
Towards Efficient Cooperation within

Learning Agents

Rundong Wang

School of Computer Science and Engineering

A thesis submitted to the Nanyang Technological University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

2023

http://www.ntu.edu.sg
http://www.scse.ntu.edu.sg

Statement of Originality

I hereby certify that the work embodied in this thesis is the result

of original research, is free of plagiarised materials, and has not been

submitted for a higher degree to any other University or Institution.

14/04/2023
. .

Date Rundong Wang

Supervisor Declaration Statement

I have reviewed the content and presentation style of this thesis and

declare it is free of plagiarism and of sufficient grammatical clarity

to be examined. To the best of my knowledge, the research and

writing are those of the candidate except as acknowledged in the

Author Attribution Statement. I confirm that the investigations were

conducted in accord with the ethics policies and integrity standards

of Nanyang Technological University and that the research data are

presented honestly and without prejudice.

14/04/2023
. .

Date Prof. Zinovi Rabinovich

Authorship Attribution Statement

This thesis contains material from 3 paper(s) published in the follow-

ing peer-reviewed journal(s) / from papers accepted at conferences,

and 1 paper under review, in which I am listed as an author.

Chapter 3 is published as Rundong Wang, Runsheng Yu, Bo An, Zinovi Rabi-
novich. I2HRL: Interactive Influence-based Hierarchical Reinforcement Learning.
International Joint Conference on Artificial Intelligence, 2020.

The contributions of the co-authors are as follows:

• I proposed the initial project direction, prepared the manuscript drafts, and
performed all the experimental work.

• The manuscript was revised together by Runsheng and Prof. An.

• A/Prof. Rabinovich discussed with me the details of the implementation.

Chapter 4 is published as Rundong Wang, Xu He, Runsheng Yu, Wei Qiu, Bo
An, Zinovi Rabinovich. Learning Efficient Multi-agent Communication: An In-
formation Bottleneck Approach. , International Conference on Machine Learning,
2020.

The contributions of the co-authors are as follows:

• I proposed the initial project direction, prepared the manuscript drafts, and
performed all the experimental work.

• The manuscript was revised together by A/Prof. Rabinovich and Prof. An.

• Xu He, Runsheng Yu, and Wei Qiu discussed with me the details of the
implementation.

Chapter 5 is published as Rundong Wang, Hongxin Wei, Bo An, Zhouyan Feng,
Jun Yao. Commission Fee is not Enough: A Hierarchical Reinforced Framework
for Portfolio Management”. The Thirty-Fifth AAAI Conference on Artificial In-
telligence, 2021.

The contributions of the co-authors are as follows:

• Prof. An proposed the initial project direction

• I prepared the manuscript drafts, and performed all the experimental work.

• The manuscript was revised together by Jun Yao and Prof. An.

• Hongxin Wei and Zhouyan Feng discussed with me the details of the imple-
mentation.

viii

Chapter 6 is under review, and can be access in Arxiv as Rundong Wang, Longtao
Zheng, Wei Qiu, Bowei He, Bo An, Zinovi Rabinovich, Yujing Hu, Yingfeng Chen,
Tangjie Lv, Changjie Fan. Towards Skill and Population Curriculum for MARL.
2022.

The contributions of the co-authors are as follows:

• Yujing Hu proposed the initial project direction, and Yingfeng Chen, Tangjie
Lv, and Changjie Fan provided the computing resources.

• I prepared the manuscript drafts. Longtao Zheng and me performed all the
experimental work.

• The manuscript was revised together by A/Prof. Rabinovich and Prof. An.

• Longtao Zheng, Wei Qiu, and Bowei He discussed with me the details of the
implementation.

14/04/2023
. .

Date Rundong Wang

Acknowledgements

First and foremost, I am greatly indebted to my supervisors, Prof. Zinovi Ra-

binovich and Prof. Bo An, who, throughout my four-year journey at Nanyang

Technological University, have provided me insightful discussions, a suitable re-

search environment, as well as the freedom that allows me to explore interesting

research problems. Their great sense of research taste encourages and inspires me

to work on important questions. Not only did I learn about how to be professional,

but also I learn from his methods and thoughts to tackle research problems. I could

not have imagined having a better advisor and mentor for my Ph.D. study.

I am also very fortunate to meet and learn from a group of talented people: Qingyu

Guo, Wanyuan Wang, Haipeng Chen, Yanhai Xiong, Mengchen Zhao, Jiuchuan

Jiang, Youzhi Zhang, Xinrun Wang, Lei Feng, Aye Phyu, Hongxin Wei, Xu He,

Wei Qiu, Hang Xu, Jakub Cerny, Runsheng Yu, Yanchen Deng, Shuxin Li, Wanqi

Xue, Fei Fei Lin, Zhuyun Yin, Xinyu Cai, Shuo Sun, Longtao Zheng, Pengdeng

Li, and Shufeng Kong. I would like to all of them for the joy, the support, the

excitement that they gave me.

I would like to thank my Thesis Advisory Committee (TAC) members: Prof. Gao

Cong and Prof. Xiaohui Bei. They helped me a lot and made my research journey

easier at NTU.

During my Ph.D., I had an exciting internship at Tencent AI Lab and Sea AI Lab.

I would like to thank Weixuan Wang, Xianhan Zeng, Zhenjie Lian, Yiming Gao,

Feiyu Liu, Siqin Li, Xianliang Wang, Lanxiao Huang, Liang Wang, Qiang Fu, Yang

Wei, Pengqian Yu, Zhongwen Xu, Prof. Shuicheng Yan and other people I met at

Shenzhen and Singapore, who helped me a lot during the internship.

I would like to thank many of my friends: Zhuoyi Lin, Peng Zhao, Chong Wu,

Jiang Zhu, Xiuyang Xia and so on. The bond built among us is one of the most

cherished things in my life.

ix

x

Most importantly, I would like to thank my love, Mengyu Huang and families,

especially my parents: Haiyan Duan and Peibin Wang, for their unconditional

love and support to me. Needless to say, this thesis would not have been possible

without your encouragement along the way. This thesis is dedicated to all of you.

I love you.

Abstract

A wide range of real world problems, such as the control of autonomous vehicles

and drones, packet delivery, and many others consists of a number of agents that

need to take actions based on local observations and can thus be formulated in

the multi-agent reinforcement learning (MARL) setting. Furthermore, as more

machine learning systems are deployed in the real world, they will start having

impact on each other, effectively turning most decision making problems into multi-

agent cooperation problems. In this doctoral thesis, we develop and evaluate novel

deep RL (DRL) methods that address the unique challenges which arise in these

settings. These challenges include learning to communicate, to collaborate, and to

reciprocate amongst agents.

In the first second part of the doctoral thesis, we consider the problem of the

limited-bandwidth communication for multi-agent reinforcement learning, where

agents cooperate with the assistance of a communication protocol. A key difficulty,

faced by a group of learning agents in real-world domains, is the need to efficiently

exploit the available communication resources, such as limited bandwidth. To

address the limited bandwidth problem, we develop an Informative Multi-Agent

Communication (IMAC) method to learn efficient communication protocols by

compressing the communication messages. From the perspective of communica-

tion theory, we prove that the limited bandwidth constraint requires low-entropy

messages throughout the transmission. In IMAC, inspired by the information bot-

tleneck principle, agents are trained to learn a valuable and compact communica-

tion protocol.

The second part of the doctoral thesis investigates the challenges in hierarchical

reinforcement learning (HRL), which is often implemented as a high-level policy

assigning subgoals to a low-level policy. HRL suffers the high-level non-stationarity

problem since the low-level policy is constantly changing. The non-stationarity also

leads to the data efficiency problem: policies need more data at non-stationary

states to stabilize training. To address these issues, we propose a novel HRL

xi

xii

method: Interactive Influence-based Hierarchical Reinforcement Learning (I2HRL).

In I2HRL, we enable the interaction between the low-level and high-level policies,

i.e., the low-level policy sends its policy representation to the high-level policy.

The key insight here is that “hierarchy” is just a way to assign responsibilities in a

complex system, so HRL is actually about “collaboration” among multiple agents

and can be interpreted as a form of MARL when we consider each level policy as

agent. The state transition function and the reward function of each agent depend

on the actions of all agents. Besides, in this part, we consider the specific problem

of Fintech: portfolio management via reinforcement learning, which explores how

to optimally reallocate a fund into different financial assets over the long term

by trial-and-error. Existing methods are impractical since they usually assume

each reallocation can be finished immediately and thus ignoring the price slippage

as part of the trading cost. To address these issues, we propose a hierarchical

reinforced stock trading system for portfolio management (HRPM). Concretely, we

decompose the trading process into a hierarchy of portfolio management over trade

execution and train the corresponding policies. The high-level policy gives portfolio

weights at a lower frequency to maximize the long term profit and invokes the low-

level policy to sell or buy the corresponding shares within a short time window at

a higher frequency to minimize the trading cost. We train two levels of policies

via pre-training scheme and iterative training scheme for data efficiency. Extensive

experimental results in the U.S. market and the China market demonstrate that

HRPM achieves significant improvement against many state-of-the-art approaches.

In the third part of the doctoral thesis, we consider the problem of automatic cur-

riculum learning in MARL, where a teacher and a student will learn from each

other and reciprocate each other. Recent advances in multi-agent reinforcement

learning (MARL) allow agents to coordinate their behaviors in complex environ-

ments. However, common MARL algorithms still suffer from scalability and sparse

reward issues. One promising approach to resolving them is automatic curriculum

learning (ACL). ACL involves a student (curriculum learner) training on tasks of

increasing difficulty controlled by a teacher (curriculum generator). Despite its suc-

cess, ACL’s applicability is limited by (1) the lack of a general student framework

for dealing with the varying number of agents across tasks and the sparse reward

problem, and (2) the non-stationarity of the teacher’s task due to ever-changing

student strategies. As a remedy for ACL, we introduce a novel automatic cur-

riculum learning framework, Skilled Population Curriculum (SPC), which adapts

xiii

curriculum learning to multi-agent coordination. Specifically, we endow the stu-

dent with population-invariant communication and a hierarchical skill set, allowing

it to learn cooperation and behavior skills from distinct tasks with varying numbers

of agents. In addition, we model the teacher as a contextual bandit conditioned by

student policies, enabling a team of agents to change its size while still retaining

previously acquired skills. We also analyze the inherent non-stationarity of this

multi-agent automatic curriculum teaching problem and provide a corresponding

regret bound. Empirical results show that our method improves the performance,

scalability and sample efficiency in several MARL environments.

To conclude, this thesis makes progress on the challenges that arise in hierarchical

and multi-agent settings and also opens-up a number of exciting questions for

future research. These include how agents can learn to account for the learning

of other agents when their rewards or observations are unknown, how to learn

communication protocols in settings of partial common interest, and how to account

for the agency of humans in the environment.

Contents

Acknowledgements ix

Abstract xi

List of Figures xix

List of Tables xxiii

1 Introduction 1

1.1 Deep Reinforcement Learning . 1

1.2 Organization of the thesis . 3

2 Preliminary 5

2.1 Markov Decision Process . 5

2.2 Reinforcement Learning . 6

2.2.1 Value-based methods . 11

2.2.2 Policy-based Methods . 13

2.2.3 Actor-Critic [1] . 17

2.3 Multi-agent Reinforcement Learning 19

I Communication amongst agents 21

3 Learning Efficient Multi-agent Communication: An Information
Bottleneck Approach 23

3.1 Introduction . 23

3.2 Related Work . 26

3.3 Communicative Multi-agent Reinforcement Learning 28

3.4 Connection between Limited Bandwidth and Multi-agent Commu-
nication . 29

3.4.1 Communication Process . 29

3.4.2 Limited Bandwidth Restricts Message’s Entropy 30

3.4.3 Measurement of a Message’s Entropy 32

3.5 Informative Multi-agent Communication 32

xv

xvi CONTENTS

3.5.1 Variational Information Bottleneck for Learning Protocols . 33

3.5.2 Unification of Learning Protocols and Scheduling 35

3.5.3 Implementation of the limited bandwidth Constraint 35

3.6 Experiment . 36

3.6.1 Cooperative Navigation . 37

3.6.2 Predator Prey . 40

3.6.3 StarCraftII . 42

3.7 Chapter Summary . 43

II Collaboration amongst agents 45

4 I2HRL: Interactive Influence-based Hierarchical Reinforcement Learn-
ing 47

4.1 Introduction . 47

4.2 Related Work . 49

4.3 Preliminaries about Hierarchical Reinforcement Learning 51

4.4 Interactive Influence-based HRL . 52

4.4.1 Low-level Policy Modeling 52

4.4.2 High-level Policy: Influence-based Framework 54

4.4.3 Influence-based Adaptive Exploration 56

4.5 Experiments . 58

4.5.1 Environmental Settings . 58

Ant Gather. 58

Ant Maze. 58

Ant Push. 59

4.5.2 Results . 59

Comparison with Baselines. 59

Ablations. 60

4.5.3 Visualization . 61

Visualization of the low-level policy representation. . 61

Visualization of non-stationary states. 61

4.6 Chapter Summary . 63

5 Commission Fee is not Enough: A Hierarchical Reinforced Frame-
work for Portfolio Management 65

5.1 Introduction . 65

5.2 Key Definitions in Portfolio Management 67

5.3 Hierarchical MDP Framework for Portfolio Management 70

5.3.1 The High-level MDP for Portfolio Management 71

5.3.2 The Low-level MDP for Trade Execution 71

5.4 Optimizing via Deep Hierarchical Reinforcement Learning 72

5.4.1 Hierarchy of Two Policies 73

5.4.2 High-level RL with Entropy Bonus 73

CONTENTS xvii

5.4.3 Low-level RL with Action Branching 74

5.4.4 Training Scheme . 75

5.5 Experiment . 76

5.5.1 Dataset Setting and Preprocessing 76

5.5.2 Baseline and Metrics . 77

5.5.3 Comparison with Baselines 79

5.5.4 Ablation Study . 81

5.5.5 Trading Strategy Interpretation 82

5.6 Chapter Summary . 83

III Reciprocation amongst agents 85

6 Towards Skilled Population Curriculum for Multi-agent Reinforce-
ment Learning 87

6.1 Introduction . 87

6.2 Preliminaries . 89

6.3 Skilled Population Curriculum . 90

6.3.1 Problem Formulation . 90

6.3.2 Teacher as a Non-Stationary Contextual Bandit 91

6.3.2.1 Context Representation 93

6.3.2.2 Regret Analysis . 94

6.3.3 Student with Population-Invariant Skills 95

6.4 Further Related Work . 96

6.5 Experiments . 97

6.5.1 Environments, Baselines and Metric 98

6.5.2 The Necessity of Curriculum Learning 99

6.5.3 Performance and Ablation Study 101

6.5.4 Visualization of Learned Curriculum 102

7 Conclusions and Future Directions 103

7.1 Conclusion . 103

7.2 Future Directions . 104

7.2.1 Foundation Model for Decision Making 104

7.2.2 Human-AI Coordination . 105

List of Author’s Publications 106

A Appendix for Chapter 3 109

A.1 Source Coding . 109

A.2 Maximum Data Rate . 110

A.3 Informative Multi-agent Communication Algorithm 112

A.4 The Information Bottleneck Method 112

A.4.1 Background . 112

xviii CONTENTS

A.4.2 Why IMAC works? . 113

A.5 Experimental Details and Results 114

A.5.1 Cooperative navigation . 114

A.5.2 Predator and prey . 115

A.5.3 StarCraft II . 116

B Appendix for Chapter 5 119

B.1 Contextual Bandit for Limited Number of Contexts 119

B.2 Proof of Theorem 6.3.2.2 . 119

B.3 SPC on GRF 11vs11 Full Game . 120

B.4 Qualitatively Analysis On Low-Level Skills 121

B.5 Comparing Different Teacher Algorithms on GRF Corner-5 121

B.6 Implementation Details . 122

B.6.1 Google Research Football 122

B.6.2 MPE . 123

List of Figures

1.1 The overall perspective of this thesis 3

3.1 The Architecture of IMAC. Left: Overview of the communication
scheme. The red dashed box means the communication process with
a limited bandwidth constraint. The green line means the gradient
flows. Right: The upper one is the scheduler for agent i. The below
one is the policy πai and the communication protocol network πproi

for agent i . 27

3.2 Overview of the Communication Process. Axes of messages are time,
dimension of the message vector, and value of each element in the
vector. 30

3.3 Learning curves comparing IMAC to other methods for cooperative
navigation. As the number of agents increases (from left to right),
IMAC improves agents’ performance and converge faster. 36

3.4 Density plot of episode reward per agent during the execution stage.
(a) Reward distribution of IMAC trained with different prior distri-
butions against MADDPG with communication. (b) Reward distri-
bution of MADDPG with communication under different limited
bandwidth environment. (c), (d) Reward distribution of IMAC
trained with different prior distributions against MADDPG with
communication under the same bandwidth constraint. “bw=δ” means
in the implementation of the limited bandwidth constraint, the vari-
ance Σ of Gaussian distribution is δ. 37

3.5 Ablation: learning curves with respect to Σ and β 40

3.6 Learning curves comparing IMAC to other methods for 3m and 8m
in Starcraft II. 43

4.1 Overview of I2HRL, which consists of the interaction between the
low-level and high-level policies, as well as an influence-based frame-
work. At the high-level decision step t, the high-level policy receives
the worker’s previous message mt−1 and state st and sends a goal
gt = πh(st,mt−1). During the high-level decision interval {t+ 1, t+
2, · · · , t+ k − 1}, the subgoal follows the transition function gt+i =
h(st+i−1, gt+i−1, st+i). The messages {mt,mt+1, · · · ,mt+k−1} sent by
the low-level policy are used to compute the high-level intrinsic re-
wards. The rewards for the high-level policy: rth =

∑
j=1,2,··· ,k(r (st+j)+

rin(st+j,mt+j)) . 51

xix

xx LIST OF FIGURES

4.2 Evaluation results in the AntMaze, AntGather, and AntPush. SR
means success rate. (A) AntMaze Env. (B) SR in AntMaze [16,0]
(C) SR in AntMaze [16,16] (D) SR in AntMaze [0,16] (E) ntGather
Env. (F) Evaluation Reward in AntGather (G) AntPush Env. (H)
Evaluation Reward in AntGather. 56

4.3 Ablation study for the proposed interaction, the influence-based
framework and rewards. I2HRL represents our method with Eq.
(4.8); I2HRL w/o inf represents that the internal variable z is re-
moved, and the concatenation of the low-level policy representation
with the state is feed into the high-level policy; I2HRL w/o rin rep-
resents the Eq. (4.6). HIRO is as a baseline. 58

4.4 Visualization of the low-level policy representation. 61

4.5 Visualization of the intrinsic reward. Axes represent the position of
the ant. The red point is the goal position in AntMaze. Colormap
shows the magnitude of the intrinsic rewards. (a)(b) The initial
phase is at 0 step. (c)(d) The non-stationary phase is at 1 million
steps. (e)(f) The near-stationary phase is at 3 million steps. 62

5.1 Illustration of the portfolio management process. 69

5.2 Overview of HRPM . 70

5.3 The portfolio value in the U.S. market. 78

5.4 The portfolio value in the China market. 80

5.5 Trading cost during the trading periods. 81

5.6 The effect of the entropy bonus in the U.S. Market. 81

5.7 The interpretation of the low-level policy. The line is the mid-price
of the market. The dark blue part is the trading window, and the
light blue part shows the price before and after. The table inside
the figure shows the finished trades. 82

6.1 The overall framework of SPC. It consists of three parts: config-
urable environments, a teacher, and a student. Left. The teacher
is modeled as a contextual multi-armed bandit. At each teacher
timestep, the teacher chooses a training task from the distribution
of bandit actions. Mid. The student is endowed with a hierarchi-
cal skill framework and population-invariant communication. It is
trained with MARL algorithms on the training tasks. The student
returns not only the hidden state of its RNN imitation model as
contexts to the teacher, but also the average discounted cumulative
rewards on the testing task. Right. The student learns hierarchical
policies, with the population-invariant communication taking place
at the high-level, implemented with a self-attention communication
channel to handle the messages from a varying number of agents.
The agents in the student share the same low-level policy. 92

6.2 (a) Multi-agent Particle Environment. (b) Google Research Football. 96

6.3 The evaluation performance of various methods on 5vs5 football
competition. 99

LIST OF FIGURES xxi

6.4 The evaluation performance of various methods on MPE. 100

6.5 The changes in the number of agents on MPE. 100

6.6 Visualization of Learned Curriculum. 100

A.1 Density plot of episode reward per agent during the execution stage.
(a), (b) Reward distribution of IMAC trained with different prior dis-
tributions against MADDPG with communication under the same
bandwidth constraint in 3m and 8m respectively. “bw=δ” means in
the implementation of the limited bandwidth constraint, the vari-
ance Σ of Gaussian distribution is δ. 116

B.1 The performance of SPC on the 11v11 scenario. 121

B.2 The evaluation performance of various teacher algorithms on the
GRF corner-5 scenario. 122

List of Tables

3.1 Cross-comparison between IMAC and baselines on predator-prey. . 39

3.2 Cross-comparison in different bandwidths on predator-prey. “t5”
means that IMAC is trained with the variance |Σ| = 5. “e1” means
that during the execution, we use the batch-norm like layer to clip
the message to enforce its variance |Σ| = 5. 41

5.1 Period of stock data used in the experiments. 76

5.2 Performance comparison in the U.S. market 78

5.3 Performance comparison in the China market 79

5.4 Ablation on the effect of entropy in the U.S. market 80

6.1 Baseline algorithms. 99

A.1 Entropy of messages in different limited bandwidths (number in cell
represents H(Mi) = 1

2
log(2πeσ2), which is calculated based on run-

ning variance). 115

B.1 Statistics of low-level skills. 121

B.2 SPC hyper-parameters. 123

xxiii

Chapter 1

Introduction

1.1 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) has seen significant progress in recent years

in the development of learning algorithms that can solve static tasks, where a single

agent operates in an environment. However, the real world is full of multi-agent

environments where a large number of distributed agents must take independent

decisions based on local observations to achieve a shared goal or maximize indi-

vidual rewards. Examples of such environments include self-driving cars, robotic

assembly lines, and multi-player games. In these environments, not only do agents

interact with each other, but they must also consider the presence of other biolog-

ical agents such as humans or animals.

