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Abstract

Recommender system has been a persistent research goal for decades, which aims at

recommending suitable items such as movies to users. Supervised learning methods are

widely adopted by modelling recommendation problems as prediction tasks. However,

with the rise of online e-commerce platforms, various scenarios appear, which allow users

to make sequential decisions rather than one-time decisions. Therefore, reinforcement

learning methods have attracted increasing attention in recent years to solve these prob-

lems.

This doctoral thesis is devoted to investigating some recommendation settings that

can be solved by reinforcement learning methods, including multi-arm bandit and multi-

agent reinforcement learning.

For the recommendation domain, most scenarios only involve a single agent that gen-

erates recommended items to users aiming at maximizing some metrics like click-through

rate (CTR). Since candidate items change all the time in many online recommendation

scenarios, one crucial issue is the trade-off between exploration and exploitation. Thus,

we consider multi-arm bandit problems, a special topic in online learning and reinforce-

ment learning to balance exploration and exploitation. We propose two methods to

alleviate issues in recommendation problems.

Firstly, we consider how users give feedback to items or actions chosen by an agent.

Previous works rarely consider the uncertainty when humans provide feedback, especially

in cases that the optimal actions are not obvious to the users. For example, when similar

items are recommended to a user, the user is likely to provide positive feedback to sub-

optimal items, negative feedback to the optimal item and even do not provide feedback

in some confusing situations. To involve uncertainties in the learning environment and

human feedback, we introduce a feedback model. Moreover, a novel method is proposed

to find the optimal policy and proper feedback model simultaneously.
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Secondly, for the online recommendation in mobile devices, positions of items have a

significant influence on clicks due to the limited screen size of mobile devices: 1) Higher

positions lead to more clicks for one commodity. 2) The ‘pseudo-exposure’ issue: Only

a few recommended items are shown at first glance and users need to slide the screen to

browse other items. Therefore, some recommended items ranked behind are not viewed

by users and it is not proper to treat these items as negative samples. To address

these two issues, we model the online recommendation as a contextual combinatorial

bandit problem and define the reward of a recommended set. Then, we propose a novel

contextual combinatorial bandit method and provide a formal regret analysis. An online

experiment is implemented in Taobao, one of the most popular e-commerce platforms

in the world. Results on two metrics show that our algorithm outperforms the other

contextual bandit algorithms.

For multi-agent reinforcement learning setting, we focus on a kind of recommendation

scenario in online e-commerce platforms, which involves multiple modules to recommend

items with different properties such as huge discounts. A web page often consists of some

independent modules. The ranking policies of these modules are decided by different

teams and optimized individually without cooperation, which would result in competi-

tion between modules. Thus, the global policy of the whole page could be sub-optimal.

To address this issue, we propose a novel multi-agent cooperative reinforcement learning

approach with the restriction that modules cannot communicate with others. Exper-

iments based on real-world e-commerce data demonstrate that our algorithm obtains

superior performance over baselines.
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Chapter 1

Introduction

1.1 Background

In many e-commerce platforms, users are faced with countless products. To overcome

such information overload, the recommneder system [76] provides users with a list of items

that are likely to interest them. By treating recommendation problems as prediction

tasks, supervised learning methods are widely used in the last decades. However, user

behaviours are sequential in many online e-commerce platforms. For instance, to buy a

computer, users may browse and compare multiple products within one week. Then, the

recommendation agent needs to make sequential decisions rather than one-time decisions

about which items should be recommended.

To address the sequential decision problems, reinforcement learning (RL) [86] has

attracted attention and been deployed in many e-commerce platforms. According to the

number of agents involving in the recommender system, we can divide RL methods into

two types: single-agent and multi-agent algorithms. Most of the traditional recommen-

dation problems like search engines need a single agent to display a list of items on users’

devices. Thus, these problems can be solved by deploying a single algorithm, namely one

agent. However, with the rise of online e-commerce platforms, recommendation scenarios

become complicated, in which one page usually contains different modules. Each module

has its own function or focuses on recommending the items with a specific property like

huge discounts. If we consider each module as an agent, multi-agent methods are proper

to be deployed in such scenarios.

1



Chapter 1. Introduction

In this thesis, we focus on the multi-arm bandit setting [37, 38, 46, 49, 74] for single-

agent RL and the multi-agent reinforcement learning setting [19, 32, 60, 75]. Multi-arm

bandit setting is a simplified version of RL, in which an agent repeatedly interacts with

users to estimate users’ interest for some items. Since users and items vary all the time,

one crucial issue is how to balance exploration and exploitation. Without exploration,

the recommendation agent cannot adapt to the change of items and users. However,

if the agent is prone to exploration, the probability that users like the recommended

items would be small, which is contrary to the aim, providing users’ preferred items.

To address this issue, bandit algorithms are proposed to explore efficiently and learn

rapidly, which are proper to apply into recommendation scenarios that items and users

change rapidly. For the multi-agent reinforcement learning setting, we focus on the

aforementioned multi-module problem that multiple modules appear on one page. Each

module needs to independently decide what to recommend due to the restriction of the

online recommendation system. One vital issue is how to prompt cooperation and avoid

competition between modules under this constraint.

1.2 Motivations

Although many recommendation problems are appropriate to be modeled as RL prob-

lems, most existing RL methods are designed to play computer games or control robotics.

Thus, we need to modify existing methods to address domain-specific issues of recom-

mendation tasks. Although some works make effort to extend existing RL methods to

the recommendation domain, many issues still need to be addressed.

For the multi-arm bandit setting, we first consider how to understand the feedback

provided by users. Most existing papers assume that human feedback is accurate. How-

ever, in environments with uncertainties, users may not know exactly the optimal action

themselves, and therefore could only provide feedback with uncertainty. For example,

users could be confused by some items with similar pictures or names shown on web pages

and click the item that they do not prefer. Users are likely to provide positive feedback

to sub-optimal actions, negative feedback to the optimal actions and even do not provide

feedback in some confusing situations. Existing works, which utilize the Expectation

2



Chapter 1. Introduction

Maximization (EM) algorithm and treat the feedback model as hidden parameters, do

not consider uncertainties in the learning environment and human feedback. Secondly,

positions of items have a significant influence on clicks. Online recommendation services

recommend multiple commodities to users. Nowadays, a considerable proportion of users

visit e-commerce platforms by mobile devices. Due to the limited screen size of mobile

devices, positions of items have a significant influence on clicks: 1) Higher positions lead

to more clicks for one commodity. 2) The ‘pseudo-exposure’ issue: Only a few recom-

mended items are shown at first glance and users need to slide the screen to browse other

items. Therefore, some recommended items ranked behind are not viewed by users and

it is not proper to treat this kind of items as negative samples. While many works model

the online recommendation as contextual bandit problems, they rarely take the influence

of positions into consideration and thus the estimation of the reward function may be

biased.

For the multi-agent reinforcement learning setting, we consider the aforementioned

new task, namely the multi-module recommendation task. To sell more products, online

platforms introduce various modules to recommend items with different properties such

as huge discounts. A web page often consists of different independent modules. The

ranking policies of these modules usually are decided by different teams and optimized

individually without cooperation, which might result in competition between modules.

Existing approaches that solve a similar task rely on an underlying communication mech-

anism, which violates the constraint of our online system that each module should make

decisions independently.

This thesis aims at effectively addressing the above-mentioned issues.

1.3 Major Contributions

The major contributions of this thesis are summarized below.

• We propose a novel probabilistic human feedback model, which considers the un-

certainties in humans while giving feedback to agents in an uncertain environment.

To handle the new computational challenges brought by the new feedback model, we

propose a novel approximate EM approach, which integrates Expectation-Maximization

3



Chapter 1. Introduction

(EM) and Gradient Descent (GD). We conduct extensive experimental evaluations

of our proposed approach on both synthetic scenarios and two different real-world

scenarios with human participants. Robustness analysis illustrates that our algo-

rithm performs well even if trainers do not follow our feedback model.

• We propose a novel contextual combinatorial bandit algorithm to address position

bias issues. First, we model the online recommendation task as a contextual com-

binatorial bandit problem and define the reward of a recommended set. Second,

we assume that the examination probability is determined by both the position of

an item and the last click above the position. We estimate the examination proba-

bilities of various positions based on the User Browsing Model and use the proba-

bilities as weights of samples in a linear reward model. Third, we formally analyze

the regret of our algorithm. For ) rounds,  recommended arms, 3-dimensional

feature vectors, we prove an $̃ (3
√
) ) regret bound. Finally, we propose an unbi-

ased estimator to evaluate our algorithm and other baselines using real-world data.

An online experiment is implemented in Taobao, one of the largest e-commerce

platforms in the world. Results on two CTR metrics show that our algorithm sig-

nificantly outperforms the extensions of some other contextual bandit algorithms

both on the offline and online experiments.

• We propose a novel approach for the multi-module recommendation problem. The

first key contribution is a novel multi-agent cooperative reinforcement learning

structure. The structure is inspired by a solution concept in game theory called cor-

related equilibrium [4] in which the predefined signals received by the agents guide

their actions. The second key contribution is an entropy-regularized version of

the signal network to coordinate agents’ exploration. Third, we conduct extensive

experiments on a real-world dataset from Taobao, one of the largest e-commerce

companies in the world. Our proposed method outperforms other state-of-the-art

cooperative multi-agent reinforcement learning algorithms.

1.4 Thesis Organization

The remaining part of this thesis is organized as follows. Chapter 2 introduces prelim-

inary knowledge and related work of this thesis. Chapter 3 proposes a novel human

4
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feedback model considering uncertainty and a new method to find the optimal parame-

ters. Chapter 4 presents a novel bandit formulation to estimate the position bias and then

recommend items to users. Chapter 5 proposes a novel multi-agent reinforcement learn-

ing method to solve the multi-module recommendation problem. Chapter 6 concludes

the thesis and discusses possible directions of future work.
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Chapter 2

Preliminaries

2.1 Markov Decision Process

Markov decision process [6] (MDP) is a mathematical framework for modeling deci-

sion making in situations where outcomes are partly random and partly under the

control of a decision maker, namely an agent. In reinforcement learning, we model

the agent-environment interaction as an MDP, which can be represented by a 5-tuple

(S,A,P,R, W). Fig. 2.1 illustrates the agent-environment interaction. An agent inter-

acts with the environment at each of a sequence of discrete time steps, C = 1, 2, 3, . . . .

At each step, the agent obtains some information about the current environment’s state

BC ∈ S, where S is the set including all the possible states. Then, the agent will choose

the action, 0C ∈ A, taken in current time step C, where A is the set of possible actions. As

a consequence of the action, the environment provides a numerical reward, AC ∈ R ⊂ R,

and a new state BC+1 based on the transition function P(BC , 0C) to the agent in the next

time step.

To choose actions,the agent usually maintains a policy c that maps states to actions,

where c(0 |B) is the probability that 0C = 0 if BC = B. Reinforcement learning methods aim

at finding the optimal policy to maximize the return which is the cumulative discounted

reward defined as � =
∑
C W

CAC , where W ∈ (0, 1) is a constant determining the present

value of future rewards.

For recommendation tasks, the agent is a recommender system and the environment

mainly includes users as well as other components like page structures. The definitions

of other elements are summarized as follows.

6
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Fig. 2.1: The agent-environment interaction in reinforcement learning [86].

• The time step is usually defined as the number of requests that users send to obtain

new recommended items. In other words, it can also be represented by the number

of actions generated by the agent.

• The state space usually consists of features of users, which can be divided into

static and dynamic features. Static features are relatively fixed within a long period

including gender, age, address and so on. Dynamic features such as historical clicked

or unclicked commodities of a user change with the time step.

• The action is defined as recommended commodities displayed to users. It can

also be some parameters that can determine the recommended commodities. For

example, the action is a vector whose dimension is the same as the length of the

features of candidate items in practice when the number of candidate items is

large. Then, the recommended items are determined by the scores calculated by

the weighted sum of the action and the features of items.

• The definitions of rewards are customized according to the objectives of recom-

mendation tasks. To improve the number of clicks, click through rate (CTR) is

one of the most popular metrics in many works, which is defined as the ratio of

clicked items to recommended items. Other metrics like conversation rate, gross

merchandise value are also widely used in tasks that aim at improving the turnover

of a company.

7
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Fig. 2.2: Games can be solved by RL including Dota, StarCraft, Go and football.

2.2 Reinforcement Learning

Reinforcement learning is proposed to solve problems such as games illustrated in Fig. 2.2

that can be modeled as MDPs, which contains two main elements: a policy and a value

function. A policy defines how to behave at a given time step or state. More formally, it

is a mapping from states of the environment to available actions in these states, which can

be represented by a table or function. A value function specifies which actions or states

are good in an MDP. The value of a state or state-action pair usually is the cumulative

discounted reward, which is the long-term reward that can be obtained after the state

or state-action pair following a certain policy. Similar to the policy, the value function

can also be stored in a table or approximated by a function. We give the mathematical

expression in the following paragraphs.

To choose actions or obtain the optimal policies, value functions estimate how good

a policy is for a given state or state-action pair. Thus, the agent usually maintains a

value-function + (B) or &(B, 0). Given a policy c, we can define the state value function

+c (B), which is the expected return starting at B and following c to choose actions:

+c (B) = Ec (� C |BC = B) = E
[ ∞∑
:=0

W:A:+C |BC = B
]
.

Then, the objective function can also be represented as J (c) = EB0∼d0+c (B0), where

d0 is the initial distribution of states. The goal of RL is to find the optimal c to maximize

J (c).

8
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Similarly, we define the state-action value function &c (B, 0), the expected return taken

action 0 at state B and following c thereafter:

&c (B, 0) = E(� C |BC = B, 0C = 0) = E
[ ∞∑
:=0

W:A:+C |BC = B, 0C = 0
]
.

According to the above two definitions, some properties of these two value functions

can be given:

&c (BC , 0C) = EBC+1∼P(BC ,0C ) [AC+1 + W+ (BC+1)] ,

+c (BC) = EBC+1∼P(BC ,0C ),0C∼c(BC ) [AC+1 + W+ (BC+1)] ,

&c (BC , 0C) = EBC+1∼P(BC ,0C ),0C+1∼c(BC+1) [AC+1 + W&(BC+1, 0C+1)]

, which are Bellman equations that express the relationship between the value of current

and successor states or state-action pairs. Based on Bellman equations, the policy iter-

ation method is proposed to solve MDPs, which includes two parts: policy evaluation

and policy improvement. By alternatively executing these two parts, we can obtain the

optimal policy in tabular cases.

We first introduce the Banach fixed-point theorem, which supports the convergence

of iteration methods.

Theorem 2.1 (Banach fixed-point theorem) Let - be a complete metric space, and

5 be a contraction on -. Then there exists a unique G∗ such that 5 (G∗) = G∗.

The contraction of a mapping is defined as follows.

Definition 1 (Contraction) Let - be a metric space, and 5 : - −→ -. We will say

that 5 is a contraction if there exists some 0 < : < 1 such that 3 ( 5 (G), 5 (H)) ≥ :3 (G, H)
for all G, H ∈ -. The inf of such :’s is called the contraction coefficient.

In reinforcement learning settings, - usually is R and 3 is the norm. Then we can prove

that the Bellman equation has a unique fixed point as follows:

‖T c+1 − T c+2‖∞ = ‖A + WPc+1 − A − WPc+2‖∞
= W ‖Pc (+1 −+2)‖∞
6 W ‖+1 −+2‖∞
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, where T c is the Bellman operator representing the left side of the Bellman equation

and Pc is the transition probabilities following c.

Policy evaluation. Given a policy c, we can compute J (c) and +c by the Bellman

function:

+c (BC) = EBC+1∼P(BC ,0C ),0C∼c(BC ) [AC+1 + W+ (BC+1)]

=
∑
0

c(0 |B)
∑
B′,A

P(B′, A |B, 0) [A + W+ (B′)] .

If P is known, we can update + (B) by + (B′) repeatedly for all the B ∈ (. In each time

step, it replaces old values with new values obtained from the old value of the successor

states. When the gap between the new and old values is small enough, we stop the

iterations. According to the fixed-point theorem, + (B) converges when the number of

iterations becomes infinity.

Policy improvement. Since our goal is to find the optimal policy, policy evaluation

is not enough and we need to find a way to improve the current policy. Firstly, we can

compute &(B, 0) based on the Bellman equation to estimate how good 0 is at state B.

Then, at each state, we change the policy c by

c′(B) = arg max
0
&c (B, 0).

The new policy is at least as good as the old one according to the policy improvement

theorem.

Theorem 2.2 (Policy improvement theorem [86]) When c′(B) = arg max0 &c (B, 0),

the return of c′ will be no less than that of c:

+c′ (B) ≤ +c (B).

10
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Proof.

+c (B) ≤ &c (B, c′(B))

= Ec′ [AC + W+c (BC+1) | BC]

≤ Ec′ [AC + W&c (BC+1, c′ (BC+1)) | BC]

= Ec′ [AC + WEc′ [AC+1 + W+c (BC+2)] | BC]

= Ec′
[
AC + WAC+1 + W2+c (BC+2) | BC

]
≤ Ec′

[
AC + WAC+1 + W2AC+2 + W3+c (BC+3) | BC

]
...

≤ Ec′
[
AC + WAC+1 + W2AC+2 + W3AC+3 + · · · | BC

]
= +c′ (B).

If +c is the same as +c′, we find the fixed point of the Bellman equation. According

to the fixed-point theorem, both c and c′ must be the optimal policies.

Value iteration. Policy evaluation usually requires multiple sweeps through the

state set to obtain accurate values, which is time-consuming. Value iteration simplifies

the policy iteration method by restricting the number of sweeps to one. Formally,

+c (BC) = max
0

∑
B′,A

P(B′, A |B, 0) [A + W+ (B′)]

, which does not lose the convergence guarantees of policy iteration.

Monte-Carlo method. The value iteration and policy iteration assume that the

transition probability of the environment is completely known. For many real-world

environments, this assumption is hard to be satisfied. Thus, the Monte-Carlo method

is proposed to solve MDPs by experience, namely sample sequences of states, actions,

and rewards from interaction with an environment. Note that the definitions of + and &

are expectation of the cumulative discounted rewards. One direct way is to take actions

following the policy c in an environment and obtain the experience (BC , 0C , AC). For each

state or state-action pair in the experience, we calculate + (BC) and &(BC , 0C) by the average

of
∑
C AC .
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Algorithm 1: Value-based RL

Initialize: &(B, 0) for B ∈ S, 0 ∈ A;

1 Reset the environment;
2 for C = 1, . . . , ) do
3 Choose 0C based on BC using policy c derived from &;
4 Obtain BC+1 and AC ;

// For SARSA

5 Choose 0C+1 following c (e.g., n-greedy) ;
6 &(BC , 0C) = &(BC , 0C) + U [AC +&(BC+1, 0C+1) −&(BC , 0C)];

// For Q-learning

7 &(BC , 0C) = &(BC , 0C) + U [AC +max0 &(BC+1, 0) −&(BC , 0C)];

2.2.1 Value-Based Approaches

In the above-mentioned policy iteration or value iteration methods, they both need to

obtain the expectation during the update. Thus, Temporal-Difference (TD) learning is

proposed to estimate the expectation of + values. To estimate + values of a policy c, let

c interact with the environment with ) time steps. Then, we can update + values using

sampled data by

+ (BC) = + (BC) + U [AC ++ (BC+1) −+ (BC)]

, where U is a constant to decide the weight of new samples.

SARSA. We now consider how to use the TD method to obtain the optimal policy.

Instead of estimating + , SARSA directly estimates & and chooses the best action based

on & values. The update rule is

&(BC , 0C) = &(BC , 0C) + U [AC +&(BC+1, 0C+1) −&(BC , 0C)]

, where 0C+1 is sampled from a policy derived from &. One of the most widely used

methods is n − 6A443H, where the agent chooses the action having maximal & value with

1 − n probability and randomly chooses an action with n probability. n is a constant to

control the frequency of exploration.

