. We let SGAN train for 500

epochs on CIFAR-10 dataset. Meanwhile, DO-SGAN/P converged at 288

epochs and DO-SGAN/C converged at 236 epochs. The recorded GPU hours

of 143.28 for SGAN, 119.04 for DO-SGAN/P and 97.54 for DO-SGAN/C

show that DO variants are more efficient.

Table 5.4: Wall-clock time comparison of SGAN variants

SGAN DO-SGAN/P DO-SGAN/C

Time (GPU-Hrs) 143.28 119.04 97.54

Note: SGAN is trained for 500 epochs on CIFAR-10. DO-SGAN/P converged at 288 epochs and
DO-SGAN/C at 236 epochs.

5.4 Chapter Summary

In this chapter, we propose DO-GAN which starts with a restricted game

and incrementally adds the best responses of the generator and the discrim-

inator oracles as the players’ strategies. We then compute the mixed NE to

get the players’ meta-strategies by using a linear program. With scalable

solutions such as pruning the support strategy set and continual learning, we

apply DO-GAN approach to established GAN architectures such as vanilla

GAN, DCGAN, SNGAN and SGAN. Extensive experiments with the syn-

thetic 2D Gaussian mixture dataset as well as real-world datasets such as

95

MNIST, CIFAR-10 and CelebA show that DO-GAN variants have significant

improvements in comparison to their respective GAN architectures in terms

of both subjective image quality and quantitative metrics.

96

Chapter 6

DONAS: Double-Oracle and Neural

Architecture Search for Adversarial

Machine Learning

Most machine learning algorithms involve optimizing a single set of param-

eters to minimize a single cost function. In adversarial machine learning

(AML), however, two or more “players” adapt their own parameters to min-

imize their own cost, in competition with the other players . There are two

main schemes of AML: i) generative adversarial networks (GAN) where a

generator network generates images, while the discriminator distinguishes the

generated images from real images, resulting in the ability of the generator to

produce realistic images [9, 24, 39], and ii) adversarial training (AT) where

a classifier is trained against an attacker who can manipulate the inputs to

decrease the performance of the classifier [25, 61]. In both cases, AML can

be viewed as a two-player zero-sum game where each player is alternately

97

trained to maximize their respective utilities till convergence corresponding

to a Nash Equilibrium (NE) [3].

Various approaches have shown promising results to optimize the network

architecture in AML. Recent works propose mixed architectures with multiple

generators and discriminators and consider mixed-NE, such as MGAN [32],

MIX+GAN [3] and MirrorGAN [34]. DO-GAN proposes to train GANs by

deploying a double oracle framework using generator and discriminator from

the best response oracles. In these techniques, they only update the weights

to find the best response networks using predefined architectures. On the

other hand, Neural Architecture Search (NAS) approaches have also shown

promising results. They have been applied to some computer vision tasks,

such as image classification, dense image prediction and object detection. Re-

cently, NAS has been researched in GANs [23, 82]. Particularly, Adversarial-

NAS [20] searches both of the generator and discriminator simultaneously

in a differentiable manner using gradient-based method NAS and a large

architecture search space. Moreover, NAS is also used to search the classi-

fier architectures in Adversarial Training (AT) for robustness. AdvRush [69]

considers both white-box attacks and black-box attacks using the input loss

landscape of the networks to represent their intrinsic robustness. However,

the NAS techniques only derive one final architecture with a criterion such

as maximum weight from the search space, ignoring other top performing

results from the neural architecture search.

98

Thus, we propose DONAS, which combines Double Oracle from game

theory and Neural Architecture Search to leverage the searched networks

and the mixed-architectures in adversarial machine learning. We deploy the

NAS algorithms: Adversarial-NAS for GANs and AdvRush for AT in the

best response oracles of the training process.

In summary, we make four key contributions in this chapter: 1) A general

algorithm for DONAS where we obtain the players’ best responses from ora-

cles, augment a meta-game and solve it with linear programming; 2) DONAS

for GANs with the respective oracles to search multiple discriminators and

generators referencing the techniques from Adversarial-NAS and finetune

them sequentially with [a]: Harmonic Mean and [b]: Nash; 3) DONAS for AT

with the classifier/attacker oracles for the double oracle adversarial training

referencing the techniques from AdvRush to search the classifier model; 4)

We conduct experiments on both generative adversarial networks and adver-

sarial training, where DONAS can be viewed as an extension of NAS with

the mixed strategy or an extension of DO with an augmented action space,

i.e., architectures and parameters. Finally, we provide a comprehensive eval-

uation on the performance of DONAS for both GANs and AT with different

Neural Architecture Search algorithms using real-world datasets. Experimen-

tal results show that DONAS variants have achieved significant generative

results as well as improvement in robustness.

99

6.1 DONAS: The General Framework

We have discussed the two prominent approaches to optimizing network archi-

tecture in adversarial machine learning, mainly, DO as the mixed-architecture

approach, and Adversarial-NAS and AdvRush as the NAS approach for

GANs and AT, respectively. DO finds the best response architecture by

only updating weights for predefined architecture in the oracles, while NAS

methods select only one final network from the search space and may miss

the information trained by other top searched architectures. To mitigate

the issues in both methods, we propose DONAS approach to combine them,

allowing searched networks in mixed-architecture framework.

We describe the general framework for our proposed DONAS. We adapt

the double oracle framework, in which Neural Architecture Search is used

as the best response oracle for the two players: generator-discriminator for

GANs and classifier-attacker for AT. We search and sample the best response

strategies for the two players with respective oracles. Then, we finetune to

improve the quality of the image generation and robustness. To speed up the

training, we introduce the terminating condition ϵ.

Algorithm 6.1 initializes the first pair of models and stores them in the two

arrays P1 and P2. Then, we can randomly sample pure strategies to augment

the meta-game and compute the distribution of the player strategies. We

initialize the meta-strategies σ1∗
p1 = [1] and σ1∗

p2 = [1] since only one pair of

100

Algorithm 6.1: DONAS: General Framework

1 P1, P2 = InitializeModels();
2 P1 ← {P1}, P2 ← {P2}, σ1∗

p1 = σ1∗
p2 = [1];

3 for epoch t = 1, 2, ... do
4 P1 = Player1 NASSearch();
5 Π1 = SampleFromSupernet(P1);
6 P2 = Player2 NASSearch();
7 Π2 = SampleFromSupernet(P2);
8 P1 ← P1 ∪ Π1 , P2 ← P2 ∪ Π2;
9 FineTuning();

10 Augment U t−1 with P1 and P2 to obtain U t

11 Compute mixed-NE ⟨σt∗
p1, σ

t∗
p2⟩ for U t

12 if TerminationCheck(U t, σt∗
p1, σ

t∗
p2) then

13 break;

player strategies is available (line 1-2). For each epoch, we search the new

strategy for each player (line 4, 6), obtaining the supernets P1 and P2. Next,

we sample the networks to derive the architecture from supernet (line 5,7).

We then finetune the selected models (line 9). In DONAS for AT, we do

not have sampling and finetuning for the best response oracle for attacker

player since we do not need to search architecture for the attacker player.

Next, we generate the meta-game U t and compute mixed NE with linear

programming to obtain σ∗p1 and σ∗p2 (line 10-11). The algorithm terminates if

the terminating condition ϵ is satisfied (line 12).

In Algorithm 6.2, we first compute U t(σt∗
p1, σ

t∗
p2) and the expected utilities

for new player strategies U t(P1[m], σt∗
p2), U

t(σt∗
p1,P2[n]) (line 2-5). Then, we

calculate the utility increment for the two players (lines 6-7) and return True

if both U t(P1[m], σt∗
p2) and U t(σt∗

p1,P2[n]) cannot bring a higher utility than

U t(σt∗
p1, σ

t∗
p2) by the margin of ϵ, terminating the training process (lines 8-11).