To address these challenges, Multi-Agent Reinforcement Learning (MARL) has

emerged as a field of study that aims to develop and analyze learning algorithms

that can discover effective policies in multi-agent settings. Furthermore, as AI

systems become more influential and interact with humans, they are likely to affect

the personality development of the human users themselves. For example, AI

systems that serve user preferences should not assume that the user’s preferences

are static. Instead, they need to consider the agency of users by reasoning over

their beliefs, ideals, and desires. MARL can help develop AI systems that can

interact with humans in a more empathetic and efficient way, improving the user

experience and avoiding unintended negative consequences.

1

2 1.1. Deep Reinforcement Learning

In addition, MARL can serve as a stepping stone towards developing systems that

have human-like reasoning abilities. The development of human-level intelligence

occurred in the social context of many agents interacting, and research suggests

that higher level cognitive skills such as abstraction could naturally arise in multi-

agent settings. [2–6] This is because agents must account for the current state of

mind of other agents as part of their state of mind, which corresponds to a level

of abstract thought. By studying and developing MARL algorithms, we can gain

insights into how to create intelligent systems that can reason about the beliefs,

desires, and perspectives of other agents, and thereby make decisions that are

aligned with the goals of the system.

Despite its potential, current MARL approaches face several limitations, including

non-stationary environments, sample inefficiency, and the curse of dimensionality.

These limitations have inspired the studies in this thesis, which seek to address

these shortcomings and contribute to the advancement of MARL. Non-stationary

environments pose a significant challenge in MARL, as the behavior of other agents

can change over time, making it difficult for an agent to learn an optimal policy.

Non-stationarity implies the inability of individual agents to attribute received re-

wards to the actions of others, rather than their own actions – because they lack

the necessary information. Communication has the ability to correct this lack of

information but adds an additional layer of decision-making. This thesis presents

novel algorithms that enable agents to adapt to the changing behavior of other

agents, thus improving their performance in non-stationary environments. More-

over, sample inefficiency is another limitation of MARL, as agents often require a

large number of interactions with the environment to learn effective policies. This

thesis introduces new techniques that improve sample efficiency by leveraging the

structure of the problem and the relationships between agents, allowing them to

learn more effectively from fewer interactions. Lastly, the curse of dimensionality

is a well-known issue in reinforcement learning, and it becomes even more pro-

nounced in MARL due to the increased complexity of multi-agent environments.

This thesis addresses this challenge by developing hierarchical and modular ap-

proaches that can break down complex tasks into simpler sub-tasks, reducing the

dimensionality of the problem and enabling more efficient learning. To sum up, the

contributions of this thesis are aimed at addressing the key shortcomings of exist-

ing MARL approaches, including non-stationary environments, sample inefficiency,

and the curse of dimensionality. Specifically, the thesis presents novel algorithms

Chapter 1. Introduction 3

Figure 1.1: The overall perspective of this thesis

.

and techniques that enhance the efficiency of multi-agent communication, improve

the ability of agents to collaborate in hierarchical settings, and facilitate better

reciprocation among agents in various application domains. By addressing these

limitations, the thesis aims to advance the state-of-the-art in MARL and contribute

to the development of more sophisticated and effective multi-agent systems that

can tackle complex real-world challenges.

1.2 Organization of the thesis

This thesis is organized into three parts, each focusing on a different aspect of

multi-agent systems.

Chapter 1 introduces the multi-agent RL setting and provides the necessary algo-

rithmic and conceptual tools of deep reinforcement learning. Chapter 2 provides

the preliminary knowledge about RL and related work of this thesis.

Part I of the thesis focuses on communication, specifically developing an infor-

mative multi-agent communication method in a limited bandwidth environment.

In Chapter 4, we address the issue of efficient communication between agents in

limited bandwidth environments. We introduce the Informative Multi-Agent Com-

munication (IMAC) method, which learns communication protocols and scheduling

while considering the limited bandwidth constraint. The method is based on the

information bottleneck principle and employs a customized batch-norm layer to

control message entropy. Through extensive experiments, we demonstrate that

IMAC leads to faster convergence and more efficient communication among agents

under limited bandwidth compared to other baseline methods.

4 1.2. Organization of the thesis

Part II of the thesis concentrates on collaboration. In Chapter 3, we propose a novel

Hierarchical Reinforcement Learning (HRL) algorithm called Interactive Influence-

based HRL (I2HRL). By introducing interaction between the low-level and high-

level policies, we enable the policies to collaborate and learn from each other.

Our approach significantly improves the learning performance and acceleration

compared to state-of-the-art HRL methods in various tasks.

Chapter 5 focuses on the problem of portfolio management with trading cost via

deep reinforcement learning. We introduce a hierarchical reinforced stock trad-

ing system (HRPM) that employs a hierarchy of portfolio management over trade

execution and trains corresponding policies. The high-level policy determines port-

folio weights, and the low-level policy executes trades. Extensive experiments show

that HRPM outperforms many state-of-the-art approaches in the US and China

markets.

Part III of the thesis focuses on reciprocation, specifically addressing the scalability

and sparse reward issues in multi-agent systems. In Chapter 6, we address scalabil-

ity and sparse reward issues in multi-agent systems. We introduce the Curriculum

Oriented Skills and Tactics (COST) algorithm, which uses a population-invariant

multi-agent communication framework to handle varying numbers of agents and

a hierarchical scheme for agents to learn skills to deal with sparse rewards. To

mitigate non-stationarity, we model the teacher as a contextual bandit. Our ex-

periments show that COST achieves state-of-the-art performance in several tasks

in the multi-particle environment and the challenging 5vs5 competition in GRF.

Chapter 7 concludes the report and suggests ideas for future work. The thesis

contributes to the development of communication, collaboration, and reciproca-

tion between agents in various settings, demonstrating the effectiveness of the

proposed algorithms in improving the efficiency of interaction and collaboration

among agents.

Chapter 2

Preliminary

2.1 Markov Decision Process

The Markov Decision Process (MDP) is a well-established mathematical frame-

work used in the field of reinforcement learning to model decision-making prob-

lems involving an agent interacting with an environment. It is defined by a tuple

⟨S,A,P ,R, γ⟩, where each component has a specific meaning.

• The set of states, denoted as S, represents the possible situations or configura-

tions of the environment. States are used to capture the relevant information

about the environment that the agent needs to make decisions.

• The set of actions, denoted as A, represents the possible choices or decisions

that the agent can make. Actions are taken by the agent to transition from

one state to another in the environment.

• The state transition probability function, denoted as P , represents the prob-

ability of transitioning from one state to another after taking a certain action.

It is usually expressed as P(s′|s, a), where s′ is the next state, s is the current

state, and a is the action taken. This function captures the dynamics of the

environment and describes how the environment changes in response to the

agent’s actions.

• The reward function, denoted as R, represents the immediate reward that

the agent receives after taking a certain action in a certain state. It is usually

5

6 2.2. Reinforcement Learning

expressed as R(s, a, s′), where s is the current state, a is the action taken,

and s′ is the next state. The reward function provides feedback to the agent

about the desirability of its actions and serves as a guiding signal for learning.

• The discount factor, denoted as γ, is a scalar value between 0 and 1 that

represents the preference of the agent for immediate rewards versus future

rewards. A discount factor of 0 indicates that the agent only cares about

immediate rewards, while a discount factor of 1 indicates that the agent

values future rewards equally to immediate rewards. The discount factor

allows the agent to trade-off between short-term and long-term rewards in its

decision-making process.

The agent selects actions based on a policy, denoted as π(a | s), which represents

the probability of selecting action a given the current state s. The goal of the

agent is to learn an optimal policy, denoted as π∗, that maximizes the expected

cumulative reward or the expected sum of discounted rewards over an infinite time

horizon, which is defined as Gt =
∑∞

k=0 γ
krk+t. This is typically achieved through

reinforcement learning algorithms that update the policy and value functions based

on the observed interactions with the environment, allowing the agent to learn from

experience and make informed decisions.

The MDP framework provides a formal and well-defined framework for study-

ing and solving decision-making problems in the field of reinforcement learning,

with applications in various domains, such as robotics, game playing, finance, and

healthcare. Overall, MDPs are a fundamental tool for understanding and solving

sequential decision-making problems in artificial intelligence and machine learning.

With their clear mathematical representation, MDPs provide a solid foundation

for developing and analyzing decision-making algorithms for autonomous agents.

2.2 Reinforcement Learning

Reinforcement learning (RL), a widely used framework for solving problems that

can be modeled as MDPs, relies on the concept of policy and value function. The

policy dictates the actions to be taken at each state or time step, while the value

function quantifies the desirability of states or state-action pairs. These functions

Chapter 2. Preliminary 7

can be represented using tables or approximated using functions, and are essential

for decision making and learning in reinforcement learning.

In this section, we first introduce the state value function, the state-action value

function, and the Bellman equation. We then prove the convergence of iteration

methods using the Banach fixed-point theorem. For a given policy, we can com-

pute its state value function by repeatedly applying the Bellman equation. Each

iteration can be considered as a mapping from the space of value functions to it-

self, and the Bellman operator Tπ is a contraction mapping. Thus, by the Banach

fixed-point theorem, the iteration method converges to a unique fixed point, which

is the true value function under the policy. Lastly, we present several value-based

methods, such as Q-learning and SARSA, which directly estimate the state-action

value function and then derive the policy from it. We also introduce policy-based

methods, such as REINFORCE and actor-critic, which directly parameterize the

policy and optimize it using gradient-based methods.

The state value function, denoted as Vπ(s), represents the expected cumulative

discounted reward, or the long-term reward, starting from a given state s and

following a policy π to choose actions. It is defined as the expected value of the

sum of discounted rewards from the current time step t onwards, given that the

agent is at state st = s and follows policy π:

Vπ(s) = Eπ [Gt | st = s] = Eπ

[
∞∑
k=0

γkrk+t | st = s

]
, (2.1)

where γ is a discount factor that determines the weight of future rewards, and rk+t

is the reward obtained at time step k + t. The objective of reinforcement learning

is to find the optimal policy π that maximizes the expected cumulative reward

starting from the initial state, denoted by J (π) = Es0 ∼ ρ0[V π(s0)], where ρ0 is

the initial distribution of states.

Similarly, the state-action value function, denoted as Qπ(s, a), represents the ex-

pected cumulative discounted reward, or the long-term reward, starting from a

given state s, taking action a, and following policy π thereafter. It is defined as

the expected value of the sum of discounted rewards from the current time step t

onwards, given that the agent is at state st = s and takes action at = a:

8 2.2. Reinforcement Learning

Qπ(s, a) = Eπ [Gt | st = s, at = a] = Eπ

[
∞∑
k=0

γkrk+t | st = s, at = a

]
. (2.2)

The Bellman equations, as shown above, express the relationship between the value

of current and successor states or state-action pairs. These equations are the

foundation of the policy iteration method, a widely used approach for solving

MDPs, which consists of two main steps: policy evaluation and policy improvement.

By iteratively executing these two steps, the optimal policy can be obtained in

tabular cases. Accurate estimation of the policy and value functions is crucial for

successful reinforcement learning.

According to the above two definitions, some properties of these two value functions

can be given:

Qπ (st, at) = Est+1∼P(st,at) [rt+1 + γV (st+1)] ,

Vπ (st) = Est+1∼P(st,at),at∼π(st) [rt+1 + γV (st+1)] ,

Qπ (st, at) = Est+1∼P(st,at),at+1∼π(st+1) [rt+1 + γQ (st+1, at+1)] ,

(2.3)

which are Bellman equations that express the relationship between the value of

current and successor states or state-action pairs.

Based on Bellman equations, the policy iteration and the value iteration method are

proposed to solve MDPs. Before presenting these methods, we first introduce the

Banach fixed-point theorem, which supports the convergence of iteration methods.

Theorem 2.1 (Banach fixed-point theorem). Let X be a complete metric space,

and f be a contraction on X. Then there exists a unique x∗ such that f (x∗) = x∗.

The contraction of a mapping is defined as follows.

The Banach fixed-point theorem provides a powerful tool for ensuring the conver-

gence of iterative methods in various settings. In particular, the theorem guarantees

the existence and uniqueness of a fixed point for a contraction mapping on a com-

plete metric space. In the context of RL, the metric space is typically taken to be

the set of real numbers R, and the norm is the absolute value function.

Chapter 2. Preliminary 9

Definition 2.1 (Contraction). Let X be a metric space, and f : X −→ X. We will

say that f is a contraction if there exists some 0 < k < 1 such that d(f(x), f(y)) ≥
kd(x, y) for all x, y ∈ X. The inf of such k ’s is called the contraction coefficient.

The Banach fixed-point theorem provides a powerful tool for ensuring the conver-

gence of iterative methods in various settings. In particular, the theorem guaran-

tees the existence and uniqueness of a fixed point for a contraction mapping on a

complete metric space. In the context of RL, the metric space is typically taken

to be the set of real numbers R, and the norm is the absolute value function, i.e.,

X usually is R and d is the norm. Then we can prove that the Bellman equation

has a unique fixed point as follows:

∥T πV1 − T πV2∥∞ = ∥r + γPπV1 − r − γPπV2∥∞
= γ ∥Pπ (V1 − V2)∥∞
⩽ γ ∥V1 − V2∥∞ ,

(2.4)

where T π is the Bellman operator representing the left side of the Bellman equation

and Pπ is the transition probabilities following π.

Policy iteration includes two parts: policy evaluation and policy improvement. By

alternatively executing these two parts, we can obtain the optimal policy in tabular

cases.

The policy evaluation step involves computing the state-value function Vπ for a

given policy π using the Bellman function. This can be done by iteratively updating

the value estimates for each state until convergence is reached. Specifically, for each

state st, the value estimate is updated as:

Vπ (st) = Est+1∼P(st,at),at∼π(st) [rt+1 + γV (st+1)]

=
∑
a

π(a | s)
∑
s′,r

P (s′, r | s, a) [r + γV (s′)] ,
(2.5)

where P is the transition probability function, and rt is the reward obtained after

taking action at in state st.

If the transition probability function P is known, we can repeatedly update V (s)

by V (s′) for all the s ∈ S, until the gap between the new and old values is

small enough. According to the Banach fixed-point theorem, this iterative process

converges to the unique fixed-point solution Vπ.

10 2.2. Reinforcement Learning

Once we have the value function Vπ for a policy π, we can improve the policy using

the policy improvement theorem. Specifically, we can compute the action-value

function Qπ(s, a) for each state-action pair, and update the policy at each state s

by selecting the action that maximizes Qπ(s, a), i.e.,

π′(s) = arg max
a
Qπ(s, a) (2.6)

The policy improvement theorem states that the new policy π′ obtained in this way

is guaranteed to be at least as good as the original policy π, i.e., Vπ′(s) ≥ Vπ(s) for

all states s. By iteratively performing policy evaluation and improvement, we can

converge to the optimal policy π∗ that maximizes the expected return J (π).

Theorem 2.2 (Policy improvement theorem). When π′(s) = arg maxaQπ(s, a),

the return of π′ will be no less than that of π :

Vπ′(s) ≤ Vπ(s) (2.7)

Proof.

Vπ(s) ≤ Qπ (s, π′(s))

= Eπ′ [rt + γVπ (st+1) | st]

≤ Eπ′ [rt + γQπ (st+1, π
′ (st+1)) | st]

= Eπ′ [rt + γEπ′ [rt+1 + γVπ (st+2)] | st]

= Eπ′
[
rt + γrt+1 + γ2Vπ (st+2) | st

]
≤ Eπ′

[
rt + γrt+1 + γ2rt+2 + γ3Vπ (st+3) | st

]
...

≤ Eπ′
[
rt + γrt+1 + γ2rt+2 + γ3rt+3 + · · · | st

]
= Vπ′(s).

(2.8)

If Vπ is the same as Vπ′ , we find the fixed point of the Bellman equation. According

to the fixed-point theorem, both π and π′ must be the optimal policies.

Value iteration. Policy evaluation usually requires multiple sweeps through the

state set to obtain accurate values, which is time-consuming. Value iteration sim-

plifies the policy iteration method by restricting the number of sweeps to one.

Chapter 2. Preliminary 11

Formally,

Vπ (st) = max
a

∑
s′,r

P (s′, r | s, a) [r + γV (s′)] , (2.9)

which does not lose the convergence guarantees of policy iteration.

2.2.1 Value-based methods

In the above-mentioned policy iteration or value iteration methods, they both need

to obtain the expectation during the update. Thus, Temporal-Difference (TD)

learning is proposed to estimate the expectation of V values. To estimate V values

of a policy π, let π interact with the environment with T time steps. Then, we can

update V values using sampled data by

V (st) = V (st) + α [rt + V (st+1)− V (st)] ,

where α is a constant to decide the weight of new samples.

SARSA [7]

SARSA stands for State-Action-Reward-State-Action, and it is an on-policy algo-

rithm that learns the optimal Q-function through experience. At each time step,

SARSA updates the Q-value of the current state-action pair based on the reward

received and the Q-value of the next state-action pair, which is chosen based on

the current policy. The update rule for SARSA is:

Q (st, at)← Q (st, at) + α [rt + γQ (st+1, at+1)−Q (st, at)] ,

where Q(st, at) is the Q-value of state-action pair (st, at), rt is the reward received

at time t, α is the learning rate, γ is the discount factor, and at+1 is the action

selected for the next state st+1 using the current policy. The policy can be an

ϵ-greedy policy that selects the action with the highest Q-value with probability

1− ϵ and a random action with probability ϵ.