Q-learning. Q-learning [96] is one of the most popular methods in RL. The main

difference between Q-learning and SARSA is how to choose action in the next state B′

during the update. The update rule is defined as

&(BC , 0C) = &(BC , 0C) + U
[
AC + Wmax

0′
&(BC+1, 0′) −&(BC , 0C)

]
.
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Algorithm 2: Deep Q-learning with Experience Replay [65]

Initialize: the replay buffer D to capacity #, the action-value function &\ with
random weights and target action-value function &̂\− with the same
weight as &.

1 for C = 1, . . . , ) do
2 Choose 0C by n-greedy policy;
3 Execute action 0C in the environment and observe AC and BC+1;
4 Store (BC , 0C , AC , BC+1) in replay buffer D;
5 Sample random minibatch of transitions (B 9 , 0 9 , A 9 , B 9+1) from D;

6 Calculate H 9 =

{
A 9 for terminal B 9+1
A 9 + Wmax0′ &̂

(
B 9+1, 0′; \−

)
for non-terminal B 9+1

;

7 Update the weights of & by minimizing
(
H 9 −&(B 9 , 0 9 ; \)

)
;

8 Let &̂ = & every � steps;

In this formula, the maximal & value is used no matter what the policy is. For instance,

a random policy is deployed in the environment while the action with the maximal &

value is selected during the update.

Deep Q-learning. Above-mention methods focus on tabular cases, where the num-

ber of states and actions is finite and limited. For MDPs that involve infinite or a large

number of states and actions, approximation methods are proposed. The key idea is to

use functions to estimate & and + rather than storing them for each state and action.

With the rise of deep learning, DQN [65] is proposed by adopting a deep neural network

to approximate the & value function. DQN uses a & network to estimate &(B, 0) by

taking B and 0 as inputs and using stochastic gradient descent (SGD) on the following

objective

! (\) = E0C ,BC ,BC+1∼P,c
[
&(BC , 0C) −

[
A + Wmax

0′
&(B′, 0′)

] ]
.

Additionally, replay buffer and target network are proposed to improve the stabilization

of the policy. Replay buffer stores recently generated samples and provides training data

to the & network. The target network is cloned from the & network and kept frozen as

the optimization target every � steps, where � is a constant. The detailed algorithm is

shown in Alg. 2.

Lots of methods are proposed to improve DQN. Dueling DQN [94] decomposes & val-

ues to advantages � and + values, namely &(B, 0) = �(B, 0) ++ (B), aiming at accelerating

13
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convergence. Double DQN [89] changes the selection of 0′ to alleviate the overestimating

problem by

A 9 + W&̂
(
B 9+1, arg max

0′
&(B 9+1, 0′; \); \−

)
.

Distributional DQN [5] estimates the distribution of & for each state-action pair rather

than a real number to improve the accuracy of the estimated & function, Prioritized

experience replay [78] proposes to select minibatch from replay buffer with probability

?C according to the TD error rather than randomly. More specifically,

?C ∝
���AC + Wmax

0′
&\− (BC+1, 0′) −&\ (BC , 0C)

���l
, where l is a constant to control the shape of the distribution. Rainbow DQN [27]

combines above-mentioned methods to reach a better performance.

2.2.2 Policy-Based Approaches

Since value-based methods choose actions by comparing the & values of available actions,

they cannot work when the action space is large or continuous. Thus, policy-based

methods are proposed to address this issue by introducing a policy function to make

decisions taking a state as input.

Policy gradient theorem [86]. Note that the objective function of RL methods is

J (\) =
∑
B∈S

dc (B)
∑
0∈A

c(0 |B; \)&c (B, 0)

, where \ is the parameter of the function representing c. To update the policy function

by the gradient descent method, we calculate ∇J (\) by parts c(0 |B; \) and &c (B, 0),

which is too complex to obtain the gradient.

Theorem 2.3 (Policy gradient theorem) The gradient of J is

∇\J (\) =
∑
B∈S

dc (B)
∑
0∈A
∇\c(0 |B; \)&c (B, 0).
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Proof.

∇)� ()) =
∑
B0∈S

d(B0) ·
∑
00∈A

∇)c(00 |B0; \) · &c (B0, 00)

+
∑
B0∈S

d(B0) ·
∑
00∈A

c(00 |B0; \) · ∇\&c (B0, 00)

=
∑
B0∈S

d(B0) ·
∑
00∈A

∇)c(00 |B0; \) · &c (B0, 00)

+
∑
B0∈S

d(B0) ·
∑
00∈A

c(00 |B0; \) ·
[
A0 +

∑
B1∈S

Wd(B1 | B0, 00) · ∇\+ (B1)
]

=
∑
B0∈S

d(B0) ·
∑
00∈A

∇)c(00 |B0; \) · &c (B0, 00)

+
∑
B0∈S

∑
B1∈S

d(B0 → B1, 1, c) ·
[ ∑
01∈A

∇\c(01 |B1; \)&c (B1, 01)
]

=
∑
B∈S

∑
B0∈S

∑
C

WCd(B0)d(B0 → B, C, c) ·
∑
0∈A
∇\c(0 |B; \) · &c (B, 0)

=
∑
B∈S

dc (B) ·
∑
0∈A
∇\c(0 |B; \) · &c (B, 0)

The last equation is due to the definition dc (B) =
∑
B0∈S

∑
C W

Cd(B0)d(B0 → B, C, c)
REINFORCE. By simply applying the policy gradient theorem, the REINFORCE

method estimates & by the Monte-Carlo method. More specifically, trajectories (BC , 0C , AC)
are obtained by following the policy function c\ . The Q value or return is estimated by

& = � =
∑

C=0,1,...

WCAC .

Then, the policy c\ can be updated by the gradient

∇\ log c(0 |B; \)&c (B, 0).

We add the log sign because the samples we obtained following c and the term 1
c(0 |B;\) is

used to alleviate the bias. Formally,

Ec
∇\c(0 |B; \)
c(0 |B; \) &c (B, 0).

Actor-Critic. Similar to value-based methods, the Q values can also be approxi-

mate by a function to reduce variance during training. We then get the Actor-Critic
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Algorithm 3: Deep deterministic policy gradient [52]

Initialize: the replay buffer D to capacity #, the critic network &\ and the
actor cF with random weights, and the target critic &̂\− and actor
ĉF− with the same weight as & and c.

1 for C = 1, . . . , ) do
2 Choose 0C by actor with random noisy;
3 Execute action 0C in the environment and observe AC and BC+1;
4 Store (BC , 0C , AC , BC+1) in replay buffer D;
5 Sample random minibatch of transitions (B 9 , 0 9 , A 9 , B 9+1) from D;

6 Calculate H 9 =

{
A 9 for terminal B 9+1
A 9 + W&̂

(
B 9+1, ĉ(B 9+1); \−

)
for non-terminal B 9+1

;

7 Update the weights of c by the gradient ∇0&(B 9 , 0; \)0=c(B 9 ;F)∇Fc(B 9 ;F);
8 Update the weights of & by minimizing

(
H 9 −&(B 9 , 0 9 ; \)

)
;

9 Update the target networks:

&̂ = U& + (1 − U)&̂
ĉ = Uc + (1 − U)ĉ

method. The policy is represented by the actor that selects actions and the estimated

value function is the critic due to the role that criticizes the actions chosen by the actor.

The actor can be trained by gradient descent method using the values provided by the

critic.

Deep deterministic policy gradient. DDPG [52] represents the functions of actor

and critic by deep neural networks. Due to the property of the deterministic policy, this

method can be updated by samples obtained by other policies or historical policies. Thus,

the replay buffer proposed in DQN is adopted to accelerate training. The details is shown

in Alg. 3. U is a constant controlling the learning rate.

Soft actor-critic. SAC [23] modifies the objective function by adding an entropy

term to promote exploration. The new objective function is

J (c) =
∑
C

EBC ,0C∼dc [AC + UH(c(· | BC))]

, where U is a constant and H(c(· | BC)) is the entropy of c. Differing from DDPG, the

actor is to minimize the expected KL-divergence:

Jc (q) = EBC∼D
[
�KL

(
cq (· | BC) ‖

exp (&\ (BC , ·))
/\ (BC)

)]
.
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The partition function / normalizes the distribution.

TRPO and PPO. Trust Region Policy Optimization and Proximal Policy Opti-

mization [79,80] methods are policy-based methods with an additional constraint

�KL(c>;3 , c=4F) < X

, where c>;3 and c>;3 are policies before and after an update. X is a hyper-parameter

that controls the maximal gap between two policies. The difference between TRPO and

PPO is how to obey the constraint during updates. TRPO uses the conjugate gradient

method, which is complex and time-consuming. PPO proposes to transfer the problem

to an unconstrained optimization problem by treating the constraint as a penalty term

in the objective function. Then, the stochastic gradient descent method can be used to

update.

2.2.3 Multi-Arm Bandit Approaches

Multi-arm bandit problems consider a simplified setting of MDPs, where the number of

states is one. The objective of multi-arm bandit methods is to minimize the regret:

'()) =
)∑
C=0

(
A∗C − AC (0c)

)
, where A∗C is the optimal reward obtained at each time step and AC (0c) represents the

reward obtained by a policy c. To find the optimal action or arm, one crucial issue is the

trade-off of exploration and exploitation when selecting action at each time step. The

upper confidence bound (UCB) method [2] is proposed by using the upper confidence

bound of each arm to decide pulled arms. Formally,

0C = arg max
0
&(0) +

√
2 log C

#C (0)

, where &(0) is the mean of reward of action 0 and #C (0) is the number of times that

action 0 has been chosen before C time step. The latter term of the equation is the upper

confidence bound of &(0).
In order to handle the large action space, the contextual bandit method, LinUCB [49],

is proposed by assuming that each arm processes a feature vector. It assumes that the

17



Chapter 2. Preliminaries

reward of an arm is linear in its feature and hence use a linear function to approximate

the rewards of arms. Formally,

E[A] = \CG

, where \ is the unknown parameters and G is the feature of an arm. By decomposing \

to �−11, the algorithm updates by

� = � + GG)

1 = 1 + AG.

To select action, the upper confidence bound of each arm is calculated by

G)\ + U
√
G) �−1G.

2.3 Reinforcement Learning for Recommender Sys-

tem

Many deep reinforcement learning methods are used in the recommender system domain.

Existing works focusing on the single-agent setting mainly consider three aspects: 1) the

different kinds of rewards, 2) the structures of web pages and 3) the large space of actions.

DRN updates periodically after obtaining long-term rewards such as return time [105].

An algorithm is proposed to use two individual LSTM modules for items with short-term

and long-term rewards respectively [108]. Reward shaping is a straightforward method

to train a policy end to end by defining various reward functions. The diversity of

recommended sets is added to the reward function [57]. Transition probabilities from

users’ actions (such as click) to purchase are used as rewards [68]. A network is used

to predict transition probabilities and the output is considered as rewards for actions,

which is trained by historical data. Modified MDPs for recommendation are proposed

by redefining the structure of reward function and the transition function respectively

[29, 31]. A method is proposed to improve profit by detecting fraud transactions [100].

Transition function is divided into three sub-functions that indicate the probabilities that

users leave, purchase, or click.

Second, page structures including different types of content and positions of items

are taken into consideration. A CNN-based approach is proposed to recommend items
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according to their positions on the web page [102]. A hierarchical algorithm is pro-

posed to aggregate topics, blog posts, and products on one web page [87]. Similarly,

the Double-Rank Model is proposed to learn how to rank the display positions and with

which documents to fill those positions [67]. The positions of topics, posts and products

are firstly decided by the high-level policy and low-level policies determine what to rec-

ommend. The problem ‘when and where should advertising be added?’ is addressed for

web pages that contain advertising [101]. With a given recommended list, the rewards

of additional advertising in different positions are learned. Since the positive reward is

sparse, a work treats negative samples as additional information in training [104]. The

main idea is to leverage two networks to process negative samples and positive samples

respectively.

Third, other works focusing on the large space of actions and states usually adopt

clustering techniques to reduce the space [13,85]. To decide which items to recommend,

the policy network outputs the feature of an ideal item and clustering methods are

adopted to find neighbors of the ideal item in the candidate set of items.

2.3.1 Combinatorial Multi-Arm Bandit

Since we usually need to recommend a set of items rather than one item to users, tradi-

tional bandit algorithms cannot be directly applied in many scenarios. Thus, we focus

on a special kind of bandit algorithm called combinatorial bandit, which is proposed to

pull a set of arms in each round. The formulation is first studied in [11] to handle the

situation where the reward is decided by a set of arms, such as recommendation and ad-

vertising. The contextual version of this problem is proposed in which each arm possesses

a contextual vector that determines the reward [72,97].

Combinatorial bandit with click models. The idea of utilizing click models in

bandit algorithms to model the influence of positions has been explored in prior research

works [38, 44, 46–48, 51, 106]. The Cascade Model [15] merges with multi-armed bandit,

combinatorial bandit, contextual bandit and contextual combinatorial bandit respectively

[46,47,51,107]. The Cascade Model assumes that a user scans items from top to bottom

until they click one. Thus, their algorithms cannot be applied to the scenarios where users

click more than one item. To address this disadvantage, Katariya et al. [38] combine a
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multi-armed bandit algorithm with the Dependent Click Model, an extension of the

Cascade Model for multiple clicks scenarios. This model assumes that after users clicked

an item, they may still continue to examine other items, if they are not satisfied. However,

all these models assume that users will not browse items behind the position of the last

click and users’ attention on each item before the last click is the same, which is not

suitable for our problem. In contrast, the Position-Based Model [44,48] assume that click

rates of items are affected by their displayed positions. Komiyama et al. [44] consider

the influence of ads differing from traditional bandit problems.

2.3.2 Interactive Reinforcement Learning

Interactive reinforcement learning is a branch that aims at hastening the learning process

or training an agent by human feedback in some environments that rewards are not

available or sparse.

Many existing works [9,22,42,59] show the efficiency of learning from human trainers.

Knox et al. [41–43] propose the TAMER framework in which human feedback is learned

by a supervised learning method and then used to provide rewards to the agent. The

TAMER framework is merged with the deep neural network to address more difficult

problems [95]. MacGlashan et al. [61] propose a novel Actor-Critic algorithm considering

that human feedback relates to agents’ policy. Policy shaping algorithms [9, 22] utilize

the difference between ‘good’ and ‘bad’ labels to determine the best action by a Bayesian

approach. How a trainer implicitly expects a learner to interpret feedback is studied

in [28]. Trainers are allowed to directly slightly change the action in paper [70]. Two

works [12, 62] focus on training agents to learn the meaning of language or commands.

However, most of these approaches do not consider the feedback model of trainers except

Loftin et al. [58,59,62]. They consider trainers’ feedback model and propose a strategy-

aware algorithm to infer the meaning of no feedback via the trainer’s feedback history.

2.3.3 Multi-agent Reinforcement Learning

In multi-agent reinforcement learning, the basic MDP model is extended to multi-player

Markov game [54], which is represented by (#,S,A,P,R, W). The main difference is the

number of agents #. If we individually optimize each agent, the policy is hard to converge
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due to the nonstationarity of other agents. To alleviate this problem, centralized training

decentralized execution (CTDE) methods propose to use the information of all agents

when estimating the Q values.

MADDPG. The most famous algorithm is MADDPG [60], in which each agent

maintains a critic and an actor. Each critic is a centralized action-value function that

takes as input the actions of all agents in addition to state information, and outputs the

&8 (B, 01, . . . , 0# ) values for the 8-th agent. Then, similar to DDPG, the & value is used

to train the actor.

COMA. In many environments like football game, the reward is for a team rather

than each person. Thus, we need to consider how to assign rewards for each agent,

which is called credit assignment problem. Counterfactual multi-agent (COMA) policy

gradients [20] method proposes a counterfactual function �(B, 0) = &(B, 0) − ∑
0′ c

8 (0′ |
B)&(B, (0′, 0−8)), where 0−8 is the action without the 8-th agent. The function estimates

the effect when the 8-th agent executes other actions to determine the contribution of the

action 08. The counterfactual value is used to update the actor of each agent.

QMIX. To extend DQN to multi-agent environment, the credit assignment problem

also exists. Different from COMA, QMIX [75] provides an explicit way to determine the

& values of all agents. A mixing network is proposed to estimate the global & values

taken & values of all the agent as inputs, which satisfies monotonicity: the total & value

should increase with the rise of individual & values. More specifically, the weights of

the mixing network is forced to be non-negative by the absolute value sign. Each agent

executes depending on their & value functions trained together with the mixing network.

Communication. In real world, many scenarios allow communication between

agents such as robot football. Many papers propose multi-agent reinforcement learning

methods with a communication channel. Although these methods violate the centralized

training decentralized execution rule slightly, they work in specific environments. Various

structures of the communication channel are proposed [18,34,83,84].

Recommendation via multi-agent RL. Some works use multi-agent frameworks

to promote cooperation between different pages in recommendation scenarios. Inspired

by RL methods involving communication like [92], a multi-agent RL framework is pro-

posed where agents can communicate by messages [17]. A model-based RL algorithm
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is proposed by using neural networks to predict transition probability and shape re-

ward [103].

2.4 Chapter Summary

This chapter reviews the background of this thesis, which consists of basic reinforcement

learning methods, deep reinforcement learning methods and some works that apply re-

inforcement learning to recommendation problems. We demonstrate both tabular and

approximation methods to solve different kinds of MDPs, including value-based meth-

ods and policy-based methods. Additionally, the convergence and optimality of some

methods are illustrated. We also introduce reinforcement learning methods that involve

neural networks to approximate value functions or representing the policy, which will

play an important role in Chapter 5 where we propose a novel multi-agent reinforcement

learning method for a recommendation task. Moreover, we introduce some works that

apply multi-arm bandit methods and two kinds of reinforcement learning methods into

the recommendation domain, which can be considered as the literature review for the

next three chapters.
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Chapter 3

Learning Behaviors with Uncertain
Human Feedback

3.1 Introduction

Training agents for tasks with human feedback has many application scenarios such as

games and recommendation systems. Previous works [58,59] recognize the fact that hu-

mans as trainers may have different training strategies, i.e., different habits of giving

positive/negative feedback, or not giving feedback in some confusing cases. They usually

solve the problem using Expectation Maximization (EM) by treating human feedback

model as hidden parameters. However, in environments with uncertainties, trainers may

not know exactly the optimal action themselves, and therefore could only provide feed-

back with uncertainty. For example, in many games like Texas hold’em poker, the rewards

of all the actions are not deterministic. A sub-optimal action may get huge reward in

some cases. Then, trainers are likely to provide positive feedback to the sub-optimal

action or not sure which kind of feedback they should give. Moreover, existing works do

not differentiate non-optimal actions, i.e., they assume the expected rewards of different

sub-optimal actions are the same, whereas in practice, different actions might have dif-

ferent levels of optimality, and the expected rewards of different sub-optimal actions are

usually dependent on their distances to the optimal one.

In this chapter1, we address these two issues by proposing a novel human feedback

model, which takes the uncertainty of trainer’s feedback into account. Instead of assum-

ing that humans will only give positive feedback when the action taken by the agent

1This chapter has been published in [26].
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is optimal, we model the way that humans give feedback as a probability distribution

(e.g., Gaussian), where the probability of giving positive (negative) feedback increases

(decreases) w.r.t. the distance of action towards the optimal action. It brings new chal-

lenges, in the sense that the newly introduced probabilistic human feedback model makes

the calculation of the integration intractable. To this end, we propose a novel approxi-

mate EM algorithm, which decomposes the original EM algorithm into two procedures.

First, we use an approximated EM step where we assume a subset of the parameters in

the human feedback model (e.g., standard deviation of the Gaussian) are fixed and known

a-priori. In the second step, we use the Gradient Descent (GD) method to compute the

most likely parameter values that we fix in the first step.

Our key contributions are summarized as follows. First, we propose a novel proba-

bilistic human feedback model, which considers the uncertainties in humans while giving

feedback to agents in an uncertain environment. Second, to handle the new computa-

tional challenges brought by the new feedback model, we propose a novel approximate

EM approach, which integrates Expectation-Maximization (EM) and Gradient Descent

(GD). Last, We conduct extensive experimental evaluations of our proposed approach

on both synthetic scenarios and two different real-world scenarios with human partici-

pants. 1) We show that our approach outperforms existing works under various settings

and metrics. 2) Ablation study shows the effectiveness of our proposed techniques. 3)

Robustness analysis demonstrates that our algorithm still performs well even if trainers

do not follow our feedback model.