101

Algorithm 6.2: TerminationCheck(U t, σt∗
p1, σ

t∗
p2)

1 Compute U t(σt∗
p1, σ

t∗
p2);

2 // U t is of size m× n

3 Compute U t(σt∗
p1,P2[n]);

4 // |P1| = m, |P2| = n;

5 Compute U t(P1[m], σt∗
p2);

6 δp1 = U t(P1[m], σt∗
p2)− U t(σt∗

p1, σ
t∗
p2);

7 δp2 = U t(σt∗
p1, σ

t∗
p2)− U t(σt∗

p1,P2[n]);

8 if δp1 < ϵ && − δp2 < ϵ then

9 return True

10 else

11 return False

Pruning Models for Memory Efficiency

To reduce the memory during the training, we prune the arrays P1 and P2

and update the respective parameters when |P1| > K or P2 > K. We pro-

pose a memory-efficient solution of DONAS by adapting the greedy pruning

algorithm from Chapter 5. Algorithm 6.3 describes PruneModels(). I stores

indices to be pruned from P1 and P2 and G stores models to be pruned from

P1 and P2. When either |P1| or |P2| is greater than the limit of the size K, we

prune at least one strategy with the least probability, which is the strategy

that contributes the least to the player’s winning and prunes the meta-game

by maxtrix multiplication accordingly. (lines 2-12).

102

Algorithm 6.3: PruneModels(P1, U
t,P2, U

t, σ∗
g , σ

∗
d)

1 Ip1 = ∅; Ip2 = ∅;
2 if |P1| > K then
3 for (i, P) ∈ P1 do
4 if σt∗

p1(P) == min σt∗
p1 then

5 P1 ← P1 \ {P};
6 Ip1 ← Ip1 ∪ {i};

7 if |P2| > K then
8 for (j, P) ∈ P2 do
9 if σt∗

p2(P) == min σt∗
p2 then

10 P2 ← P2 \ {P};
11 Ip2 ← Ip2 ∪ {j}

12 U ← JIp1,m · U t · JT
Ip2,n

6.2 Spices of DONAS

In this section, we present two spices of the general framework DONAS for

GAN and AT. We introduce the modular components to make it adaptable

to any NAS algorithm for future uses.

6.2.1 DONAS for GAN

We use DONAS for GANs to allow the use of multiple generators and dis-

criminators. We let P1 = G and P2 = D as the two-player zero-sum game

between the generator and discriminator with their architectures as α and β

respectively. Theoretically, using multiple generators and discriminators with

mixed strategies covers multiple modes to produce better generated results.

Algorithm 6.4 describes the specific changes to adapt DONAS for GANs.

We initialize the first generator-discriminator pairG,D and finetune the mod-

els in InitializeModels() (line 1-2). The two-player oracles are shown in

103

Algorithm 6.4: DONAS for GANs

Procedure: InitializeModels()
1 Initialize the generator G and discriminator D ;
2 FineTune(G) ;
Procedure: GeneratorOracle()

3 G = initialize();
4 for s steps do
5 Sample mini-batch of 2m noise samples;
6 Update the architecture of generator:

7 ∇α
1
m

m∑
i=1

[
|D|∑
j=1

σj∗
d · log(1−Dj(G(zi)))]

8 Update the weights of generator:

9 ∇WG

1
m

2m∑
i>m

[
|D|∑
j=1

σj∗
d · log(1−Dj(G(zi)))];

Procedure: DiscriminatorOracle()
10 D = initialize();
11 for s steps do
12 Sample 2m samples for noise and real data Update the architecture of

discriminator:
13 ∇β

1
m

∑m
i=1[log x

i +
∑|G|

j=1 σ
j∗
g · log(1−D(Gj(z

i)))];

14 Update the weights of discriminator:

15 ∇WD

1
m

∑2m
i>m[log x

i +
∑|G|

j=1 σ
j∗
g · log(1−D(Gj(z

i)))];

Procedure: SampleFromSupernet(α)
16 Sample top k subnetworks ᾱ according to α;
17 Π = argminΠ∈ᾱ adv loss();

Procedure: SequentialFineTune()
18 for r = 1, 2, ... do
19 for i = 1, . . . , |G| do
20 maxθgi Ez

[∑|D|
j=1 σ

j∗
d ·Dj(Gi(z)) ·Θ

]
;

21 for j = 1, . . . , |D| do
22 maxθd Ex[logDj(x)] +

∑K
k=1 Ez[log(1−Dj(Gk(z)))];

23 Augment U t and find mixed-NE (σ∗
g , σ

∗
d);

104

GeneratorOracle() and DiscriminatorOracle() which describe the best re-

sponse oracles in the DO-framework of a two-player min-max game with the

networks (α and β) where the weight of each network must be the best re-

sponse to the other player.

Adapting Adversarial-NAS. GAN optimization process in Adversarial-NAS

is defined as a two-player min-max game with value function V (α, β) where

the weight of each network must be the best response [20]. The min-max

game is minαmaxβ V (α, β) defined as:

V (α, β) = Ex∼pdata(x)[logD(x|β,W ∗
D(β)]+

Ez∼pz(z)[log(1−D(G(z|α,W ∗
G(α))|β,W ∗

D(β))], (6.1)

where the two weights W ∗
G(α),W

∗
D(β) for any architecture pair (α, β) can be

obtained through another min-max game between WG and WD, i.e., minWG(α)

maxWD(β) V (WG(α),WD(β)) defined as:

V (WG(α),WD(β)) = Ex∼pdata(x)[logD(x|β,WD(β)]+

Ez∼pz(z)[log(1−D(G(z|α,WG(α))|β,WD(β)))]. (6.2)

The weights of generator and discriminator w.r.t. the architecture pair (α, β),

{W ∗
G(α),W

∗
D(β)}, can be obtained by a single step of adversarial training as

vanilla GANs [20, 89]. The optimal architectures or weights in each iteration

105

can be achieved by ascending or descending the corresponding stochastic

gradient by updating in the order of architecture followed by the weights.

Generator Oracle. We initialize the generator and sample the noise samples

(line 5). Then, we search and update the architecture of the generator by

ascending its stochastic gradient using the probability distribution σ∗d for the

pure strategies of the discriminator (line 7). Finally, we update the weight

of the discriminator by the stochastic gradient ascent while considering σ∗d

(line 9).

Discriminator Oracle. Similarly, we initialize the discriminator and sample

noise samples as well as real-data examples (line 12). Then, we update the

architecture (line 13) and weights (line 15) by stochastic gradient ascent with

the probability distribution σ∗g for the pure strategies of the generator.

Sampling Architecture from Supernet. After the search, we derive the archi-

tecture from the resulting supernet (line 16- 17). We sample top k networks

selecting maximum values of the architecture α and select the networks that

give the minimum adversarial loss against the other player.

Finetuning. After the two oracles provide the new strategies for the two

players (new generator and discriminator), we sequentially finetune them

by Nash distributions σ0∗
g and σ0∗

d that we obtained from solving the meta-

106

game with linear programming (line 18-22). To finetune multiple generators

altogether, we update the objective function of the generator in training with

E(z∼pz(z))[D(Gi(z, θgi))] and the sequential generators with harmonic mean

[96]. Hence, the generator update is maxθgi Ez∼pz(z)[D(Gi(z, θgi)) · Φ], where

Φ is the harmonic mean of the remaining generators in the array: Φ =

HM((1−D(Gi−1(z, θgi−1
)), . . . , (1−D(G1(z, θg1)))].

This ensures that the current generator focuses on the data samples from

the modes ignored by the previous generators. Arithmetic means and geo-

metric means cannot generalize the ignored data samples well in the case of

sampled generators where one of the generators is performing much better.

The Harmonic Mean makes sure the currently trained generator focuses on

the ignored data samples. The details of sequential finetuning with HM are

mentioned in Algorithm 6.5.

Algorithm 6.5: Fintuning K Generators by HM

1 for iteration 1,2, ... do
2 for i = 1, . . . , K do
3 Update the generators using Harmonic Mean:
4 maxθgi Ez∼pz(z)[D(Gi(z, θgi))×HM((1−D(Gi−1(z, θgi−1

))), . . . , (1−
D(G1(z, θg1))))];

5 Update the discriminator:

6 maxθd Ex∼Pdata
[logD(x, θd)] +

∑K
k=1 Ez−pz(z)[log(1−D(Gk(z, θgk), θd))]

For every epoch, each generator is updated according to Eq. (23) (line 3)

followed by the discriminator update where the fake data from the generator is

the combination of all K generators (line 5). After the training has finished,

we augment the meta-game and solve it to obtain the distribution of K

107

generators to be used in the next iteration. However, HM only tells the

ignored samples and cannot give a clear picture of which samples are being

captured more than the others at each epoch of the finetuning.