Q-learning [8]

Q-learning, on the other hand, is an off-policy algorithm that learns the optimal

Q-function by selecting the action that maximizes the Q-value of the next state-

action pair. At each time step, Q-learning updates the Q-value of the current

12 2.2. Reinforcement Learning

state-action pair based on the reward received and the maximum Q-value of the

next state-action pair, which is chosen greedily. The update rule for Q-learning is:

Q (st, at)← Q (st, at) + α
[
rt + γmax

a′
Q (st+1, a

′)−Q (st, at)
]
,

where Q(st, at) is the Q-value of state-action pair (st, at), rt is the reward received

at time t, α is the learning rate, γ is the discount factor, and maxa′ Q(st+1, a
′) is

the maximum Q-value of the next state-action pair. The policy used for selecting

actions during the learning process can be a greedy policy that selects the action

with the highest Q-value. However, during the evaluation phase, a different policy

can be used, such as an ϵ-greedy policy, to balance exploration and exploitation.

Deep Q-Learning (DQL) [9]

DQL is a popular reinforcement learning method for solving large-scale problems

with high-dimensional state spaces. DQL employs a deep neural network to ap-

proximate the Q-value function, which represents the expected discounted sum of

rewards that an agent can receive by taking a specific action a in a given state

s. The Q-value function is defined as Q(s, a), and the optimal Q-value function

Q∗(s, a) can be found by solving the Bellman equation:

Q∗ (st, at) = Est+1∼P,at+1∼π

[
rt + γmax

a′
Q∗ (st+1, a

′)
]

where rt is the reward at time t, γ is the discount factor, P is the transition

function, and π is the policy. The optimal policy can then be derived from Q∗ by

choosing the action with the highest Q-value at each state.

In DQL, a deep neural network is used to estimate the Q-value function by taking

the state st and action at as inputs:

Q (st, at; θ) ≈ Q∗ (st, at)

where θ denotes the weights of the neural network. The neural network is trained

using stochastic gradient descent to minimize the following loss function:

L(θ) = Est,at,rt,st+1∼P

[(
rt + γmax

a′
Q
(
st+1, a

′; θ−
)
−Q (st, at; θ)

)2]
,

Chapter 2. Preliminary 13

where θ− denotes a separate set of weights used to calculate the target Q-value.

The target network is periodically updated to match the main network weights.

The experience replay buffer is also used to store a set of recent experiences, which

is then randomly sampled to generate batches for training the neural network.

DQL has been successfully applied in various domains, such as playing Atari games

and controlling robotic systems, and has achieved state-of-the-art results in many

benchmarks.

2.2.2 Policy-based Methods

Policy-based methods are another category of reinforcement learning algorithms.

Unlike value-based methods, which learn the value function and then derive a policy

from it, policy-based methods directly learn a policy.

Policy-based methods can be divided into two types: deterministic policy methods

and stochastic policy methods. Deterministic policy directly outputs a determinis-

tic action given a state, while stochastic policy outputs a distribution over actions

given a state.

The goal of policy-based methods is to find a policy that maximizes the expected

return:

max
θ
J(θ) = Eπθ

[
∞∑
t=0

γtr (st, at)

]
,

where πθ is the policy parameterized by θ. The optimization of policy-based meth-

ods is based on the policy gradient theorem.

Theorem 2.3 (Policy gradient theorem). The gradient of J is

∇θJ(θ) = Eπθ

[
∞∑
t=0

∇θ log πθ (at | st)Qπθ (st, at)

]
.

14 2.2. Reinforcement Learning

Proof.

∇θJ(πθ) = ∇θ

∫
S
dπθ(s)

∫
A
πθ(a|s)Qπθ(s, a)dads

=

∫
S
dπθ(s)

∫
A
∇θπθ(a|s)Qπθ(s, a)dads (swap derivative and integral)

=

∫
S
dπθ(s)

∫
A
πθ(a|s)

∇θπθ(a|s)
πθ(a|s)

Qπθ(s, a)dads (multiply by 1)

= Eπθ

[
Qπθ(s, a)

∇θπθ(a|s)
πθ(a|s)

]
= Eπθ [Qπθ(s, a)∇θ log πθ(a|s)] (definition of logarithm)

≈ 1

N

N∑
i=1

Qπθ(si, ai)∇θ log πθ(ai|si) (sample estimate),

(2.10)

where si and ai are samples collected from the policy πθ and N is the number of

samples used in the estimate.

Therefore, the policy gradient update rule is given by:

θk+1 = θk + α∇θJ (πθ) ≈ θk + α
1

N

N∑
i=1

Qπθ (si, ai)∇θ log πθ (ai | si) ,

where α is the learning rate.

REINFORCE [10]

REINFORCE is a policy-based method for reinforcement learning that is based on

the policy gradient theorem. In REINFORCE, the goal is to optimize a parametrized

policy πθ with respect to the expected return J(θ).

The update rule in REINFORCE is as follows:

θt+1 = θt + α∇θJ (θt)

where α is the step size and ∇θJ(θt) is the gradient of the expected return with

respect to the policy parameters.

To derive the gradient of the expected return, we can use the policy gradient

theorem:

∇θJ(θ) = Eτ∼pθ(τ)

[
T∑
t=0

∇θ log πθ (at | st)R(τ)

]

Chapter 2. Preliminary 15

where τ = (s0, a0, r1, s1, a1, r2, ..., sT , aT , rT+1) is a trajectory, pθ(τ) is the proba-

bility density of trajectory τ under policy πθ, and R(τ) is the return of trajectory

τ .

Using the policy gradient theorem, we can update the policy parameters as follows:

θt+1 = θt + α

T∑
t=0

∇θ log πθ (at | st)R(τ)

where τ = (s0, a0, r1, s1, a1, r2, ..., sT , aT , rT+1) is a trajectory sampled from the

current policy πθt .

One way to implement REINFORCE is to use Monte Carlo simulation to estimate

the expected return and the gradient. At each iteration, the agent interacts with the

environment to collect a set of trajectories using the current policy, and then uses

these trajectories to estimate the gradient of the expected return with respect to

the policy parameters. This gradient is then used to update the policy parameters

using the update rule above.

In practice, REINFORCE has high variance and is not very sample efficient. To

address this issue, several techniques have been proposed, such as using a baseline

function to reduce variance and using actor-critic methods to estimate the value

function and the policy gradient jointly.

Trust Region Policy Optimization (TRPO) [11]

Trust Region Policy Optimization is a policy optimization method that seeks to

improve policy performance while ensuring the policy changes are small enough to

guarantee a certain amount of improvement. The idea behind TRPO is to con-

struct a surrogate objective function that approximates the true objective function

while ensuring that the new policy is not too far away from the old policy. The

optimization is carried out by solving a constrained optimization problem, where

the constraints are given by a trust region around the current policy.

The objective function of TRPO is with an additional constraint on the KL-

divergence between the new and old policies:

max
θ

Est,at∼πθdd

[
πθ (at | st)
πθdd (at | st)

Aπθdd (st, at)

]
subject to KL [πθddd(· | s)∥πθ(· | s)] ≤ δ

16 2.2. Reinforcement Learning

where Aπθold (st, at) is the advantage function estimated using the old policy, and δ

is a hyperparameter that controls the size of the trust region.

To optimize the objective function while satisfying the trust region constraint,

TRPO uses a second-order optimization method, such as the conjugate gradient

(CG) method, to solve the following constrained optimization problem:

max
θ

Est,at∼πθold

[
πθ (at | st)
πθold (at | st)

Aπθold (st, at)

]
subject to Est,at∼πθold [KL [πθdd (· | st) ∥πθ (· | st)]] ≤ δ

Est,at∼πθold

[(
πθ (at | st)
πθold (at | st)

)2
]
≤ β

where β is another hyperparameter that limits the magnitude of policy updates.

Proximal Policy Optimization (PPO) [12]

PPO (Proximal Policy Optimization) is a policy-based method for reinforcement

learning. It is a variant of TRPO (Trust Region Policy Optimization) and uses a

clipped surrogate objective function to update the policy in each iteration. The

objective function in PPO is as follows:

LCLIP (θ) = Êt
[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
,

where θ is the parameter of the policy, Êt denotes the empirical expectation taken

over a batch of data, Ât is the advantage estimate at time step t, and rt(θ) =
πθ(at|st)
πθold(at|st)

is the ratio of the probability of taking action at in state st under the

new and old policies.

The clipped surrogate objective function consists of two terms: the first term is

the advantage-weighted surrogate objective, which encourages the new policy to

increase the probability of taking actions that have a high advantage; the second

term is a clipped surrogate objective, which prevents the new policy from deviating

too much from the old policy.

The advantage estimate Ât is used to estimate the advantage function A(st, at). In

PPO, the generalized advantage estimator (GAE) is used to estimate Ât:

Ât = δt + γλδt+1 + . . .+ γT−t+1λT−tδT ,

Chapter 2. Preliminary 17

where δt = rt + γV (st+1)− V (st) is the TD error at time step t, γ is the discount

factor, V (s) is the state value function, and λ is a hyperparameter that controls the

trade-off between bias and variance in the estimation of the advantage function.

The policy is updated by minimizing the clipped surrogate objective function sub-

ject to a constraint on the maximum change in the policy parameters:

Ât = δt + γλδt+1 + . . .+ γT−t+1λT−tδT ,

where θ′ are the updated policy parameters and ϵ is a hyperparameter that controls

the size of the trust region.

The update rule for the policy parameters is:

θk+1 = arg max
θ

1

N

N∑
i=1

min

(
πθ (ai | si)
πθodd (ai | si)

Âi, clip

(
πθ (ai | si)
πθold (ai | si)

, 1− ϵ, 1 + ϵ

)
Âi

)
.

2.2.3 Actor-Critic [1]

The actor-critic method is a combination of policy-based and value-based methods.

It uses a policy (actor) network to select actions and a value (critic) network

to evaluate the selected actions. The actor-critic method addresses some of the

limitations of both policy-based and value-based methods. In particular, it can

handle continuous action spaces and has improved sample efficiency compared to

policy-based methods.

In the actor-critic method, the policy network is typically updated using the policy

gradient method, and the value network is updated using the TD learning method.

The policy gradient method uses the gradient of the policy with respect to the

expected return to update the policy network parameters. The TD learning method

uses the difference between the observed return and the predicted return to update

the value network parameters.

The critic learns the value function Vθ(s) which estimates the expected return

starting from state s:

Vθ(s) ≈ E [Gt | st = s]

18 2.2. Reinforcement Learning

, where Gt =
∑T

k=t+1 γ
k−t−1rk is the discounted sum of rewards starting from time

step t, and T is the time step at which the episode terminates.

πϕ(a | s) ≈ P [at = a | st = s]

, where Gt =
∑T

k=t+1 γ
k−t−1rk is the discounted sum of rewards starting from time

step t, and T is the time step at which the episode terminates.

The actor updates its policy parameters ϕ in the direction of the policy gradient:

∇ϕJ(ϕ) ≈ 1

N

N∑
i=1

T∑
t=1

∇ϕ log πϕ
(
ait | sit

)
Qπ
(
sit, a

i
t

)
,

where Qπ(sit, a
i
t) is an estimate of the expected sum of rewards starting from state

sit, taking action ait and then following policy π thereafter. This estimate is provided

by the critic, and is updated using TD learning as follows:

δt = rt + γVθ (st+1)− Vθ (st)

θ ← θ + αθδt∇θVθ (st) ,

where δt is the TD error at time step t, αθ is the learning rate for the critic, and

∇θVθ(st) is the gradient of the value function with respect to its parameters θ.

The actor’s policy parameters ϕ are updated in the direction of the policy gradient,

scaled by the advantage function:

ϕ← ϕ+ αϕAt∇ϕ log πϕ (at | st) ,

where At is the advantage function, defined as At = Qπ(st, at) − Vθ(st). The

advantage function measures the advantage of taking action at in state st compared

to following the current policy.

DDPG [13]

DDPG stands for Deep Deterministic Policy Gradient, and it is a model-free, off-

policy algorithm that combines ideas from both Q-learning and policy gradient

methods. DDPG is designed for continuous action spaces, which makes it a popular

choice for applications such as robotics and control.

Chapter 2. Preliminary 19

DDPG uses an actor-critic architecture, where the actor network learns a determin-

istic policy, and the critic network learns the corresponding action value function.

The critic network is trained using the Bellman equation, similar to Q-learning,

and the actor network is updated using the gradient of the critic network with

respect to the actor’s output, similar to policy gradient methods.

The update rule for the critic network is similar to Q-learning, and it is defined as

follows:

Q (st, at)← Q (st, at) + α (rt + γQ (st+1, µ (st+1))−Q (st, at))

where st is the current state, at is the current action, rt is the immediate reward,

µ (st) is the actor’s output for the current state, α is the learning rate, and γ is the

discount factor.

The actor network is updated using the gradient of the critic network with respect

to the actor’s output. The update rule for the actor network is as follows:

∆θ ← 1

N

N∑
i=1

∇aQ
(
s, a | θQ

)∣∣∣∣∣
s=si,a=µ(si)

∇θµµ (s | θµ)

∣∣∣∣∣∣
s=si

where θQ and θµ are the weights of the critic and actor networks, respectively, and

N is the batch size.

DDPG also uses a replay buffer and a target network to improve the stability of

the learning process. The replay buffer stores the experiences of the agent in the

form of tuples (st, at, rt, st+1), and samples are randomly drawn from the buffer

during training. The target network is a copy of the actor and critic networks

that is periodically updated with the weights of the online networks to improve the

stability of the learning process.

2.3 Multi-agent Reinforcement Learning

Dec-POMDP. A cooperative MARL problem can be formulated as a decentralized

partially observable Markov decision process (Dec-POMDP) [14], which is described

as a tuple ⟨n,S,A, P, R,O,Ω, γ⟩, where n represents the number of agents. S

20 2.3. Multi-agent Reinforcement Learning

represents the space of global states. A = {Ai}i=1,··· ,n denotes the space of actions

of all agents. O = {Oi}i=1,··· ,n denotes the space of observations of all agents.

P : S ×A→ S denotes the state transition probability function. All agents share

the same reward as a function of the states and actions of the agents R : S×A→ R.

Each agent i receives a private observation oi ∈ Oi according to the observation

function Ω(s, i) : S → Oi. γ ∈ [0, 1] denotes the discount factor.

Part I

Communication amongst agents

21

Chapter 3

Learning Efficient Multi-agent

Communication: An Information

Bottleneck Approach1

3.1 Introduction

Communication in Multi-Agent Reinforcement Learning (MARL) refers to the ex-

change of information or messages among agents during the learning process. It

can be explicit or implicit, depending on the underlying communication channel

used to exchange information.

In MARL, communication is essential as it enables agents to coordinate their ac-

tions and learn better policies. In cooperative environments, agents must work

together to achieve a common goal, which can be difficult without communication.

Communication allows agents to share information about the environment, their

policies, and their observations, which can help them make better decisions and

act more efficiently. Therefore, many recent works in the field of multi-agent com-

munication focus on learning what messages [16–18] to send and whom to address

them [19–22].

There are different types of communication strategies in MARL, including central-

ized, decentralized, and hybrid. In centralized communication, agents can directly

1The work in this chapter has been published as Wang et al.

23

24 3.1. Introduction

exchange information with one another or with a central coordinator. In decentral-

ized communication, agents communicate only with their neighbors or with those

in their local communication range. Hybrid communication combines elements of

both centralized and decentralized communication.

Communication can help agents coordinate their actions in several ways [23]. First,

it can allow agents to learn about the state of the environment and the actions of

other agents. This information can be used to coordinate actions, avoid conflicts,

and allocate resources more efficiently. Second, communication can enable agents

to share knowledge about their individual policies and observations, allowing them

to learn from each other and improve their policies. Finally, communication can

help agents to negotiate and coordinate their strategies to achieve common goals,

leading to better performance and higher rewards.

Communication helps cooperation in MARL in several ways:

• Sharing Information: Communication allows agents to share information with

each other, which can improve their collective decision-making. For example,

one agent may have observed a relevant event that another agent has not,

and by sharing this information, they can improve their understanding of the

environment.

• Coordination: Communication can help agents coordinate their actions and

avoid conflicts. For example, if two agents are approaching the same goal from

different directions, they can communicate to coordinate their movements and

avoid colliding with each other.

• Division of Labor: Communication can help agents divide tasks among them-

selves based on their strengths and weaknesses. For example, one agent may

be better suited to a particular task than another, and by communicating,

they can divide the work in a way that maximizes their collective perfor-

mance.

• Joint Planning: Communication can help agents jointly plan their actions to

achieve a common goal. For example, if a group of agents is trying to solve

a complex problem, they can communicate to develop a joint plan of action

that takes into account each agent’s individual capabilities.

Chapter 3. Learning Efficient Multi-agent Communication: An Information
Bottleneck Approach 25

However, communication in MARL can also be challenging, especially in large-

scale environments with many agents. Communication can introduce additional

complexity and may require more computational resources. Additionally, commu-

nication may be subject to delays, noise, and errors, which can affect the perfor-

mance of the agents. Therefore, designing effective communication protocols and

strategies is an important area of research in MARL.

In this chapter, we address a key challenge faced by learning agents in multi-agent

domains, namely the need to efficiently utilize limited communication resources

such as limited bandwidth. Limited bandwidth arises in two transmission pro-

cesses, namely from agents to the scheduler and from the scheduler to agents, as

illustrated in Fig. 3.1. Recently, one strategy has been proposed for dealing with

the limited bandwidth problem in multi-agent settings, which involves downsiz-

ing the communication group via a scheduler [24–26]. This approach allows only

a subset of agents to communicate at a given time, thereby avoiding the issue

of bandwidth overload. However, this approach suffers from several limitations.

For instance, it restricts the number of agents who can communicate, and agents

may share redundant messages, which can lead to unsustainable bandwidth usage.

Moreover, these methods require specific configurations, such as a predefined scale

of agents’ communication group [24, 25] or a predefined threshold for muting agents

[26], which may not be suitable for complex multi-agent domains.

We propose an approach to address the limited bandwidth problem by compressing

the communication messages. First, we view the messages as random vectors from

a communication theory perspective, and prove that limited bandwidth can be

translated into a constraint on the communicated message entropy. This implies

that agents should generate low-entropy messages to satisfy the limited bandwidth

constraint. Specifically, we apply the source coding theorem [27] and Nyquist

criterion [28] to state that, in a noiseless channel, when a K-ary, bandwidth B,

quantization interval ∆ communication system transmits n messages of dimension

d per second, the entropy of the messages H(m) is limited by the bandwidth

according to H(m) ≤ 2B log2K
n

+ d log2 ∆.

To enable agents to send and receive low-entropy messages that contain useful and

necessary information, we propose a method for learning communication protocols

and scheduling, called Informative Multi-Agent Communication (IMAC). IMAC is

inspired by the variational information bottleneck method [29, 30], and it applies

26 3.2. Related Work

a regularization method to learn informative communication protocols that con-

vey low-entropy and useful messages. Specifically, IMAC applies the variational

information bottleneck to the communication protocol by viewing the messages as

latent variables and approximating their posterior distribution. By regularizing the

mutual information between the protocol’s inputs (i.e., the input features extracted

from agents) and the protocol’s outputs (i.e., the messages), we learn informative

communication protocols. Additionally, we view the scheduler as a virtual agent

and learn a weight-based scheduler that aggregates compact messages by reweight-

ing all agents’ messages.

We conduct extensive experiments in different environments: cooperative navi-

gation, predator-prey and StarCraftII. Results show that IMAC can convey low-

entropy messages, enable effective communication among agents under the limited

bandwidth constraint, and lead to faster convergence as compared with various

baselines.

3.2 Related Work

Our work is related to previous studies in multi-agent reinforcement learning with

communication, which primarily focus on two fundamental issues: who/whom and

what to communicate, also referred to as learning scheduling and communication

protocols. One line of scheduling methods uses specialized networks to learn a

weight-based scheduler by reweighting agents’ messages, such as bi-direction RNNs

in BiCNet [18] or a self-attention layer in TarMAC [21]. Another line introduces

various gating mechanisms to determine the groups of communication agents [19,

20, 22, 25, 26]. Communication protocols are usually learned in an end-to-end

manner with a specific scheduler, going from perceptual input (e.g., pixels) to

communication symbols (discrete or continuous) to actions (e.g., navigating in an

environment) [16, 25]. While some studies on learning communication protocols

concentrate on discrete, human-interpretable communication symbols [31, 32], our

approach learns a continuous communication protocol implicitly [16, 17, 19, 22].