3.2 Modelling Uncertain Trainer Feedback

In one time period, we define state B ∈ (, where ( is the set of states. After observing

current state B, the agent chooses an action 0 ∈ �. Following [58], we define a discrete

action space � = {01, ..., 0 }. After the agent chooses an action, the trainer could

provide feedback 5 ∈ � = { 5 +, 5 −, 5 0} to describe his/her degree of satisfaction, where

{ 5 +, 5 −, 5 0} corresponds to positive, negative and no feedback respectively. Positive

feedback indicates ‘good’ and negative feedback is ‘bad’, while no feedback could be used

to indicate other information such as confusion or ‘not bad’ (but also not good). All of
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the trainer’s feedback will be recorded in history ℎ = {[BC , 0C , 5C] |C = 1, . . . , )}, where ) is

current time period. BC ∈ (, 0C ∈ � and 5C ∈ � are state, action and feedback obtained in

the time period C.
To model the uncertainty when trainers give feedback, we propose a novel probabilistic

human feedback model, the probabilities of obtaining different kinds of feedback are
represented by ?(0, _(B);f, `, 5 ) in state B, where 0 is the current action, _(B) is the
trainer’s preferred action in state B. f and ` = {`+, `−} are unknown parameters of the
probability function. Formally,

?(0, _(B);f, `, 5 ) =


?+(0, _(B);f, `+) 5 = 5 +

?−(0, _(B);f, `−) 5 = 5 −

1 − ?+(0, _(B);f, `+)
−?−(0, _(B);f, `−) 5 = 5 0

where f and ` = {`+, `−} control variance and the maximum probability of providing

different kinds of feedback (positive feedback and negative feedback) respectively. The

parameters of the model could be adjusted to approximate different trainers’ habits of

providing feedback. Many popular distributions can be written in this form. For example,

the Gaussian function

`4
− (0−_(B))

2

2f2

and a simple extension of the density function of the Logistic distribution

`

f(1 + 4−
(0−_(B))

f )
.

We can divide the functions ?+ and ?− into ` ∈ [0, 1] and another term 4̂f ∈ [0, 1],
formally,

?+ = `+4̂f

and

?− = `− [1 − (1 − n)4̂f]

, where n is a positive constant whose value is close to 0 in order to ensure that the

probability of obtaining negative feedback is not 0 at 0 = _(B). We constrain that the

upper bound of the sum of ?+(0, _(B);f, `+) and ?−(0, _(B);f, `−) cannot be larger than

1 for any B and 0. Then, we have

`+4̂f + `− [1 − (1 − n)4̂f] ≤ 1

⇒1 − `− − 4̂f
[
`+ + `−(1 − n)

]
≥ 0.
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where 4̂f ∈ [0, 1]. Notice that the function on the left side is monotonous for the term

4̂f, which means that the minimum of the function is obtained when 4̂f = 1 since ` ≥ 0

and n → 0+. Thus, we have

1 − `+ − n `− ≥ 0⇒ `+ + n `− ≤ 1.

By using the property `− ∈ [0, 1], since the maximal value of the function in the left side

should be less than 1, we let `− = 1 and get the upper bound of `+:

`+ + n `− ≤ 1⇒ `+ ≤ 1 − n .

The intuitive interpretation of `+ and `− is that they are the maximum probabilities

of obtaining positive and negative feedback respectively. That is, `+ is the probability of

getting positive feedback when the current action is the trainer’s most preferred one and

`− is the probability of getting negative feedback at the trainer’s most disliked action.

When the action 0 is different from _(B), the probability of obtaining positive feedback

declines while more negative feedback will be received.

3.3 Approximate Expectation Maximization

Since Bayesian approaches have shown the efficiency in inferring from a small quantity

of data, we adopt the Maximum Likelihood Estimation (MLE) to estimate the policy

function _ with two unknown parameters ` and f in the probabilistic human feedback

model, where the objective function is represented as:

arg max_ %(ℎ|_; `, f), (3.1)

where ℎ = {[BC , 0C , 5C] |C = 1, . . . , )} is the history of state, action and feedback. Note that

this MLE cannot be calculated directly since there are two sets of unknown variables,

policy _ and parameters (`,f), in this equation and there is no explicit bound for f.

One classical way of handling this kind of problems is to use the EM algorithm where

the 8-th EM update step is represented as:

_8+1 = arg max_

∭
%(`+, `− |ℎ, _8) · ln[%(ℎ, `+, `− |_)]3`+3`−3f.
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However, it is easy to see that this integral is intractable, as 1) there is no explicit upper

bound for f and 2) the large dimension of the hidden variables significantly increases the

computational complexity of calculating the integral (which is usually calculated using

numerical methods as there are no analytical solutions). As a result, we propose a novel

approximate EM algorithm, in which an alternating optimization method is used to solve

this MLE by two steps: 1) Update _ with f fixed and treat ` as a hidden variable by

EM algorithm. 2) Update f with _ fixed by GD algorithm and use a trick to ignore `. 2

3.3.1 Updating _ with f Fixed

Since `+ and `− mean the maximum probabilities of obtaining positive and negative
feedback, we know that the range of `− is [0, 1] and 0 ≤ `+ ≤ 1 − n . By treating `+

and `− as bounded latent variables, _ can be updated by the Expectation-Maximization
(EM) algorithm when f is fixed, which is inspired by [59]. In the expectation step, we
compute the expectation of a log-likelihood estimate with respect to a bounded latent
variable. In the maximization step, the expectation is maximized with respect to another
unknown variable. Treating `+, `− as latent variables, the 8-th EM update step is:

_8+1 = arg max_

∫ 1

0

∫ 1−n

0
%(`+, `− |ℎ, _8) · ln[%(ℎ, `+, `− |_)]3`+3`−, (3.2)

where _8 is the inferred preference in 8-th step. To ensure that the probability of receiving

positive and negative feedback is not larger than 1, the upper bound of `+ is defined by

1 − `−.
Using the Bayes’ theorem and the property of logarithm, we obtain

%(`+, `− |ℎ, _8) =
%(ℎ |`+, `−, _8)%(`+, `− |_8)

%(ℎ |_8)
, (3.3)

and

ln[%(ℎ, `+, `− |_)] = ln[%(ℎ|`+, `−, _)] + ln[%(`+, `− |_)] . (3.4)

Notice that %(ℎ |_8) is the marginal probability and does not involve any variable. Thus

we can treat it as constant and remove it from Eq.(3.3). Since `+ and `− define the way

that a trainer provides feedback and _ is the set including the optimal actions in various

states, {`+, `−} is independent of _ and thus

%(`+, `− |_) = %(`+, `− |_8) = %(`+, `−).
2An alternative is to use gradient-based methods at both steps [7]. However, this is infeasible due

to the complex problem structure and the difficulty in deriving gradients at both steps.
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We assume that `+ and `− are uniformly distributed due to the lack of the prior knowledge

about `+ and `−. Therefore, we get ?(`+, `−) = 2 by solving the equation∫ 1

0

∫ 1−n

0
?(`+, `−)3`+3`− = 1.

Thus, the term %(`+, `− |_8) can be removed from Eq.(3.3). For the second logarithmic

term of Eq.(3.4), since ∫ 1

0

∫ 1−n

0
%(`+, `− |ℎ, _8) ln[2]3`+3`− (3.5)

is not related to _, we can ignore it. Finally, the objective could be simplified to

_8+1(B) = arg max
_

∫ 1

0

∫ 1−n

0
%(ℎ |`+, `−, _8) · ln[%(ℎB |`+, `−, _(B))]3`+3`−, (3.6)

where ℎB is the history containing the state B. Utilizing ℎ = {[BC , 0C , 5C] |C = 1, . . . , )}, we
can calculate the integral, since the probability of obtaining ℎ given ` and _ is:

%(ℎ|`+, `−, _) =
∏
)

%( 5C |0C , BC , _(BC ), `+, `−)

=
∏
)

?(0C , _(BC );f, `, 5C )

=
∏
Bℎ ∈(

?+(0ℎ, _(Bℎ);f+, `+) |=
+
Bℎ
| · ?−(0ℎ, _(Bℎ);f+, `+) |=

−
Bℎ
|

· ?0(0ℎ, _(Bℎ);f+, `+) |=
0
Bℎ
|
,

where |=+Bℎ |, |=
−
Bℎ
|, |=0Bℎ | are the numbers of three types of feedback in the state Bℎ ∈ ℎ. For

?+ and ?−, notice that ln[`4̂f] = ln[`] + ln[4̂f]. Since ln[`] is not related to _, we ignore

it during the calculation to prevent divergence. In practice, we compute expectations for

all the actions that are available in a sate B and select the action with the maximal

expectation as the policy _(B) for the state B.

Eq.(3.6) shows the natural way to utilize feedback from other states. When we com-

pute the optimal action in state B, the first term %(ℎ|`+, `−, _8) considers all the historical

feedback and affects the result of the Eq.(3.6). In this way, both feedback model and

historical feedback are taken into consideration to infer the best action.
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Algorithm 4: Adaptive Bayesian Learning with Uncertain Feedback
(ABLUF)

Initialize: _ = A0=3><%>;82H(), n = 0.01,
ℎ = [ ], C = 0, 3>=4 = 0;

1 while 3>=4 ≠ 1 do
2 BC = 64C(C0C4();
3 0C = _(B);
4 C0:4�2C8>=(0C);
5 5C = 64C�443102: ();
6 ℎ = [ℎ; [BC , 0C , 5C]];
7 repeat
8 _′ = _;

9 _ = arg max_
∫ 1

0

∫ 1−n
0

%(ℎ |`+, `−, _′) · ln[%(ℎB |`+, `−, _(B))]3`+3`−;
10 until _′ = _;

11 f = f − U 1
=

∑
B

∑
0 ∇f! (f; 5 , _);

12 3>=4 = 64C�>=4();
13 C = C + 1;

3.3.2 Updating f with _ Fixed

Since our objective function is calculated based on probabilities provided by the feedback

model, the accuracy of the feedback model affects the result significantly. To obtain an

accurate human feedback model, we use GD method to minimize the square loss function

between the inferred feedback model ?(0, _(B);f, `, 5 ) and the real one, i.e.,

[?(0, _(B);f, `, 5 ) − ?( 5 |0, B)]2. (3.7)

However, since we calculate the integral under `, the value of ` is unknown. We

cannot compute the gradient of the loss function. since ?(0, _(B);f, `, 5 ) is `+4̂f and

`− [1− (1− n)4̂f], the second term with f actually is the estimation of the ratio between

the probability at action 0 and the maximum probability of receiving positive or negative

feedback. That is,

A0C8>+? =4̂f ≈
?( 5 + |0, B)
?( 5 + |_(B), B) = A0C8>0 ( 5

+)

A0C8>−? =[1 − (1 − n)4̂f] ≈
?( 5 − |0, B)
?( 5 − |0−B , B)

= A0C8>0 ( 5 −),
(3.8)
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where 0−B = arg max0 3 (0, _(B)) is the action that a trainer dislikes the most, since this

action has the maximum probability of receiving negative feedback. We transform the

loss function to

! (f; 5 , _) = [A0C8>? − A0C8>0 ( 5 )]2. (3.9)

We omit ` in !, since it does not appear in the new formulation of the loss function.

The gradient ∇f! (f; 5 , _) of the new loss function could be computed as follows. For

5 +, we have

[A0C8>+? − A0C8>0 ( 5 +)]∇fA0C8>+? . (3.10)

For 5 −, we have

[A0C8>−? − A0C8>0 ( 5 −)]∇fA0C8>−? . (3.11)

Thus,

∇f! (f; 5 , _) =[A0C8>+? − A0C8>0 ( 5 +)]∇fA0C8>+?
+ [A0C8>−? − A0C8>0 ( 5 −)]∇fA0C8>−?

,

where A0C8>0 ( 5 +) and A0C8>0 ( 5 −) could be obtained from the historical feedback. For

example, if the probabilities of offering positive feedback are 0.5 and 0.9 in action 0

and the optimal action _8 (B) respectively, A0C8>0 ( 5 +) = 0.5
0.9 . We implement the Gradient

Descent method to update the parameters and all the historical feedback of all actions

is used to compute the gradient and then update f:

f = f − U1

=

∑
B

∑
0
∇f! (f; 5 , _), (3.12)

where = = |( | × |�| is the total number of states-action pairs.

The Adaptive Bayesian Learning with Uncertain Feedback (ABLUF) algorithm is

shown in Algorithm 4. The value of step size U is given in the experiment section based

on the property of the gradient. The variable 3>=4 is obtained from the environment and

the trainer, which is also introduced in the next section. After selecting and taking the

action in Lines 3-4, the system will obtain the trainer’s feedback and record it in ℎ. In

Lines 7-10, the EM algorithm calculates the preferences of the trainer by Eq.(3.6) based

on the records stored in ℎ. After updating _, the parameter f is updated at Line 11 by

Eq.(3.12).
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3.4 Experiment Evaluations

We implement two sets of experiments for two environments with human subjects: train-

ing a virtual dog to catch rats and learning users’ preferences of lighting. We also evalu-

ate the performance, convergence, and robustness of our proposed algorithm in simulated

experiments. Code can be found at https://github.com/hlhllh/Learning-Behaviors-

with-Uncertain-Human-Feedback.

3.4.1 Choice of Human Feedback Model

In general, a good human feedback model is expected to have the following good proper-

ties: 1) It captures the uncertainty of a trainer to give feedback. 2) The optimal action is

unique in each state. 3) When the action becomes far away from the optimal by a same

amount, trainer’s satisfaction will decrease by a similar amount.

For these concerns, we use Gaussian functions as the human feedback model due to

its simplicity. 3 Thus, we define

?+(0, _(B);f, `+) = `+4−
(0−_(B))2

2f2 (3.13)

?−(0, _(B);f, `−) = `− [1 − (1 − n)4−
(0−_(B))2

2f2 ] (3.14)

and the gradients of ! (f; 5 , _) are

2
(0 − _8 (B))2

f3
[A0C8>+? − A0C8>0 ( 5 +)]A0C8>+?

and

−2(1 − n) (0 − _8 (B))
2

f3
[A0C8>−? − A0C8>0 ( 5 −)]A0C8>−?

for 5 + and 5 − respectively. The learning rate U is set to be 0.4f3. The f3 term aims at

eliminating the denominator to avoid a very small update of the parameter f when the

value of f is large.

3Our robustness analysis shows that the Gaussian functions model well adapts to situations where
the way trainers give feedback is different from the Gaussian functions. Other forms of human feedback
model could also be considered, such as the probability density functions of Cauchy distribution, Logistic
distribution, etc. We leave the exploration of various forms of human feedback model as future work.
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3.4.2 Baselines

We compare with two state-of-the-art algorithms: Inferring Strategy-Aware Bayesian

Learning (ISABL) algorithm [58] and Upper Confidence Bound (UCB) algorithm [3].

• ISABL [58] is a Bayesian learning algorithm aiming at utilizing human feedback

to train an agent. Expectation-Maximization method is used to calculate the best

action. This algorithm outperforms traditional reinforcement approaches like Q-

learning, which is a Bayesian learning algorithm aiming at utilizing human feedback

to train an agent. They assume that the human trainer only provides positive

feedback when the agent selects an optimal action. If the agent chooses other

actions, the trainer will give negative feedback. No feedback is also considered

to determine the training policy. The error rate of the ISABL algorithm in our

experiment is 0.1 following the original setting.

• The upper confidence bound (UCB) algorithm [3] calculates the upper confidence

bound of the expected reward for each action and chooses an action with maximum

UCB value. In our experiment, we assign values for different kinds of feedback, that

is, [ 5 +, 5 −, 5 0] → [1,−1, 0]. After receiving the feedback, the upper confidence

bound for an action will be computed by

*��(B, 0) = E[AB,0] +

√
2 log CB,0

CB
,

where the E[AB,0] is the expected feedback value conditioning on the feedback for

action 0 in state B, CB,0 means the number of times that the algorithm chooses 0 in

state B, and CB is the total number of times that state B appears.

3.4.3 Training a Virtual Dog

In our first experiment, trainers are required to train a virtual dog to catch rats. At the

beginning of each step, the dog is at the center of the figure and a rat appears at one of

four edges of the figure. Each edge can be considered as a state in this experiment. Then,

the rat moves to one of 6 points on the same edge following a distribution that is fixed

for each edge and not influenced by the dog. The dog chooses one point from 6 candidate
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(a) State (b) Action

Fig. 3.1: The state and action of training a dog.

(a) Step (b) Rats caught per step (c) The gap between the learned
policy and the optimal policy

Fig. 3.2: The performance of different algorithms to train a dog.

points to go as the action in this state. The probability that the dog catches the rat is

inverse to the distance between the dog and the rat. After observing the locations of

the dog and the rat, trainers provide feedback to current action of the dog. Then, the

next step begins. For example, Figure 3.1a is a state and Figure 3.1b shows the action

of dog and the location the rat appears. The optimal actions for all states are generated

randomly before the experiment begins. For each state, we use a standard Gaussian

function per state to decide the probability that the rat appears at different points,

which is 4−
(0−_(B))2

2 , ∀0. Normalization is executed to ensure the sum of probabilities is

1. Similarly, the probability that the rat is caught is 4−
(0A0C−03>6)2

2 . We invited 40 trainers
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to participate in this experiment. Four states are randomly ordered and appears one by

one.

When to stop? We limit the number of steps that trainers can interact with the

agent to be 15 in each state in order to constrain the time of the experiment. We will

show that this limitation is reasonable since the probability that our algorithm learns

the optimal actions under this constraint is high. The state changes when 1) the trainer

thinks that the dog’s performance is good enough or 2) the number of steps exceeds

15. The experiment ends if all the states satisfy the above mentioned conditions. Our

algorithm and two baselines introduced in the last section are executed one by one with

random order for each trainer. Trainers are not informed of the order.

Metrics. Three metrics are applied to judge the performance of various algorithms:

1) The number of steps used to finish the experiment. 2) The average number of caught

rats over steps. 3) The 2-norm between the learned policy and the optimal policy. A

good algorithm can catch more rats during training and finally learn the optimal policy

with less steps.

Results. Results under these metrics are shown in Figure 3.2. Figure 3.2a shows that

most of trainers finish the training before 15 steps per state. However, for other baselines,

more steps are required to satisfy trainers’ criteria of ending, which indicates that other

algorithms perform relatively badly after training. Figure 3.2b shows the number of rats

caught per step. The larger the value is, the faster an algorithm converges to the optimal

policy during the training. The gap between the optimal policy and the learned policy

is illustrated in Figure 3.2c. The gap is calculated by the 2-norm between these two

policies. These three figures indicate that our algorithm performs the best considering

the speed of convergence and the quality of the learned policy. For all the three metrics,

the ABLUF method is statistically superior to others using Wilcoxon two-sided signed-

rank test (? < 0.01).

3.4.4 Learning Users’ Preference of Lighting

The second experiment aims at learning users’ preference of lighting in different situa-

tions. Users provide different kinds of feedback after an action corresponding to a light

level is chosen by an algorithm. Since users’ utility functions are very difficult for users
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(a) QUERY method. (b) Other methods.

Fig. 3.3: GUI designed for human experiment. (a) Users can change the light level
directly by clicking the buttons. (b) Users can transfer their satisfaction by clicking the
first three buttons.

to access and human sense is inaccurate [8, 40], human feedback is uncertain and they

are likely to provide positive feedback in some sub-optimal action especially when the

difference of two nearby light levels is tiny. To verify this assumption, we introduce the

QUERY method as a baseline, which asks users to directly choose light levels.

We invited 40 students to participate in our experiment and built the experiment

environment by a room with a computer and a YeeLight4 bulb that is able to be controlled

remotely. The experiment is divided into four parts to evaluate four different algorithms

(ABLUF, UCB, ISABL, QUERY) which are arranged randomly during the experiment.