Using the meta-game, which only takes linear complexity to solve, gives

Nash distribution of the generators, and hence, the update of the objective

function can have a better picture to focus on the less-captured data samples.

Hence, this method is more effective than HM which focuses heavily on the

ignored data samples.

Algorithm 6.6: Fintuning K Generators by Nash

1 for iteration 1,2, ... do
2 for i = 1, . . . , K do
3 Update the generators using the distribution σ:
4 maxθgi Ez∼pz(z)[D(Gi(z, θgi))× σi−1(1−D(Gi−1(z, θgi−1

)))× · · · × σ1(1−
D(G1(z, θg1)))];

5 Update the discriminator:

6 maxθd Ex∼Pdata
[logD(x, θd)] +

∑K
k=1 Ez−pz(z)[log(1−D(Gk(z, θgk), θd))];

7 Generate the augmented meta-game U i;
8 Compute mixed-NE σ for U i;

Algorithm 6.6 describes the finetuning of multiple generators and dis-

criminators with Nash. Using a similar equation as Eq. (23) and Θ =

σi−1∗
g (1−Dj(Gi−1(z, θgi−1

)))× · · · × σ1∗
g (1−Dj(G1(z, θg1))), we finetune each

generator and discriminator using Nash distribution obtained by generating

the augmented meta-game and compute mixed NE by linear programming

(line 6-7).

108

6.2.2 DONAS for AT

We also propose DONAS for AT where we have the two players as the train-

ing classifier P1= C and the adversarial P2= A. We search the classifier in

ClassifierOracle() against the perturbed datasets from AttackerOracle().

Given Lval and Ltrain as loss functions on the validation and training sets re-

spectively, the search process of Neural Architecture Search is defined as a

bi-level optimization problem:

minθ Lval(w
∗(θ), θ)

s.t. w∗(θ) = argminwLtrain(w, θ). (6.3)

For NAS in the classification task, the expensive inner optimization in Eq. (6.3)

is normally approximated by one step training [57] as: ∇θLval(w
∗(θ), θ) ≈

∇θLval(w− ξ∇wLtrain(w, θ), θ) where w denotes the current weights and ξ is

the learning rate for a step of inner optimization.

Adapting AdvRush. Algorithm 6.7 describes the specific changes to adapt

DONAS for AT. To obtain the first pair of classifier θ and perturbed dataset

δ, we perform neural architecture search for θ by AdvRush [69] and set δ = 0

in InitializeModels(), then store the parameters in the two arrays C and

A (line 1-2). For each epoch, we search the new classifier and generate new

perturbed dataset with ClassierOracle() and AttackerOracle() using the

109

Algorithm 6.7: DONAS for AT

input: Samples X, learning rate γ, the number of hopsteps m;

Procedure: InitializeModels()

1 θ = AdvRushSearch();

2 δ = 0;

Procedure: AttackerOracle()

3 Let δ = 0;

4 for step s = 1, 2, ..., N
m

do

5 for mini-batch B ⊂ X do

6 for i = 1, 2, . . . ,m do

7 gadv = ∇x,θ∼(C,σ∗
c)l(x+ δ, y, θ), x, y ∈ B;

8 Update δ;

9 δ ← Clip(δ + ϵ · sign(gadv),−ϵ, ϵ);

Procedure: ClassifierOracle()

10 Initialize architecture and weight (w0, α0);

11 for iteration i = 1, 2, ... do

12 Update weights by descending its stochastic gradient:

13 ∇WLtrain(wi − 1, αi − 1);

14 Update the architecture, i.e., α:

15

∇α[Lval(wi, αi − 1)], if t < ϕ

∇α[Lval(wi, αi − 1) + γLλ], else

Procedure: SampleFromSupernet(θ)

16 Derive θ through discritization steps from DARTS;

Procedure: FineTune()

17 for steps s = 1, 2, ..., N
m

do

18 for mini-batch B ⊂ X do

19 for i = 1, 2, . . . ,m do

20 gθ ← E(x,y)∈B[∇θ,δ∼(⊣,σ∗
a
)l(x+ δ, y, θ)];

21 θ ← θ − γ · gθ;

110

meta-strategies σ∗c and σ∗p. We refer to the Free adversarial training (Free

AT) algorithm [89], with comparable robustness to the traditional 7-step

PGD [61] with significantly faster training. We then convert it to the DO-

Framework with the two oracles to allow multiple adversarial updates to be

made to the same images without multiple backward passes by training the

same mini-batch for m times.

Attacker Oracle. For each iteration, we calculate the adversarial gradient

using θ ∈ C sampled with probability distribution of the classifier’s strategies

from the meta-game σ∗c to update δ (line 7-8).

Classifier Oracle. We adapt AdvRush to search for the architecture and up-

date the weights. According to the ablation study by [69], we set γ = 0.01

and AdvRush loss term Lλ is introduced at ϕ = 50 which we set as iteration

number for warm-up process. (line 15).

Sampling Architecture from Supernet. After search and update of classifier’s

architecture and weights, we derive the final architecture (line 16) by running

discretization procedure of DARTS [57].

Finetuning. We adversarially train the classifier against the attacker. We

update θ with stochastic gradient descent (line 20-21) with δ sampled from

A with σ∗a. We consecutively train each mini-batch for m times.

111

Finally, we augment the meta-game by calculating the cross-entropy loss

and solve it to obtain the distribution. DONAS-AT ends when the terminat-

ing criteria is satisfied meaning both oracles have searched the best response

strategies.

6.3 Experiments

6.3.1 Experimental Setup

We run the experiments on 8 Tesla V100-SXM2-32GB service with Ubuntu

Operating System. We set the number of generators as K = 5 or K = 10 for

DONAS and multiple generator samplings of Adversarial-NAS as mentioned

in the results. Following Adversarial-NAS, we set the hyper-parameters of

optimizers for training the weights of both generator and discriminator as

β1 − 0.0, β2 = 0.9 and learning rate is set to 0.0002. The hyper-parameters

of optimizers for both architectures are set to β1 = 0.5, β2 = 0.9 and the

learning rate is 0.0003 with the weight decay of 0.0001. We set the batch

size as 100 for both generator and discriminator, run the search, save them

as genotypes (npz) and finally finetune them.

Similarly in AT, we follow AdvRush for the search process. We use SGD

to update w with batch size = 32, learning rate = 0.025, β = 0.9, and weight

decay factor = 3e−4. We use Adam to update α with learning rate = 3e−4,

β1 = 0.5, β2 = 0.999, and weight decay factor = 1e− 3. We run the updates

112

for 60 epochs, setting ϕ = 50. For AT, we set the clip value to 4.0 and

the number of repeat updates m = 4. We keep the hyper-parameters of the

optimizer in DONAS for GAN and AT the same as the respective settings in

searching with ϵ = 5e− 3 as terminating condition.

6.3.2 Experiments on DONAS for GAN

As the first step, we conducted an experiment to evaluate DONAS-GAN on

the datasets CIFAR-10 [46], STL-10 [11] and TinyImageNet [49]. We calcu-

late FID score to evaluate the quantitative performance against the baselines

AutoGAN [23] and Adversarial NAS [20] to compare with our DONAS-GAN

variants where we investigated ablation studies with different approaches

varying the number of generators and discriminators.

Variants of DONAS-GAN. Initially, we reproduce Adversarial-NAS search

which searches 1 generator followed by sampling multiple top networks from

the supernet after the search. We run the experiments for DONAS-GAN Ind.,

DONAS-GAN HM and DONAS-GAN Nash with K, where K is the number

of generators, to select a sample of K generators instead of 1 maximum and

finetune the generators. We set the number of discriminators as 1.

DONAS-GAN Ind. uses independent finetuning where allK generators are

trained independently whereas DONAS-GAN HM and DONAS-GAN Nash

use sequentially finetuning where the sampled K generators are finetuned by

113

Harmonic Mean (HM) and Nash.

Next, we searchK generators iteratively in DONAS-GAN Iter. and sample

the architecture with the maximum α instead of a one-time search. To avoid

having the searching architecture for the same batches, we shuffle the train

data for each iteration. After the iterative process, we finetune the resulting

K generators by Nash.