Various methods have been proposed to address the limited bandwidth problem,

such as downsizing the communication group via a scheduler. However, all schedul-

ing methods are subject to content redundancy, which is unsustainable under

Chapter 3. Learning Efficient Multi-agent Communication: An Information
Bottleneck Approach 27

scheduler

𝒂𝟏
𝒕

𝝅𝟏

𝒐𝟏
𝒕

𝒎𝟏
𝒕

𝒄𝟏
𝒕

𝒂𝟏
𝒕+1

𝝅𝟏

𝒐𝟏
𝒕+1

𝒎𝟏
𝒕+1

𝒄𝟏
𝒕+1

𝒂𝒊
𝒕

𝝅𝟐

𝒐𝒊
𝒕

𝒎𝒊
𝒕

𝒄𝒊
𝒕

𝒂𝒊
𝒕+1

𝝅𝟐

𝒐𝒊
𝒕+1

𝒎𝒊
𝒕+1

𝒄𝒊
𝒕+1

𝒂𝒏
𝒕

𝝅𝒏

𝒐𝒏
𝒕

𝒎𝒏
𝒕

𝒄𝒏
𝒕

𝒂𝒏
𝒕+1

𝝅𝒏

𝒐𝒏
𝒕+1

𝒎𝒏
𝒕+1

𝒄𝒏
𝒕+1

…

…

𝒎𝟏

𝒄𝒊

𝒇𝒊
𝒔𝒄𝒉

𝒎𝒊
…

……

𝒄𝒏
𝒕𝒐𝒏

𝒕

𝝅𝒊
𝒂 𝝅𝒊

𝒑𝒓𝒐

𝒂𝒏
𝒕

…

…

…

Figure 3.1: The Architecture of IMAC. Left: Overview of the communication
scheme. The red dashed box means the communication process with a limited
bandwidth constraint. The green line means the gradient flows. Right: The
upper one is the scheduler for agent i. The below one is the policy πai and the
communication protocol network πproi for agent i

.

bandwidth limitations. Even if only a single pair of agents can communicate,

a large message may not be conveyed due to the limited bandwidth. Furthermore,

scheduling methods with gating mechanisms are inflexible as they introduce man-

ual configurations, such as the predefined size of a communication group [24, 25]

or a handcrafted threshold for muting agents [19, 26]. Additionally, most methods

for learning communication protocols fail to compress the protocols and extract

valuable information for cooperation [19]. In this paper, we investigate the lim-

ited bandwidth from the communication protocols’ perspective. Furthermore, our

methods can be extended to scheduling by utilizing a weight-based scheduler.

In recent years, the combination of the information bottleneck method and rein-

forcement learning has led to several applications, particularly in imitation learn-

ing [33], inverse reinforcement learning [33], and exploration [3, 34]. Among them,

Goyal et al. mentioned multi-agent communication in their appendix, demonstrat-

ing a method to minimize communication by penalizing the effect of one agent’s

messages on another agent’s policy. However, it does not consider the limited

bandwidth constraint.

28 3.3. Communicative Multi-agent Reinforcement Learning

3.3 Communicative Multi-agent Reinforcement

Learning

We consider a communicative multi-agent reinforcement learning task [35], which

is extended from Dec-POMDP and described as a tuple ⟨n,S,A, r, P,O,Ω,M , γ⟩,
where n represents the number of agents. S represents the space of global states.

A = {Ai}i=1,··· ,n denotes the space of actions of all agents. O = {Oi}i=1,··· ,n

denotes the space of observations of all agents. M represents the space of messages.

P : S ×A→ S denotes the state transition probability function. All agents share

the same reward as a function of the states and agents’ actions r : S ×A → R.

Each agent i receives a private observation oi ∈ Oi according to the observation

function Ω(s, i) : S → Oi. γ ∈ [0, 1] denotes the discount factor. As shown in

Fig. 3.1, each agent receives observation oi and a scheduling message ci, then

outputs an action ai and a message mi. A scheduler f schi is introduced to receive

messages [m1, · · · ,mn] ∈ M from all agents and dispatch scheduling messages

ci = f schi (m1, · · · ,mn) ∈Mi for each agent i.

We adopt a centralized training and decentralized execution paradigm [36], and

further relax it by allowing agents to communicate. That is, during training, agents

are granted access to the states and actions of other agents for the centralized

critic, while decentralized execution only requires individual states and scheduled

messages from a well-trained scheduler.

Our end-to-end method is to learn a communication protocol πproi (mi|oi, ci), an

policy πai (ai|oi, ci), and a scheduler f schi (ci|m1, · · · ,mn), which jointly maximize

the expected discounted return for each agent i:

Ji = Eπai ,πproi ,fschi
[Σ∞

t=0γ
trti(s, a)]

= Eπai ,πproi ,fschi
[Qi(s, a1, · · · , an)]

≈ Eπai ,πproi ,fschi
[Qi(o1, · · · , on, c1, · · · , cn, a1, · · · , an)]

= Eπai ,πproi ,fschi
[Qi(h1, · · · , hn, a1, · · · , an)]

(3.1)

where rti is the reward received by the i−th agent at time t, Qi is

the centralized action-value function for each agent i, and Eπai ,πproi ,fschi

denotes an expectation over the trajectories ⟨s, ai,mi, ci⟩ generated by

Chapter 3. Learning Efficient Multi-agent Communication: An Information
Bottleneck Approach 29

pπ
a
i , πai (ai|oi, ci), π

pro
i (mi|oi, ci), f schi (ci|m1, · · · ,mn). Here we follow the simplifica-

tion in [36] to replace the global states with joint observations and use an abbre-

viation hi to represent the joint value of [oi, ci] in the rest of this chapter.

The limited bandwidth B is a range of frequencies within a given band. It exists

in the two processes of transmission: messages from agents to the scheduler and

scheduling messages from the scheduler to agents as shown in Fig. 3.1. In the next

section, we will discuss how the limited bandwidth B affects the communication.

3.4 Connection between Limited Bandwidth and

Multi-agent Communication

In this section, from the perspective of communication theory, we show how the

limited bandwidth B requires low-entropy messages throughout the transmission.

We then discuss how to measure the message’s entropy.

3.4.1 Communication Process

Figure 3.2 illustrates the communication process from agents to the scheduler,

which involves five stages: analog-to-digital conversion, coding, transmission, de-

coding, and digital-to-analog conversion [28]. When an agent transmits a continu-

ous message mi, it is first mapped into a countable set through an analog-to-digital

converter (ADC). The ADC can be modeled as two processes: sampling, which

converts a time-varying signal into a sequence of discrete-time real-value signals

corresponding to the discrete timestep in RL, and quantization, which replaces

each real number with an approximation from a finite set of discrete values. In

the coding phase, the quantized messages m∆
i are mapped to a bitstream using

source coding methods such as Huffman coding. During the transmission phase,

the transmitter modulates the bitstream into a wave, which is then transmitted

through a channel. The receiver demodulates the wave into another bitstream, but

there may be some distortion in the channel. The decoding phase is the inverse

operation of coding, mapping the bitstream to the recovered messages m̂∆
i . Finally,

30 3.4. Connection between Limited Bandwidth and Multi-agent Communication

the scheduler receives a reconstructed analog message from a digital-to-analog con-

verter (DAC). The bandwidth restricts the transmission phase, which is the most

critical stage for communication in terms of limited resources.

Source ADC
Source

Encoder

Source
Decoder

Output

𝑚𝑖 𝑚𝑖
Δ

Channel

DAC
ෝ𝑚𝑖
Δෝ𝑚𝑖

of one dim

…0100110…

Transmitter

Receiver

t

value d

t

value d of one dim

Figure 3.2: Overview of the Communication Process. Axes of messages are
time, dimension of the message vector, and value of each element in the vector.

3.4.2 Limited Bandwidth Restricts Message’s Entropy

We model the messages mi as continuous random vectors Mi, i.e., continuous vec-

tors sampled from a certain distribution. The reason is that a message is sent

by one agent in each timestep, while over a long duration, the messages follow

some distributions. We abuse m to represent the random vector by omitting the

subscript, and explain the subscript in special cases.

For simplicity, we consider sending an element X of the continuous random vector

m, which is a continuous random variable, and then extend our conclusion to m.

First, we quantize the continuous variable into discrete symbols. The quantization

brings a gap between the entropy of the discrete variables and differential entropy

of the continuous variables.

Remark 3.1 (Relationship between entropy and differential entropy). Consider a

continuous random variable X with a probability density function fX(x). This

function is then quantized by dividing its range into K levels of interval ∆, where

K = ceil(|X|/∆), and |X| is max amplitude of variable. The quantized variable is

X∆. Then the difference between differential entropy H(X) and entropy H
(
X∆
)

is H(X)−H
(
X∆
)

= log2(∆).

Note that for a fixed small identical interval ∆, there is only a constant difference

between differential entropy and entropy. Then we encode these quantized symbols.

Chapter 3. Learning Efficient Multi-agent Communication: An Information
Bottleneck Approach 31

Remark 3.2 (Source Coding Theorem [27]). In the source coding phase, a set of n

quantized symbols is to be encoded into bitstreams. These symbols can be treated

as n independent samples of a discrete random variable X∆ with entropy H(X∆).

Let L be the average number of bits to encode the n symbols. The minimum L

satisfies H(X∆) ≤ L < H(X∆) + 1
n
.

Remark 3.2 regularizes the coding phase in the communication process. Then in

the transmission, over a noiseless channel, the maximum bandwidth is defined as

the maximum data rate:

Remark 3.3 (The Maximum Data Rate [28]). The maximum data rate Rmax (bits

per second) over a noiseless channel satisfies: Rmax = 2B log2K, where B is the

bandwidth (Hz) and K is the number of signal levels.

Remark 3.3 is derived from the Nyquist criterion [28] and specifies how the band-

width of a communication system affects the transmission data rate for reliable

transmission in the noiseless condition. Based on these three remarks, we show

how the limited bandwidth constraint affects the multi-agent communication.

Proposition 3.1. In a noiseless channel, the bandwidth of channel B limits the

entropy of the messages’ elements.

Proof. Given a message’s element X as an i.i.d continuous random variable with

differential entropy H(X), its quantized time series X∆
1 , · · · , X∆

t , · · · (here the

subscript means different times) with entropy H(X∆) = H(X) − log2 ∆, the

communication system’s bandwidth B, as well as the signal levels K, the com-

munication system transmits n symbols per second. We define Rcode as an un-

biased estimation of L in Remark 2. So the transmission rate Rtrans(
bit

second
) =

n ·Rcode(
bit

symbol
) ≥ n ·H(X∆) ≥ n · (H(X) − log ∆).2 According to Remark 3.3,

Rtrans ≤ Rmax = 2B log2K. Consequently, we have H(X) ≤ 2B log2K
n

+ log2 ∆.

Note that although a frequent symbol among these sending symbols uses less bits

than H(X∆) and vice versa, when we send a bunch of symbols, Rcode is lager than

H(X∆) on average.

Proposition 3.2. In a noiseless channel, the bandwidth of channel B limits the

entropy of the messages.

2 bit
second and bit

symbol are units of measure.

32 3.5. Informative Multi-agent Communication

Proof. When sending the random vector, i.e., the message Mi = [X1, X2, · · · , Xd],

where the subscript means different entries of the vector and d is the dimension,

each variable Xi occupies a bandwidth Bi, which satisfies
∑d

i=1Bi = B. Assume all

entries are quantilized with the same interval, according to [37], the upper bound of

the messages H(Mi) = H(X1, · · · , Xd) ≤
∑d

i=1H(Xi) ≤ 2dB log2K
n

+ d log2 ∆.

Eventually, a limited bandwidth B enforces an upper bound Hc to the message’s

entropy H(Mi) ≤ Hc ∝ B.

3.4.3 Measurement of a Message’s Entropy

The messages Mi as an i.i.d random vector can follow any distribution, so it is hard

to determine the message’s entropy. So, we keep a historical record of the message

and find a quantity to measure the message’s entropy.

Proposition 3.3. When we have a historical record of the messages to estimate

the messages’ mean µ and co-variance Σ, the entropy of the messages is upper

bounded by 1
2

log((2πe)d|Σ|), where d is the dimension of Mi.

Proof. The message Mi follows a certain distribution, and we are only certain about

its mean and variance. According to the principle of maximum entropy [38], the

Gaussian distribution has maximum entropy relative to all probability distributions

covering the entire real line (−∞,∞) but having a finite mean and finite variance

(see the proof in [37]). So H(Mi) ≤ 1
2

log((2πe)dΣ), where the right term is the

entropy of multivariate Gaussian N(µ,Σ).

We conclude that 1
2

log((2πe)d|Σ|) offers an upper bound to approximate H(Mi),

and this upper bound should be less than or equal to the limited bandwidth con-

straint to ensure that the message with any possible distribution satisfies the limited

bandwidth constraint.

3.5 Informative Multi-agent Communication

As shown in the previous section, the limited bandwidth requires agents to send

low-entropy messages. In this section, we first introduce our method for learning a

Chapter 3. Learning Efficient Multi-agent Communication: An Information
Bottleneck Approach 33

valuable and low-entropy communication protocol via the information bottleneck

principle. Then, we discuss how to use the same principle in scheduling.

3.5.1 Variational Information Bottleneck for Learning Pro-

tocols

We propose an informative multi-agent communication via information bottleneck

principle to learn protocols. Concretely, we propose an information-theoretic regu-

larization on the mutual information I(Hi;Mi) between the messages and the input

features

I(Hi;Mi) ≤ Ic (3.2)

where Mi is a random vector with a probability density function pMi
(mi), which

represents the possible assignments of the messages mi, and Hi is a random vector

with a probability density function pHi(hi) which the possible values of [oi, ci]. We

omit the subscripts in the density functions in the rest of the paper. Eventually,

with the help of variational information bottleneck [30], this regularization enforces

agents to send low-entropy messages.

Consider a scenario with n agents’ policies {πai }i=1,··· ,n and protocols {πproi }i=1,··· ,n

which are parameterized by {θi}i=1,··· ,n = {θai , θ
pro
i }i=1,··· ,n, and with schedulers

{f schi }i=1,··· ,n which are parameterized by {ϕi}i=1,··· ,n. Consequently, for learning

the communication protocol with fixed schedulers, the agent i is supposed to max-

imize:

J(θi) = Eπai ,πproi ,fschi
[Qi(h1, · · · , hn, a1, · · · , an)]

s.t. I(Hi;Mi) ≤ Ic.

Practically, we propose to maximize the following objective using the information

bottleneck Lagrangian:

J ′(θi) = Eπai ,πproi ,fschi
[Qi(h1, · · · , hn, a1, · · · , an)]− βI(Hi;Mi), (3.3)

34 3.5. Informative Multi-agent Communication

where the β is the Lagrange multiplier. The mutual information is defined accord-

ing to:

I(Hi;Mi) =

∫∫
p(hi,mi) log

p(hi,mi)

p(hi)p(mi)
dhidmi

=

∫∫
p(hi)π

pro(mi|hi) log
πpro(mi|hi)
p(mi)

dhidmi,

where p(hi,mi) is the joint probability of hi and mi.

However, computing the marginal distribution p(mi) =
∫
πpro(mi|hi)p(hi)dhi can

be challenging since we do not know the prior distribution of p(hi). With the help of

variational information bottleneck [30], we use a Gaussian approximation z(mi) of

the marginal distribution p(mi) and view πpro as multivariate variational encoders.

Since DKL[p(mi)||z(mi)] ≥ 0, where the DKL is the Kullback-Leibler divergence,

we expand the KL term and get
∫
p(mi) log p(mi)dmi ≥

∫
p(mi) log z(mi)dmi, an

upper bound on the mutual information I(Hi;Mi) can be obtained via the KL

divergence:

I(Hi;Mi) ≤
∫
p(hi)π

pro
i (mi|hi) log

πproi (mi|hi)
z(mi)

dhidmi

= Ehi∼p(hi)[DKL[πpro(mi|hi)∥z(mi)]].

(3.4)

This provides a lower bound J̃(θ) on the regularized objective that we maximize:

J ′(θi) ≥ J̃(θi) = Eπai ,πproi ,fschi
[Qi(h1, · · · , hn, a1, · · · , an)]

−βEhi∼p(hi)[DKL[πproi (mi|hi)∥z(mi)]].

Consequently, the objective’s derivative is:

∇θi J̃ (πi) = Eπai ,πproi ,fschi

[
∇θi log (πi (at|st))Qi(h1, · · · , hn, a1, · · · , an)

− β∇θiDKL[πpro(mi|hi)∥z(mi)]
]
. (3.5)

With the variational information bottleneck, we can control the messages’ dis-

tribution and thus control their entropy with different prior z(mi) to satisfy

different limited bandwidths in the training stage. That is, with the regula-

tion of DKL[p(mi|hi)∥z(mi)], the messages’ probability density function p(mi) =

Chapter 3. Learning Efficient Multi-agent Communication: An Information
Bottleneck Approach 35∑

hi
p(mi|hi)p(hi) ≈

∑
hi
z(mi)p(hi) = z(mi)

∑
hi
p(hi) = z(mi). Thus H(Mi) =

−
∫
p log pdmi ≈ −

∫
z log zdmi.

3.5.2 Unification of Learning Protocols and Scheduling

The scheduler for agent i is f schi (ci|m1, · · · ,mn). The terms “scheduler are from

SchedNet [25], which introduces “communication scheduling” and “scheduler” to

represent the filtering process instead of timing. Recall the communication pro-

tocols for agent i: πproi (mi|hi). Due to the same form of the protocol and the

scheduling, the scheduler is supposed to follow the same principle for learning a

weight-based mechanism. Variational information bottleneck can be applied in

scheduling for agent i with regularization on the mutual information between the

scheduling messages ci and all agents’ messages I(Ci;M1, · · · ,Mn), where Ci is a

random vector with a probability density function pCi(ci), which represent different

values of ci. We follow the joint training scheme for training the communication

protocol and scheduling [16], which allows the gradients flow across agents from

the recipient agent to the scheduler to the sender agent.

Formally, the schedulers {f schi }i=1,··· ,n are parameterized by {ϕi}i=1,··· ,n as defined

in section 3.5.1. We would optimize the lower bound in terms of {ϕi}i=1,··· ,n:

J ′(ϕi) ≥ J̃(ϕi) = Eπai ,πproi ,fschi
[Qi(h1, · · · , hn, a1, · · · , an)]

−βEp(m1,m2,··· ,mn)[DKL[f schi (ci|m1, · · · ,mn)∥z(ci)]].

Consequently, the objective’s derivative is:

∇θi J̃ (ϕi) = Eπai ,πproi ,fschi

[
∇θi log (πi (at|st))Qi(h1, · · · , hn, a1, · · · , an)

− β∇ϕiDKL[f schi (ci|m1, · · · ,mn)∥z(ci)]
]
. (3.6)

3.5.3 Implementation of the limited bandwidth Constraint

During the execution stage, it is crucial to ensure that the messages transmit-

ted among agents satisfy the low-entropy requirement imposed by the limited

bandwidth. We enforce this constraint by clipping the variance of the messages.

36 3.6. Experiment

20000 40000 60000 80000 100000
Episode

−55.0

−52.5

−50.0

−47.5

−45.0

−42.5

−40.0

M
ea

n
ep

iso
de

 re
wa

rd
s

(a) Cooperative Navigation: 3 agents

IMAC
MADDPG w/ com
GACML
TarMAC
SchedNet

20000 40000 60000 80000 100000
Episode

−76
−74
−72
−70
−68
−66
−64
−62

(b) Cooperative Navigation: 5 agents

IMAC
MADDPG w/ com
GACML
TarMAC
SchedNet

20000 40000 60000 80000 100000
Episode

−110.0

−107.5

−105.0

−102.5

−100.0

−97.5

−95.0
(c) Cooperative Navigation: 10 agents

IMAC
MADDPG w/ com
GACML
TarMAC
SchedNet

Figure 3.3: Learning curves comparing IMAC to other methods for coopera-
tive navigation. As the number of agents increases (from left to right), IMAC
improves agents’ performance and converge faster.