In each part, participants’ preferred light levels in three states (reading, watching videos

and talking with others) are learned and the order of these states is fixed. The number

of optional light levels is 10 (0%, 11%, 22%, . . . , 99% of the bulb’s maximum lightness),

which is a balance of two concerns. 1) It is difficult for human beings to detect the

difference between two adjacent light levels when the number is larger. 2) A smaller

number of light levels would potentially degrade the comfort of users. In the QUERY

method, we directly ask users to adjust light levels rather than providing feedback.

Users can interact with our system by GUIs shown in Figure 3.3. The current light

level and state are shown on the top of the web site and the ‘Done’ button is used to

transform the current state to the next one. For QUERY method, users can directly

4https://www.yeelight.com
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Table 3.1: The result of human experiment (<40= ± BC3. 34E80C8>=) under two metrics.
The performance of our algorithm is statistically superior to others.

Algorithm distance/state #steps/state
UCB 40.48 ± 11.09 14.72 ± 3.49

ISABL 23.22 ± 11.82 8.21 ± 3.37
QUERY 17.75 ± 4.68 7.85 ± 2.32
ABLUF 13.33 ± 4.59 5.96 ± 1.50

click the buttons with numbers to change the light level in Figure 3.3a. A larger number

corresponds to a brighter light level. For other methods, we design a similar GUI shown

in Figure 3.3b. The first three buttons are designed for collecting different kinds of

feedback. To collect feedback accurately, the participants can press the ‘No Feedback’

button to provide ‘no feedback’.

When to stop? For these methods, the algorithm chooses a light level from 10

candidates according to the participant’s feedback. Then, participants are asked to pro-

vide feedback. The maximum number of steps and the time for each algorithm are not

constrained. After participants think that the system has learned their preferences, they

are also asked to stay in the current state for 1 minute and then interact with two more

steps. If the participant does not want to change the light level and the algorithm main-

tains his/her favorite light level when the participant interacts with the agent in the two

additional steps, we think that the algorithm has converged and learned participants’

preference. Then, participants can click the ‘Done’ button and the state will be trans-

ferred to the next one until all of the states are traversed. For the QUERY method,

participants can explore and select their favorite light levels in each state without any

constraint. In each state, they can choose other light levels through the GUI if they feel

uncomfortable. After they think a light level is comfortable, we ask them to stay in the

current lighting situation for 1 minute to ensure that their feeling is stable. If their feeling

does not change, they can click ‘done’ button to transfer to the next state. Otherwise,

they could continue to choose another light level.

Metrics. For this experiment, the step required to finish the training could be used

as the metric. The other two metrics introduced in the last section is not applicable
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Fig. 3.4: The result of human experiment under accumulative distance and steps.

since the setting of this experiment is different. Since users only end the experiment

when they feel comfortable, the learned policy is the optimal one. And it is difficult to

know the probability that a user feels comfortable when the light level is not his preferred

one. Alternatively, we use accumulative distance 3 =
∑)
C=0 [0C−_(B)]2 between the current

action and the optimal action as a metric to evaluate the degree of discomfort. Intuitively,

if the distance is large, the user is not likely to feel comfortable. In practice, if one light

level is selected in the last few steps repeatedly, we will ignore these steps since what

we are concerned about is the total number of steps required for learning rather than

verifying.

Results. The result of our human experiment is shown in Figure 3.4 and Table 3.1.

The ABLUF method is statistically superior to the comparing algorithms using Wilcoxon

two-sided signed-rank test (? < 0.01). In the QUERY method, participants cannot select

their favorite light levels with a small number of steps, since they need to compare similar

light levels to find their favorite ones and their strategies of finding preferred light levels

are radical. For example, when the light level is too bright, users are prone to select a very

dark one and then use more steps to find the optimal one. This observation is supported

by [8, 21] which show that utility functions are very difficult for users to access, which

indicates that they cannot tell their preferred light levels accurately without comparison.

Our algorithm designs a more efficient way to explore various light levels according to

participants’ feedback.
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Fig. 3.5: The result of dog training experiment with different numbers of actions and
states.

3.4.5 Performance in Various Synthetic Environmental Settings

In this subsection, we implement experiments with simulated trainers/users in the above

mentioned environments to answer three questions: 1) How does the number of actions

and states influence the performance of different algorithms. 2) Can our algorithm learn

the true value of f precisely? 3) Can our algorithm perform well when trainers does not

follow our feedback model? The experimental results show that the ABLUF algorithm

is better than two baselines significantly (? < 0.01 by t-test) and can learn the value of

f accurately in most cases.

Ablation. To illustrate the importance of updating the feedback model, we also

compare with Bayesian Learning for Uncertain Feedback (BLUF) algorithm, a simplified

version of our ABLUF algorithm, where we treat the parameter f as a constant input

38



Chapter 3. Learning Behaviors with Uncertain Human Feedback

3 6 9
The number of actions

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(a) Fixed #states: 4

2 6
The number of states

1.0

1.5

2.0

2.5

3.0

(b) Fixed #actions: 3

Fig. 3.6: The values of f after training.

(f ∈ {0.1, 1, 3} in our experiments). This means that we have prior knowledge about

the changed ratio of the probabilities at action 0 given the distance 3 (0, 0∗B). However,

it is hard to get sufficient data to obtain such prior knowledge in the real world for each

trainer. Thus, the BLUF algorithm is not feasible in our human experiment. We only

compare with it to illustrate the impact of an accurate f in this simulated experiment.

Answer for the first question. For the synthetic data, the probabilities of obtaining

different kinds of feedback follow our feedback model in which f = 1 and ` is randomly

generated. The optimal actions are generated randomly for various states. For both

environments, we set the number of actions to 3, 6 and 9 when the number of states is 4.

When the number of actions is 3, we vary the number of states to 2 and 6. Trainers are

allowed to interact with algorithms for 15 steps per state, which is similar to our human

experiment.

For the dog training environment, Figure 3.5 shows the performance of all the al-

gorithms in different settings. The sub figures indicate that the change of the number

of actions affects performance more significantly due to two reasons: 1) There are more

sub-optimal actions when the number of actions is large, which increases the difficulty

to figure out the optimal actions. 2) The worst case for two metrics becomes worse. The

maximum distance of the optimal action and another action increases from
√

2 to
√

8

when the number of actions varies from 3 to 9. Similarly, the minimal probability of

catching a rat declines from 4−2 to 4−32. Therefore, performance of all algorithms de-

scends. Our ABLUF method outperforms all the baselines except the BLUF algorithm
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Fig. 3.7: The result of dog training experiment with randomly generated trainers when
|B | = 4 and |0 | = 6.

with accurate f = 1 known in advance. For other ablation methods with biased f, our

adaptive method achieves better performance, which shows that an accurate f is crucial.

However, the variation of states does not impact the number of the rats caught per

step, since the probabilities of catching rats are similar for both the optimal action and

a sub-optimal one. This conclusion is verified by the last figure, where the gap increases

with respect to the number of states. The figure illustrates that the learned policy is

worse when |B | = 6. However, the rat caught per step does not decrease, which indicates

that a sub-optimal policy does not affect much in this setting. The performances of

ABLUF and BLUF are similar when |B | = 2. The reason would be that a simple setting

could be solved by an inaccurate model such as ISABL.

For the lighting control environment, similar results are displayed in Figures 3.8a to

3.8e. Since the maximum value of [0−_(B)]2 increases dramatically when we change the

number of actions form 3 to 9. The accumulative distances of all the algorithms vary

rapidly form Figure 3.8a to Figure 3.8c, while the increase is relatively small when the

number of states becomes larger, which is the same as the dog training experiment.

Answer for the second question. Figure 3.6 illustrates the learning results of

the parameter f summarised from two environments. The worst case appears when

|B | = 4, |0 | = 9 and |B | = 2, |0 | = 3. In the simplest setting, the accuracy of f does not

have a significant influence on convergence and the ABLUF algorithm figures out the

optimal actions quickly without collecting enough feedback. Thus, f cannot be learned
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Fig. 3.8: Accumulative distance trend with the change of the number of states and
actions.

precisely. When |B | = 4 and |0 | = 9, since the limitation of steps is 15 per state, it is

not enough for our algorithm to converge to the optimal policy and thus the estimate

of the ratio A0C8>0 ( 5 ) is biased leading to the update towards wrong directions. This

phenomenon would be eliminated with more steps and feedback, since for other settings,

our algorithm can learn a relatively precise f with little variance.

Answer for the third question (Robustness Analysis). Additionally, we eval-

uate our algorithm in the worst case, in which the trainer does not follow our feedback

model and the probabilities of providing different kinds of feedback are generated ran-

domly. We set |B | = 4 and |0 | = 6, which is the same as the human experiment for training

virtual dogs. We randomly generate simulated trainers and the only constraint is that

the optimal action at each state has the highest probability of receiving positive feedback

and the lowest probability of receiving negative feedback. The restriction is mild because

of the definition of ‘the optimal action’. Figure 3.7 and Figure 3.8f demonstrate that

even for the worst case, our algorithm outperforms the other two baselines. The ABLUF

method performs the best in this case where we do not have any prior knowledge about

human feedback models. Since we fix the value of f for BLUF algorithm, it performs not
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well when the true value of f differs from the prior knowledge given to BLUF. However,

the ABLUF method can learn an approximated model even if these trainers do not follow

our feedback model and thus is robust.

3.5 Chapter Summary and Discussion

In this chapter, we consider the uncertainty when humans provide feedback. More specif-

ically, trainers are likely to provide positive feedback, negative feedback and no feedback

to any action no matter if the action is optimal or not. To address this issue, we propose a

novel feedback model that has two sets of parameters to control the shape of functions in

the model. An approximated Expectation Maximization (EM) algorithm combined with

Gradient Descent (GD) method is proposed to learn an optimal policy and update the

feedback model simultaneously. To illustrate the performance of the novel method, we

implement experiments on both synthetic scenarios and two different real-world scenarios

with human participants. Experimental results indicate that our algorithm outperforms

baselines under multiple metrics. Moreover, robustness analysis shows that our algorithm

performs well even if trainers do not follow our feedback model.

The proposed human feedback model can be applied to recommender systems as what

we show in the second experiment, which is learning preferences according to human

feedback. One possible application is understanding the ratings in online e-commerce

platforms. Since different users have different habits of providing ratings, human feedback

models can help us to understand the real meanings of the ratings. For example, if a user

always gives high ratings to whatever he purchased, the low rating given by this user to

an item would indicate a more serious criticism than another user, who always gives low

ratings.
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Chapter 4

Contextual User Browsing Bandits
for Large-Scale Online Mobile
Recommendation

4.1 Introduction

With the popularization of e-commerce platforms, a considerable proportion of users

visit e-commerce platforms like Amazon and TaoBao by mobile devices. In typical rec-

ommendation scenarios of these platforms, a list of items is recommended online based

on the features of items and the profiles of users. Due to the limited screen size of mobile

devices, only the first few items of the list are displayed on users’ mobile devices at first

glance. To view the rest of the list, a user needs to slide the screen to go to the next

page. In this process, the user can click an item that attracts him. After viewing the

details of the item, he can return to the list to browse other items and make multiple

clicks. If none of these items attracts the user in one or two pages, he is likely to quit

from the recommendation scenario or the application.

In the aforementioned process, positions of items have a significant influence on clicks,

since the probability of examination (a user views an item) is normally larger if the rank

of an item is higher, which is called position bias. Moreover, it is possible that the user

leaves the scenario without browsing all items and this phenomenon is called pseudo-

exposure. For example, if we recommend a list of items to a user, he clicks the first

item to view the details of it, and then returns to the recommended list to browse two

commodities at position 2 and 3. The rest of commodities are not viewed. However, due
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(a) (b)

Fig. 4.1: Pages in some e-commerce platforms

to the cost of data transmission and limited computation in mobile devices, it is tricky

to accurately know which items are viewed. In many cases, we only know that he clicks

the first one. Items behind position 3 are viewed as negative samples leading to biased

rewards, since most of the existing bandit researches assume that all the recommended

items are browsed by users.

This chapter 1 aims at addressing the position bias and the pseudo-exposure prob-

lem to improve the performance in the online recommendation. We adopt the contextual

bandit framework, which is widely used for online recommendation. There are a few chal-

lenges that should be addressed to apply the bandit framework in our problem. First,

a set of arms should be selected each round since a list of items is recommended in the

online recommendation. However, traditional contextual multi-armed bandit algorithms,

such as LinUCB [49], only choose one arm each round and thus cannot be applied in

our problem directly. Second, the position bias and pseudo-exposure issue impact our

dataset. If we directly learn from such data, clicks are biased due to the influence of posi-

tions and some items that are not viewed by users are treated as negative samples. Thus,

the learned user preferences could be inaccurate. Although position bias is widely studied

in recommender systems, only a few works consider it in the bandit domain. Though

1This chapter has been published in [24].
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combinatorial bandit algorithms [37, 38, 46, 74] have been proposed to pull a set of arms

in each round, existing works rarely consider the position bias issue in contextual combi-

natorial bandit methods. There are some attempts to model the influence of positions on

clicks, such as the Cascade Model [15] and the Position-Based Model [14]. However, the

Cascade Model and its extension directly assume that users will not browse the items be-

hind the last click and ignore them, which is not accurate. The existing researches [44,48]

that apply the Position-Based Model in bandit algorithms ignore the features of items,

which leads to poor performance in large-scale recommendation problems.

In this chapter, we propose a novel contextual combinatorial bandit algorithm to

address these challenges. Our contributions are four-fold. First, we model the online

recommendation task as a novel contextual combinatorial bandit problem and define

the reward of a recommended set. Second, aiming at addressing the position bias and

the pseudo-exposure issue, we assume that the examination probability is determined

by both the position of an item and the last click above the position. We estimate the

examination probabilities of various positions based on the User Browsing Model and

use them as weights of samples in a linear reward model. Third, we formally analyze

the regret of our algorithm. For ) rounds,  recommended arms, 3-dimensional feature

vectors, we prove an $̃ (3
√
) ) regret bound. Finally, we propose an unbiased estimator

to evaluate our algorithm and other baselines using real-world data. An online experiment

is implemented in Taobao, one of the largest e-commerce platforms in the world. Results

on two CTR metrics show that our algorithm significantly outperforms the extensions of

some other contextual bandit algorithms both on the offline and online experiments.

4.2 Problem Statement and Formulation

In this section, we first provide a problem statement and describe the challenge encoun-

tered by mobile e-commerce platforms. We then formally formulate contextual combina-

torial bandit problem and give the definition of reward.

With the popularity of smartphones, more and more consumers are prone to visiting

e-commerce platforms by mobile applications. Different from web pages, the space of a

page on mobile applications is limited and usually only a few commodities can be dis-

played. For example, Fig. 4.1a and 4.1b display 3 and 2 commodities respectively. Our
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recommendation scenario is from Taobao, in which 12 commodities are recommended

when a user enters the scenario. However, only one item can be seen at the first glance

because of the limited screen size of mobile devices. Due to this, the data we obtained

is affected by positions. More specifically, the probability that a user examines an item

depends heavily on its position. 1) For an item, a higher position leads to a higher prob-

ability of click [36]. 2) Since we only obtain the items that are recommended and clicked

after a user leaves our recommendation scenario, whether the items whose positions are

behind the last click are viewed or not is unknown, which leads to the pseudo-exposure

issue. An idea for addressing these problems is evaluating the influence of positions based

on clicks and positions. The estimated influences are utilized as the weights of samples

to learn users’ preferences more accurately in this chapter.

Recommending multiple commodities to a user based on context information can

be naturally modeled as a contextual combinatorial bandit problem. Formally, a con-

textual combinatorial bandit method " proceeds in discrete rounds C = 1, 2, 3, . . . , ) .

In round C, " observes the current user DC and a candidate set AC including < arms

and a set of context -C that includes 3-dimensional context vectors G0 for each arm

0 ∈ AC . The algorithm " will choose a subset (C including  arms from AC based on

the observed information and then receive a reward vector '(C containing the rewards

A0:,C ∈ {0, 1}, ∀0:,C ∈ (C , which is the semi-bandit feedback used in existing researches.

The algorithm then updates the strategy of choosing arms based on the tuple ('(C , -C).
Now we define the reward functions for the recommended set (C following [38, 46, 56,

107]. To avoid the abandon of users, we hope that at least one item in the set (C attracts

users and can be clicked. In view of this, the reward of the selected set is defined to be

1, if at least one of the  items is clicked, formally,

� ((C) =
{

1 if
∑
A∈'(C A > 0

0 otherwise

In our recommendation problem, we view the commodities in the candidate set as arms.

When at least one displayed commodity is clicked, the reward A is 1, otherwise 0, which is

the click through rate (CTR) of a recommended set. For bandit algorithms, the objective

usually is to minimize the regret, formally '()) = E
[∑)

C=1 � ((∗C ) − � ((C)
]
, where (∗C is

the optimal set for round C. Thus, the goal of minimizing the regret can be transferred

to maximize the expected CTR E[� ((C)] in our problem [49].
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Algorithm 5: LinUCB algorithm with User Browsing Model (UBM-LinUCB)

Input: Constant _ ≥ q′F, V ≥ ‖\∗‖22 (We set _ = q′F, V = 3 in experiments),
weights of different positions {F:,: ′ |: = 1, . . . ,  , :′ = 1, . . . , : − 1},the
number of items in a page  , the set of arms A, the set of context -;

1 �0 = _�3 (3-dimensional identity matrix);
2 10 = 03×1 (3-dimensional zero vector);
3 for C = 1, . . . , ) do

4 U =

√
3 ln

(
1 + q′F C

3_

)
+ 2 ln (C ) +

√
_V;

5 \ = �−1C 1C ;

6 ?0 = \
)G0C + U

√
G)0C �

−1
C G0C ;

7 (C = ∅;
8 for : = 1, . . . ,  do
9 0:,C = arg max0∈AC\(C ?0;

10 (C = (C ∪ {0:,C};
11 Display (C to a user;
12 Get reward vector '(C = [A0C ,1 , . . . , A0 ,C ] of (C ;
13 Compute :′ for all positions based on '(C ;

14 �C = �C−1 +
∑ 
:=1 F

2
:,: ′G0:,CG

)
0:,C

;

15 1C = 1C−1 +
∑ 
:=1 F:,: ′A0:,CG0:,C ;

4.3 LinUCB with User Browsing Model

In this section, we propose our contextual bandit algorithm UBM-LinUCB (LinUCB

with User Browsing Model), illustrated in Algorithm 5, which addresses the position

bias and pseudo-exposure issue and is able to recommend a list of commodities with the

theoretical guarantee.

After users view some items shown in the screen, they decide to slide the screen

or leave, if these items are not attractive. Intuitively, the probability that users leave

increases after seeing a long sequence of unattractive items. Thus, the probability of

examination decreases when the position of an item becomes lower [36]. However, if an

item is clicked, this item must be displayed in the screen. Since the screen usually can

display more than one items, the nearby item (behind the clicked one) are more likely

to be displayed and the probability of examining increases. Therefore, we introduce

position weights relating to both positions and clicks to address the position bias and
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the pseudo-exposure issue. For all the items, we estimate the probability of examination

rather than treating them as negative samples or ignoring them directly. Inspired by

the User Browsing Model (UBM) [14], we assume that the click through rate AC,0 of

an arm is determined by the examination probability F and attractiveness W(0) of arm

0, namely, AC,0 = F:,: ′W(0), where W(0) is the attractiveness of an item 0 and F:,: ′ is

the examination probability meaning the probability that a user views an item. We

assume that F:,: ′ depends not only on the rank of an item :, but also on the rank of the

previously clicked item :′. By assuming that the attractiveness of items follows a linear

function, we propose a new linear reward model:

E[A0: ] = \) (F:,: ′G0: ) (4.1)

where \ is an unknown coefficient vector whose length is the same as G0: . F:,: ′ is the

examination probability for the rank : when the position of the last click is :′. We

assume that F:,: ′ is a fixed constant, since it only depends on the structure of a page

and can be learned in advance [48]. We introduce how to obtain F:,: ′ in the experiment

part and focus on our main contribution, bandit algorithm, in this section.

We use ridge regression to solve the linear model [49]. The objective of ridge regression

is to minimize the penalized residual sum of squares (PRSS):

%'(((\) =
∑)

C=1

∑)

:= 
[A0:,C − \) (F:,: ′G0:,C )]2 +

∑3

9=1
\ 9

2 (4.2)

where \ 9 is the 9-th element of \. To simplify notation, we use F:,: ′ to denote F:,: ′,0:,C ,

which is the examination probability of the item 0:,C at round C where the position of 0:,C

and the last click before 0:,C is : and :′ respectively.