Finally, we perform experiments with full-version of DONAS-GAN with

the pruning limit of K for both generators and discriminators. We set K to

prune the generator and discriminator arrays G and D, and the terminating

condition ϵ is now set as 5e−3.

Table 6.1: Generative results for DONAS-GAN.

Methods AutoGAN AdvNAS
DONAS-GAN

Ind. HM Nash. Iter. Full

CIFAR-10
Search

5
- 16.35

14.22 14.22 14.22 14.43 -
10 14.04 14.04 14.04 13.89 -

Finetune
5

12.42 10.87
10.62 9.27 9.06 9.12 8.93

10 10.33 9.32 9.19 9.10 8.93

STL-10
Search

5
- 32.48

29.16 29.16 29.16 30.02 -
10 28.95 28.95 28.95 28.99 -

Finetune
5

31.01 26.98
28.88 26.44 26.13 26.15 25.31

10 28.72 26.60 26.17 25.82 24.75

Tiny
ImageNet

Search
5

- 17.99
17.53 17.53 17.53 - -

10 16.91 16.91 16.91 - -

Finetune
5

16.21 15.10
15.21 13.85 12.36 - 11.18

10 14.60 13.28 11.94 - 10.42

114

Experiments Results. Table 6.1 shows the experiment results with various

methods and datasets investigated on DONAS-GAN. We initially set up the

experiment for CIFAR-10 dataset and recorded AutoGAN as 12.42, Adversarial-

NAS as 16.35 for the searched architecture and 10.87 after finetuning. For the

variants of DONAS-GAN, we recorded 10.62, 9.27, 9.06, 9.12,8.926(K = 5)

and 10.33, 9.32, 9.19, 9.10,8.932(K = 10) for DONAS-GAN Ind., HM, Nash,

Iter and full-version of DONAS-GAN with K generators/discriminators. The

results indicate that our variants bring significant improvements to the re-

sults. While DONAS-NAS Iter. suffers from long finetuning time as there is

no terminating condition recording 60.88 GPU Hours for K = 5 and 109.52

GPU Hours for K = 10, DONAS-GAN shows satisfying results terminating

within a training time of 54.19 GPU Hours for the best run.

Similar promising trends are observed in STL-10 datasets recording 31.01

and 26.98 for AutoGAN and Adversarial-NAS as baselines. We recorded

28.88, 26.44, 26.13, 26.15,25.31(K = 5) and 28.72, 26.6, 26.17, 25.82,24.75

(K = 10) for DONAS-GAN Ind., HM, Nash, Iter and full-version of DONAS-

GAN withK generators/discriminators respectively. We also compared DONAS-

GAN against baselines for TinyImageNet dataset and recorded 16.21 for Au-

toGAN, 15.10 for Adversarial-NAS and 11.18(K = 5), 10.42(K = 10) for

DONAS-GAN showing that DONAS-GAN can capture the diversity of data

examples better. Qualitative examples in Appendix also indicate the realis-

tic image generation and the ability to capture the diversity of the classes

115

without mode-collapse. The generated images of the CIFAR-10 dataset using

DONAS for GAN using K values as 5 and 10 for the qualitative evaluation

are shown in Figure 6.1.

(a) Using K = 5

(b)

Using K = 10

Figure 6.1: The CIFAR-10 images randomly generated from DONAS for GAN

116

0
2

4
6

8
10

12
14

16
18

20
22

24
La

ye
r

Generator_0 Generator_2

0 2 4 6 8 10 12 14 16 18 20 22 24
Layer

0
2

4
6

8
10

12
14

16
18

20
22

24
La

ye
r

Generator_4

0 2 4 6 8 10 12 14 16 18 20 22 24
Layer

Generator_6

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a)

0 1 2 3 4 5 6 7 8 9
Generator

0
1

2
3

4
5

6
7

8
9

Ge
ne

ra
to

r

0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 6.2: (a): Linear CKA between layers of the individual searched networks of DONAS-GAN
trained on TinyImageNet dataset. The downtrend of similarity for later layers is observed. (b):
Linear CKA averaging between the same layers of the searched networks of DONAS-GAN trained
on TinyImageNet.

Internal Representation of Networks. To analyze how the representation of

the networks evolve and differ from each other, we use the centered kernel

alignment (CKA) [44] to measure the similarity of the representation be-

tween layers and networks of DONAS-GAN trained on TinyImageNet. CKA

is proposed by Kornblith et al to measure the similarity of the representa-

tion between layers and networks of DONAS-GAN trained on TinyImageNet.

CKA is a commonly used metric for representation similarity, which features

in higher accuracy comparing with other similarity indexes. In Figure 6.2a,

we visualize the CKA values of layers in the same network of DONAS-GAN

as heatmaps. We can see that there is a considerable similarity between the

hidden layers as represented by the green area but the similarity goes down at

the later layers. The trend indicates that the generation quality progressively

improves with depth.

117

0 2 4 6 8 10 12 14 16 18 20 22 24
Layer

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

La
ye

r

Generator_0

0 2 4 6 8 10 12 14 16 18 20 22 24
Layer

Generator_3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 6.3: The search process of DONAS-GAN obtaining diverse architectures.

In Figure 6.2b, we visualize the similarity across the models. The result

indicates that the search process of DONAS-GAN can obtain diverse architec-

tures of generators to be used as mixed-architecture. Figure 6.3 also present

the search process obtaining diverse architectures.

6.3.3 Experiments on DONAS for AT

We evaluate the robustness of the architectures searched and adversarially

trained by DONAS-AT on CIFAR-10 using FGSM and PGD white-box-

attacks [61]. In particular, we evaluate our proposed DONAS-AT with ResNet-

18 [28], variations of RobNet [26] and finally, AdvRush [69] on CIFAR-10,

TinyImageNet and SVHN datasets. According to [26], the model’s robust-

ness is better as we increase the computational budget and thus, we compare

with RobNet-Large and RobNet-LargeV2 which have comparable network pa-

rameters (number of channels and cells) to WideResNet. Moreover, we also

select RobNet-Free which relaxes the cell-based constraint. After searching

118

the classifier and training in DONAS-AT, we attack the model using PGD

attacks where perturbation data is added to input for T iterations (PGDT).

We then use this perturbed input to the model for classification and calcu-

late cross-entropy loss against the target label as the criterion. We test the

classifiers using the PGD20 and increase the iterations to 100, i.e., PGD100,

to introduce stronger attacks.

Table 6.2: Robust accuracy under FGSM and PGD attacks.

Methods ResNet-18
RobNet

AdvRush DONAS-AT
Large LargeV2 Free

CIFAR-10
FGSM 49.81% 54.98% 57.18% 59.22% 60.87% 62.31%
PGD-20 45.86% 49.44% 50.53% 52.57% 53.07% 59.57%
PGD-100 45.10% 49.24% 50.26% 51.14% 52.80% 57.20%

SVHN
FGSM 88.73% 93.01% - 93.04% 94.95% 95.91%
PGD-20 69.51% 86.52% - 88.50% 91.14% 91.40%
PGD-100 46.08% 78.16% - 78.11% 90.48% 91.83%

Tiny
ImageNet

FGSM 16.08% 22.16% - 23.11% 25.20% 28.11%
PGD-20 13.94% 20.40% - 21.05% 23.58% 26.30%
PGD-100 13.96% 19.90% - 20.87% 22.93% 24.10%

Note: For ResNet-18 and RobNets, we presented the results from the papers [26, 69].

Experiments Results. Evaluation results are shown in Table 6.2. We ob-

serve promising results of DONAS-AT with 62.31% accuracy for FGSM at-

tacks on CIFAR-10 dataset surpassing the baseline methods such as ResNet-

18, RobNet-Large, RobNet-LargeV2, RobNet-Free and AdvRush that record

49.8%, 54.98%, 57.18%, 59.22%, 60.87%. We also evaluated with PGD white-

box attacks PGD20 and PGD100. We obtain 59.57% accuracy on PGD20

white-box attacks and 57.20% for PGD100 observing similar trends which

119

demonstrates the stronger robustness of our approach.

Similar trends are observed in TinyImageNet and SVHN datasets. We

record the best results 28.11%, 26.30%, 24.10% against various attacks such

as FGSM, PGD20, PGD100, respectively, for DONAS-AT on TinyImageNet

dataset comparing ResNet-18, RobNet-Large, RobNet-Free and AdvRush.