However, in real-life communication scenarios, the amount of information that a

bitstream can carry may vary depending on the source coding method and the

communication protocol used. Therefore, we use entropy as a general measure

to simulate the limited-bandwidth constraint. To achieve this, we use a batch-

normalization-like layer that records the mean and variance of the messages during

training, as required by Proposition 3.2. During execution, the normalization layer

clips the messages by reducing their variance to meet the limited-bandwidth con-

straint. Note that this layer is customized and different from the standard batch

normalization [39].

For example, suppose we have a 4-ary communication system with a maximum

bandwidth of 100 bit/s and want to achieve reliable transmission while transmitting

1000 messages per second. Then, according to 1
2

log(2πeσ2) = 2B log2K
n

, we can

determine the equivalent variance σ2 ≈ 3.2. During the training stage, we record

the variance of the agents’ messages, which is found to be 5. During the inference

stage, the limited bandwidth requires that the entropy of the messages not exceed

3.2. Thus, we decrease the variance of the messages from 5 to 3.2 using the specific

normalization layer.

3.6 Experiment

Experimental Settings. In our study, we evaluate the performance of IMAC

on various tasks and environments, including cooperative navigation and predator-

prey scenarios in the Multi-Particle Environment [36], as well as the 3m and 8m

Chapter 3. Learning Efficient Multi-agent Communication: An Information
Bottleneck Approach 37

−80 −70 −60 −50 −40 −30
Episode Reward

0.00

0.02

0.04

0.06

0.08
De

ns
ity

(a)

IMAC, train w/ bw=1,
infer w/o bw
IMAC, train w/ bw=5,
infer w/o bw
IMAC, train w/ bw=10,
infer w/o bw
MADDPG w/ com, train w/o bw,
infer w/o bw

−120 −100 −80 −60 −40 −20
Episode Reward

(b)

IMAC, train w/ bw=1,
infer w/o bw
MADDPG w/ com, train w/o bw,
infer w/o bw
MADDPG w/ com, train w/o bw,
infer w/ bw=1
MADDPG w/ com, train w/o bw,
infer w/ bw=5
MADDPG w/ com, train w/o bw,
infer w/ bw=10

−100 −80 −60 −40 −20
Episode Reward

(c)

IMAC, train w/ bw=1,
infer w/o bw
IMAC, train w/ bw=5,
infer w/ bw=1
IMAC, train w/ bw=10,
infer w/ bw=1
MADDPG w/ com, train w/o bw,
infer w/ bw=1

−120 −100 −80 −60 −40
Episode Reward

(d)

IMAC, train w/ bw=5,
infer w/o bw
IMAC, train w/ bw=10,
infer w/ bw=5
MADDPG w/ com, train w/o bw,
infer w/ bw=5

Figure 3.4: Density plot of episode reward per agent during the execution
stage. (a) Reward distribution of IMAC trained with different prior distributions
against MADDPG with communication. (b) Reward distribution of MADDPG
with communication under different limited bandwidth environment. (c), (d)
Reward distribution of IMAC trained with different prior distributions against
MADDPG with communication under the same bandwidth constraint. “bw=δ”
means in the implementation of the limited bandwidth constraint, the variance
Σ of Gaussian distribution is δ.

scenarios in StarCraft II [40]. Further details regarding the experimental environ-

ments are provided in the following subsections, as well as in the supplementary

material.

Baseline Methods. To assess the effectiveness of IMAC, we compare it against

the following baseline methods: (1) TarMAC [21]: a state-of-the-art multi-agent

communication method for limited bandwidth scenarios that employs a self-

attention weight-based scheduling mechanism for scheduling and learns the com-

munication protocol in an end-to-end manner, (2) GACML [26]: a multi-agent

communication method for limited bandwidth scenarios that uses a gating mecha-

nism for downsizing communication agents and learns the communication protocol

in an end-to-end manner, and (3) SchedNet [25]: a multi-agent communication

method for limited bandwidth scenarios that uses a selecting mechanism for down-

sizing communication agents and learns the communication protocol with one real

value message (float16 type). Additionally, we modify the MADDPG [36] and

QMIX [41] algorithms to include communication as baselines to demonstrate that

IMAC can be applied to various multi-agent methods and effectively handle limited

bandwidth constraints.

3.6.1 Cooperative Navigation

In this particular scenario, a group of n agents must cooperate to reach k land-

marks while avoiding collisions. These agents can observe the relative positions of

38 3.6. Experiment

Algorithm 1: Informative Multi-agent Communication

Initialize the network parameters θa, θpro, θQ, and ϕsch
Initialize the target network parameters θ′a, and θ′Q
for episode← 1 to num episodes do

Reset the environment for t← 1 to num step do
Get features hi = [oi, ci] for each agent i
Each agent i gets messages from channel mi = πipro(hi)
Get scheduled message ci = fsch(m1, · · · ,mn)
Each agent i selects action based on features and messages
ai = πia(hi, ci)

Execute actions a = (a1, · · · , an), and observe reward r new
observation oi for each agent i

Store (ot, a, r,ot+1,m, c) in replay buffer D
if episode%update threshold == 0 then

Sample a random mini-batch of S samples (o, a, r,o′,m, c) from D
Obtain the features h′i = [o′i, ci] and the messages mi for each agent
i

Set yj = rji + γQπ′
i (o, a1

′, · · · , an′)|ak′=πia′(h′i,ci)
Update Critic by minimizing the loss
L(θ) = 1

S

∑
j(Q(o, a1, · · · , an)− ŷ)2

Update policy, protocol and scheduler using the sampled policy
gradients ∇θi J̃ (πi) for each agent i

Update all target networks’ parameters for each agent i:
θi

′ = τθi + (1− τ)θi
′

end

end

end

both other agents and landmarks, and they receive a shared reward based on the

sum of distances between them and their nearest landmark. On the other hand,

they receive a penalty for collisions with other agents. Throughout their learning

process, agents must learn to identify and occupy the landmarks without colliding

with others, using both their individual observations and information received from

other agents.

To compare the performance of IMAC with other approaches, we selected TarMAC,

GACML, and SchedNet, which represent the methods of learning the communica-

tion protocols via end-to-end training with the specific scheduler and clipping the

messages. We also include a modified version of MADDPG with communication

as a baseline, which was trained without the limited bandwidth constraint. This

serves to show the baseline performance of the centralized training and decentral-

ized execution.

Chapter 3. Learning Efficient Multi-agent Communication: An Information
Bottleneck Approach 39

Predator \Prey IMAC TarMAC GACML SchedNet MADDPG w/ com
IMAC 32.32\-4.26 28.91\ -22.27 28.25 \ -26.11 22.67 \ -36.53 34.33 \ -22.62

TarMAC 25.13 \ -2.94 23.45 \ -20.42 22.12 \ -16.51 32.52 \ -42.39 27.54 \ -29.36
GACML 21.52 \-12.74 11.49 \ -24.93 13.93 \ -12.95 25.49 \ -27.42 28.47 \ -27.75
SchedNet 24.74 \-9.63 7.84 \ -23.56 12.48 \ -23.67 5.98 \ -26.82 21.53 \ -26.43

MADDPG w/ com 28.63 \ -15.60 19.32 \ -21.52 26.91 \ -19.76 22.17 \ -35.37 16.87 \ -13.09

Table 3.1: Cross-comparison between IMAC and baselines on predator-prey.

In Figure 3.3 (a), we can observe the learning curve over 100,000 episodes, repre-

sented by the mean episode reward over a sliding window of 1000 episodes. At the

end of the training, we observe that agents trained with communication achieve

higher mean episode rewards. According to [23], an ”increase in reward when

adding a communication channel” is sufficient for effective communication. Fur-

thermore, IMAC outperforms other baselines throughout the training process, as

it can reach the upper bound of performance early. The information bottleneck

method used in IMAC allows for less redundant messages, which enables the agents

to converge faster.

We also examine the performance of IMAC in scenarios with an increasing number

of agents. To do so, we modify the environment such that each agent can only

observe the nearest three agents and landmarks with relative positions and velocity,

as suggested by [19]. Figure 3.3 (b) and (c) illustrate the superior performance of

IMAC in the 5 and 10-agent scenarios.

Next, we evaluate the performance of IMAC and the modified MADDPG with

communication under different limited bandwidth constraints during the execu-

tion stage. To achieve this, we first train IMAC with different prior distributions

to satisfy different bandwidths, ensuring that the entropy of agents’ messages sat-

isfies the bandwidth constraints. We then constrain these algorithms to different

bandwidths during the execution stage. Figure A.1 presents the density plot of

episode reward per agent during the execution stage. We observe that IMAC with

different prior distributions can achieve similar outcomes as MADDPG with com-

munication, while MADDPG with communication fails in the limited bandwidth

environment. Moreover, the same bandwidth constraint is less effective in IMAC

than in MADDPG with communication, indicating that IMAC can discard useless

information without impairing performance.

We also investigate the impact of limited bandwidth and β on multi-agent com-

munication and the performance of agents. Figure 3.5 (a) demonstrates the

40 3.6. Experiment

0.2 0.4 0.6 0.8 1.0
Episode 1e5

−60.0
−57.5
−55.0
−52.5
−50.0
−47.5
−45.0
−42.5
−40.0

M
ea

n
ep

iso
de

 re
wa

rd

(a) Ablation on σ2

IMAC σ2=1
IMAC σ2=5
IMAC σ2=10
IMAC σ2=0.25

0.2 0.4 0.6 0.8 1.0
Episode 1e5

−60.0
−57.5
−55.0
−52.5
−50.0
−47.5
−45.0
−42.5
−40.0

(b) Ablation on β

IMAC β=0.05
IMAC β=0.1
IMAC β=0.2
IMAC β=0.01

Figure 3.5: Ablation: learning curves with respect to Σ and β

learning curve of IMAC with different prior distributions, where IMAC with

z(Mi) = N(0, 1) achieves the best performance. Smaller or larger variances lead

to performance degradation, as smaller variances result in a more lossy compres-

sion, leading to less information sharing, while larger variances bring about more

redundant information than the variance without regulation, leading to slower con-

vergence. Figure 3.5 (b) shows a similar result for the ablation on limited band-

width constraint, where larger β indicates a more strict compression and smaller

β indicates a less strict one. Our ablation analysis indicates that the information

bottleneck method extracts the most informative elements from the source, and a

proper compression rate is crucial for multi-agent communication, as it can avoid

losing much information caused by higher compression while resisting much noise

caused by lower compression.

3.6.2 Predator Prey

In this scenario, there are m slower predators chasing n faster preys around an en-

vironment with l landmarks creating obstacles. Like in the cooperative navigation

scenario, each agent observes the relative positions of other agents and landmarks.

The predators share a common reward that is based on the collision between preda-

tors and preys, as well as the minimal distance between the two groups. The preys

are penalized for running out of the screen boundary. This setup encourages the

predators to learn to approach and surround the preys, while the preys learn to

feint to save their teammates.

Chapter 3. Learning Efficient Multi-agent Communication: An Information
Bottleneck Approach 41

For this experiment, we set the number of predators to 4, the number of preys to

2, and the number of landmarks to 2. We use the same architecture as in the coop-

erative navigation scenario, and agents communicate only with their teammates.

We train our agents through self-play for 100,000 episodes and then evaluate their

performance by comparing IMAC with the baselines using cross-validation. We

report the average episode rewards across 1000 rounds (episodes) as scores.

Predator \Prey MADDPG e1 MADDPG e5 IMAC IMAC t5 e1 IMAC t10 e1 IMAC t10 e5
MADDPG e1 18.01 \-14.22 24.15 \-29.88 22.38 \-16.91 47.59 \-45.64 34.25 \-27.68 50.81 \-43.62
MADDPG e5 26.32 \-20.48 15.67 \-11.59 29.06 \-22.16 27.07 \-22.89 23.44 \-20.41 32.24 \-26.46
IMAC 51.24 \-42.56 37.37 \-45.521 44.64 \-36.49 49.12 \-42.65 36.63 \-30.03 35.42 \-28.82
IMAC t5 e1 38.86 \-32.06 34.54 \-35.03 9.97 \-3.11 26.25 \-21.06 11.80 \-7.558 38.32 \-32.28
IMAC t10 e1 26.67 \-21.418 34.99 \-35.02 9.71 \-4.11 9.82 \-6.92 9.82 \-6.92 37.50 \-31.30
IMAC t10 e5 45.88 \-38.27 26.39 \-35.42 11.51 \-9.12 30.02 \-27.41 29.08 \-25.661 22.25 \-16.51

Table 3.2: Cross-comparison in different bandwidths on predator-prey. “t5”
means that IMAC is trained with the variance |Σ| = 5. “e1” means that during
the execution, we use the batch-norm like layer to clip the message to enforce
its variance |Σ| = 5.

Comparison with baselines. For the predator-prey scenario, there are m slower

predators and n faster preys in an environment with l landmarks. Similar to the

cooperative navigation scenario, agents observe the relative position of other agents

and landmarks. Predators are rewarded based on the collision with preys and the

minimal distance between the two groups, while preys are penalized for running out

of the boundary. In this setup, predators learn to approach and surround preys,

while preys learn to avoid being caught.

The same baselines used in the cooperative navigation scenario are used for com-

parison. Table 3.1 shows the mean episode rewards of the predators and preys for

IMAC and the baselines. Higher scores indicate better performance. The mean

episode rewards of predators and preys show that IMAC outperforms the baselines

in both roles, demonstrating better cooperation in competitive environments. The

policy learned by IMAC predators and preys can also generalize to opponents with

different policies.

Performance under stronger limited bandwidth. Similar to the cooperative

navigation scenario, the algorithms are evaluated under different limited bandwidth

constraints during execution. Table 3.2 shows the performance under different lim-

ited bandwidth constraints during inference for the predator-prey scenario. With

limited bandwidth constraints, both MADDPG with communication and IMAC

suffer from a degradation of performance. However, IMAC shows higher resistance

42 3.6. Experiment

to the effect of limited bandwidth and outperforms MADDPG with communica-

tion.

3.6.3 StarCraftII

We apply our method and baselines to decentralized StarCraft II micromanagement

benchmark to show that IMAC can facilitate different multi-agent methods. We

use the setup introduced by SMAC [40] and consider combat scenarios.

3m and 8m. Both tasks are symmetric battle scenarios, where marines controlled

by the learned agents try to beat enemy units controlled by the built-in game AI.

Agents will receive some positive (negative) rewards after having enemy (allied)

units killed and/or a positive (negative) bonus for winning (losing) the battle.

Comparison with Baselines. To evaluate the effectiveness of IMAC, we com-

pare it with QMIX with communication and QMIX with IMAC, as QMIX uses the

centralized training decentralized execution scheme for discrete actions. We also

evaluate MADDPG with communication, but it is designed for continuous control,

while SMAC is a discrete-action scenario. Even if we modify MADDPG for discrete

actions, it fails to get any positive reward. The learning curve of 200 episodes in

terms of mean episode rewards is shown in Fig. 3.6. Initially, QMIX with IMAC

has similar or even worse performance than QMIX with unlimited communication.

However, as the training process continues, QMIX with IMAC performs better than

QMIX with unlimited communication. This result suggests that IMAC can facili-

tate different multi-agent methods that have different centralized training schemes.

Performance under stronger limited bandwidth. We evaluate agents’ per-

formance under different limited bandwidth constraints. Results show a similar

conclusion as in previous tasks (Details can be seen in the supplementary materi-

als).

Chapter 3. Learning Efficient Multi-agent Communication: An Information
Bottleneck Approach 43

50 100 150 200
Episode

2

4

6

8

10

M
ea

n
Ep

iso
de

 R
ew

ar
d

(a) 3m

QMix+IMAC
QMix+com.

50 100 150 200
Episode

2

4

6

8

10

12

(b) 8m

QMix+IMAC
QMix+com.

Figure 3.6: Learning curves comparing IMAC to other methods for 3m and
8m in Starcraft II.

3.7 Chapter Summary

In this chapter, we have proposed an informative multi-agent communication

method in the limited bandwidth environment, where agents utilize the informa-

tion bottleneck principle to learn an informative protocol as well as scheduling. We

have given a well-defined explanation of the limited bandwidth constraint from the

perspective of communication theory. We prove that limited bandwidth constrains

the entropy of the messages. We introduce a customized batch-norm layer, which

controls the messages’entropy to simulate the limited bandwidth constraint. In-

spired by the information bottleneck method, our proposed IMAC algorithm learns

informative protocols and a weight-based scheduler, which convey low-entropy and

useful messages. Empirical results and an accompanying ablation study show that

IMAC significantly improves the agents’ performance under limited bandwidth

constraint and leads to faster convergence.

Part II

Collaboration amongst agents

45

Chapter 4

I2HRL: Interactive

Influence-based Hierarchical

Reinforcement Learning1

4.1 Introduction

Reinforcement Learning (RL) methods have recently yielded a plethora of positive

results, including playing games like Go [43] and Atari [9], as well as controlling

robots [13]. However, it is still challenging to learn policies in complex environments

with large time horizons and sparse rewards. A promising method to address

these issues is Hierarchical RL (HRL) that learns to operate at different temporal

abstraction levels simultaneously. The need for HRL arises from the fact that in

complex tasks, an agent may have to perform several sub-tasks in a particular order

to achieve the final goal. However, these sub-tasks may themselves be complex and

require several actions to be executed. In such cases, traditional RL methods may

be insufficient as they require the agent to learn a single policy that can handle all

sub-tasks and actions.

In HRL, the high-level policy is responsible for selecting subgoals and the low-level

policy is responsible for executing actions to achieve those subgoals. The high-level

policy operates at a slower time scale and selects subgoals based on the current

1The work in this chapter has been published in [42]

47

48 4.1. Introduction

state of the environment. The low-level policy operates at a faster time scale and

takes actions to achieve the subgoals selected by the high-level policy.

The collaboration between the high-level policy and low-level policy is crucial for

the success of HRL. The high-level policy needs to select subgoals that are achiev-

able by the low-level policy, and the low-level policy needs to execute actions to

achieve those subgoals in the most efficient way possible.

The high-level policy and low-level policy communicate with each other through

a set of shared variables, which are used to represent the current subgoal and its

progress. The high-level policy sets the current subgoal, and the low-level policy

uses this subgoal to guide its actions. The low-level policy updates the progress of

the current subgoal, which the high-level policy uses to determine when to select

a new subgoal.

The collaboration between the high-level policy and low-level policy in HRL can

lead to more efficient and effective learning compared to traditional RL methods.

By breaking down complex tasks into smaller subgoals, HRL can reduce the com-

plexity of the learning problem and allow for more efficient exploration of the state

space. Additionally, the high-level policy can provide guidance to the low-level

policy, which can improve the speed and accuracy of learning.

However unfortunately, current HRL methods are subject to the non-stationarity

problem [44, 45]. Namely, as the lower-level policy continues to change, a high-

level action taken at the same state, but at different steps, may result in critically

different state transitions and rewards. This negatively impacts policy exploration,

since policies need more data at non-stationary states to stabilize training, i.e., an

already visited non-stationary state may warrant further exploration. Yet, com-

mon exploration approaches in RL, such as count-based exploration [46], re-focus

agents on less-visited states, which makes them ill-suited to support HRL. Though

some remedies to HRL’s non-stationarity issue were proposed, e.g., off-policy ex-

perience correction [44], or pre-training and freezing the low-level policy [47], they

require additional manual configuration. This either breeds more hyperparameters

or breaks the end-to-end scheme entirely.

To address these issues, we develop a novel HRL approach named Interactive

Influence-based Hierarchical Reinforcement Learning (I2HRL). Our contributions

are threefold. First, we introduce a feedback loop from the process of low-level

Chapter 4. I2HRL: Interactive Influence-based Hierarchical Reinforcement
Learning 49

policy learning to the high-level policy. The latter can now condition its deci-

sions on the features of the low-level behaviour policy. Second, we propose an

influence-based framework and introduce information-theoretic regularization to

control the dependency of the high-level policy on the changes in the low-level

behaviour. This stabilises the high-level policy training. Finally, we propose an

influence-based exploration method for the high-level policy that improves sample

efficiency. Intuitively, if a state, where the dependency of the high-level policy on

the low-level behaviour is stronger, is a potential failure point due to the changing

low-level policy and should be explored more.