Let - be a ) × 3-dimensional matrix whose rows correspond to the context G0:,C of

the arm 0:,C in round C and position :. , is also a ) ×3-dimensional matrix whose rows

are F:,: ′11×3, weights of 0:,C in round C and position-pair (:, :′). ' contains rewards A0:,C

for the item 0:,C each round C and position :. The PRSS function can be transformed to

a compact representation:

%'(((\) = [' − \) (, ◦ -)]) [' − \) (, ◦ -)] + _‖\‖22 (4.3)

where _ is a constant to control the weight of the regularizer and ◦ is the Hadamard

product and (, ◦ -)8, 9 = ,8, 9-8, 9 . Thus, each row of , ◦ - is F:,: ′G0:,C .
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To minimize %'(((\), the derivation m%'(((\)
m\

should be zero. Then, the solution of

\ is:

\ = [(, ◦ -)) (, ◦ -) + _�3]−1(, ◦ -))' (4.4)

where �3 is the 3 × 3 identity matrix. Let � = (, ◦ -)) (, ◦ -) +_�3 and 1 = (, ◦ -))'.

Applying the online version of ridge regression [49], the update formulations of �C and

1C in round C are shown as follows:

�C+1 = �C +
∑ 

:=1
F2
:,: ′G0:,CG

)
0:,C

(4.5)

1C+1 = 1C +
∑ 

:=1
F:,: ′G

)
0:,C
A0:,C (4.6)

The initialization of � and 1 is shown in Line 1 and 2. Then, we use Eq. (4.5) and (4.6)

in Line 14 and 15 respectively to update these two coefficients in our algorithm.

The standard deviation of the ridge regression [91] for any 0 and a given pair {:, :′}
is √

F:,: ′G
)
0 �
−1
C F:,: ′G0

and the upper confidence bound used to select the best recommended set is

?0 = \
)F:,: ′G0 + U

√
F:,: ′G

)
0 �
−1
C F:,: ′G0

= F:,: ′ (\)G0 + U
√
G)0 �

−1
C G0)

(4.7)

where U is a parameter related to C, which is defined in the next section. Since the

parameter F:,: ′ for a fixed pair {:, :′} is a constant and is not related to 0, we can

ignore it and use the simplified equation in Line 6:

?0 = \
)G0 + U

√
G)0 �

−1
C G0 (4.8)

In the next section, Lemma 4.1 indicates how to select the optimal set based on ?0 and

Theorem 4.1 defines U and constants used in the algorithm.

4.4 Theoretical Analysis

In this section, we give the theoretical analysis and prove that UBM-LinUCB achieves

the regret bound $̃ (3
√
) ) with respect to the aforementioned formulation of reward,
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where the $̃ notation hides logarithmic factors. Our key contributions are 1) the

proof for Lemma 4.1, and 2) considering F:,: ′, which depends on both position

: and the position of the last click :′ in Theorem 4.1. We define the expected

cumulative regret at round ) formally:

'()) = E
[∑)

C=1
� ((∗C ) − � ((C)

]
(4.9)

where (∗C is the optimal set.

We first show that with respect to our novel linear reward model, the optimal set (∗C

at each round C selects the arms with top- values of G)0C \
∗, which holds for ' based on

the rearrangement inequality. Then, the upper bound is proved.

Let W(0) = G)0 \∗. We assume that, without loss of generality,

F 9+1, 9 ≥ F 9+2, 9 ≥ · · · ≥ F , 9

and

F:,:−1 ≥ F:,:−2 ≥ · · · ≥ F:,0.

These two assumptions can be explained intuitively: 1) If a user clicks the 9-th position,

the probability that he observes :-th (: > 9) position is inversely related to the distance

:− 9 . 2) For a fixed position :, the probability of examination is larger when the position

of the last click :′ is closer to :.

The following lemma verifies that the optimal set (∗C simply selects the arm 0 with

the :-th highest value W(0) at the :-th slot for � by the rearrangement inequality. Let

(∗C = {0∗1,C , ..., 0
∗
 ,C
} where 0∗

:,C
is the optimal arm recommended at the :-th position. We

have:

Lemma 4.1 (∗C maximizing E[� ((C)] consists of 0∗
:,C

being the arm with the :-th highest

value W(0).

Now we transform the upper bound of ' and give the proof.

Lemma 4.2 ( [38]) The upper bound of ' is∑)

C=1

∑ 

:=1
F:,0

[
W(0∗:,C) − W(0:,C)

]
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The proofs of two Lemmas are in the Appendix. Finally, we prove the upper bound

of '()) for UBM-LinUCB algorithm.

Theorem 4.1 Let q′F =
∑ 
:=1 F

2
:,:−1. When _ ≥ q′F ≥ 1, ‖\∗‖22 ≤ V and

U ≥

√
3 ln

(
1 + q

′
F)

3_

)
+ 2 ln () ) +

√
_V,

if we run UBM-LinUCB algorithm, then

'()) ≤ 2U

√
2) 3 ln

(
1 + q

′
F)

_3

)
+ 1

Proof. (sketch) The structure of proof follows [1, 97]. The main contribution is con-

sidering F:,: ′, which depends on both position : and the position of the last click :′.

We first define an event to judge the distance between the true attractiveness and the

estimated attractiveness of each item 0 ∈ �C :

� = {|〈G0:,C−1 , \∗ − \C−1〉| ≤ U
√
G)0:,C−1�

−1
C−1G0:,C−1 ,∀0:,C ∈ �C ,∀C ≤ ),∀: ≤  }

If event � happens, the regret can be bounded by the variance

'()) ≤ 2UE

[∑)

C=1

∑ 

:=1
F:,0

√
G)0:,C �

−1
C−1G0:,C

]
≤ 2U

√
2) 3 ln

(
1 + q

′
F)

_3

)
Then, we prove that the � happens with the probability 1 − X when U satisfies the

condition shown in the Theorem. And the bound of regret is ) X when � does not

happen. Let X = 1
) 

and combining these two parts together, we finish the proof.

The full version of the proof is in the Appendix. We prove that our algorithm can

achieve $̃ (3
√
) ) bound and the $̃ notation hides logarithmic factors. Our bound is

improved compared to related works [56, 107], which proved $̃ (3 
√
) ) and $̃ (3 

√
))

bounds respectively with the same reward function.
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4.5 Experimental Evaluation

In this section, we describe the details of our experiments. First, we define the metrics of

performance and the evaluation method. An unbiased estimator is introduced. Second,

benchmark algorithms are listed and introduced briefly. Then, we introduce a public

dataset, Yandex Personalized Web Search dataset2, used in a simulated experiment and

a real-world dataset provided by Taobao. We also implement an online experiment in

the e-commerce platform. The details of data collection and processing are presented.

Finally, the results of both offline and online experiments are provided and analyzed.

4.5.1 Metrics and Evaluation Method

Corresponding to the formulation of reward, we use the �)'B4C , the expectation of � ((C),
as the metric:

�)'B4C =

∑)
C=1 � ((C)
)

Additional Metric. In practice, the CTR of all the recommended items is also widely

used. Thus, we define the accumulative reward �)'BD< of the set (C , which is the expected

total clicks of (C :

�)'BD< =

∑)
C=1

∑
A∈'(C A

)

Offline unbiased estimator. Since the historical logged data is generated by a

logging production policy, we propose an unbiased offline estimator, User Browsing In-

verse Propensity Scoring (UBM-IPS) estimator, to evaluate the performance inspired by

Li et al. [50]. The idea is to estimate users’ clicks on various positions based on UBM

model and the detail of reduction is in the Appendix. The formulation of the UBM-IPS

estimator is shown as follows.

+*�" (Φ) = E-
[
E (∼c ( · |- )
A∼� ( · |- )

[∑ 

:=1

∑:

: ′=0
A (0: , :, :′|-) ·

〈,̃,Φ(0: , ·, ·|-)〉
〈,̃, c(0: , ·, ·|-)〉

] ]
(4.10)

where � is the logged dataset, 0: ∈ A, c is the policy that generates �. Φ is the

estimated policy, ,̃ = [F1,0, F2,0, . . . , F , −1] is a vector including position weights.

2https://www.kaggle.com/c/yandex-personalized-web-search-challenge
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Given the features of a candidate set and a user -, c(0: , ·, ·|-) consists of the probabilities

that 0: appears at different : and :′ under c corresponding to ,̃ which is

[c(0: , 1, 0|-), c(0: , 2, 0|-), . . . , c(0: ,  ,  − 1|-)] .

〈·, ·〉 means the dot product of two vectors.

The estimator is unbiased when 1) the term 〈,̃,Φ(0: ,·,·|-)〉
〈,̃,c(0: ,·,·|-)〉

is not infinite and 2) users’

behaviors follow the UBM model. For 1), in our offline experiment, we treat commodi-

ties recommended by c in one record as candidate set. Thus, all the items chosen

by Φ have been selected by c for a specific -, that is Φ(0: , ·, ·|-) ≠ 0 ( +1)/2 and

c(0: , ·, ·|-) ≠ 0 ( +1)/2. Thus, the UBM-IPS term is not infinite. For 2), we use the

evaluation method proposed in [10] to empirically estimate the accuracy of the UBM

model in our recommendation dataset. This evaluation method removes the position

bias by using the data in the first position as the test set and the rest as the training set.

The experiment result in our e-commerce dataset shows that the UBM-IPS estimator

is better than traditional IPS estimator that does not involve the UBM model (MSE:

UBM-IPS: 0.1754, IPS: 0.1943), although the MSE is not 0 (totally unbiased). Thus, we

use UBM-IPS to evaluate different algorithms empirically in the offline experiments.

Since :′ depends on previous clicks, Φ(0: , ·, ·|-) cannot be obtained directly. In

practice, we first generate a recommended set by Φ. Since Φ is deterministic in our case,

the recommended set determines Φ(0: , ·, ·|-). Then, we obtain :′ sequentially. More

specifically, when the policy Φ chooses the set (Φ after sampling a context set - from

dataset, we first collect |� (·|-) | records � (·|-) with the same context set -. Then, for

the first commodity 01 ∈ (Φ, delete the terms that do not include 01 in the Eq. (4.10):

1

|� (·|-) |
∑

01∈� (·|-)
A (01, :, :′|-)

〈,̃,Φ(01, ·, ·|-)〉
〈,̃, c(01, ·, ·|-)〉

(4.11)

This equation is used to simulate the reward A (01, 1, 0), where : and :′ are the position

of 01 and the last click before : in records respectively. Since Φ is deterministic,

Φ(01, ·, ·|-) =
{

1 5 >A : = 1, :′ = 0
0 >Cℎ4AB

.

Notice that the simulated reward would be larger than one since 〈,̃,Φ(01, ·, ·|-)〉 would

be larger than 〈,̃, c(01, ·, ·|-)〉. Then, we obtain the :′ for the second commodity 02
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based on reward A (01, 1, 0):

:′ =

{
1 A (01, 1, 0) ≥ 1 >A B(A (01, 1, 0)) = 1
0 B(A (01, 1, 0)) = 0

where B(·) is the reward sampled from the Bernoulli distribution with mean A (01, 1, 0).
Given a fixed :′, we can use the above method to compute the reward of 02. Repeating

this process, the rewards of all commodities in set (Φ can be obtained. Then, the �)'BD<

and �)'B4C can be calculated. For the �)'BD<, we directly use the average of the unbiased

rewards over ) . For the �)'B4C , we use the the Bernoulli distribution to sample a reward

(0 or 1) if A ∈ [0, 1]. If the reward of a recommended item is not less than 1, � ((C) = 1.

Influence of Positions. The influence of position is mainly determined by the

structure of a page. Since a page’s structure does not change in the long term, the

position influence F:,: ′ can be considered as constants following [48]. We use the EM

algorithm suggested by [14, 16] to estimate F:,: ′ in advance. The max and min values

are 0.55 and 0.17 respectively for our recommendation scenario. For the Yandex dataset,

they are 0.96 and 0.015. The difference is caused by the distribution of clicks in these

two datasets. Since the Yandex dataset is collected from a web search scenario, 79.3%

of users click the first web page shown in the result, which is usually the most relevant

to the keyword they queried. Clicks are very rare for low-ranking web pages. Therefore,

the gap between the max and min position influences is more significant. However, for

our recommendation scenario, users usually are not purposeful and prone to browse more

items (see Fig. 4.3). Thus, the gap of position influences is relatively small.

4.5.2 Benchmark Algorithms

We evaluate 4 baseline methods to illustrate the performance of our proposed algorithm.

We only compare with combinatorial bandit algorithms that are based on LinUCB con-

sidering fairness and the problem setting. The first one is a context-free combinatorial

bandit algorithm merged with the PBM model. The other three algorithms are con-

textual combinatorial bandit algorithms. Theoretical optimal parameters are used in

experiments.

• PBM-UCB [48]: The PBM-UCB algorithm combines the PBM model with the

UCB algorithm. Positions bias is considered to compute the mean and variance
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of an arm’s reward by applying the position-based model (PBM), which assumes

that the position bias is only related to the rank of an item. The position bias is

obtained by the EM algorithm mentioned in [48]. The upper confidence bound of

this algorithm is used to choose the best arm in round C:

%�"*��0 (C) =
'BD< (C)
#̃0

2(C)
+

√
#0 (C)
#̃0 (C)

√
X

2#̃0 (C)

where 'BD< (C) is accumulated reward obtained by the item 0, #0 (C) =
∑
1{0 is

selected} and #̃0 (C) =
∑
F:01{0 is selected}.

• C2UCB [72]: C2UCB algorithm is a combinatorial extension of the LinUCB algo-

rithm. In each round, the algorithm selects  items with top- upper confidence

bounds. After displaying them to a user, the algorithm can observe the rewards for

these  items and execute the update equations for each of these items.

• CM-LinUCB: CM-LinUCB is a simple extension of [51, 107] based on the Cas-

cading Model. This model assumes that a user scans items from top to bottom

until they find a relevant item. After they click the relevant item, they will leave

without viewing other items behind. Thus, we ignore items behind the first click

and only use the rest of samples to update parameters in this extension, which is

the same as the First-Click algorithm used in [38].

• DCM-LinUCB [56]: DCM-LinUCB is an contextual bandit algorithm based on

Dependent Click Model. DCM is an extension of CM by assuming that after a

user clicked an item, they may still continue to examine other items. The model

introduces a satisfaction variable to determine whether the user will continue to

view other items or not. If the satisfaction variable equals 1, the user will leave.

Otherwise, he will continue to scan other items.

4.5.3 Web Search Recommendation

The Yandex Personalized Web Search dataset contains 35 million search sessions. Each

session contains a user ID, a query ID, IDs of web pages shown as result, and clicks. The
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Fig. 4.2: The performances of algorithms when  changes.

top 3 most frequent queries are used for evaluation. The position influences are estimated

by the PyClick library [14]. Since the web pages in the dataset do not have corresponding

features, we build features for all the web pages. We first construct a user-website matrix

"D×< based on the records in the dataset, where D = 194749 and < = 2701 is the number

of users and web pages respectively. The value of the element " (8, 9) is determined by

the attractiveness of a web page 9 for a user 8 estimated by a part of Eq. 4.11:

1

|� (·|-) |
∑

0 9∈� (·|-)〉
A (0 9 , :, :′|-) ·

1

〈,̃, c(0 9 , ·, ·|-)〉
(4.12)

where - = 8 represents the user 8. Thus, the simulated reward can be obtained by

multiplying the position weight 〈,̃,Φ(01, ·, ·|-)〉 given any policy Φ. The features are

generated by the truncated randomized SVD provided by Scikit-Learn library3, i.e.,

" ≈ *(+) .

We set the dimension of ( to 10 and use the vector [* (8), + ( 9)] as the feature of web page 9

for the 8-th user. Notice that |( | = 10 is a balance between accuracy and complexity. Since

the truncated randomized SVD is an approximated decomposition method, a smaller

|( | leads to worse accuracy. For example, all the contextual bandit algorithms cannot

perform normally when |( | = 5. And a larger |( | increases the computational complexity

since the inverse of �: need $ (33) time in each round, where 3 is the dimension of the

feature vector.

3https://scikit-learn.org/stable/
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Fig. 4.3: The distribution of the last clicks’ positions. The numbers outside the pie are
positions of the last clicks. For example, 1 means that the last clicks of users are at the
first position.

For each round, a user is randomly chosen to decide the attractiveness of different

web pages. We only use the web pages that are shown to the user as the candidate set,

since we cannot know the attractiveness of a web page if it is never displayed to the user.

The simulated reward is estimated by the estimator we mentioned above using Eq. 4.11.

Result

The result after 5000 rounds is shown in Fig. 4.2 (average of 10 runs). When  = 3,

contextual bandit algorithms perform similarly except CM-LinUCB. The reasons are:

1) The influence of positions is relatively small when  = 3. Thus, the effectiveness of

different models cannot be revealed well. 2) Due to the hypothesis of the Cascading

Model, CM-LinUCB only uses samples not behind the first click to update, which leads

to insufficient training. When  becomes larger, the performance of C2UCB declines

dramatically and other contextual bandit algorithms outperform it, since C2UCB does

not consider the impact of positions. When  is larger than 4, the CTRs change slightly

and do not increase anymore, since 91.6% of users click one web and 98.4% of users clicks

2 web pages or less. Moreover, the ratio of positive samples descends rapidly and has

a negative impact on the learning results, especially for the method not involving click

models.
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Fig. 4.4: Performance of each algorithm under two CTR metrics with the increase of the
number of rounds.

4.5.4 E-commerce Recommendation

Our real-world dataset is provided by Taobao. We utilize the data from a recommenda-

tion scenario in the platform, where 12 items are selected and then displayed to users.

There are two special characteristics of this scenario. First, the number of commodities

is fixed to 12. The mobile app of this platform will not recommend new items after all of

these 12 items are browsed. Another characteristic is that users can only view the first

item and part of the second item when they enter this scenario. To observe the rest of

the items, users need to slide the screen.

We collect data following the method of the KDD Cup 2012 track 2 dataset4, which

contains logs of a search engine and is used in researches about multiple-play bandit

problem [44,48]. The items in our dataset correspond to the Ads in the KDD Cup 2012

4https://www.kaggle.com/c/kddcup2012-track2
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track 2 dataset. The description of Ads is replaced by the feature vector of items. We

directly use the logs of the e-commerce platform, which is the same as the KDD Cup

2012 track 2 dataset. For each user, the recommender system of the e-commerce platform

selected 12 items from about 900 candidates based on both items’ and users’ features.

Compared with the KDD Cup 2012 track 2 dataset, our dataset can be directly utilized

in experiments without any transformation.

Since we cannot know a user’s real interest if he does not click any item, we remove

the data without clicks from the original log data. After processing, our dataset contains

180k records, while each record contains a user ID, IDs of 12 commodities, context vectors

of 12 commodities and a click vector corresponding to the 12 commodities. The context

vector is a 56 × 1 array including some features of both a commodity and a user, such

as the commodity’s price and the user’s purchasing power. In our offline experiment, we

treat 12 commodities in each record as the candidate set since whether users will click

other commodities is unknown.

To illustrate the position bias and the pseudo-exposure issue better, Fig. 4.3 demon-

strates the distribution of the last clicks’ positions. The number around the circle is the

position of the last click. Only 6.2% of the last items are clicked by users in our data.

If we assume that the items at the positions behind the last click are affected by the

pseudo-exposure, 11
12 of items are biased for the records whose last click’s position is 1,

which accounts for 16.6% of the data. By calculating the weighted sum

11

12
× 16.6% + 10

12
× 11.6% + . . .

, about 54% of rewards are affected by the pseudo-exposure issue. Notice that this

percentage is a rough estimate, since it is possible that some items at positions behind

the last click are viewed by users.

Feature Reduction

Additionally, we reduce the dimension of features inspired by [49], since the time of

computation is closely related to the dimension of context. The update equation of

�: takes $ (32) time and the inverse of �: need $ (33) time in each round. Thus,

in order to improve the scalability of the algorithm, we apply a pre-trained denoising
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Table 4.1: CTRs with the change of  from 3 to 6 when U is optimal. The numbers with
a percentage is the CTR lift.