On the other hand, we record 95.91% against FGSM, 91.40% against PGD20

and 91.83% against PGD100, respectively, for DONAS-AT on SVHN dataset

showing the best results among the baseline methods. From the results, we

can see that the results are better for AdvRush even with the cell-based

constraints [69] due to the use of architecture search, DONAS-AT which

adapts AdvRush to DO framework relaxes the cell-based micro search space

using the best response from multiple search architectures. Hence, we can

conclude that adding mixed-architecture to adversarial search and training

(DONAS-AT) provides far better robustness against the white-box attacks

than single model search algorithms both in cases of weaker attack PGD20

and very strong attack PGD100.

6.4 Chapter Summary

In this chapter, we propose DONAS to combine the two methods to opti-

mize the network architectures according to mixed-architecture and neural

architecture search for searching and training GAN as well as for Adversar-

ial Training (AT). We leverage two NAS algorithms: Adversarial NAS and

120

AdvRush to DO-framework, and introduce sequential finetuning to allow

the finetuning of multi-models. Finally, we conduct extensive experiments to

evaluate the performance of DO-NAS for GAN and AT against different NAS

algorithms using different CIFAR-10 dataset. We show through our results

that our approach achieves significant improvements to both the generative

results of searched and trained architecture for GANs and the robustness of

the searched architecture against white-box attacks.

121

Chapter 7

Conclusion

7.1 Conclusion

In this thesis, we investigate POMDP planning, deep reinforcement learning,

game-theory, continual learning methodologies and extend them to handle

problems with large discrete state and action spaces. Not only discrete prob-

lems, we also extend to the environments which have continuous state and

action space.

In the first part of the thesis, we approach a large-discrete problem, i.e.,

the student counselling problem which has large number of participants. The

action space grows exponentially with the number of added participants in the

network and thus, makes the problem very difficult to solve. Moreover, we do

not have complete information of the initial states of the participants. This

uncertainty makes the problem more difficult to reach the Nash Equilibrium

(NE) strategy.

122

Hence, we propose a novel model that considers emotion propagation from

not only the influencer but also neighbours of the influencee while selecting

the students for interventions in uncertain networks. We propose MLPRAP

algorithm with reasoning, abstraction of POMDP states and multi-level par-

titioning of the graph into smaller POMDPs to sequentially plan to select

the students for each intervention. Finally, we experiment with synthetic

networks generated as BA and ER networks as well as real network datasets.

We show that MLPRAP variants have significantly better scalability and

solution quality comparable to the state-of-the-art algorithms.

As an alternative solution on the same problem, we propose a novel ar-

chitecture DRLPSO to handle the partially observable dynamic environ-

ments with large action space. The DRLPSO algorithm uses the Deep Q-

learning integrated with LSTM (DQ-LSTM) and DPSO to optimally select

the predicted action, obtain Q-values and train the network. We use be-

lief and history of action and observation as input to DQ-LSTM. Results

have shown that in a dynamic environment with a large action space, the

proposed DRLPSO achieves a higher total reward compared to the exist-

ing DRL approaches by an average of 32%. Comparing with the POMDP

solver, DRLPSO takes more time for training but outperforms in terms of

effectiveness.

In the second part of the thesis, we approach a continuous large-scale

problem: Generative Adversarial Networks (GANs). GANs have been ap-

123

plied in various domains such as image and video generation, image-to-image

translation and text-to-image synthesis. Various architectures are proposed

to generate more realistic samples as well as regularization techniques. GANs

can be seen as a two-player zero-sum game of infinite state and action choices

with generator and discriminator as the two players. They are alternately

trained to maximize their respective utilities till convergence corresponding

to a pure Nash Equilibrium (NE). In this setting, GANs is challenging as

a pure Nash equilibrium may not exist and even finding the mixed Nash

equilibrium is difficult as GANs have a large strategy (action) space.

First, we propose a novel double oracle framework to GANs, which starts

with a restricted game and incrementally adds the best responses of the

generator and the discriminator oracles as the players’ strategies. We then

compute the mixed NE to get the players’ meta-strategies by using a lin-

ear program. We also propose two approaches to make the solution scalable

including pruning the support strategy set and continual learning with an

adaptive architecture to store the multiple networks of generators and dis-

criminators. We apply DO-GAN approach to established GAN architectures

such as vanilla GAN, DCGAN, SNGAN and SGAN. Extensive experiments

with the synthetic 2D Gaussian mixture dataset as well as real-world datasets

such as MNIST, CIFAR-10 and CelebA show that DO-GAN variants have

significant improvements in comparison to their respective GAN architectures

in terms of both subjective image quality and quantitative metrics.

124

To further our investigation, we propose a novel approach to combine

the two methods to optimize the network architectures according to mixed-

architecture and neural architecture search. Combining the techniques such

as DO from game theory and NAS, we propose a general framework: Double

Oracle with NAS (DONAS) for searching and training GAN as well as for

Adversarial Training (AT). We leverage two NAS algorithms Adversarial NAS

and AdvRush to DO-framework, and introduce sequential finetuning to allow

the finetuning of multi-models. Finally, we conduct extensive experiments to

evaluate the performance of DO-NAS for GAN and AT against different NAS

algorithms using different real-world datasets. We show through our results

that our approach achieves significant improvements to both the generative

results of searched and trained architecture for GANs and the robustness of

the searched architecture against white-box attacks.

7.2 Future Work

In this thesis, we have discussed handling large-scale problems in both ex-

ponentially growing discrete action space and continuous action space. For

the discrete action space, we have shown effective solutions by partitioning

the problem or deep reinforcement learning algorithms. However, there are

still many works that need to be done to address and explore solutions for

problems with continuous action space.

125

7.2.1 Reducing Training Time for Neural Architecture Search

The first direction is to reduce the training time for Neural Architecture

Search. In DO-GAN and DONAS, we train or search the generators and

discriminators in the best response oracles. This step is the bottleneck of

our approach as traditionally training GANs from scratch in an unsupervised

manner takes a long time. Thus, we seek to investigate if the training time

can be reduced with a comparable performance by using the pre-trained mod-

els for GANs. One preceding work for Style-GANs [47] proposed an effective

selection mechanism from the pre-trained models by probing the linear sep-

arability between real and fake samples in pre-trained model embeddings,

followed by choosing the most accurate model, and progressively adding to

the ensemble. This work has shown impressive results in both limited and

large-scale training samples for GANs. We can benefit from adapting se-

lected pre-trained models for DO-GANs. Moreover, Neural Tangent Kernel

(NTK) [36] has shown a promising theoretical framework that estimates the

performance of a neural architecture at initialization, and Label-Gradient

Alignment (LGA) [70] obtains a meaningful level of rank correlation with

the post-training test accuracy of the searched architecture for adversarial

training such as DARTS. These two metrics can successfully guide the search

algorithm to achieve competitive search performances within a few epochs.

However, no work has been done to investigate on NAS for GANs as well as

a double oracle setting. Thus, we can adapt these methods to initialize the

126

search step with pre-trained models or use a performance estimation metric

in NAS for GANs and evaluate the training time and performance.

7.2.2 DO-GAN/ DONAS for Time Series Datasets

The second direction is to adapt the DO-GAN solutions to not only GAN

architecture for image generation but also the GAN architectures for sequen-

tial datasets. We can adapt the double oracle framework to established GAN

architectures optimized for generating sequential data. Examples include

COT-GAN [104] which combines classic optimal transport methods with an

additional temporal causality constraint to generate videos and animated

images, CurvGAN [53] and GraphGAN [52] which are GAN-based graph

representation methods and TimeGAN [109] to generate realistic time-series

data. This direction of adapting DO to videos and graphs data would better

reflect real-life problems in society and will also improve general time-series

problems such as forecasting and extrapolation.

7.2.3 Hybrid (discrete-continuous) Action Space

The third direction is to further investigate hybrid state/action spaces where

some variables are discrete while some are continuous. One example is al-

gorithmic trading [73] where the percentage changes in prices is modelled as

the continuous action space with the limit price choices a user can make is

discrete due to the existence of the tick size. In addition to the reinforcement

127

learning methods proposed in recent years [51, 73], we can investigate more

solutions handling the large-scale problems with hybrid action space such

as generative methods for forecasting as well as neural architecture search

algorithms.