We compare our method with state-of-the-art HRL algorithms on several contin-

uous controlling tasks in the MuJoCo domain [48]. Experimental results show

that our method significantly outperforms existing algorithms. Bi-level communi-

cation/interaction with the influence-based framework can accelerate the learning

process by 30%-50%, alleviate non-stationarity issues and improve data efficiency.

4.2 Related Work

HRL has been shown to be effective in dealing with long-horizon and sparse reward

problems. Intuitively, HRL is (at least) a bi-level approach, where the high-level

policy breaks down a problem into sub-tasks and learns to sequence them, while

the low-level learns to resolve the sub-tasks efficiently. The specifics of the break-

down, and how exactly the high-level communicates to the low-level, varies among

methods. The signal sent to the low-level can thus be some discrete values for

selection of options [49] or skills [50], or it can be continuous vectors to set a subgoal

in the state space [44] or latent space [51]. Generally, off-policy HRL algorithms [44,

45] are more efficient than on-policy algorithms [49, 51]. However, the off-policy

scheme creates non-stationarity for the high-level policy, since the low-level policy

is constantly changing. Various solutions to this issue were recently proposed, e.g.,

Hierarchical reinforcement learning with off-policy correction (HIRO) [44] uses joint

training and an off-policy correction, which modifies old transitions into new ones

that agree with the current low-level policy. Unfortunately, this means that the

higher level may need to wait until the lower level policy converges before it can

learn a meaningful policy itself. Hierarchical Actor-Critic (HAC) [45] introduces

hindsight action transitions, which simulate a transition function using the optimal

50 4.2. Related Work

lower-level policy hierarchy, to train the high-level policy. Also, these transitions

need carefully designed domain specific rewards. Other methods [47, 52, 53] break

down the end-to-end manner by pre-training and fixing the low-level policy. The

frozen low-level skills require a well-designed pre-training environment and cannot

be adapted to all tasks. In contrast, we propose an efficient end-to-end solution by

enabling bi-level communication among HRL levels. Furthermore, by regularizing

the dependency of the high-level on the low-level policy we stabilize our method

against non-stationarity.

Now, one of HRL promised benefits is structured exploration, i.e., explore with

sub-task policies rather than primitive actions. However, the exploration/sample

efficiency still matters [54]. Majority of HRL methods directly use single-agent

exploration methods at the low-level, such as ϵ−greedy or intrinsic motivation

[55, 56]. Nonetheless, some works do focus on the high-level policy exploration,

e.g., the diversity concept is often utilized to drive the variability in the high-

level policy choices [47, 52]. The prerequisite, or course, is that a diverse set of

low-level skills exists, which also requires well-designed pre-training environments.

Moreover, the diversity guidance does not consider the interaction between the two

levels. We notice that there is some work about the influence framework in multi-

agent systems [57]. In this paper, we propose to guide the high-level exploration

by the low-level policy influence. Intuitively, in a state, where the high-level action

choice is less influenced by the particulars of the low-level policy, the high-level

transition is near-stationary, and needs less exploration data.

Overall, our method can be best intuited if HRL is interpreted as a form of multi-

agent reinforcement learning (MARL). After all, agent modeling and communi-

cation are feasible solutions for addressing non-stationarity in MARL [58]. By

modelling the intentions and policies of others, agents can stabilize their train-

ing process. Training stabilization is also achieved through communication, where

agents exchange information about their observations, actions and intentions. In

our methods, considering the nature of cooperation between two levels of HRL, the

low-level policy directly sends its policy representation to the high-level policy. To

our knowledge, no prior work has connected these multi-agent solutions to HRL.

Chapter 4. I2HRL: Interactive Influence-based Hierarchical Reinforcement
Learning 51

4.3 Preliminaries about Hierarchical Reinforce-

ment Learning

Environment

𝒈𝒕 𝒈𝒕+𝟏 𝒈𝒕+𝒌−𝟏 𝒈𝒕+𝒌

𝒔𝒕 𝒔𝒕+𝟏 𝒔𝒕+𝒌−𝟏 𝒔𝒕+𝒌

𝒂𝒕 𝒂𝒕+𝟏 𝒂𝒕+𝒌−𝟏 𝒂𝒕+𝒌

𝒎𝒕 𝒎𝒕+𝟏 𝒎𝒕+𝒌−𝟏𝒎𝒕−𝟏 𝒎𝒕+𝒌

𝒓𝒕+𝟏 𝒓𝒕+𝟐 𝒓𝒕+𝒌 𝒓𝒕+𝒌+𝟏

𝝅𝒍𝝅𝒍𝝅𝒍𝝅𝒍

𝝅𝒉

𝒓𝒉
𝒕

Influence 𝝅𝒉 Influence

𝒓𝒊𝒏
𝒕

...

...

... 𝑺 𝑴

𝒁

𝑨𝒉 = 𝑮

𝒑𝒆𝒏𝒄(𝒁|𝑺,𝑴)

𝒑𝒅𝒆𝒄(𝑨𝒉|𝑺, 𝒁)

𝒓𝒊𝒏 = 𝑫𝑲𝑳[𝒑𝒆𝒏𝒄|𝒒(𝒛)]

𝝅𝒉 𝑨𝒉 𝑺,𝑴
= 𝚺𝒛𝒑𝒆𝒏𝒄𝒑𝒅𝒆𝒄

𝑺, 𝑮 𝑨𝒍

𝒔𝒋, 𝒂𝒋, 𝒔𝒋+𝟏, 𝒂𝒋+𝟏, … 𝑴

Figure 4.1: Overview of I2HRL, which consists of the interaction between the
low-level and high-level policies, as well as an influence-based framework. At
the high-level decision step t, the high-level policy receives the worker’s previous
message mt−1 and state st and sends a goal gt = πh(st,mt−1). During the high-
level decision interval {t+1, t+2, · · · , t+k−1}, the subgoal follows the transition
function gt+i = h(st+i−1, gt+i−1, st+i). The messages {mt,mt+1, · · · ,mt+k−1}
sent by the low-level policy are used to compute the high-level intrinsic rewards.
The rewards for the high-level policy: rth =

∑
j=1,2,··· ,k(r (st+j)+rin(st+j ,mt+j))

One drawback of the generic RL is its inability to effectively handle long-term

credit assignment problems, particularly in the presence of sparse rewards. HRL

proposes methods for decomposing complex tasks into simpler subproblems that

can be more readily tackled by low-level action primitives. We follow the two-

level goal-conditioned off-policy hierarchy presented in HIRO [44]. A high-level

policy πh computes a state-space subgoal gt ∼ πh (st) every k time steps (gt is

also written as ah in the rest of paper). Then a low-level policy πl takes as

an input the current state st and the assigned subgoal gt and is encouraged to

perform an action at ∼ πl (st, gt) that satisfies its subgoal via a low-level in-

trinsic reward function rl (st, gt, st+1). Finally, the high-level policy receives cu-

mulative rewards rh =
∑k

i=1 r (st+i). The low-level reward function is set as:

rl (st, gt, st+1) = −∥st + gt − st+1∥2, and the subgoal-transition function is set as

gt+1 = πh (st) , if t mod k = 0, or otherwise using a fixed goal transition function

h (st, gt, st+1) = st + gt − st+1.

52 4.4. Interactive Influence-based HRL

4.4 Interactive Influence-based HRL

In this section, we present our framework for learning hierarchical policies with

bi-direction communication and the high-level exploration. First, we make use of

the low-level policy modeling and pass it to the high-level policy. In addition, we

minimize the influence of the low-level policy which is quantified by the mutual

information between the subgoals assigned by the high-level policy and the low-

level policy representation. Lastly, we introduce the influence-based exploration

with intrinsic rewards for the high-level policy.

We have two MDPs for the high-level policy and low-level policy respectively:

MDPh = (S,Ah,Ph, rh, γ, T/k)

MDPl = (S,Al,Pl, rl, γ, k)

The non-stationarity emerges in the high-level policy transition. That is, at differ-

ent steps, Ph outputs different probability and rh outputs different rewards given

the same transition. The cause of non-stationary transition functions is the change

of the lower level policy. It is similar to the situation in the multi-agent reinforce-

ment learning: the state transition function P and the reward function of each

agent ri depend on the actions of all agents. Each agent keeps changing to adapt to

other agents, thus breaking the Markov assumption that governs most single-agent

RL algorithms. It is natural to view HRL as cooperative two-agent reinforcement

learning with such characteristics: (1) unshared rewards, (2) one-direction delayed

communication and (3) fully observability.

4.4.1 Low-level Policy Modeling

Motivated by agent/opponent modeling, if the high-level policy can know or rea-

son about the behaviors and the intentions of the low-level policy, the coordination

efficiency will be improved and the training process of the agents might be sta-

bilized. Due to the cooperation between the low-level and high-level policies, we

propose the bi-direction communication where the low-level policy sends its policy

representation to the high-level policy.

Chapter 4. I2HRL: Interactive Influence-based Hierarchical Reinforcement
Learning 53

The low-level policy determines what to communicate. It is straight-forward to

send the policy parameters m = θl as a complete representation of its own pol-

icy. However, it is well-known that the low-level policy network is often over-

parameterized, which makes it hard to feed the parameters directly into the high-

level policy. Also for agent modeling, one agent only needs to know the desires,

beliefs, and intentions of others [59]. Consequently, it is practical to encode the

low-level policy m = fm(πl(· , ·)), where the fm is an encoder function as the

representation module.

In this work, we learn a representation function that maps episodes from the low-

level policy πl to a real-valued vector embedding. In practice, we optimize the

parameters θ of a function fmθm : E → Rd where E denotes the space of succes-

sive state-action transitions ⟨st, ath, atl , st+1, at+1
h , at+1

l , · · · , st+c, at+ch , at+cl ⟩ of size c

corresponding to the low-level policy and d is the dimension of the embedding.

We propose a principle for learning a good representation of a policy: predictive

representation. The representation should be accurate for predicting the low-level

policy actions given states.

For satisfying the principle, we utilize an imitation function via supervised learning.

Supervised learning does not require direct access to the reward signal, making

it an attractive task for reward-directed representation learning. Intuitively, the

imitation function attempts to mimic the low-level policy based on the historical

behaviours. Concretely, we utilize the representation function fmθm : E → Rd, as

well as an imitation function fϕ : S × A × Rd → [0, 1] where ϕ are parameters of

this imitation function that maps the low-level policy observation and embedding

to a distribution over the agent’s actions. We propose the following negative cross

entropy objective to maximize with respect to ϕ and θm:

E e1∼Dl\e2
⟨s,ah,al⟩∈e2∼Dl

[
log fϕ

(
al|s, ah, fmθm(e1)

)]
(4.1)

where Dl is the replay buffer of the low-level policy. For the low-level policy,

the objective function samples two distinct trajectories e1 and e2 (e1 needs to be

the history of e2). The state-action pairs from e1 are used to learn an embedding

fmθm(e1) that conditions the imitation function network trained on state-action pairs

from e2.

54 4.4. Interactive Influence-based HRL

The imitation function is smaller than the low-level policy because it takes the

low-level policy information as input. Also, it is trained more frequently than the

low-level policy.

4.4.2 High-level Policy: Influence-based Framework

One may argue that the source of non-stationarity moves from the low-level policy

to the low-level representation. That is, the high-level policy has the low-level

policy representation but an out-of-date or inaccurate representation. We claim

that the training process of the high-level policy is more stable with a representation

than without a representation. Also, we introduce an influence-based framework

for the high-level policy to extract useful information from the representation.

We expect the high-level policy to make decision with the most useful information

and minimal influence of the low-level policy. In such situation, even if the low-

level representation may be imprecise, the high-level policy can still make good

decisions.

Consequently, we measure the influence via a conditional mutual information and

regularize/minimize it for the high-level policy:

I(Ah;M |S) =
∑
s

∑
m

∑
ah

p(ah,m, s) log
p(s)p(ah,m, s)

p(ah, s)p(m, s)

=
∑
s

p(s)
∑
m

p(m)
∑
ah

π(ah|s,m) log
πh(ah|s,m)

πh0(ah|s)

= Eπh,πl
[
DKL [πh(ah|s,m)|πh0(ah|s)]

]
(4.2)

where Ah is the high-level action; M is the low-level policy representation; S is the

state; πh(ah|s,m) is the high-level policy. Eπh,πl is an abbreviation of Es,m,ah⟩∼πh,πl
which denotes an expectation over the trajectories ⟨s,m, ah⟩ generated by πh, πl.

DKL is the Kullback-Leibler divergence. πh0(ah|s) =
∑

m p(m)πh(ah|s,m) is a

default high-level policy without the low-level policy’s influence, although the high-

level policy never actually follows the default policy. I(ah;m|s) = 0 if and only if ah

and m are independent given the state s. This mutual information can also be seen

as a measure of stationarity. When the mutual information is small, whatever the

low-level policy is, the high-level policy can always expect that a certain assignment

of itself can lead to a high reward. The high-level policy’s optimization objective

Chapter 4. I2HRL: Interactive Influence-based Hierarchical Reinforcement
Learning 55

is:

J(θh) = Eπhθh ,πl
[∑
i=0,k,···

γirt+ih − βDKL [πh(ah|s,m)|πh0(ah|s)]
]

(4.3)

We now focus on the second term because the optimization of the cumulative

rewards term can be solved by standard RL algorithms. πh(ah|s,m) is a deter-

ministic policy, so we cannot directly compute the mutual information term. So

we introduce an internal variable Z. Due to the data processing inequality (DPI)

[37], I(Z;M |S) ≥ I(Ah;M |S). Therefore, minimizing I(Z;M |S) also minimizes

I(Ah;M |S). We parameterize the policy πh(ah|s,m) using an encoder penc(z|s,m)

and a decoder pdec(ah|s, z) such that πh(ah|s,m) =
∑

z penc(z|s,m)pdec(ah|s, z).

Thus, we instead maximize this lower bound on J(θh):

J(θh) ≥ Eπhθh ,πl
[∑
i=0,k,···

γirt+ih

]
− βI(Z;M |S)

= Eπhθh ,πl
[∑
i=0,k,···

γirt+ih − βDKL [penc(z|s,m)|p(z|s)]
] (4.4)

where p(z|s) =
∑

m p(m)penc(z|s,m) is the marginalized encoding. In practice,

performing this marginalization over the representation may often be intractable

since there may be a continuous distribution of representation.

Inspired by the information bottleneck principle and variation information bot-

tleneck [30, 60], we use a Gaussian approximation q(z|s) of the marginalized

encoding p(z|s). Since DKL[p(z|s)||q(z|s)] ≥ 0, that is,
∑

z p(z|s) log p(z|s) ≥∑
z p(z|s) log q(z|s), instead, we get its variational upper bound:

I(Z;M |S) = Eπhθh ,πl
[DKL[penc(z|s,m)|p(z|s)]]

=
∑
s

p(s)
∑
m

p(m)
∑
z

penc(z|s,m) log penc(z|s,m)

−
∑
s

p(s)
∑
z

p(z|s) log p(z|s)

≤
∑
s

p(s)
∑
m

p(m)
∑
z

p(z|m, s) log
penc(z|s,m)

q(z|s)

= Eπhθh ,πl
[DKL[penc(z|s,m)|q(z|s)]]

(4.5)

56 4.4. Interactive Influence-based HRL

This provides a lower bound of the objective in Eq. (4.3) J̃(θh) ≤ J(θh) that we

maximize:

J̃(θh) = Eπhθh ,πl
[∑
i=0,k,···

γirt+ih − βDKL [penc(z|s,m)|q(z|s)]
]

(4.6)

[0, 16]

[16, 0]

[16, 16]

[0, 0]

X X

X X

(a) (b) (c) (d)

(e) A (f) (g) (h)

Figure 4.2: Evaluation results in the AntMaze, AntGather, and AntPush. SR
means success rate. (A) AntMaze Env. (B) SR in AntMaze [16,0] (C) SR in
AntMaze [16,16] (D) SR in AntMaze [0,16] (E) ntGather Env. (F) Evaluation
Reward in AntGather (G) AntPush Env. (H) Evaluation Reward in AntGather.

4.4.3 Influence-based Adaptive Exploration

Exploration in HRL heavily relies on the high level policy exploration [54]. The

non-stationarity of high-level transition can lead to the inability of traditional ex-

ploration methods. During the training process of HRL, the non-stationary states

instead of unvisited states need more data to stabilize the low-level policy. We can

roughly split the HRL learning process into two phases with a vague boundary:

(1) non-stationary phase; (2) near-stationary phase. In the first phase, i.e., at the

beginning of the learning process, the low-level policy is always changing. Every

state should be explored. In the second phase, the low-level policy is near-optimal.

Most states are stationary for the high-level policy, thus the agent should pay more

attention on the states which still cause non-stationarity. Process between these

two phases can be seen as a mixture of both.

Chapter 4. I2HRL: Interactive Influence-based Hierarchical Reinforcement
Learning 57

Consequently, we propose an influence-based reward for high level exploration,

which is quantified by the KL divergence DKL [penc(z|s,m)|q(z)]. Intuitively, if the

KL divergence is small, the agent visits a state which is less easily influenced by the

low-level policy. It means that the high-level transition is near-stationary, i.e., less

data is needed here other than other states. When the KL divergence is large, a

non-trivial influence of low-level policy is forced on the high-level policy. It means

that the high-level policy needs more data to stabilize training.

During training, we utilize regularization mentioned in the previous section to train

the high-level policy every k steps. Also, we calculate the KL divergence as the

intrinsic reward every step with penc and q(z) fixed:

rtin = DKL

[
penc(z

t|st,mt−1)|q(zt)
]

(4.7)

Eventually, instead of optimizing the Eq. (4.6), we derive the final objective for

the high-level policy that we maximize:

J̃ ′(θh) = Eπhθh

[∑
i=0,k,···

γih(r
t+i
h + βr

∑
j=0,1,··· ,k

rjin)− βDKL [penc(z|s,m)|q(z|s)]
]

(4.8)

where βr is a factor.

Even though the rin and DKL are in the same form, we notice that rin, as the re-

ward signal, will give credits to both penc(z|s,m) as well as pdec(ah|s, z), while DKL

is only used to update penc. Moreover, they are actually for adaptive exploration

[61]. During the first phase, visited states at the early training steps can lead to

similar high intrinsic rewards, thus contributing little to making different intrinsic

rewards among states. Hence, the high-level policy explores a wide range of the

state space. Meanwhile, the KL term makes effort to force the penc to decrease the

influence of the low-level policy at these visited states, so that in the future, the

intrinsic rewards here will be smaller and the states will be less visited. During

the second phase, most states are stationary thus lead to similar low intrinsic re-

wards. However, once some states leads to non-stationarity and cause high intrinsic

rewards, the overall policy will visit them more. It results in a narrow range of

exploration with a focus on the non-stationary states.

58 4.5. Experiments

0.5 1.0 1.5 2.0
steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

I2HRL
I2HRL w/o inf.
I2HRL w/o rin
HIRO

(a) AntMaze
[16,0]

0.5 1.0 1.5 2.0
steps 1e6

0.0

0.2

0.4

0.6

0.8

su
cc

es
s r

at
e

I2HRL
I2HRL w/o inf.
I2HRL w/o rin
HIRO

(b) AntMaze
[16,16]

0.5 1.0 1.5 2.0
steps 1e6

0.0

0.2

0.4

0.6

0.8

su
cc

es
s r

at
e

I2HRL
I2HRL w/o inf.
I2HRL w/o rin
HIRO

(c) AntMaze
[0,16]

0.5 1.0 1.5 2.0
steps 1e6

0.0

0.5

1.0

1.5

su
cc

es
s r

at
e

I2HRL
I2HRL w/o inf.
I2HRL w/o rin
HIRO

(d)
AntGather

Figure 4.3: Ablation study for the proposed interaction, the influence-based
framework and rewards. I2HRL represents our method with Eq. (4.8); I2HRL
w/o inf represents that the internal variable z is removed, and the concatenation
of the low-level policy representation with the state is feed into the high-level
policy; I2HRL w/o rin represents the Eq. (4.6). HIRO is as a baseline.