Algorithm
 = 3  = 4  = 5  = 6

�)'BD< �)'B4C �)'BD< �)'B4C �)'BD< �)'B4C �)'BD< �)'B4C

C2UCB
0.592 0.420 0.643 0.440 0.747 0.510 0.812 0.534
0% 0% 0% 0% 0% 0% 0% 0%

PBM-UCB
0.545 0.396 0.655 0.453 0.744 0.519 0.795 0.522
-7.9% -5.7% 1.8% 2.9% -0.4% 1.7% -2.1% -2.1%

CM-LinUCB
0.578 0.398 0.674 0.464 0.771 0.548 0.839 0.539
-2.3% -5.2% 4.8% 5.4% 3.2% 7.4% 3.3% 9.3%

DCM-LinUCB
0.613 0.408 0.704 0.474 0.820 0.570 0.915 0.614
3.5% -2.8% 9.5% 7.7% 9.7% 11.7% 12.7% 14.9%

UBM-LinUCB
0.660 0.480 0.781 0.538 0.869 0.604 0.976 0.671
11.4% 14.2% 21.4% 22.2% 16.3% 18.4% 20.2% 25.6%

autoencoder [90] to reduce the dimension of the feature space from 56 to 10. The encoder

contains 4 hidden layers with 25,10,10,25 neural units respectively and an output layer

with 56 units. The ReLU activation function is applied to the outputs of the hidden

layers. The context vectors G are perturbed by the vectors randomly drawn from a

uniform distribution between 0 and 1, formally, 8=?DC = 0.95 ∗ G + 0.05 ∗ =>8B4. The

objective of this autoencoder is to minimize the MSE loss ‖G − >DC?DC‖22 between the

context and the output. We adopt the output of the second hidden layer as extracted

features, whose dimension is 10. The extracted features are utilized as the context in our

algorithm and other compared methods.

Result

We conduct offline and online experiments to evaluate various algorithms. The first

part of experiments illustrates the curves of algorithms with the increase of the number

of rounds when  = 3 and 6. The second set of experiments shows the performance

of different algorithms with the change in the number of recommended commodities.

Finally, we implement the online experiment for three days in a real platform and report

the performance in different days. The UBM-LinUCB algorithm performs the best in

most cases.

Performance with the increase of the number of rounds. Fig. 4.4 demon-

strates the performance of our algorithm under two metrics. Sub-figures 4.4a and 4.4c
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Fig. 4.5: Trends in two metrics in the online experiment.
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Fig. 4.6: CTRs of 3 days in the online experiment.

are the trends under the �)'BD< metric when  = 3 and 6 respectively. The other two

sub-figures show the performance under the �)'B4C metric. The UBM-LinUCB algorithm

performs the best in all of these figures. Since the PBM-UCB algorithm does not consider

the features of items, it performs worse than other methods. The speed of convergence

is similar for the contextual bandit algorithms, while PBM-UCB is relatively slow. This

is coincident to theoretical analysis that the regret of contextual bandit algorithms is

independent with the number of items.

When  = 6, the speed of convergence is faster for almost all the algorithms. For

example, for our UBM-LinUCB algorithm, it takes about 30k rounds to converge when

 = 6 while its performance increases slowly until 60k or 70k rounds when  = 3.

The reason would be related to the number of samples obtained in each round. More

specifically,  = 6 means that our algorithm can receive 6 samples per round, which is
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double compared to the case when  = 3. The more samples received in each round,

the faster the speed of convergence is. One exception would be the CM-LinUCB. Since

it only considers the samples before the first click, not all the samples are used for the

update. Thus, the learning rate of CM-LinUCB would be insensitive to the increase of

 .

The reason is that the sub-optimal policy can perform similarly with the optimal

one when  is large. For example, if the recommendation policy is sub-optimal and

the best response is ranked at position 4 or 5, this item can also be displayed when

 = 6. This sub-optimal policy will receive the same reward as the optimal one. Then,

the objectives of algorithms turn to learn a sub-optimal policy, which is easier than

obtaining an optimal policy. Therefore, benchmark algorithms perform better when  is

larger and the performance of our algorithm is slightly affected by  .

Experiments for the Number of Recommended Items  . We run algorithms

to recommend various number of items and summarize the result in Table 4.1. The

C2UCB method is considered as a baseline in the table and the number with a percentage

is the CTR lift compared to C2UCB. A larger CTR of an algorithm indicates its effective

use of data and features. We alter the value of  to demonstrate the influence of the

recommended set’s size. The UBM-LinUCB algorithm improves two CTR metrics by

20.2% and 25.6% when  = 6.

The advantage of our algorithm becomes more significant with the increase of  .

The reason is that the influence of positions is not significant when  is small. When

 = 3, the difference of the value of position weight is small. Thus, the CTR of an

item is similar in the first three positions, which indicates that 1) a sub-optimal policy

can also perform well especially when the recommended items of this sub-optimal policy

is the same as the optimal one and the only gap is the order; 2) the bias introduced

in learning is also relatively small. Then, baseline algorithms without considering the

behavior model of users or using other inaccurate models would obtain good performance

(for example C2UCB). However, when  becomes larger, the performance of C2UCB is

exceeded by other algorithms that involve click models. Moreover, the performances

of different click models can be illustrated more straightforwardly. The performance of

CM-LinUCB becomes worse compared with DCM-LinUCB and UBM-LinUCB, since it

only considers one click.
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Fig. 4.7: The ranking system of our online experiment. The parameters of our algorithm
are stored in the online KV system and used to rank items when users enter our scenario.

This result is similar with that of the paper [49], in which the authors indicate that

contextual bandit algorithms perform well when the ratio  
<

is small.

4.5.5 Online experiment

We implement an online experiment in Taobao. In our scenario, 12 items should be

selected from about 40,000 commodities and displayed on users’ mobile devices. Bucket

test or called A/B test is adopted. More specifically, users that enter our scenario will be

randomly divided into different buckets. Each algorithm is deployed to one bucket and

recommends about 5 millions of communities per day in the large-scale online evaluation.

We use the same metrics as the offline experiment and report the performance of four

algorithms. We do not evaluate PBM-UCB since it is infeasible to store the means and

variances of all the 40,000 commodities in our online platform.

Fig. 4.7 illustrates the structure of our online platform. When users enter our sce-

nario, their information will be concatenated with each item’s feature. Then, an encoder

mentioned in the previous section is used to reduce the dimension of features. In the rank-

ing services, items are ranked according to the features and parameters. More specifically,
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users are divided randomly to different buckets which correspond to different algorithms.

According to the ids of buckets, parameters restored in the online KV system are read

and used to compute the rank given features. The results are displayed in a mobile

application and users give their feedback by interaction. The log center receives the raw

logs and transfers them to samples to train different bandit algorithms. Each algorithm

only obtains samples from its own bucket to update parameters.

Fig. 4.5 shows the trends of cumulative mean of CTRs in three days with the increase

of time. Since the number of samples is relatively small in the first few hours, the

performance of different algorithms is unstable. Except the perturbation on the first two

hours, our algorithm constantly performs the best and the improvement is stable. Notice

that all the algorithms performs well before 6 a.m, which is normal in our platform.

The reason would be that active users shift with time. More specifically, people who

use our app from 0 a.m to 6 a.m usually are keen to shop and thus more likely to

click recommended items. DCM-LinUCB and CM-LinUCB perform similarly, possibly

because a portion of users only click one item. Since the portion is not fixed, their

performances are fluctuated each day. Fig. 4.6 summarizes the total CTRs in each

day. Our algorithm can improve �)'BD< and �)'B4C steadily compared to benchmark

algorithms, although each algorithm’s CTRs change in different dates. The result is

reliable and meaningful considering the complex online environment and the huge volume

of the recommended items (about 60 million). Since CTR is usually positively correlated

with the turnover and profit of an e-commerce platform, our algorithm can improve the

profit directly.

4.6 Chapter Summary

In this chapter, we focus on addressing the position bias and pseudo-exposure problem in

a large-scale mobile e-commerce platform. First, we model the online recommendation

as a contextual combinatorial bandit problem. Second, to address the pseudo-exposure

problem, we utilize the UBM model to estimate probabilities that users view items at

different ranks and propose a novel method UBM-LinUCB to take advantage of the es-

timated probabilities in our linear reward model. Third, we prove a sublinear expected
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cumulative regret bound $̃ (3
√
) ) for our regret function. Finally, we conduct experi-

ments to evaluate our algorithm in two real-world datasets by an unbiased estimator and

an online scenario provided by Taobao, one of the most popular e-commerce platforms

in the world. Results indicate that our algorithm improves CTRs under two metrics in

both offline and online experiments and outperforms other algorithms.
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Chapter 5

Learning to Collaborate in
Multi-Module Recommendation via
Multi-Agent Reinforcement
Learning

5.1 Introduction

The web pages of many online e-commerce platforms consist of different modules. Each

of the modules shows items with different properties. As an example, consider the web

pages depicted in Fig. 5.1. The page on the left includes three modules: the daily hot

deals, the flash sales, and the top products. There are two modules in the page on the

right: the 0% installment and the special deals. The candidate items of each module

are selected according to predefined conditions. For instance, the top products module

includes the best selling items in the period of the past few days. The items in the flash

sales module and the special deals module offer special discounts provided by qualified

shops, either daily or hourly. Because several modules are shown to users at the same

time, the interaction between modules affects the users’ experience.

However, different teams are usually in charge of ranking strategies of different mod-

ules. Due to the lack of cooperation between the teams, the whole page suffers from

competition between different modules. As a consequence, the users might find the same

product or category in multiple modules, which wastes the limited space on the page.

For example, the phones appear in all modules in Fig. 5.1a and the apple pencil is

recommended by two modules in Fig. 5.1b.
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(a) Example 1 (b) Example 2

Fig. 5.1: Two examples of the multi-module recommendation scenarios. The black boxes
represent modules. Boxes in different colors mark similar items in different modules. In
sub-figure 5.1a, phones and monitors appear more than once. Meanwhile, apple pencils
are recommended by two modules in sub-figure 5.1b.

To find the optimal global strategy, it is crucial to design a proper cooperation mech-

anism. Multi-agent reinforcement learning (RL) algorithms are proposed to solve the

recommendation problems that involve sequential modules [17, 103]. However, their ap-

proaches rely on an underlying communication mechanism. Each agent is hence required

to send and receive messages during the execution. This might be a problem as rank-

ing strategies of different modules are usually deployed by different teams in real-time

and the modules cannot communicate with each other. There are many examples of

multi-agent RL algorithms in the literature which do not need communication. However,

their performance suffers a lot from their inability to coordinate, as we illustrate in the

experiments. In this chapter1, we propose a novel approach for the multi-module rec-

ommendation problem. The first key contribution of this chapter is a novel multi-agent

1This chapter has been published in [25].
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cooperative reinforcement learning structure. The structure is inspired by a solution

concept in game theory called correlated equilibrium [4] in which the predefined signals

received by the agents guide their actions. In this way, a better solution can be obtained

comparing to Nash equilibrium, which does not involve the signal. In our algorithm, we

propose to use a signal network to maximize the global utility by taking the information

of a user as input and sending signals to different modules. The signal network can act

as a high-level leader coordinating the individual agents. All agents act solely on the

basis of their signals, without any communication.

The second key contribution is an entropy-regularized version of the signal network

to coordinate agents’ exploration. Since the state and action spaces are huge, exploration

remains essential in finding the optimal policy. We add the entropy terms to the loss

function of the signal network to encourage exploration in view of the global performance.

In contrast, the agents in the existing work [32] explore individually. To maximize the

entropy term, the distributions of signals should be flat. In that case, the diverse signals

encourage agents to explore more when the global policy converges to a sub-optimal

solution.

Third, we conduct extensive experiments on a real-world dataset from Taobao, one of

the largest e-commerce companies in the world. Our proposed method outperforms other

state-of-the-art cooperative multi-agent reinforcement learning algorithms. Moreover, we

show the improvement caused by the entropy term in the ablation study.

5.2 Problem Statement and Formulation

We firstly introduce the details of the multi-module recommendation problem. Fig. 5.2

shows three stages in a recommendation session. First, when a user enters the recom-

mendation scenario, he firstly browses the entrance page, which contains more than one

module. The ranking strategy of each module recommends items from its candidate set

depending on users’ information. A list of items is ranked and the top-3 will be shown on

the entrance page. The user can 1) go to the module page if he clicks any module, or 2)

refresh the web page to access new items shown in modules, in which ranking strategies

are called again to rank items. Second, the module page shows a list of recommended
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Fig. 5.2: The flow of a multi-module recommendation system. Pages shown in this figure
are the entrance page, the module page, and the item detail page. The entrance page
contains two modules.

items for this module and the first three items are consistent with the items showing

on the entrance page. The user can 1) slide the screen to browse more items, 2) go to

the item detail page by clicking an item, or 3) return to the entrance page. The agent

will recommend more items if the whole list is browsed. Third, the item detail page

demonstrates the details of an item. The user can 1) purchase the item, or 2) return to

the module page. The recommended items do not change when the user returns to the

module page and he can continue to explore more preferred items by sliding the screen.

Since different modules aim to collectively maximize the global performance, we can

model our problem as a multi-agent extension of Markov Decision Processes (MDPs) [54].

Formally, the MDP for multiple agents is a tuple consisting of five elements 〈#, (, �, ', %〉:
Agent # is the number of agents. We treat modules as different agents rather than

pages in existing works [17,103].

State ( includes information that each agent has received about users. In our prob-

lem, B is the information of users which contains: 1) static features such as age, gender,

and address. 2) sequential features [ℎ1, . . . , ℎ ] including features of  items that a user

purchased or clicked recently.

Action � = [�1, . . . , �# ] is a set including the action sets of each agent. Specifically,

0 = [01, . . . , 0# ], where 08 ∈ �8 is the action of the agent 8. The action of each agent is
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defined as a weight vector that determines the rank of candidate items. Formally, the

9-th element of the 8-th agent’s action 08 = [081, . . . , 0
8
9
, . . . ] is the weight of the 9-th

element of the item’s feature. The weighted sum of the action and an item’s feature

determines the rank of the item, that is B2>A48C4< = 0
)48C4<, where 48C4< is the embedding

of an item’s features.

Reward ' = ['1, . . . , '# ], where '8 : ( × � → R is the reward function for agent 8.

After agents take action 0 at the state B, the user would provide feedback like clicking

an item or skipping the module, which can be converted to reward. The global reward

A will be obtained according to the reward function A = '(B, 0), where A = [A1, . . . , A# ]
represents rewards for # agents.

Transition probability % defines the probability ?(BC+1 |BC , 0C) that the state transits

from BC to BC+1 given the action 0C of all the agents in round C. In our setting, the transition

probability is equivalent to user behavior probability, which is unknown and associated

with 0C . The details are described in the experiment part.

The objective of our problem is to maximize the discounted total reward of the

platform
#∑
8=1

)∑
C=0

WCA8C

rather than the independent reward of each agent A8C , where ) is the time horizon, and

WC is C-th power of the discounted parameter W to decide the weights of future rewards.

5.3 Multi-Agent RL with a Soft Signal Network

In this section, we propose a novel multi-agent reinforcement learning algorithm to ad-

dress the multi-module recommendation problem. The main idea is to use a signal

network to coordinate all the agents to maximize the global reward. Signals can be con-

sidered as the information of a general cooperative structure for all the agents. Then,

agents act based on signals to cooperate.

Fig. 5.3 illustrates the structure of our algorithm, which is based on MADDPG [60].

Three components are involved in our structure. A shared signal network takes the state

B as input and sends signals q to all the agents to maximize the overall performance. An

actor maintained by each agent maps state and signal to action. The 8-th actor-network
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Fig. 5.3: The architecture of our approach. During the training, critics leverage other
agents’ actions to output the estimate of Q value. For the execution, each agent does
not communicate with each other.

only depends on the state and the signal for the 8-th agent, without the knowledge of other

agents. To estimate the expected future cumulative reward &8 (B, 0) for given actions and

states, each agent has a critic. In the centralized training, critics can evaluate the value of

actions with information of all agents. We describe the details of our model and training

method in the following respectively.

5.3.1 Actor-Critic with a Signal Network

Embedding of state We leverage the embedding layer and attention mechanism to

extract useful information. The structure is shown in Fig. 5.4a. As mentioned in Section

5.2, the state is the information of users that can be divided into two types, static and

sequential features. For the static features like gender, each feature is processed by an

independent embedding layer. While for the sequential features, BB4@D4=C80; includes differ-

ent types’ features of  historical clicked items of a user such as item IDs and categories.

Features belonging to one type share an embedding layer. For example, the item IDs of

the 1st and the  -th items use the same layer. After embedding, sequential features are

transformed to a set of vectors ℎ = [ℎ1, ℎ2, . . . , ℎ ], where ℎ: is a vector containing the

:-th item’s features. We build an attention network to estimate the importance F: of
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(a) The architecture of state embedding. The features of users
are divided into two types: static feature, and sequential fea-
ture. The attention mechanism is used to decide the weights
of items recorded in the sequential feature. The embedding of
state is not shared among different networks (including actors,
critics and the signal network).

(b) The architecture of actor and
ranking. The action is a vector
whose dimension is the same with
the item’s feature. The weighted
sum of these two vectors is consid-
ered as the score of an item.

Fig. 5.4: State embedding and the structure of ranking.

ℎ: . The attention network takes the embedding of static information 4BC0C82 and ℎ as in-

put. The outputs are mapped by the softmax function to obtain the regularized weights

F = [F1, F2, . . . , F ], where 0 ≤ F: ≤ 1 and
∑
: F: = 1. The embedding of sequential

features 4B4@D4=C80; is generated by the weighted sum
∑
: F:ℎ: . And it is concatenated

with 4BC0C82 to get the embedding of the state 4B. This embedding structure is included in

actors, critics and the signal network to process the state. The parameters of embedding

structures are not shared among different agents and components.

Signal The signal network Φ is shared by all agents during execution to maximize

the overall reward. It maps state to a set of vectors [q1, q2, . . . , q# ], where q8 is the

signal vector for the 8-th agent. The state is processed by the embedding layer mentioned

above and fully-connected layers output the signals depending on the embedding of state.

Differing from the communication mechanism that needs information sent by all agents,

the signal network only depends on states. We adopt stochastic signal policies in which q8

is sampled from a Gaussian distribution N(`q8 , 3806(fq8 )) where [`q8 , fq8 ] is the output

of the signal network

[`q1 , fq1 , `q2 , fq2 , . . . , `q# , fq# ] = Φ(B).
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Actor The structure of actors are illustrated in Fig. 5.4b. Each actor c8 outputs

an action given state B and signal q8. We concatenate the embedding of state and the

signal as the input of a three-layer fully-connected network to generate action. We define

that the action of each module is a vector whose dimension is the same as the dimension

of candidate items’ features. Following soft actor-critic [23], we adopt stochastic policy

[`08 , f08 ] = c8 (B, q8) and the action 08 is sampled from N(`08 , 3806(f08 )). To rank items,

we leverage a linear model, in which the weighted sums of items’ features and the ac-

tion are treated as the scores of items. Candidate items are ranked and recommended

according to their scores.

Critic Each agent maintains a critic network &8 (B, 0) to estimate the expected cu-

mulative reward of a state-action pair (B, 0). The embedding of the state is concatenated

with actions of all the agents as the input of a fully-connected network whose output is

&8 (B, 0). In our problem, users’ historical activities are collected and stored after users

leave the multi-module scenario. During the training period, agents can access the ac-

tions of other agents to reduce the uncertainty of the environment. Since we use the soft

actor-critic structure [23], the double-Q technique is adopted and a state value network

+ (B) is maintained to stabilize training. The double-Q technique reduces the variance

and over-fitting of the Q value by maintaining two Q networks and choosing the minimal

Q value as the estimate of the (B, 0) pair in each time step. The value network + (B) is

used to approximate EB∼dc ,0∼c [min& 9 (B, 0)] for 9 ∈ {1, 2} and update Q networks.