128

Bibliography

[1] An, B., Shieh, E., Tambe, M., Yang, R., Baldwin, C., Di-

Renzo, J., Maule, B., and Meyer, G. Protect–a deployed game

theoretic system for strategic security allocation for the united states

coast guard. Ai Magazine 33, 4 (2012), 96–96. 1

[2] Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gen-

erative adversarial networks. In ICML (2017), pp. 214–223. 2, 72

[3] Arora, S., Ge, R., Liang, Y., Ma, T., and Zhang, Y. Gen-

eralization and equilibrium in generative adversarial nets (GANs). In

ICML (2017), pp. 224–232. 7, 15, 73, 93, 98

[4] Barabási, A.-L., and Albert, R. Emergence of scaling in random

networks. Science 286, 5439 (1999), 509–512. 46

[5] Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.

The arcade learning environment: An evaluation platform for general

agents. Journal of Artificial Intelligence Research 47 (2013), 253–279.

52

129

[6] Blackmore, E. R., Stansfeld, S. A., Weller, I., Munce, S.,

Zagorski, B. M., and Stewart, D. E. Major depressive episodes

and work stress: Results from a national population survey. American

Journal of Public Health 97, 11 (2007), 2088–2093. 11

[7] Bošanský, B., Kiekintveld, C., Lisy, V., Cermak, J., and Pe-

choucek, M. Double-oracle algorithm for computing an exact Nash

equilibrium in zero-sum extensive-form games. In AAMAS (2013),

pp. 335–342. 6, 74

[8] Bosansky, B., Kiekintveld, C., Lisy, V., and Pechoucek,

M. Iterative algorithm for solving two-player zero-sum extensive-form

games with imperfect information. In ECAI (2012), pp. 193–198. 22

[9] Brock, A., Donahue, J., and Simonyan, K. Large scale GAN

training for high fidelity natural image synthesis. In ICLR (2018). 7,

97

[10] Chen, W., Lin, T., Tan, Z., Zhao, M., and Zhou, X. Robust

influence maximization. In KDD (2016), pp. 795–804. 13

[11] Coates, A., Ng, A., and Lee, H. An analysis of single-layer net-

works in unsupervised feature learning. In Proceedings of the fourteenth

international conference on artificial intelligence and statistics (2011),

JMLR Workshop and Conference Proceedings, pp. 215–223. 113

130

[12] Conitzer, V., and Sandholm, T. Computing the optimal strategy

to commit to. In Proceedings of the 7th ACM conference on Electronic

commerce (2006), pp. 82–90. xi, 20, 21

[13] Egorov, M. Deep Reinforcement Learning with POMDPs. Tech. rep.,

Technical Report, Stanford University, 2015. 62

[14] Erdos, P. On random graphs. Publicationes Mathematicae 6 (1959),

290–297. 46, 62

[15] Eyre, R. W., House, T., Hill, E. M., and Griffiths, F. E.

Spreading of components of mood in adolescent social networks. Royal

Society Open Science 4, 9 (2017), 170336. 12, 24, 36, 46

[16] Fang, F., Nguyen, T. H., Pickles, R., Lam, W. Y., Clements,

G. R., An, B., Singh, A., Schwedock, B. C., Tambe, M., and

Lemieux, A. Paws—a deployed game-theoretic application to combat

poaching. AI Magazine 38, 1 (2017), 23–36. 1

[17] Farnia, F., and Ozdaglar, A. GANs may have no Nash equilibria.

arXiv preprint arXiv:2002.09124 (2020). 3, 5, 72

[18] Foerster, J. N., Assael, Y. M., de Freitas, N., and White-

son, S. Learning to communicate to solve riddles with deep distributed

recurrent Q-networks. arXiv preprint arXiv:1602.02672 (2016). 19, 62

131

[19] Fowler, J. H., and Christakis, N. A. Dynamic spread of happi-

ness in a large social network: Longitudinal analysis over 20 years in

the framingham heart study. The BMJ 337 (2008), a2338. 12

[20] Gao, C., Chen, Y., Liu, S., Tan, Z., and Yan, S. Adversarial-

NAS: Adversarial neural architecture search for gans. In CVPR (2020),

pp. 5680–5689. 7, 18, 98, 105, 113

[21] Geraeinejad, V., Sinaei, S., Modarressi, M., and Daneshta-

lab, M. RoCo-NAS: Robust and compact neural architecture search.

In IJCNN (2021). 17

[22] Goel, S., Watts, D. J., and Goldstein, D. G. The structure of

online diffusion networks. In Proceedings of the 13th ACM Conference

on Electronic Commerce (2012), pp. 623–638. 12

[23] Gong, X., Chang, S., Jiang, Y., and Wang, Z. AutoGAN: Neu-

ral architecture search for generative adversarial networks. In ICCV

(2019), pp. 3224–3234. 98, 113

[24] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,

Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.

Generative adversarial nets. In NeurIPS (2014), pp. 2672–2680. 3, 7,

72, 84, 97

132

[25] Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining

and harnessing adversarial examples. arXiv preprint arXiv:1412.6572

(2014). 7, 97

[26] Guo, M., Yang, Y., Xu, R., Liu, Z., and Lin, D. When NAS

meets robustness: In search of robust architectures against adversarial

attacks. In CVPR (2020), pp. 631–640. 17, 118, 119

[27] Hausknecht, M., and Stone, P. Deep recurrent Q-learning for par-

tially observable MDPs. In 2015 AAAI Fall Symposium Series (2015).

19

[28] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning

for image recognition. In CVPR (2016), pp. 770–778. 118

[29] Helmers, K. F., Danoff, D., Steinert, Y., Leyton, M., and

Young, S. N. Stress and depressed mood in medical students, law stu-

dents, and graduate students at mcgill university. Academic Medicine

72, 8 (1997), 708–714. 11

[30] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B.,

and Hochreiter, S. GANs trained by a two time-scale update rule

converge to a local Nash equilibrium. In NeurIPS (2017), pp. 6626–

6637. 91, 92, 94

133

[31] Hill, E., Griffiths, F., and House, T. Spreading of healthy

mood in adolescent social networks. Proc. R. Soc. B 282, 1813 (2015),

20151180. 35, 46

[32] Hoang, Q., Nguyen, T. D., Le, T., and Phung, D. MGAN:

Training generative adversarial nets with multiple generators. In ICLR

(2018). 7, 15, 73, 93, 98

[33] Hsieh, Y.-P., Liu, C., and Cevher, V. Finding mixed nash equilib-

ria of generative adversarial networks. In ICML (2019), pp. 2810–2819.

6, 14, 15, 73, 79

[34] Hsieh, Y.-P., Liu, C., and Cevher, V. Finding mixed Nash equilib-

ria of generative adversarial networks. In ICML (2019), pp. 2810–2819.

98

[35] Huang, X., Li, Y., Poursaeed, O., Hopcroft, J., and Be-

longie, S. Stacked generative adversarial networks. In CVPR (2017),

pp. 5077–5086. 15, 84

[36] Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel:

Convergence and generalization in neural networks. Advances in neural

information processing systems 31 (2018). 126

134

[37] Jain, M., Korzhyk, D., Vaněk, O., Conitzer, V., Pěchouček,

M., and Tambe, M. A double oracle algorithm for zero-sum security

games on graphs. In AAMAS (2011), pp. 327–334. 6, 22, 74, 79

[38] Kang, U., Papadimitriou, S., Sun, J., and Tong, H. Centralities

in large networks: Algorithms and observations. In Proceedings of the

2011 SIAM International Conference on Data Mining (2011), pp. 119–

130. 62

[39] Karras, T., Laine, S., and Aila, T. A style-based generator

architecture for generative adversarial networks. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition

(2019), pp. 4401–4410. 7, 97

[40] Karypis, G., and Kumar, V. Multi level k-way partitioning scheme

for irregular graphs. Journal of Parallel and Distributed Computing 48,

1 (1998), 96–129. 43

[41] Kempe, D., Kleinberg, J., and Tardos, É. Maximizing the spread

of influence through a social network. In KDD (2003), pp. 137–146. 13

[42] Kennedy, J. Particle swarm optimization. Encyclopedia of machine

learning (2010), 760–766. 58

[43] Khan, S., and Khan, R. A. Chronic stress leads to anxiety and

depression. ANN Psychiatry Ment Health 5, 1 (2017), 1091. 11

135

[44] Kornblith, S., Norouzi, M., Lee, H., and Hinton, G. Similarity

of neural network representations revisited. In International Conference

on Machine Learning (2019), PMLR, pp. 3519–3529. 117

[45] Kotyan, S., and Vargas, D. V. Towards evolving robust neural

architectures to defend from adversarial attacks. In Proceedings of the

2020 Genetic and Evolutionary Computation Conference Companion

(2020), pp. 135–136. 17

[46] Krizhevsky, A., Nair, V., and Hinton, G.