4.5 Experiments

We design the experiments to answer the following questions: (1) How does I2HRL

compare against other end-to-end HRL algorithms? (2) Can influence-based frame-

work stabilize the high-level policy training? (3) Is the proposed high-level explo-

ration efficient under the non-stationrity?

4.5.1 Environmental Settings

We evaluate and analyze our methods in the benchmarking hierarchical tasks [48].

These environments were all simulated using the MujoCo physics engine for model-

based control. The tasks are as follows:

Ant Gather. A quadrupedal ant is placed in a 20 × 20 space with 8 apples

and 8 bombs. The agent receives a reward of +1 or collecting an apple and −1 for

collecting a bomb; all other actions yield a reward of 0. Results are reported over

the average of the past 100 episodes.

Ant Maze. The ant is placed in a U-shaped corridor and initialized at position

(0, 0). It is assigned an (x, y) goal-position that it is expected to reach (this (x, y)

goal-position is only included in the state of the high-level policy). The agent is

rewarded with its negative L2 distance from current position to this goal position.

Chapter 4. I2HRL: Interactive Influence-based Hierarchical Reinforcement
Learning 59

Ant Push. Th ant would move forward, unknowingly pushing the movable

block until it blocks its path to the target. To successfully reach the target, the

ant must first move to the left around the block and then push the block right,

clearing the path towards the target location

We choose three methods as baselines:

• Twin Delayed Deep Deterministic Policy Gradient (TD3) [62]: a state-of-the-

art flat RL algorithm in continuous control domain to validate the need for

hierarchical models to solve these tasks.

• HIRO [44]: a state-of-the-art HRL algorithm which utilizes the off-policy

correction to address the non-stationarity problem.

• HAC [45]: a state-of-the-art HRL algorithm which introduces hindsight ac-

tion transitions to address the non-stationarity problem.

Results are reported over 5 random seeds of the simulator and the network initial-

ization, and the time horizon is set to 500 steps. Both levels of I2HRL utilize TD3.

The low-level and high-level critic updates every single step and every 10 steps

respectively. The low-level and high-level actor updates every 2 steps and every 20

steps respectively. We use Adam optimizer with learning rate of 3e − 4 for actor

and critic of both levels of policies. We set the high-level policy decision interval

k and the length of trajectories for low-level policy represent c as 10. Discount

γ = 0.99, replay buffer size is 200, 000 for both levels of policies. The method-

specific hyper-parameters (β and βr) are fine-tuned for each tasks. All methods

are well fine-tuned.

4.5.2 Results

Comparison with Baselines. In the Ant Gather, the results are the average

external rewards of window size of 100. In the Ant Maze, the results are reported

as success rates which are evaluated every 50,000 steps with the goal-position (16,

0), (16, 16), and (0, 16) respectively. The results, shown in Fig. 4.2 and 4.2f,

demonstrate the training performance from scratch with I2HRL and other baselines.

In the Fig. 5.7c, all HRL methods reach a similar performance because it is easy for

60 4.5. Experiments

the ant to reach a goal which is directly in front of the ant. For the goal-position

(16, 16) and (0, 16), agent is supposed to learn to change its direction. In the

Fig. 5.7b, we can see that I2HRL as well as HAC can reach the (16,16) earlier

than HIRO, however, I2HRL exceeds baselines by about 10% success rate when

converged. In the Fig. 5.7a, which shows the success rate of algorithms in the

most difficult task for ant, I2HRL has a better performance than baselines on both

the final performance and the convergence. In the AntGather and AntPush, I2HRL

also has a higher average rewards than other baselines. TD3 is non-hierarchical

and not aimed for long-horizon sparse reward problems. Additionally, TD3 uses

the Gaussian noise on the actions to explore, which serve as baseline exploration

strategy. The success rates of TD3 in all maze tasks and the rewards in the gather

task are almost zero. It shows the inability of flat RL algorithms on such tasks.

Ablations. To answer the question (2), we remove the internal variable z as

well as the intrinsic reward, that is, directly feed the concatenation of the low-

level policy representation and the state into the high-level policy. To answer

the question (3), we only drop out the intrinsic reward rin. In the Fig. 4.3, we

notice that I2HRL without influence-based framework has similar performance as

compared with baseline. It demonstrates that the low-level policy representation

can help the high-level policy alleviate the non-stationarity problem. However,

we can also see that there are some drops and rebounds in both AntMaze and

AntGather, like at the 2 million steps in Fig. (4.3c) and at 1.2 million steps in

Fig. (4.3d). While I2HRL without rin does not have these drops and has better

performance. As we mentioned in section 4.4.2, the source of non-stationarity

moves from the low-level policy to the low-level representation. When the low-

level policy representation is not sufficient or accurate to represent the low-level

policy, the high-level policy makes bad decisions with bad representations. As

the training process going, the representation becomes stable, thus the high-level

policy starts to correct its understanding of the low-level representation. Also in

the Fig. (4.3c), I2HRL without rin reaches a higher success rate from 1.5 million

steps to 2 million steps than I2HRL without the influence-based framework. It

demonstrates the effectiveness of the proposed influence-based framework. The

efficiency of proposed influence-based exploration is also shown in the Fig. (4.3).

I2HRL has better performance than I2HRL without rin, especially earlier to get

Chapter 4. I2HRL: Interactive Influence-based Hierarchical Reinforcement
Learning 61

the goal position and reach a higher success rate. It shows that rin improves data

efficiency, thus accelerating the learning process.

4.5.3 Visualization

Visualization of the low-level policy representation. We visualize the

low-level policy representations in terms of different phases. We get the low-level

policy representation (8 dimensions) every 100k steps over 3 million steps. Then

we use t-SNE [63] to visualize the representations as shown in Fig. 4.4. At the

beginning of the training process, the representation is sparse. While when the

low-level policy is near-optimal, the representation is more dense.

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

0

10

20

Figure 4.4: Visualization of the low-level policy representation.

Visualization of non-stationary states. To backup our claims in Section

4.3, we visualize the intrinsic rewards in AntMaze with random target positions in

terms of the different phases. Concretely, we split the training process into three

phases: initial phase, non-stationary phase, and near-stationary phase. Since our

method is end-to-end training, the intrinsic rewards are inaccurate in the initial

phase. Consequently we pass the parameters of penc of the near-stationary phase

to the parameters of the initial phase. At the beginning of the training process, the

ant only navigates its surroundings with relatively high intrinsic rewards. When

62 4.5. Experiments

−0.5 0.0 0.5
x position

0

5

10

15

y
po

sit
io

n

0.20

0.25

0.30

0.35

0.40

0.45

0.50

in
tri

ns
ic

re
wa

rd

(a) initial phase

0 5 10 15
x position

0.0

0.5

1.0

1.5

2.0

y
po

sit
io

n

0.20

0.25

0.30

0.35

0.40

0.45

0.50

in
tri

ns
ic

re
wa

rd

(b) initial phase

0 5 10 15
x position

0

2

4

6

8

10

y
po

sit
io

n

0.20

0.25

0.30

0.35

0.40

0.45

0.50

in
tri

ns
ic

re
wa

rd

(c) non-stationary
phase

0 5 10 15 20
x position

0

5

10

15

y
po

sit
io

n

0.20

0.25

0.30

0.35

0.40

0.45

0.50

in
tri

ns
ic

re
wa

rd

(d) non-stationary
phase

0 5 10 15
x position

0

2

4

6

8

10

y
po

sit
io

n

0.20

0.25

0.30

0.35

0.40

0.45

0.50

in
tri

ns
ic

re
wa

rd
(e) near-stationary
phase

0 5 10 15 20
x position

0

5

10

15

y
po

sit
io

n

0.20

0.25

0.30

0.35

0.40

0.45

0.50

in
tri

ns
ic

re
wa

rd

(f) near-stationary
phase

Figure 4.5: Visualization of the intrinsic reward. Axes represent the position
of the ant. The red point is the goal position in AntMaze. Colormap shows the
magnitude of the intrinsic rewards. (a)(b) The initial phase is at 0 step. (c)(d)
The non-stationary phase is at 1 million steps. (e)(f) The near-stationary phase
is at 3 million steps.

the low-level policy is near-optimal, the intrinsic rewards around goal positions are

lower than rewards in the non-stationary phase.

As stated in Section 4.3, if the intrinsic reward is small, the agent visits a state

which is less easily influenced by the low-level policy. It means that the high-level

transition is near-stationary, i.e., less data is needed here other than other states.

The result shows that once the ant learns how to approach a goal, the nearer it

gets to the goal, the less data is needed. Because the task is goal-oriented, the

ant actually needs to explore its surroundings when it does not know where to go.

For example, a well-trained adventurer is walking in a desert, looking for an oasis.

When he is far away from the oasis, he will walk around and explore to determine

a direction. When he is approaching to the oasis, he will rush his goal without

hesitation.

Chapter 4. I2HRL: Interactive Influence-based Hierarchical Reinforcement
Learning 63

4.6 Chapter Summary

In this chapter, we focus on the non-stationarity problem in the end-to-end HRL.

We propose the Interactive Influence-based HRL (I2HRL). Concretely, we enable

the interaction between the high-level policy and the low-level policy. Also, we pro-

pose the influence-based framework to address the non-stationarity. This frame-

work also provides an influence-based adaptive exploration, which helps the agent

to explore the more non-stationary states. We find that I2HRL results in con-

sistently better performance compared with state-of-the-art HRL baselines and

accelerate the learning process.

I2HRL splits the HRL into two parts: policy representation and communication.

For the first one, more principles can be proposed to learn a good representation,

such as predicting the low-level policy values (value-based), or predicting the state

transitions and rewards (model-based). Also, various agent/opponent modeling

methods can be future works to extend to learning the low-level policy represen-

tation. For the second part, the literature of multi-agent communication can also

improve the cooperation between the two levels in HRL, such as centralized training

or value decomposition.

Chapter 5

Commission Fee is not Enough: A

Hierarchical Reinforced

Framework for Portfolio

Management1

5.1 Introduction

In this chapter, we consider the problem of portfolio management in finance with

the application of HRL as a solution, especially from the perspective of the collab-

oration of the high-level policy and the low-level policy.

The problem of portfolio management is widely studied in the area of algorithmic

trading. It aims to maximize the expected returns of multiple risky assets. Re-

cently, reinforcement learning (RL) models are gaining popularity in the fintech

community [65], with its great performance in different fields, including playing

games [9, 43], controlling robots [13], and the Internet of things [66].

Due to the dynamic nature of markets and noisy financial data, RL has been pro-

posed as a suitable candidate by its own nature [67, 68]. That is, RL can directly

output trade positions, bypassing the explicit forecasting step by the trial-and-

error interaction with the financial environment. Many existing RL methods get

1The work in this chapter has been published in Wang et al.

65

66 5.1. Introduction

promising results by focusing on various technologies to extract richer representa-

tion, e.g., by model-based learning [69, 70], by adversarial learning [71], or by state

augmentation [72]. However, these RL algorithms assume that portfolio weights

can change immediately at the last price once an order is placed. This assump-

tion leads to a non-negligible trading cost, that is, the price slippage – the relative

deviation of the expected price of a trade and the price actually achieved. In a

more realistic trading environment, the trading cost should be taken into consid-

eration. Moreover, due to the need of balancing the long-term profit maximization

and short-term trade execution, it is challenging for a single/flat RL algorithm to

operate on different levels of temporal tasks.

In the field of finance, portfolio management is a crucial task that involves selecting

and managing a collection of financial assets such as stocks, bonds, and mutual

funds to meet the investment goals of an investor. It is a challenging problem due

to the high dimensionality of the state and action spaces, as well as the complex

dynamics and uncertainties of financial markets.

As our motivation, we observe that there is a hierarchy of portfolio managers and

traders in real-world trading. Portfolio managers assign a percentage weighting

to every stock in the portfolio periodically for a long-term profit, while traders

care about the best execution at the favorable price to minimize the trading cost.

This work gives the first attempt to leverage a similar idea to algorithmic trad-

ing. Concretely, we develop a Hierarchical Reinforced trading system for Portfolio

Management (HRPM). Our system consists of a hierarchy of two decision pro-

cesses. The high-level policy changes portfolio weights at a lower frequency, while

the low-level policy decides at which price and what quantity to place the bid or

ask orders within a short time window to fulfill goals from the high-level policy.

The collaboration of the high-level policy and the low-level policy is crucial in HRL-

based portfolio management. The high-level policy provides guidance and goals to

the low-level policy, while the low-level policy executes the investment decisions to

achieve the goals. The high-level policy is responsible for setting the investment

objectives, such as maximizing the expected return while controlling the risk, and

providing abstract information about the state of the financial market to the low-

level policy. The low-level policy, on the other hand, is responsible for selecting

the specific financial assets to invest in based on the high-level policy’s guidance

and the current state of the market.

Chapter 5. Commission Fee is not Enough: A Hierarchical Reinforced Framework
for Portfolio Management 67

Through this collaboration, HRL-based portfolio management can achieve better

performance and robustness than traditional portfolio management methods. The

high-level policy can adapt to changes in the market conditions and investment

goals, while the low-level policy can take advantage of the high-level policy’s guid-

ance to make more informed investment decisions. Overall, the use of HRL in

portfolio management can provide investors with a more effective and efficient way

to manage their portfolios.

Our contributions are four-fold. First, we formulate the portfolio management

problem with trading cost as a hierarchical MDP, and combine portfolio manage-

ment and trade execution by utilizing the hierarchical RL (HRL) framework to

address the non-zero slippage. Second, as traditional HRL performs poorly in this

problem, we propose the entropy bonus in the high-level policy to avoid risk, and

use action branching to handle multi-dimensional action space. Third, to make

full use of the stock data, we pre-train multiple low-level policies with an iterative

scheme for different stocks in the limit order book environment, and then train a

high-level policy on the top of the low-level policies. Fourth, we compare HRPM

with baselines based on the historical price data and limit order data from the

U.S. market and the China market. Extensive experimental results demonstrate

that HRPM achieves significant improvement against state-of-the-art approaches.

Furthermore, the ablation studies demonstrate the effectiveness of entropy bonuses

and the trading cost is a non-negligible part in portfolio management.

5.2 Key Definitions in Portfolio Management

In this section, we introduce some definitions and the objective. Portfolio manage-

ment is a fundamental financial task, where investors hold a number of financial

assets, e.g., stocks, bonds, as well as cash, and reallocate them periodically to max-

imize future profit. We split the time into two types of periods: holding period

and trading period as Fig. 5.1. During the holding period, the agent holds the

pre-selected assets without making any purchase or selling. With the fluctuations

of the market, the assets’ prices would change during the holding period. At the

end of the holding period, the agent will decide the new portfolio weights of the

next holding period. In the trading period, the agent buys or sells some shares of

68 5.2. Key Definitions in Portfolio Management

assets to achieve the new portfolio weights. The lengths of the holding period and

trading period are based on specific settings and can change over time.

Definition 5.1. (Portfolio) A portfolio can be represented as:

wt = [w0,t, w1,t, w2,t, . . . , wM,t]
T ∈ RM+1 and

M∑
i=0

wi,t = 1 (5.1)

where M +1 is the number of portfolio’s constituents, including one risk-free asset,

i.e., cash, and M risky assets, i.e., stock2. wi,t represents the ratio of the total

portfolio value (money) invested at the beginning of the holding period t on asset

i. Specifically, w0,t represents the cash in hand. Also, we define w′
t as the portfolio

weights at the end of the holding period t.

Definition 5.2. (Asset Price) The opening prices pt and the closing prices

p′
t of all assets for the holding period t are defined respectively as pt =

[p0,t, p1,t, p2,t, . . . , pM,t]
T and p′

t =
[
p′0,t, p

′
1,t, p

′
2,t, . . . , p

′
M,t

]T
. Note that the price

of cash is constant, i.e., p0,t = p′0,t = p0,t+1 for t ≥ 0.

Definition 5.3. (Portfolio Value) We define vt and v′t as portfolio value at the

beginning and end of the holding period t. So we can get the change of portfolio

value during the holding period t and the change of portfolio weights:

v′t = vt

M∑
i=0

wi,tp
′
i,t

pi,t
and w′

i,t =

wi,tp
′
i,t

pi,t∑M
i=0

wi,tp′i,t
pi,t

for i ∈ [0,M] (5.2)

Definition 5.4. (Market order) A market order refers to an attempt to buy or sell

a stock at the current market price, expressing the desire to buy (or sell) at the

best available price.

Definition 5.5. (Limit Order) A limit order is an order placed to buy or sell a

number of shares at a specified price during a specified time frame. It can be

modeled as a tuple (ptarget,±qtarget), where ptarget represents the submitted target

price, qtarget represents the submitted target quantity, and ± represents trading

direction (buy/sell).

Definition 5.6. (Limit Order Book) A limit order book (LOB) is a list containing

all the information about the current limit orders.

2In this chapter, we focus on the stocks for ease of explanation. This framework is applicable
to other kinds of assets.

Chapter 5. Commission Fee is not Enough: A Hierarchical Reinforced Framework
for Portfolio Management 69

holding period 𝑡 holding period 𝑡+1 trading

timeline

𝒘𝒕 𝒘′𝒕

𝑣𝑡 𝑣′𝑡

trading

period 𝑡

price

fluctuation
buy

sell
𝒘𝒕+𝟏

𝑣𝑡+1

𝒘′𝒕+𝟏

𝑣′𝑡+1
price

fluctuation

decide to change to 𝑤𝑡+1

trades lead

to cost new portfolio value

and weights

……

Figure 5.1: Illustration of the portfolio management process.

We observe that a strategy pursuing a better selling price is always associated with

a longer (expected) time-to-execution. However, the long time-to-execution could

be very costly, since a strategy might have to trade at a bad price at the end of

the trading period, especially when the market price moves downward.

Definition 5.7. (Trading Cost) Trading cost consists of commission fee and slip-

page: ctrade = ccom + cslippage. Commissions are fees that brokers charge to im-

plement trades and computed as ccom = λ
∑M

i=1 (qi,target × pi,avg), where λ is the

constant commission rate for both selling and buying. Slippage is the difference be-

tween the expected price of a trade and the price actually achieved. Here we define

the slippage as the average execution price pavg achieved by the strategy relative

to the price at the end of the trading period t: cslippage = (pavg − pt+1)× (±qtarget).

Considering the trading cost, the change of portfolio value during a holding period

and a trading period t satisfies:

vt+1 = vtw0,t −
M∑
i=1

[±qi,target × pi,avg + λqi,target × pi,avg]︸ ︷︷ ︸
Cash

+

M∑
i=1

[
(
vtwi,t
pi,t

± qi,target)× pi,t+1

]
︸ ︷︷ ︸

Assets Value

=

M∑
i=0

vtwi,tpi,t+1

pi,t
− ctrade,t

(5.3)

Our objective is to maximize the final portfolio value given a long time horizon by

taking into account the trading cost.

70 5.3. Hierarchical MDP Framework for Portfolio Management

trade day

𝝅𝒉

𝝅𝒍
𝒔𝒕
𝒉

𝒔𝒕′
𝒍 𝒂𝒕′

𝒍

𝒔𝒕′+𝒏
𝒍

𝒂𝒕′+𝒏
𝒍

holding period 𝒕

𝒂𝒕
𝒉

𝝅𝒉

𝝅𝒍
𝒔𝒕+𝟏
𝒉

𝒔𝒕‘+𝒏+𝟏
𝒍

𝒂𝒕′+𝒏+𝟏
𝒍

𝒔𝒕′+𝟐𝒏
𝒍

𝒂𝒕′+𝟐𝒏
𝒍

𝒂𝒕+𝟏
𝒉

…

trading period 𝒕 holding period 𝒕+1 trading period 𝒕+1

(a) HRPM Model

time

(b) The
low-
level
states

Figure 5.2: Overview of HRPM

5.3 Hierarchical MDP Framework for Portfolio

Management

A key challenge to the real-world portfolio management is to balance the multi-

faceted and sometimes conflicting objectives of different decision processes. Portfo-

lio managers’ main concerns are about longer-term profit. They typically think of

execution as a chore to fulfill the clients’ profit requirements and risk preferences.