5.3.2 Policy Update with the Soft Signal Network

As discussed above, we use neural networks to approximate Q value, V value, represent

policies and generate signals. For the 8-th agent, we consider a parameterized state value

function + 8[ (BC), two Q-functions &8
\ 9
(BC , 0C), 9 ∈ {1, 2}, a stochastic policy c8g (BC , q8C) and

a shared signal network Φb (BC). The parameters of these networks are [, \, g, and b.

The update rules will be introduced in this section.

We adopt Soft Actor-Critic (SAC) [23] for each agent. Differing from standard RL

that maximizes the expected sum of rewards

EB∼dc ,0∼c

[
)∑
C=0

WCAC

]
,
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Algorithm 6: Multi-Agent Soft Signal-Actor (MASSA)

1 Initialize parameter vectors (\, [, g, b, X), [̂ = [ ;
2 Initialize replay buffer � ;
3 for C = 0, 1, . . . do
4 Observe state BC ;
5 For each agent 8, generate signal q8 = Φ8 (BC) and select action 08C = c

8 (BC , q8C);
6 Execute action 0C = [01C , . . . , 0#C ] and observe reward AC and new state BC+1;
7 Store (BC , 0C , AC , BC+1) in the replay buffer �;
8 Sample a batch of samples from �;
9 for each agent 8 do

10 Calculate ∇[�8+ ([) and update [;
11 Calculate ∇\ 9 �8& (\ 9 ) and update \ 9 for 9 ∈ {1, 2};
12 Calculate ∇g�8c (g) and update g;

13 Calculate ∇b�8Φ(b) and update b;
14 Update the parameter of the target state value network [̂C+1 = (1 − X)[̂C + X[C ;

the objective of SAC augments the objective with the expected entropy of the policy

EB∼dc ,0∼c

[
)∑
C=0

WC (AC + H (c8 (·|BC , q8C)))
]

, where dc is the state distribution induced by c, WC is the C-th power of W and

H(c8 (·|BC , q8C) = E08C∼c8
[
c8g (08C |BC , q8C)

]
.

The entropy term aims at encouraging exploration, while giving up on clearly unpromising

avenues. We have

&8 (BC , 0C) = EB∼dc ,08∼c8
[
A (BC , 0C) + W+ 8 (BC+1)

]
, (5.1)

where

+ 8 (BC) = E08∼c8
[
&8 (BC , 0C) − log c8 (08C |BC , q8C)

]
.

Then, we update the parameters of & and + according to [23].

Critic. The centralized critic is optimized according to the Bellman function of soft

actor-critic. For the value function + 8[ (BC), we have

�8+ ([) = EBC∼�
[
1

2

(
+ 8[ (BC) − E0C∼cg

[
&8\ (BC , 0C) − log c8g (08C |BC , q8C)

] )2]
, (5.2)
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where � is the distribution of samples, or a replay buffer. The gradient of 8-th V value

network can be estimated by an unbiased estimator:

∇̂[�8+ ([) = ∇[+
8
[ (BC)

(
+ 8[ (BC) −&8\ (BC , 0C) + log c8g (08C |BC , q8C)

)
, (5.3)

where actions and signals are sampled from current networks and&8
\
= min 9∈{1,2} &

8
\ 9
(BC , 0C).

The Q value network is trained to minimize the Bellman residual

�8& (\ 9 ) = E(BC ,0C )∼�
[
1

2

(
&8\ 9 (BC , 0C) − &̂

8 (BC , 0C)
)2]

, (5.4)

with

&̂8 (BC , 0C) = A8C (BC , 0C) + WEBC+1∼%
[
+ 8
[̂
(BC+1)

]
, (5.5)

where + 8
[̂
(BC+1) is a target network of + , where [̂ is an exponentially average of [. More

specifically, the update rule for [̂ is [̂C+1 = (1 − X)[̂C + X[C . We approximate the gradient

for \ 9 with

∇̂\ 9 �8& (\ 9 ) = ∇\ 9&
8
\ 9
(BC , 0C)

(
&8\ 9 (BC , 0C) − &̂

8 (BC , 0C)
)
. (5.6)

Actor. For each actor, the objective is to maximize the Q value with the entropy term,

since Q value introduced in Eq. (5.1) does not include H(c8 (·|BC , q8C):

�8c (g) = −EBC∼�,08∼c8
[
&8\ (BC , 0

−8
C , 0

8
C) − log c8g (08C |BC , q8C)

]
, (5.7)

where 0−8C is a vector including actions of all the agents except the 8-th agent and 08C is

generated by the current policy c8g. We use reparameterization trick [39]

08C = 5g (nC ; BC , q8C) = 5
`
g (BC , q8C) + n 5 fg (BC , q8C),

where n ∼ N(0, �) and � is identity matrix. 5g is a neural network whose output is

[ 5 `g , 5 fg ] and g is the parameter of 5g. The stochastic gradient is

∇̂g�8c (g) =∇g log c8g (08C |BC , q8C) +
(
−∇08C&

8
\ (BC , 0

−8
C , 0

8
C)+

∇08C log c8g (08C |BC , q8C)
)
∇g 5g (nC ; BC , q8C).

(5.8)

These updates are extended from soft actor-critic algorithm [23].
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The entropy-regularized signal network. Now we introduce the update of the

signal network. Since the signal network aims at maximizing the overall reward, the

objective function is

�q (b) =
1

#

∑
8

−EBC ,0−8C ∼�
[
&8\ (BC , 0

−8
C , 0

8
C)
]
. (5.9)

Inspired by the soft actor-critic, we augment an expected entropy of the signal network

(soft signal network) and obtain a new objective. Intuitively, this term can encourage

signal network to coordinate agents’ exploration and find the optimal solution to max-

imize the global reward. Since the signal network outputs a signal q8 for each agent 8,

we use the notation Φ8 to represent the part of the signal network for the 8-th agent.

According to the definition

H(Φ8 (·|BC)) = Eq8∼Φ8 logΦ8 (q8 |BC),

we add it into the objective function of the signal network with a hyper-parameter U

controlling the weight of the entropy term:

�q (b) =
1

#

∑
8

[
EBC ,0−8C ∼�,q8∼Φ8

[
−&8\ (BC , 0

−8
C , c

8 (BC , q8C)) + U logΦ8 (q8C |BC)
] ]
. (5.10)

According to [33], we derive the stochastic gradient using reparameterization trick

again q8C = 6
8
b
(n ; BC) = 6`b (BC) + n6

f
b
(BC), where 6 is a neural network and n ∼ N(0, �):

∇̂b�Φ(b) =
1

#

∑
8

[
U∇b logΦ8b (q

8
C |BC) +

(
U∇q8C logΦ8 (q8C |BC)−

∇08C&
8
\ (BC , 0

−8
C , 0

8
C)∇q8Cc

8
g (08C |BC , q8C)

)
∇b68b (nC ; BC)

]
.

(5.11)

The whole algorithm is shown in Algorithm 6. The algorithm can be divided into

two stages, execution and training. In the execution part (Lines 4-7), policies of different

agents are executed in the environment to collect data that is stored in the replay buffer.

In the training part, all the parameters are updated according to their gradients derived

in this section. In the end, the parameter of the target network is updated.
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Algorithm 7: Offline testing procedure.

1 Load parameters of actors, signal network and item embedding layer;
2 for C = 0, 1, . . . do
3 Read a record from testing dataset;
4 Observe state BC ;
5 Observe candidate set of items for two modules !8, 8 ∈ 1, 2;
6 For each agent, rank these items and output a list;
7 Observe rewards AC of recommended lists from the record;
8 Generate next state BC+1 (for training only);

5.4 Experiment

We conduct extensive experiments to evaluate the performance of our algorithm based on

Taobao. We first describe the details of the experimental setting. Then, some baselines

are introduced. Finally, the performance of baselines and our algorithm are illustrated.

5.4.1 Dataset

Our dataset is collected from Taobao. The recommendation scenario contains two mod-

ules. For the training data, 14-day data is collected in March 2020 and about 1.5 million

records (583076 items) are included in the dataset. Another 3-day data (about 200

thousand records) is used as the test dataset in offline testing. Each record includes a

user’s information, 10 recommended items for each module, the user’s clicks, and the

user’s information after clicking. As we mentioned in the formulation section, users’ in-

formation contains sequential and static features. Sequential features contain 50 items

that the user clicked. The item ID, seller ID, and category ID of these historical clicked

items are stored. If the number of historical clicked items of a user is less than 50, these

features are set to 0 by default. For recommended items, features include price, sale,

category and other information of items. After embedding, each item is represented by

a 118-dimensional vector.

5.4.2 Experiment Setting

In the experiment, we use both offline and online (simulator) testing to illustrate the

performance of our algorithm. In the offline training and evaluation, algorithms re-rank
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Fig. 5.5: The structure of our simulator. The inputs are all the recommended items
on one web page and the information of a user. The output is a vector including the
probabilities that these items are clicked.

browsed items in each record and the clicked items should be ranked at the top of the list.

The candidate set is limited to the recommended items stored in each record rather than

all items collected from the dataset since we do not know the real reward of items that the

user does not browse. The rewards of the recommended lists of our algorithm are directly

obtained from historical data and used to evaluate the performance of algorithms. During

training, since we need BC+1 to update parameters, the users’ information BC is updated

by following rules. The static part of B is fixed and not changed no matter what the user

clicks. If an item is clicked, the item is added into the sequential feature and the 50-th

historical clicked item is removed from the sequential feature. If " items are clicked,

we do " updates of the sequential feature. We assume that items in the first module

are clicked firstly and the items with high ranks are clicked before those with low ranks

within a module. Then, the new BC+1 is generated and stored to train our algorithm. The

offline testing algorithm in detail is presented in Algorithm 7.

For the online training and testing, due to the huge cost and risk caused by deploying

different algorithms to the real-world scenario, we train a simulator to implement the

online testing following [102]. The structure of the simulator is shown in Fig. 5.5. In

order to consider the information on the whole page, the input of the simulator is all
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the recommended items of two modules (6 items). We obtain embedding of items by a

shared embedding layer. Meanwhile, the user’s information is processed by the embedding

structure shown in Fig. 5.4a. The features of items and a user are concatenated as the

input of a four-layer fully-connected network. Then, the CTRs (Click Through Rate)

of these items are predicted. The bias of position is considered by this design since the

sequence of items in the input actually indicates the information of positions. We test

the trained simulator in the test dataset (not used to train the simulator). The overall

accuracy is over 90%, which suggests that the simulator can accurately simulate the real

online environment.

For training and testing our algorithm, we collect 2000 items with the largest CTR

for each module to expand the candidate set. In our training and testing dataset, about

90% of clicks are contributed by these items. In each round, actors select a list of items

and the simulator outputs rewards for these items. The training and testing procedure

is similar to Algorithm 7 except the Line 7, where the rewards come from the simulator

rather than historical data.

To evaluate the performance of various algorithms, we use clicks as rewards and

introduce two metrics Precision [63] and nDCG [93]. The formulations are shown as

follows.

• Precision:

%A428B8>= =
#clicks in top-K items

 
.

• nDCG:

=��� =

 ∑
:=1

A:

log(1 + :) ,

where A: = 1 if the :-th item is clicked, otherwise, A: = 0.

For each module, the performance of a ranking policy is evaluated by these two metrics.

The overall performance is the sum of each module’s performance.

For components of our algorithm, we leverage a 4-layer neural network with the

additional embedding structure introduced in Fig. 5.4a. The activation function is A4;D

for all fully-connected layers except output layers. The size of the replay buffer is 146.

The dimension of the items’ embedding is 118. The length of each signal vector is 64. The
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Table 5.1: Results of offline testing.

Method
Metric Precision nDCG

Module 1 Module 2 Overall Module 1 Module 2 Overall
L2R 0.193 0.047 0.24 0.196 0.042 0.238

DDPG 0.211 0.046 0.257 0.214 0.042 0.256
MADDPG 0.227 0.047 0.274 0.231 0.044 0.275

COMA 0.165 0.039 0.204 0.175 0.037 0.212
QMIX 0.396 0.056 0.452 0.368 0.055 0.423
COM 0.216 0.042 0.258 0.217 0.041 0.258

MASAC 0.367 0.055 0.422 0.337 0.051 0.389
COMA+SAC 0.206 0.048 0.254 0.205 0.045 0.25
QMIX+SAC 0.305 0.048 0.353 0.294 0.042 0.336
COM+SAC 0.292 0.047 0.341 0.29 0.045 0.335

MAAC 0.301 0.046 0.347 0.289 0.043 0.332
MASSA w/o att (ours) 0.433 0.052 0.485 0.397 0.050 0.447
MASSA w/o en (ours) 0.44 0.055 0.495 0.398 0.05 0.448

MASSA (ours) 0.555 0.06 0.615 0.459 0.057 0.516

discount factor is W = 0.99. The learning rate for actor, critic, and signal networks is 0.01

and the weight for updating the target network is X = 0.01. The weight of entropy terms

is U = 0.01. We select these parameters via cross-validation and do parameter-tuning for

baselines for a fair comparison.

5.4.3 Baselines

Our algorithm is compared with the following baselines:

• L2R [55]: This algorithm trains a point-wise learning-to-rank network by super-

vised learning. The network is the same as the simulator except for the input and

the output. The input changes to users’ information and one item. The network

predicts the CTR of this item. We deploy an L2R algorithm for each module, which

is trained to reduce the sigmoid cross-entropy loss for each module.

• DDPG [52]: Deep Deterministic Policy Gradient method is a single-agent RL

algorithm that consists of an actor and a critic. The structure of actors is the same

as MADDPG and L2R.

• MADDPG [60]: Multi-Agent Deep Deterministic Policy Gradient method is the

multi-agent version of DDPG. Each agent maintains an actor and a critic. During
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training, critics can access other agents’ actions and observations. While in the

execution, actors select actions only depending on their own observation.

• COMA [19]: Counterfactual multi-agent policy gradients method is a cooperative

multi-agent algorithm that leverages counterfactual rewards to train agents. The

main idea is to change the action of an agent to a baseline action and use the gap

of Q values of these two actions as the reward. Differing from MADDPG, all the

agents share a critic to estimate the global reward.

• QMIX [75]: QMIX assumes that the global maximum reward is a weighted sum

of local maximum rewards of agents and proposes a mixing network to explicitly

decompose the global reward. The decomposed local rewards are treated as the

contribution of each agent and used to train actors.

• COM: COM is a simple extension of the methods [17] by letting actors choose ac-

tions simultaneously. Actors send messages to others during execution. Although

this algorithm violates the restriction that different modules cannot communicate,

the comparison aims to illustrate the performance in environments that allow com-

munication.

• MASAC: This algorithm is an extension of MADDPG by applying soft actor-critic

[23], where an entropy term is augmented in the reward to encourage exploration.

Different from our method, this algorithm does not have a signal network.

• MAAC [32]: Multi Actor-Attention-Critic algorithm maintains the structure of

MASAC. The attention mechanism is adopted to handle messages sent by critics

and extract useful information to each critic.

• MASSA w/o en: This method is proposed for the ablation study, in which the

entropy terms of signals are removed from the loss function of the signal network

(U = 0). By comparing this method with ours, the importance of the entropy-

regularized version of the loss function is indicated.

• MASSA w/o att: In this method, the attention mechanism is replaced by simple

concatenation 4B = [4BC0C82, ℎ] for ablation study.
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Fig. 5.6: The results of the online experiment.

Additionally, since our algorithm is based on MASAC, we combine COMA, QMIX, and

COM with MASAC to obtain the other three baselines: COMA+SAC, QMIX+SAC,

and COM+SAC. Notice that the method in [103] is a model-based version of COM and

other baselines (including ours) are model-free methods. Thus, we only compare to COM

considering fairness.

5.4.4 Result

In this subsection, we illustrate performance of different methods to indicate the im-

provement caused by the signal network and the entropy scheme.

Offline Testing

The results of our offline evaluation are shown in Table 5.1. All the methods are trained

by 14-day training data and tested by the 3-day testing data. There are a few interesting

conclusions drawn from the results.

Firstly, the signal network and additional entropy terms can improve performance

significantly. Since the only distinction between MASAC and MASSA w/o entropy is

the signal network, the gap of the performance shows the effectiveness of the signal
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Fig. 5.7: The curves of precision and nDCG during online training. The solid curves
correspond to the mean and the shaded region to the minimum and maximum values
over the 10 runs. The difference between these two algorithms is the entropy term of the
loss function for the signal network.

network. Besides, by adding the entropy term to encourage exploration, MASSA method

outperforms all the other methods. Comparing to MASSA, the MASSA w/o entropy

method is prone to converge to a sub-optimal policy in our scenarios. The entropy-

regularized algorithm can explore in view of global performance.

Secondly, the metrics of module 1 are better than that of module 2, which is caused

by different properties of these two modules. As shown in Fig. 5.2, module 1 is at the

top of the web page. Thus, users are more likely to be attracted by module 1 and ignore

another module, especially when the items recommended by module 1 are good. In our

dataset, the ratio of the number of clicks in these two modules is about 6:1.

Finally, DDPG performs worse comparing with MADDPG whose actors have a similar

structure with DDPG. The main reason is that the ranking policies of the two modules

are trained individually without any cooperation.

Online Testing

For the online experiment, Fig. 5.6 exhibits the performance of various algorithms. The

performance is the mean of 10 runs. Our algorithms outperform others again in the

online experiment.

Firstly, the performance of the methods based on MASAC is better than that based

on MADDPG except for COMA. The reason is that the online environment is more
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Fig. 5.8: The performance with the change of U

complex than the offline setting in terms of the number of candidate items and the

source of clicks. The number of candidate items increases from 10 to 2000 for each set

and the clicks are from an online simulator. Exploration is more important to obtain a

better policy in a complex environment. Thus, SAC-based approaches perform better.

Secondly, although MASSA w/o entropy is better than MASSA for module 2, the

overall performance of MASSA w/o entropy is worse. It illustrates that in order to find

a globally optimal solution, MASSA makes a small sacrifice of module 2 and obtains a

huge improvement for the overall performance.

The effect of entropy The importance of the entropy term is indicated in Fig.

5.7. We can observe that two algorithms perform similar in the first 20 thousand steps

and the overall performance seems to be constant if we ignore the perturbation, which

means that the ranking policy falls into a sub-optimal solution. Due to the entropy

term, MASSA constantly explores and escapes from the sub-optimal solution at around

30 thousand steps. Finally, a globally optimal solution is found. However, MASSA w/o

entropy algorithm only finds a better sub-optimal solution slowly.

Another interesting fact is the change in the shaded region. For MASSA, the region

is huge before 45 thousand steps and becomes smaller in the last 10 thousand steps.

However, the region of MASSA w/o entropy becomes larger at the end of the training.

It indicates that MASSA explores more at the beginning and converges to the optimal

solution. However, due to the lack of exploration, MASSA w/o entropy falls into different

sub-optimal solutions in the end.
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The influence of U

Fig. 5.8 shows the performance with the change of U which is the weight of the entropy

term for the loss function of the signal network. Our algorithm performs the best when

U = 0.01. Thus, we use this value in both online and offline experiments.

5.5 Chapter Summary

In this chapter, we propose a novel multi-agent cooperative learning algorithm for the

multi-module recommendation problem, in which a page contains multiple modules that

recommend items processing different specific properties. To prompt cooperation and

maximize the overall reward, we firstly design a signal network that sends additional

signals to all the modules. Secondly, an entropy-regularized version of the signal network

is proposed to coordinate agents’ exploration. Finally, we conduct both offline and online

experiments to verify that our proposed algorithm outperforms other state-of-the-art

learning algorithms.
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Conclusions and Future Directions

6.1 Conclusions

More and more attempts have been made to apply reinforcement learning methods to the

recommendation domain in recent years. In this thesis, we focus on two settings to model

recommendation problems, i.e., multi-arm bandit setting and multi-agent reinforcement

learning setting.