CIFAR-10 (Canadian Institute for Advanced Research).

https://www.cs.toronto.edu/ kriz/cifar.html, 2009. 89, 113

[47] Kumari, N., Zhang, R., Shechtman, E., and Zhu, J.-Y. En-

sembling off-the-shelf models for gan training. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition

(2022), pp. 10651–10662. 126

[48] Lanctot, M., Zambaldi, V., Gruslys, A., Lazaridou, A.,

Tuyls, K., Pérolat, J., Silver, D., and Graepel, T. A uni-

fied game-theoretic approach to multiagent reinforcement learning. In

NeurIPS (2017), pp. 4190–4203. x, 6, 22, 74, 75, 80

[49] Le, Y., and Yang, X. Tiny ImageNet visual recognition challenge.

CS 231N 7, 7 (2015), 3. 113

136

[50] LeCun, Y., and Cortes, C. MNIST handwritten digit database.

http://yann.lecun.com/exdb/mnist/, 2010. 89

[51] Li, B., Tang, H., Zheng, Y., Hao, J., Li, P., Wang, Z., Meng,

Z., and Wang, L. Hyar: Addressing discrete-continuous action re-

inforcement learning via hybrid action representation. arXiv preprint

arXiv:2109.05490 (2021). 128

[52] Li, H., Zhang, J., Yang, L., Qi, J., and Gao, Z. Graph-gan:

A spatial-temporal neural network for short-term passenger flow pre-

diction in urban rail transit systems. arXiv preprint arXiv:2202.06727

(2022). 127

[53] Li, J., Fu, X., Sun, Q., Ji, C., Tan, J., Wu, J., and Peng, H.

Curvature graph generative adversarial networks. In Proceedings of the

ACM Web Conference 2022 (2022), pp. 1528–1537. 127

[54] Li, Y., Zhang, R., Lu, J., and Shechtman, E. Few-shot image

generation with elastic weight consolidation. In NeurIPS (2020). 83,

84, 85

[55] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,

Tassa, Y., Silver, D., and Wierstra, D. Continuous control with

deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

52

137

[56] Littman, M. L., Cassandra, A. R., and Kaelbling, L. P.

Learning policies for partially observable environments: Scaling up. In

ICML (1995), pp. 362–370. 18

[57] Liu, H., Simonyan, K., and Yang, Y. DARTS: Differentiable ar-

chitecture search. In ICLR (2018). 17, 109, 111

[58] Liu, M.-Y., Breuel, T., and Kautz, J. Unsupervised image-to-

image translation networks. In NeurIPS (2017), pp. 700–708. 2, 72

[59] Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face

attributes in the wild. In ICCV (2015), pp. 3730–3738. 89

[60] Lucassen, P. J., Heine, V. M., Muller, M. B., van der Beek,

E. M., Wiegant, V. M., Ron De Kloet, E., Joels, M., Fuchs,

E., Swaab, D. F., and Czeh, B. Stress, depression and hippocampal

apoptosis. CNS & Neurological Disorders-Drug Targets (Formerly Cur-

rent Drug Targets-CNS & Neurological Disorders) 5, 5 (2006), 531–546.

11

[61] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and

Vladu, A. Towards deep learning models resistant to adversarial at-

tacks. arXiv preprint arXiv:1706.06083 (2017). 7, 16, 97, 111, 118

138

[62] McMahan, H. B., Gordon, G. J., and Blum, A. Planning in the

presence of cost functions controlled by an adversary. In ICML (2003),

pp. 536–543. 6, 22, 73

[63] Mescheder, L., Nowozin, S., and Geiger, A. The numerics of

GANs. In NeurIPS (2017), pp. 1825–1835. 3, 5, 15, 72

[64] Metz, L., Poole, B., Pfau, D., and Sohl-Dickstein, J. Unrolled

generative adversarial networks. In ICLR (2017). 86

[65] Mirza, M., and Osindero, S. Conditional generative adversarial

nets. arXiv preprint arXiv:1411.1784 (2014). 2, 72

[66] Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spec-

tral normalization for generative adversarial networks. ICLR (2018).

14, 84

[67] Miyato, T., Maeda, S.-i., Koyama, M., and Ishii, S. Virtual

adversarial training: a regularization method for supervised and semi-

supervised learning. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence 41, 8 (2018), 1979–1993. 2, 72

[68] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,

Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing

Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602

(2013). 60

139

[69] Mok, J., Na, B., Choe, H., and Yoon, S. Advrush: Searching for

adversarially robust neural architectures. In ICCV (2021), pp. 12322–

12332. 7, 17, 98, 109, 111, 118, 119, 120

[70] Mok, J., Na, B., Kim, J.-H., Han, D., and Yoon, S. Demys-

tifying the neural tangent kernel from a practical perspective: Can it

be trusted for neural architecture search without training? In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (2022), pp. 11861–11870. 126

[71] Muller, P., Omidshafiei, S., Rowland, M., Tuyls, K., Pero-

lat, J., Liu, S., Hennes, D., Marris, L., Lanctot, M., Hughes,

E., et al. A generalized training approach for multiagent learning. In

ICLR (2020). 22, 80

[72] Nash, J. Non-cooperative games. Annals of mathematics (1951), 286–

295. 21

[73] Pan, F., Zhang, T., Luo, L., He, J., and Liu, S. Learn contin-

uously, act discretely: Hybrid action-space reinforcement learning for

optimal execution. arXiv preprint arXiv:2207.11152 (2022). 127, 128

[74] Pedersen, M. E. H. Good parameters for particle swarm optimiza-

tion. Hvass Lab., Copenhagen, Denmark, Tech. Rep. HL1001 (2010),

1551–3203. 63

140

[75] Pu, Y., Gan, Z., Henao, R., Yuan, X., Li, C., Stevens, A.,

and Carin, L. Variational autoencoder for deep learning of images,

labels and captions. In NeurIPS (2016), pp. 2352–2360. 2, 72

[76] Puterman, M. L. Markov Decision Processes: Discrete Stochastic

Dynamic Programming. John Wiley & Sons, 2014. 31

[77] Radford, A., Metz, L., and Chintala, S. Unsupervised represen-

tation learning with deep convolutional generative adversarial networks.

arXiv preprint arXiv:1511.06434 (2015). 2, 14, 72, 84

[78] Rafferty, A. E., and Griffin, M. A. Perceptions of organizational

change: A stress and coping perspective. Journal of Applied Psychology

91, 5 (2006), 1154. 12, 24, 29

[79] Ragab, M., Chen, Z., Wu, M., Foo, C. S., Kwoh, C. K., Yan,

R., and Li, X. Contrastive adversarial domain adaptation for ma-

chine remaining useful life prediction. IEEE Transactions on Industrial

Informatics 17, 8 (2020), 5239–5249. 2, 72

[80] Ragab, M., Chen, Z., Wu, M., Li, H., Kwoh, C.-K., Yan, R.,

and Li, X. Adversarial multiple-target domain adaptation for fault

classification. IEEE Transactions on Instrumentation and Measurement

70 (2020), 1–11. 2, 72

141

[81] Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B.,

and Lee, H. Generative adversarial text to image synthesis. In ICML

(2016). 2, 72

[82] Rezaei, S. S. C., Han, F. X., Niu, D., Salameh, M., Mills,

K., Lian, S., Lu, W., and Jui, S. Generative adversarial neural

architecture search. arXiv preprint arXiv:2105.09356 (2021). 98

[83] Rice, E., Tulbert, E., Cederbaum, J., Barman Adhikari, A.,

and Milburn, N. G. Mobilizing homeless youth for HIV prevention:

A social network analysis of the acceptability of a face-to-face and online

social networking intervention. Health Education Research 27, 2 (2012),

226–236. 27, 29

[84] Rong, J., Qin, T., An, B., and Liu, T.-Y. Revenue maximization

for finitely repeated ad auctions. In Thirty-First AAAI Conference on

Artificial Intelligence (2017). 1

[85] Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V.,

Radford, A., and Chen, X. Improved techniques for training

GANs. In NeurIPS (2016), pp. 2234–2242. 91

[86] Schrijver, A. Theory of Linear and Integer Programming. John

Wiley & Sons, 1998. 22, 79

142

[87] Seff, A., Beatson, A., Suo, D., and Liu, H. Continual learning

in generative adversarial nets. arXiv preprint arXiv:1705.08395 (2017).

84, 85

[88] Seshadhri, C., Kolda, T. G., and Pinar, A. Community struc-

ture and scale-free collections of Erdős-Rényi graphs. Physical Review

E 85, 5 (2012), 056109. 28

[89] Shafahi, A., Najibi, M., Ghiasi, A., Xu, Z., Dickerson, J.,

Studer, C., Davis, L. S., Taylor, G., and Goldstein, T. Ad-

versarial training for free! arXiv preprint arXiv:1904.12843 (2019). 17,

105, 111

[90] Silver, D., and Veness, J. Monte-carlo planning in large POMDPs.

In NIPS (2010), pp. 2164–2172. 18, 33

[91] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wo-

jna, Z. Rethinking the inception architecture for computer vision. In

CVPR (2016), pp. 2818–2826. 91

[92] Tambe, M. Security and game theory: algorithms, deployed systems,

lessons learned. Cambridge university press, 2011. 1

[93] Tang, J., Lou, T., and Kleinberg, J. Inferring social ties across

heterogenous networks. In Proceedings of the 5th ACM International

143

Conference on Web Search and Data Mining (2012), pp. 743–752. 46,

67

[94] Tsai, J., Nguyen, T. H., and Tambe, M. Security games for

controlling contagion. In AAAI (2012), pp. 1464–1470. 22

[95] UCLA. The STAND program. https://depression.semel.ucla.

edu/stand_home, 2018. Accessed: 2019-08-30. 12

[96] Varshney, S., Srijith, P., and Balasubramanian, V. N. Stm-

gan: Sequentially trained multiple generators for mitigating mode col-

lapse. In International Conference on Neural Information Processing

(2020), Springer, pp. 676–684. 107

[97] Wang, X., An, B., and Chan, H. Who should pay the cost: A game-

theoretic model for government subsidized investments to improve na-

tional cybersecurity. In Proceedings of the Twenty-Eighth International

Joint Conference on Artificial Intelligence, IJCAI (2019). 1

[98] Wang, X., An, B., Strobel, M., and Kong, F. Catching captain

jack: Efficient time and space dependent patrols to combat oil-siphoning

in international waters. In Proceedings of the AAAI Conference on

Artificial Intelligence (2018). 1

144

https://depression.semel.ucla.edu/stand_home
https://depression.semel.ucla.edu/stand_home

[99] Wang, Z., She, Q., and Ward, T. E. Generative adversarial net-

works in computer vision: A survey and taxonomy. arXiv preprint

arXiv:1906.01529 (2019). x, 88, 89

[100] Waugh, K., Bard, N., and Bowling, M. Strategy grafting in

extensive games. In NeurIPS (2009), pp. 2026–2034. 22

[101] WHO. The ICD-10 Classification of Mental and Behavioural Disor-

ders: Diagnostic Criteria for Research, vol. 2. World Health Organiza-

tion, 1993. 28

[102] Wilder, B., Yadav, A., Immorlica, N., Rice, E., and Tambe,

M. Uncharted but not uninfluenced: Influence maximization with an

uncertain network. In AAMAS (2017), pp. 1305–1313. 13, 25, 45, 61

[103] Xu, P., and Karamouzas, I. Particle-based adaptive discretization

for continuous control using deep reinforcement learning. arXiv preprint

arXiv:2003.06959 (2020). 52

[104] Xu, T., Wenliang, L. K., Munn, M., and Acciaio, B. Cot-gan:

Generating sequential data via causal optimal transport. Advances in

Neural Information Processing Systems 33 (2020), 8798–8809. 127

[105] Yadav, A., Chan, H., Xin Jiang, A., Xu, H., Rice, E., and

Tambe, M. Using social networks to aid homeless shelters: Dynamic

145

influence maximization under uncertainty. In AAMAS (2016), pp. 740–

748. 1, 13, 25, 45, 61, 62

[106] Yadav, A., Marcolino, L. S., Rice, E., Petering, R.,

Winetrobe, H., Rhoades, H., Tambe, M., and Carmichael,

H. Preventing HIV spread in homeless populations using PSINET. In

AAAI (2015), pp. 4006–4011. 13, 25, 45, 61

[107] Yadav, A., Noothigattu, R., Rice, E., Onasch-Vera, L.,

Soriano Marcolino, L., and Tambe, M. Please be an influ-

encer?: Contingency-aware influence maximization. In AAMAS (2018),

pp. 1423–1431. 25

[108] Ye, N., Somani, A., Hsu, D., and Lee, W. S. DESPOT: Online

POMDP planning with regularization. JAIR 58 (2017), 231–266. 18,

33

[109] Yoon, J., Jarrett, D., and Van der Schaar, M. Time-series

generative adversarial networks. Advances in neural information pro-

cessing systems 32 (2019). 127

[110] Zachary, W. W. An information flow model for conflict and fission

in small groups. Journal of Anthropological Research 33, 4 (1977), 452–

473. 46, 67

146

[111] Zhu, P., Li, X., Poupart, P., and Miao, G. On improving deep

reinforcement learning for POMDPs. arXiv preprint arXiv:1704.07978

(2017). 19, 62

147

	Introduction
	Student Counselling Problem as Large-scale Games
	Planning Approach
	Learning Approach

	Generative Adversarial Networks (GAN) as Large-scale Games
	Double Oracle Framework for GANs
	Double Oracle Framework for Adversarial Machine Learning (AML)

	Thesis Overview

	Literature Review
	Correlation of Stress and Risk of Depression
	Influence Maximization
	Adversarial Machine Learning
	Generative Adversarial Networks (GAN)
	Adversarial Training (AT)
	Neural Architecture Search (NAS) for AML

	Online POMDP Solvers
	Deep Recurrent Q-learning Architectures
	Game Theory
	Normal-Form Game and Nash Equilibrium
	Double Oracle Algorithm

	We Mind Your Well-being: Preventing Depression in Uncertain Social Networks by Sequential Intervention
	Motivation Scenario
	Model
	Network and Dynamics
	Uncertainties
	POMDP Formulation

	MLPRAP
	Reasoning
	Abstraction of POMDP States
	Multi-Level Partitions

	Experimental Evaluation
	Experiment Setup
	Experiment Results

	Chapter Summary

	Planning Sequential Interventions to Tackle Depression in Large Uncertain Social Networks Using Deep Reinforcement Learning
	Deep Reinforcement Learning with Particle Swarm Optimization
	DRLPSO Architecture
	DRLPSO Algorithm

	Experiment Results
	Experiment Setup
	Evaluation

	Discussion
	Chapter Summary

	A Double-Oracle Framework for Generative Adversarial Networks (DO-GAN)
	DO-GAN
	General Framework of DO-GAN
	Linear Program for Meta-matrix Game
	Termination Check

	Practical Implementations
	Meta-matrix Pruning (DO-GAN/P)
	Continual Learning (DO-GAN/C)

	Experiments
	Value of L
	Evaluation on 2D Gaussian Mixture Dataset
	Full Training Process of 2D Gaussian Dataset
	Choice of GAN Architectures for Experiments
	Evaluation on Real-world Datasets

	Chapter Summary

	DONAS: Double-Oracle and Neural Architecture Search for Adversarial Machine Learning
	DONAS: The General Framework
	Spices of DONAS
	DONAS for GAN
	DONAS for AT

	Experiments
	Experimental Setup
	Experiments on DONAS for GAN
	Experiments on DONAS for AT

	Chapter Summary

	Conclusion
	Conclusion
	Future Work
	Reducing Training Time for Neural Architecture Search
	DO-GAN/ DONAS for Time Series Datasets
	Hybrid (discrete-continuous) Action Space