In chapter 3, we consider how to understand users’ feedback and obtain the optimal

policy that is able to select users’ preferred actions. The key issue is to model the un-

certainty of human feedback. More concretely, users would provide any kind of feedback

to either optimal or non-optimal actions, which include positive, negative and no feed-

back. Hence, we propose a novel human feedback model that consists of three functions

representing the probability distributions of three types of feedback. To handle two sets

of parameters in the policy and feedback model, we propose an approximated Expecta-

tion Maximization (EM) algorithm combined with Gradient Descent (GD) method that

alternatively updates these parameters. Additionally, two experiments involving human

participants are conducted in real-world scenarios. Our algorithm outperforms baselines

under multiple metrics. Robustness analysis demonstrates that our algorithm performs

well even if users do not follow our feedback model.

In chapter 4, we focus on addressing the influence caused by positions of items shown

in web pages. More precisely, the influence includes two types: position bias and pseudo-

exposure problem. Position bias means that a higher ranking usually leads to more clicks

for a fixed item. Pseudo-exposure indicates that we do not know exactly whether items
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are viewed or not. We firstly model the recommendation problem as a contextual combi-

natorial bandit problem. To address the above-mentioned two issues, we propose a novel

algorithm, where the user-browsing model is combined with a contextual combinatorial

bandit method to estimate position influence. Furthermore, we prove a sublinear ex-

pected cumulative regret bound $̃ (3
√
) ) for our algorithm. Finally, we conduct both

offline and online experiments. For the offline experiment, we propose an unbiased es-

timator to evaluate different methods in two real-world datasets. Moreover, we deploy

these methods in Taobao for online testing. Our method is superior to other baselines

under two metrics in both experiments.

In chapter 5, we consider the multi-module recommendation problem, in which a page

contains multiple modules that recommend items processing different specific properties.

Since different modules are displayed on one page and different teams are usually in charge

of ranking strategies of different modules. Due to the lack of cooperation between the

teams, the whole page suffers from competition between different modules. To prompt

cooperation and maximize the overall reward, we design a signal network inspired by the

correlated equilibrium in game theory, which sends additional signals to all the modules.

Then, we propose an entropy-regularized loss function for the signal network to coordinate

agents’ exploration. The experimental result verifies that our method outperforms other

state-of-the-art learning algorithms.

In summary, we focus on solving recommendation problems by reinforcement learning

methods. More specifically, we propose new methods for multi-arm bandit setting and

multi-agent reinforcement learning setting to address challenges in various scenarios.

Online and offline experiments are conducted to illustrate the performance of various

methods.

6.2 Future Directions

There are many works that need to be done to address recommendation problems by

reinforcement learning methods.
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6.2.1 Offline Training

Different from supervised learning methods which can be trained by the dataset includ-

ing features and labels, reinforcement learning methods require interactive environments,

which is one of the biggest obstacles to their widespread adoption, especially in the rec-

ommendation domain. The objective of recommendation problems usually is to improve

some metrics related to users’ behaviours, such as click-through rate, conversion rate.

Thus, the user group is the most important component of the interactive environment.

However, the user group always changes, it is hence hard to model users’ behaviours

and build a simulated interactive environment. Although there are a few works making

some attempts to build simulators [30, 81], some challenges still exist: 1) the features of

items and users always change in real-world platforms, while the features are assumed

fixed in simulators; 2) simulated actions of users not in the training dataset would not be

accurate. Considering these drawbacks, most papers use the offline approach for training

and evaluation, which is similar to traditional recommender system papers [102, 105].

They directly use RL methods to re-rank items shown in historical logs and the reward is

defined as historical clicks of users. Although this approach is reasonable for some simple

scenarios, one key drawback is that sequential processes are omitted. RL agents only

interact with each user once during the training and evaluation, which cannot exactly

demonstrate the performance of RL methods in sequential decision processes.

Offline reinforcement learning aims at obtaining a good policy by offline datasets

without interactions with environments. These methods neither need simulators nor

ignore sequential processes during training. We can divide offline RL into two types

according to their purposes. 1) offline evaluation methods aim at evaluating RL policies

by data generated by other policies and 2) offline training methods focus on how to

obtain a better policy than the one used to generate data. Both of these methods need

datasets including sequential interaction data (BC , 0C , AC), namely trajectories, rather than

one-time interaction data (B, A) used in supervised learning methods.

For offline evaluation methods, the key idea is to use important sampling methods

to re-weight reward [71]. More specifically, since the expected return of a policy is∑
0 c(0 |B)A (B, 0), we can estimate the return of a new policy V by∑

0

c(0 |B) V(0 |B)
c(0 |B) A (B, 0)
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if we have a dataset generated by c. Although this estimator is unbiased, the variance is

usually too high to obtain a good policy in many applications. Doubly robust estimators

have been derived to balance variance and bias [35, 88].

For offline training methods, fitted Q-learning [77] firstly proposes to modify Q-

learning method to minimize the gap between the left and right side of the Bellman

equation

&c (BC , 0C) = EBC+1∼P(BC ,0C ),0C+1∼c(BC+1) [AC+1 + W&(BC+1, 0C+1)] .

However, when neural networks or other functions are used to approximate Q values,

distributional shift affects training seriously. The agent we trained would select actions

or visit states that rarely appear in the dataset. The true values of these actions or states

are not accurately learned due to the lack of data. If the agent acts based on estimated

value, the performance would be poor. To address this issue, the most direct method is

to make the learned policy similar to the behaviour policy which generates the training

dataset. Thus, different divergence constraints are proposed [66, 69, 82, 98]. Another

approach proposes to estimate the uncertainty of Q values as a penalty term [45].

However, as far as I know, no work extends these offline methods to the recommenda-

tion domain. How to apply offline reinforcement learning in the recommendation domain

is worth considering as future work. Since most companies use supervised learning meth-

ods for online services, we need to figure out if offline RL methods can learn a better

policy from the data collected following these supervised methods. Another challenge is

that the action space and state space are huge, it is possible that the dataset we obtain

does not cover all actions and states. Or even worse, the dataset would only include a

limited subset of actions or states since supervised learning methods do not explore.

6.2.2 Efficient Deployment

RL methods usually need to be trained in an online paradigm to interact with environ-

ments. If directly deployed online in an e-commerce platform, RL methods need a long

period to converge and perform well. At the beginning of training, the performance is

likely to be poor, which damages the income and revenue of a platform or company. This

disadvantage restricts the application of RL methods. Thus, we need to consider the

deployment efficiency, namely the amount of data an algorithm needs to converge [64].
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For offline RL methods that are trained by collected datasets, the deployment efficiency

is high. However, their performance usually is worse than online training methods [64].

For online training methods, they are required to collect millions of data online. Fur-

thermore, if we pre-train these methods by offline dataset, their performance will firstly

decrease in online training [66].

An interesting future work is to balance the performance and data efficiency in some

online platforms. As far as I know, only two works [64, 66] consider the paradigm that

combines offline training with online training. They first train a policy by an offline

dataset and then deploy the policy in an online environment to continuously update.

However, in the recommendation domain, there is no work considering the deployment

efficiency of RL methods. The frequent change of state and action space of e-commerce

platforms would be a challenge for deploying offline trained policies.
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Appendix A

Mathematical Proofs in Chapter 4

A.1 Proof of Lemma 4.1

Proof. Notice that � ((C) = 1 except none of item is clicked, formally,

E[� ((C)] = 1 −
∏ 

:=1

[
1 − W(0:,C)F:,0

]
(A.1)

It suffices to show that
∏ 
:=1

[
1 − W(0:,C)F:,0

]
is minimized with 0∗1,C , ..., 0

∗
 ,C

when the

arms with the :-th highest value W(0∗
:,C
) aligns with the order of F:,0, i.e., W(0∗1,C) ≥

W(0∗2,C) ≥ ... ≥ W(0
∗
 ,C
).

log
∏ 

:=1

(
1 − W(0:,C)F:,0

)
=
∑ 

:=1
log

(
1 − W(0:,C)F:,0

)
= −

∑ 

:=1

∑∞
==1

(
W(0:,C)F:,0

)=
=

= −
∑∞

==1

1

=

∑ 

:=1
W= (0:,C)F=:,0

≥ −
∑∞

==1

1

=

∑ 

:=1
W= (0∗:,C)F

=
:,0

= log
∏ 

:=1
(1 − W(0∗:,C)F:,0)

The second equality follows by log(1 − G) = −∑∞
==1

G=

=
,∀G ∈ (0, 1) and the inequality

follows by the Rearrangement inequality, which states that
∑
8 G8H8 ≥

∑
8 Gf(8)Hf(8) for any

sequences of real numbers G1 ≥ G2 ≥ ... ≥ G= and H1 ≥ H2 ≥ ... ≥ H=, and any permutations

Gf(1) , ..., Gf(=).
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A.2 Proof of Lemma 4.2

Proof. Recall that 0:,C is the selected arm by UBM-LinUCB at round C and position

: based on Lemma 4.1. Let [:,C = W(0∗:,C)F:,0 − W(0:,C)F:,0 ≥ 0 and divide E[� ((C)] into

the sum of the probabilities that the first click appears at each position : ∈ [1,  ]:∑)

C=1
E[� ((C)]

=
∑)

C=1

∑ 

:=1

∏:−1
9=1

[
1 −

(
W(0∗9 ,C)F 9 ,0 − [ 9 ,C

)] (
W(0∗:,C)F:,0 − [:,C

)
≥

∑)

C=1

∑ 

:=1

∏:−1
9=1

(
1 − W(0∗9 ,C)F 9 ,0

) (
W(0∗:,C)F:,0 − [:,C

)
≥

∑)

C=1

∑ 

:=1

[∏:−1
9=1

(
1 − W(0∗9 ,C)F 9 ,0

)
W(0∗:,C)F:,0 − [:,C

]
=

∑)

C=1
E[� ((∗C )] −

∑)

C=1

∑ 

:=1
[:,C

(A.2)

Thus, we have:

'()) ≤
∑)

C=1

∑ 

:=1
[:,C

=
∑)

C=1

∑ 

:=1
F:,0

[
W(0∗:,C) − W(0:,C)

] (A.3)

Then, we finish the proof.

A.3 Proof of Theorem 4.1

Assume that (1) A:,0 = F:,0\
∗G0, (2) 1 ≤ ∑ 

:=1 F
2
:,:−1 = q

′
F <  , (3) ‖G‖2 ≤ 1 and (4)

‖\∗‖22 ≤ V. The upper bound of regret is defined by Lemma 4.2:

'()) ≤ E
[
)∑
C=1

 ∑
:=1

F:,0
[
W(0∗:,C) − W(0:,C)

] ]
where W(0) = \∗G0 is the attractiveness of an item 0 and \∗ is the optimal parameter.

Proof. We define the event

� ={|〈G0:,C−1 , \∗ − \C−1〉| ≤ U
√
G)0:,C−1�

−1
C−1G0:,C−1 ,

∀0:,C ∈ �C ,∀C ≤ ),∀: ≤  }
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where 〈·, ·〉 means the dot product and �̄ is the complement of � . Then notice that

%(�) ≤ 1 and F:,0

[
W(0∗

:,C
) − W(0:,C)

]
≤ 1, we have

'()) ≤ %(�)E
[
)∑
C=1

 ∑
:=1

F:,0
[
W(0∗:,C) − W(0:,C)

] ������
]

+ %(�̄)E
[
)∑
C=1

 ∑
:=1

F:,0
[
W(0∗:,C) − W(0:,C)

] ������̄
]

≤ E
[
)∑
C=1

 ∑
:=1

F:,0
[
W(0∗:,C) − W(0:,C)

] ������
]
+ ) %(�̄)

Using the definition of event � , we have

W(0∗:,C) = 〈G0∗:,C , \
∗〉 ≤ 〈G0∗

:,C
, \C−1〉 + U

√
G)
0∗
:,C

�−1
C−1G0∗:,C

under event � . Since 0:,C is the arm that our algorithm chooses in round t, we have

〈G0∗
:,C
, \C−1〉 + U

√
G)
0∗
:,C

�−1
C−1G0∗:,C

≤〈G0:,C , \C−1〉 + U
√
G)0:,C �

−1
C−1G0:,C

Thus,

W(0:,C) ≤ W(0∗:,C) ≤ 〈G0:,C , \C−1〉 + U
√
G)0:,C �

−1
C−1G0:,C

Using this property and W(0) = \∗G0, we have

W(0∗:,C) − W(0:,C) ≤ 〈G0:,C , \C−1 − \
∗〉 + U

√
G)0:,C �

−1
C−1G0:,C

≤ 2U
√
G)0:,C �

−1
C−1G0:,C

The second inequality is based on the definition of event � . Thus, we have

'()) ≤ 2UE

[
)∑
C=1

 ∑
:=1

F:,0

√
G)0:,C �

−1
C−1G0:,C

]
+ ) %(�̄)

Using the bounds proved in the next two sections, we have

'()) ≤ 2U

√
2) 3 ln

(
1 + q

′
F)

_3

)
+ ) X

when _ ≥ q′F ≥ 1 and

U ≥

√
3 ln

(
1 + q

′
F)

3_

)
+ 2 ln

(
1

X

)
+

√
_V.

Let X = 1
) 

, we finish the proof.
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A.3.1 Bound of
∑)
C=1

∑ 
:=1 F:,0

√
G)0:,C �

−1
C−1G0:,C

Let I:,C =
√
G)0:,C �

−1
C−1G0:,C .

Lemma A.1 For any _ ≥ q′F, ∀:′ B.C. 0 ≤ :′ ≤ : − 1, then for any time ) ,

)∑
C=1

 ∑
:=1

F:,: ′I:,C ≤

√
2) 3 ln

(
1 + q

′
F)

_3

)
Proof. From Cauchy-Schwarz inequality, we give an upper bound

)∑
C=1

 ∑
:=1

F:,0I:,C ≤
)∑
C=1

 ∑
:=1

F:,: ′I:,C

≤
√
) 

√√√
)∑
C=1

 ∑
:=1

F2
:,: ′I

2
:,C

,∀:′ B.C. 0 ≤ :′ ≤ : − 1. The first inequation uses the property of F:,: ′ in the main

body of Chapter 4 to leverage the following lemma (cannot be used for F:,0 due to the

definition of �C):

Lemma A.2 (Lemma 4.4 [51]) If _ ≥ ∑ 
:=1 F

2
:,: ′, ∀:

′ B.C. 0 ≤ :′ ≤ : − 1, then for any

time ) ,
)∑
C=1

 ∑
:=1

F2
:,: ′I

2
:,C ≤ 23 ln

(
1 + 1

_3

)∑
C=1

 ∑
:=1

F:,: ′

)
Using Lemma A.2 and the property that

)∑
C=1

 ∑
:=1

F:,: ′ ≤
)∑
C=1

 ∑
:=1

F:,:−1

, the upper bound is

)∑
C=1

 ∑
:=1

F:,: ′I:,C ≤

√
2) 3 ln

(
1 + q

′
F)

_3

)
(A.4)
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A.3.2 Bound of %(�̄)

Lemma A.3 For any X ∈ (0, 1), _ ≥ q′F ≥ 1, V ≥ ‖\∗‖22, if

U ≥

√

2 ln

(
1 + q

′
F)

2

)
+ 2 ln

(
1

X

)
+

√
_V

 ,
we have %(�̄) ≥ X.

Proof. We first define

[̄:,C = F:,: ′
[
W(0:,C) − WC (0:,C)

]
to use Theorem 1 of [1], where WC (0:,C) = \CG:,C and W(0:,C) = \∗G:,C . [̄:,C is a Martingale

Difference Sequence and bounded by [−1, 1]. Thus, it is a conditionally sub-Gaussian

with constant ' = 1. We also define that

(C =

)∑
C=1

 ∑
:=1

F:,: ′G0:,C [̄:,C

= 1C −
)∑
C=1

 ∑
:=1

F2
:,: ′G0:,CWC (0:,C)

= 1C −
[
)∑
C=1

 ∑
:=1

F2
:,: ′G0:,CG

)
0:,C

]
\∗

where the second equation uses the definition of 1C and E[A0:,C ] = F:,: ′W(0:,C). Then,

according to the Theorem 1 of [1], for any X ∈ (0, 1), with probability at least 1 − X,

‖(C ‖�−1C ≤

√√√
2 ln

(
det(�C)

1
2 det(�0)−

1
2

X

)
(A.5)

where ‖(C ‖�−1C =

√
()C �

−1
C (C . Moreover, using the trace-determinant inequality and the

assumption 1) ‖G0‖ ≤ 1, 2) F:,: ′ ≤ F:,:−1, we have

det(�C)
1
3 ≤ CA024(�C)

3
= _ + 1

3

)∑
C=1

 ∑
:=1

F2
:,: ′‖G0:,C ‖

2
2 ≤ _ +

q′F)

3

Since �0 = _�, we have

‖(C ‖�−1C ≤

√
3 ln

(
1 + q

′
F)

3_

)
+ 2 ln

(
1

X

)
(A.6)
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Since _ ≥ 1, notice that

�C\C = 1C = (C +
[
)∑
C=1

 ∑
:=1

F2
:,: ′G0:,CG

)
0:,C

]
\∗

= (C + (�C − _�)\∗

Thus,

\C − \∗ ≤ �−1C ((C − _\∗)

Then, for any 0 ∈ �, : ≤  , based on Cauchy-Schwarz inequality and triangle inequality,

we have

|〈G0:,C , \C − \∗〉| ≤ |G)0 �−1C ((C − _\∗) |

≤ ‖G)0 ‖�−1C ‖((C − _\
∗)‖�−1C

≤ ‖G)0 ‖�−1C
[
‖(C ‖�−1C + _‖\

∗‖�−1C
]

≤ ‖G)0 ‖�−1C
[
‖(C ‖�−1C +

√
_ 

]
where we use the property

‖\∗‖2
�−1C
≤ 1

�86min(�C)
‖\∗‖22 ≤

1

_
‖\∗‖22 ≤

V

_

in the last inequality and �86(�C) is the eigenvalue of �C . Then using the Eq. (A.6), with

probability 1 − X,

|〈G0:,C , \C−1 − \∗〉|

≤‖G)0 ‖�−1C


√
3 ln

(
1 + q

′
F)

3_

)
+ 2 ln

(
1

X

)
+

√
_V


Recall the definition of � , when

U ≥

√
3 ln

(
1 + q

′
F)

3_

)
+ 2 ln

(
1

X

)
+

√
_V,

then %(�) ≤ 1 − X and thus %(�̄) ≥ X.
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A.4 UBM estimator

Let 〈,,Φ(0, ·, ·|-)〉 = ∑ 
:=1

∑:
: ′=0 F:,: ′Φ(0, :, :′|-), where F:,: ′ is the position bias for

the position : when the item at rank :′ is clicked and :′ = 0 if there is no click before

position :. Then, we have:

+*�" (Φ) = E-

[
E (∼Φ( · |- )
A∼� ( · |- )

[
 ∑
:=1

:∑
: ′=0

A (0: , :, :′|-)
] ]

= E-

[∑
(

Φ(( |-)
[
 ∑
:=1

:∑
: ′=0

∑
0∈A

A (0, :, :′|-)1{0: = 0, 2;0BC = :′}
] ]

= E-

[
 ∑
:=1

:∑
: ′=0

∑
0∈A

A (0, :, :′|-)
∑
(

Φ(( |-)1{0: = 0, 2;0BC = :′}
]

= E-

[
 ∑
:=1

:∑
: ′=0

∑
0∈A

A (0, :, :′|-)Φ(0, :, :′|-)
]

= E-

[∑
0∈A

W(0 |-)
 ∑
:=1

:∑
: ′=0

F:,: ′Φ(0, :, :′|-)
]

= E-

[∑
0∈A

W(0 |-)
 ∑
:=1

:∑
: ′=0

F:,: ′Φ(0, :, :′|-)
]

= E-

[∑
0∈A

W(0 |-)〈,̃, c(0, ·, ·|-)〉 〈,̃,Φ(0, ·, ·|-)〉〈,, c(0, ·, ·|-)〉

]
= E-

[
E (∼c ( · |- )
A∼� ( · |- )

[
 ∑
:=1

:∑
: ′=0

A (0: , :, :′|-)
〈,̃,Φ(0: , ·, ·|-)〉
〈,̃, c(0: , ·, ·|-)〉

] ]
where 2;0BC is the position of the last click before :. Thus, with the assumption that

users’ behaviors follow the UBM model, the estimator is unbiased.
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