While traders care about best execution at the most favorable price to minimize

the trading cost, but might not always be aware of managers’ sources of profit and

urgency of trade. Moreover, flat RL cannot handle complex tasks with long time

horizons. Portfolio managers take many hours (sometimes days) while agents need

to make decisions every few seconds or faster. The sampling frequency is limited

by this time horizon issue so that all available information about market dynamics

is not fully utilized. Consequently, electronic trading algorithms are supposed to

operate on multiple levels of granularity.

Formally, we model the portfolio management with trading cost as two hierarchical

MDPs, respectively for portfolio management and trade execution:

MDPh = (Sh,Ah,Ph, rh, γ, T h)

MDPl = (S l,Al,P l, rl, γ, T l)

where the detailed definitions are given in the following subsections. The high-level

policy and the low-level policy are executed in different timescales. Concretely, the

time horizon for the high-level MDP is the total holding time of the portfolio, and

the timestep of the high-level MDP is the holding period, which might consist of

Chapter 5. Commission Fee is not Enough: A Hierarchical Reinforced Framework
for Portfolio Management 71

several trading days. On the other hand, the time horizon for the low-level MDP

is a small trading window, e.g., a trading day. The timestep of the low-level MDP

could be several minutes for the low-level policy to take actions. We use t as the

high-level timestep, and t′ as the low-level timestep.

5.3.1 The High-level MDP for Portfolio Management

The high-level MDP is modeled for the portfolio management problem. That is, the

trading agent gives new portfolio weights for reallocating the fund into a number

of financial assets at the beginning of each holding period.

State. We describe the state sht = {X t,wt} ∈ Sh with historical stock ba-

sic features Xt, and the current portfolio weights wt. For the M non-cash

assets, the features X i,t for asset i are built by a time window k: X i,t =

{xi,t−k+1,xi,t−k+2, · · · ,xi,t}, where xi,t presents the basic information of asset i

at trading day t, including opening, closing, highest, lowest prices and volume.

Note that the state can be enriched by adding more factors for better performance.

We only use basic daily information to describe high-level state in this work for

simplification and fair comparison.

Action. At the end of the holding period t, the agent will give a high-level action

aht based on the state sht to redistribute the wealth among the assets as a subtask.

The subtask is determined by the difference between portfolio weights w′
t and

wt+1. Since w′
t has already been determined in the holding period t according to

Eq. (5.2), the action of the agent in holding period t can be represented solely by

the portfolio vector wt+1. Consequently, we define the action as aht = wt+1 in the

continuous action space, and the action at holds the properties in Eq. (5.1).

Reward. For each state-action pair, i.e., (sht , a
h
t) at holding period t, according to

Eq. (5.3), rt = vt+1 − vt.

5.3.2 The Low-level MDP for Trade Execution

The high-level policy assigns subtasks for the low-level policy. The subtasks are

represented by an allowed time window with length of Twindow and the target trad-

ing quantity qtarget. Twindow is based on manual configurations, and qtarget,t of

72 5.4. Optimizing via Deep Hierarchical Reinforcement Learning

trading period t can be computed by qtarget,t = v′t|wt+1−w′
t| ⊙ 1

p′t
, with assumption

of a continuous market. The subtasks can be considered as the trade execution,

where the trading agent places many small-sized limit orders at different times at

corresponding desired prices. As a result, we model the subtask as the low-level

MDP.

State. We maintain a state slt′ at each low-level time step t′, considering the private

states and the market states. The private states of trade execution are remaining

trading time Twindow−Telapsed and the remaining quantity qtarget,t− qfinished, where

Telapsed is the used time and qfinished is the finished quantity. The market states

consist of the historical limit order books and multiple technical factors as shown in

Fig. 5.2b. Specifically, we collect historical LOBs in a time window k′: LOBt′ =

{lobt′−k, lobt′−k+1, · · · , lobt′−1}, where lobt′ is the limit order book at time step t′,

including price and volume.

Action. Each low-level action corresponds to a limit order decision with the target

price ptarget and the target quantity ±qtarget. Note that a zero quantity indicates

that we skip the current trading time step with no order placement, and if an

action at′ fails to be executed in the low-level time step t′ due to an inappropriate

price, the action will expire at the next low-level time step (t′ + 1) without actual

trading. Any quantity remaining at the end of the trading period must be cleaned

up by using a market order, walking through the lower prices on the bid side of

the order book until all remaining volumes are sold.

Reward. Once receiving a limit order decision, the environment will match this

order and feedback an executed price ppaid. We define the low-level reward as:

rlt′ = − [λ(±qtarget × ppaid) + (ppaid − pt+1)× (±qtarget)]. So the cumulative trading

cost in a low-level episode will be reported to the high-level policy to compute the

high-level reward ctrade,t = −
∑T l

t′ r
l
t′ .

5.4 Optimizing via Deep Hierarchical Reinforce-

ment Learning

In this section, we first present our solution for learning hierarchical policies, then

propose our solution algorithms respectively for the two levels of MDPs. Finally,

Chapter 5. Commission Fee is not Enough: A Hierarchical Reinforced Framework
for Portfolio Management 73

we introduce two schemes: pre-training and iterative training for better financial

data usage.

5.4.1 Hierarchy of Two Policies

Our environment has two dynamics: the price dynamic and the limit order book

dynamic. We extend the standard RL setup to a hierarchical two-layer structure,

with a high-level policy πh and a low-level policy πl. Different from the existing

HRL algorithms, our high-level policy and the low-level policy run in different

timescales. As shown in Fig. 5.2a, each high-level time step t consists of three

steps:

1. The higher-level policy observes the high-level state sht and produces a high-

level action aht , which corresponds to the new portfolio for the next step.

2. The high-level action aht would generate subtasks for the low-level policy

according to the gap between the current portfolio and the new one.

3. The low-level policy produces the low-level action alt′ based on the low-level

states slt′ . These actions would be applied to the limit order dynamic for

updating the current portfolio.

5.4.2 High-level RL with Entropy Bonus

We consider the high-level problem as a continuous control problem, since the high-

level policy is supposed to generate a continuous vector according to Eq. (5.1).

Previous works utilize DDPG [13] to generate portfolio weights. Unfortunately,

DDPG faces challenges in solving our problem. First, DDPG highly relies on a

well-trained critic. However, the critic also needs lots of data, which is limited in

the financial area [71]. Additionally, the exploration in DDPG is dependant on

the Gaussian noise when applying actions into the environment. This exploration

might fail due to choosing specific sequences of portfolio weights and excluding

other possible sequences of portfolio weights. Also, we find that the portfolio

weights will converge to a few assets. That is, the agent only holds few assets.

74 5.4. Optimizing via Deep Hierarchical Reinforcement Learning

Here we utilized the REINFORCE algorithm [73]. One approach to address these

issues is to introduce an entropy bonus. In order to encourage the high-level policy

not to “put all the eggs in one basket”, we aim to find a high-level policy that

maximizes the maximum entropy objective:

πh
∗
= argmax

πh

Th∑
t=0

Esh0∼β0,sht+1∼ph,aht ∼πh
[γhr̃h(sht , a

h
t)]

= argmax
πh

Th∑
t=0

Esh0 ,sht+1,a
h
t

[
γh
(
rh(sht , a

h
t) + ηH(aht)

)] (5.4)

where β0 is the intial high-level state distribution, sht+1 ∼ ph is an abbreviation

of sht+1 ∼ ph(· |sht , aht), aht ∼ πh is an abbreviation of aht ∼ πh(· |sht), η deter-

mines the relative importance of the entropy term versus the reward, H(aht) is

the entropy of the portfolio weights, which is calculated as H(aht) = H(wh
t+1) =

−
∑

iw
h
i,t+1 logwhi,t+1, and r̃h is an abbreviation of the summation of the high-level

reward and entropy bonus.

We use the softmax policy as the high-level policy πh(sh, ah; θ) =
eθ
T ·ϕ(sh,ah)∑
b e
θT ·ϕ(sh,b) for all sh ∈ Sh, ah ∈ Ah. Let J(πhθ) = Eπh

[∑T
t=0 γ

ttt

]
de-

note the expected finite-horizon discounted return of the policy. According

to the policy gradient theorem [73], we compute the gradient ∇θJ
(
πhθ
)

=

E
τ∼πθ

[∑T
t=0∇θ log πhθ (at|st)Gt

]
, where Gt =

∑T−t
j=0 γ

j r̃h. Thus we update the high-

level policy parameters by θ ← θ + αγt∇θ log πhθ (at|st)Gt.

5.4.3 Low-level RL with Action Branching

The low-level problem is considered as a discrete control problem with two action

dimensions: price and quantity. We utilize the Branching Dueling Q-Network [74].

Formally, we have two action dimensions with |pl| = np discrete relative price levels

and |ql| = nq discrete quantity proportions. The action value Ql
d at state sl ∈ S l

and the action ald ∈ Ald are expressed in terms of the common state value V l(s) and

the corresponding (state-dependent) action advantage Advld
(
s, ald

)
for d ∈ {p, q}:

Ql
d(s

l, ald) = V (sl) + (Advd(s
l, ald)−

1

n

∑
ald

′∈Ad

Advd(s
l, ald

′
))

Chapter 5. Commission Fee is not Enough: A Hierarchical Reinforced Framework
for Portfolio Management 75

We train our Q-value function based on the one-step temporal-difference learning:

yd = r + γQ−
d (s

l′, argmax
ald

′∈Ad
Qd(s

l′, ald
′
)), d ∈ {p, q} (5.5)

L = E(s,a,r,s′)∼D[
1

N

∑
d∈{P,I}

(yd −Qd(s
l, ald))

2] (5.6)

where D denotes a (prioritized) experience replay buffer and a denotes the joint-

action tuple
(
pl, ql

)
.

5.4.4 Training Scheme

The financial data, including price information, multiple factors, and limit order

book, is complex and high-dimensional. In order to use the available data more

efficiently, we utilize the pre-training scheme and the iterative training.

Pre-training. In this work, we pre-train the low-level policy in the limit order

book environment. Specifically, we first pre-select several assets, i.e., stocks, as our

pre-trained data sources. By individually training the corresponding buying/selling

policy of each asset, we derive multiple low-level policy parameters for these assets.

In the general setting of hierarchical reinforcement learning, the high-level policy

and the low-level policy are only trained together in a single environment. However,

this training scheme suffers from data insufficiency, since the agent’s interactions

with the environment are severely restricted due to the joint training, especially for

the low-level policy training. By introducing the pre-training scheme, the low-level

policy would be trained with more and diverse interactions, thereby having better

generalization and robustness.

Iterative training. Following the iterative training scheme in [75], we augment

the private state repeatedly in the low-level pre-training. Specifically, we traverse

the target quantity from (0, 0) to a max target quantity qmax and the remaining

time from 0 to a max trading time window T ′
max. In this way, the low-level policy

is trained with the augmented private states, thus can generalize different subtasks

assigned by the high-level policy.

76 5.5. Experiment

the U.S. Market the China Market

Training 2000/01/03-2014/01/03 2007/02/08-2015/07/03

Evaluate 2014/01/06-2015/12/31 2015/07/06-2017/07/03

Test 2016/01/04-2018/05/22 2017/07/04-2018/07/04

Table 5.1: Period of stock data used in the experiments.

5.5 Experiment

In this section, we introduce our data processing, baselines, and metrics. Then we

evaluate our algorithm with baselines in different markets. Lastly, we analyze the

impact of entropy in reward and the trading cost by ablation study.

5.5.1 Dataset Setting and Preprocessing

Our experiments are conducted on stock data from the U.S. stock market and

China stock market. The stock data are collected from wind3. We evaluate our

algorithm on different stock markets to demonstrate robustness and practicality.

We choose stocks with large volumes so that our trading action would not affect

the market price. Specifically, we choose 23 stocks from Dow Jones Industrial

Average Index (DJIA) and 23 stocks from SSE 50 Index for the U.S. stock market

and China stock market respectively. In addition, we introduce 1 cash asset as a

risk-free choice for both of the two markets. Moreover, the period of stock data

used in the experiments is shown in Table 5.1.

For the high-level setting, we set the holding period to 5 days and set the trading

period to one day. We set the time window of the high-level state as 10 days.

We normalize the stock data to derive a general agent for different stocks in data

pre-processing. Specifically, we divide the opening price, closing price, high price,

and low price by the close price on the first day of the period to avoid the leakage

of future information. Similarly, we use the volume on the first day to normalize

the volume. For missing data which occurs during weekends and holidays, we fill

the empty price data with the close price on the previous day and set zero volume

to maintain the consistency of time series . For the constant commission rate, we

set it to 0.2% on both two markets.

3https://www.wind.com.cn/

Chapter 5. Commission Fee is not Enough: A Hierarchical Reinforced Framework
for Portfolio Management 77

For the low-level setting, we set the time interval to 30 seconds. We set the time

window of the low-level state as opening hours of one day. Similarly, we also

normalize the prices in limit order books by dividing the first price at the beginning

of the period, as well as the volume. For missing data which occurs during weekends

and holidays, we fill the empty price data with the previous price and set zero

volume to maintain the consistency of time series.

5.5.2 Baseline and Metrics

Baselines. We compare our methods with the baselines:

• Uniform Constant Rebalanced Portfolios (UCRP) [76] keeps the same distri-

bution of wealth among a set of assets from day to day.

• On-Line Moving Average Reversion (OLMAR) [77] exploits moving average

reversion to overcome the limitation of single period mean reversion assump-

tion.

• Weighted Moving Average Mean Reversion (WMAMR) [78] exploits historical

price information by using equal weighted moving averages and then learns

portfolios by online learning techniques.

• Follow the Winner (Winner) [79] always focus on the outperforming asset

and transfers all portfolio weights to it.

• Follow the Loser (Loser) [80] moves portfolio weights from the outperforming

assets to the underperforming assets.

• Deep Portfolio Management(DPM) [81] is based on Ensemble of Identical

Independent Evaluators (EIIE) topology. DPM uses asset prices as state

and trains an agent with a Deep Neural Network (DNN) approximated policy

function to evaluate each asset’s potential growth in the immediate future and

it is the state-of-the-art RL algorithm for PM.

In addition, SSE 50 Index and Dow Jones Industrial Average Index (DJIA) are

introduced as baselines in the comparison of performance to demonstrate whether

these portfolio strategies are able to outperform the market.

78 5.5. Experiment

2016-01-14

2016-04-10

2016-07-04

2016-09-30

2016-12-24

2017-03-24

2017-06-18

2017-09-11

2017-12-08

2018-03-08

2018-06-01

Trading Days

80

100

120

140

160

180

Cu
m

ul
at

iv
e

W
ea

lth
 (i

n
%

)

HRPM
DPM
UCRP
OLMAR
WMAMR
Winner
Loser
DJIA

Figure 5.3: The portfolio value in the U.S. market.

ARR(%) ASR MDD DDR
UCRP 13.827 1.24 0.124 1.348
Winner -6.773 -0.474 0.454 -0.455
Loser -8.961 -0.911 0.371 -0.723

OLMAR 15.428 1.252 0.123 1.503
WMAMR 1.503 0.468 0.138 0.143

DPM 19.864 1.263 0.121 1.815
HRPM 27.089 1.246 0.117 2.403
DJIA 20.823 1.206 0.116 2.547

Table 5.2: Performance comparison in the U.S. market

Metrics. we use the following performance metrics for evaluations: Annual Rate

of Return (ARR), Annualized Sharpe Ratio (ASR), Maximum DrawDown (MDD)

and Downside Deviation Ratio (DDR).

• Annual Rate of Return (ARR) is an annualized average of return rate. It is

defined as ARR =
Vf−Vi
Vi
× Tyear

Tall
, where Vf is final portfolio value, Vi is initial

portfolio value, Tall is the total number of trading days, Tyear is the number

of trading days in one year.

• Annualized Sharpe Ratio (ASR) is defined as Annual Rate of Return divided

by the standard deviation of the investment. It represents the additional

amount of return that an investor receives per unit of increase in risk.

Chapter 5. Commission Fee is not Enough: A Hierarchical Reinforced Framework
for Portfolio Management 79

ARR(%) ASR MDD DDR
UCRP 23.202 2.917 0.136 1.863
Winner -13.6 -1.201 0.368 -0.705
Loser -17.645 -2.1 0.293 -1.045

OLMAR 24.947 3.252 0.122 1.961
WMAMR 15.873 2.485 0.137 2.775

DPM 35.81 3.126 0.153 2.404
HRPM 48.742 3.813 0.131 3.325
SSE50 6.081 1.1 0.172 0.641

Table 5.3: Performance comparison in the China market

• Maximum DrawDown (MDD) is the maximum observed loss from a peak to

a bottom of a portfolio, before a new peak is attained. It is an indicator of

downside risk over a specified time period.

• Downside Deviation Ratio (DDR) measures the downside risk of a strategy

as the average of returns when it falls below a minimum acceptable return

(MAR). It is the risk-adjusted ARR based on Downside Deviation. In our

experiment, the MAR is set to zero.

5.5.3 Comparison with Baselines

Backtest Results in the U.S. Market. Figure 5.3 shows the cumulative wealth

vs. trading days in the U.S. market. From the plots of DJIA index, we can see

this period is in a bull market generally, although the market edges down several

times. While simple methods like Following the Winner and Following the Loser

fail, the portfolio values conducted by most of the strategies keep climbing but

still underperform the market. Particularly, our HRPM is the only strategy that

outperforms the DJIA index, when DPM keeps almost the same as the trend of

the market.

We can compare the metrics of different strategies in detail in Table 5.4. On ARR,

HRPM performs much better than the other methods and outperforms the market

with 6.2%. On ASR, most of methods get higher scores than DJIA index and

HRPM is the best. That is, our strategy could gain more profit under the same

risk. When it goes to MDD and DDR, the results show that HRPM bears the

least risk, even lower than UCRP. The risk of our method is acceptable, although

a little higher than the DJIA index.

80 5.5. Experiment

2017-07-14

2017-08-25

2017-10-06

2017-11-24

2018-01-05

2018-02-17

2018-04-07

Trading Days

80

100

120

140

Cu
m

ul
at

iv
e

W
ea

lth
 (i

n
%

)

Ours
DPM
UCRP
OLMAR
WMAMR
Winner
Loser
SSE50

Figure 5.4: The portfolio value in the China market.

ARR(%) ASR MDD DDR
HRPM, η = 0 17.092 1.207 0.191 1.631

HRPM, η = 0.01 25.172 1.201 0.183 2.275
HRPM, η = 0.05 27.089 1.246 0.117 2.403
HRPM, η = 0.1 20.33 1.346 0.124 1.754

DJIA 20.823 1.206 0.116 2.547

Table 5.4: Ablation on the effect of entropy in the U.S. market

Backtest Results in the China Market. Figure 5.4 shows cumulative wealth

vs. trading days in the China market. As we can see, SSE50 index first rises

slowly, but from then on it falls back to the starting point. During the rising stage,

HRPM keeps the best performance and the longest time. When the portfolio values

of other methods decline, our strategy still hovers at the peak. This phenomenon

demonstrates that HRPM is not only superior to all the baselines, it is also robust

under different market conditions relatively.

Table 5.3 compares all metrics of different strategies in detail. On all the four met-

rics, our HRPM achieves the best among all the strategies. Specifically, HRPM

outperforms DPM by 13% and outperforms market by 42% on ARR. Even consid-

ering return with risk by the ASR metric, our strategies work better than others.

Different from the performance in the U.S. market, HRPM not only reaches the

least risk among these strategies but also performs better than the market on MDD

and DDR. It means that our strategy is able to adapt to volatile markets with low

risk.

Chapter 5. Commission Fee is not Enough: A Hierarchical Reinforced Framework
for Portfolio Management 81

0 5 10 15 20 25 30 35
Trade steps

−1

0

1

2

3
Co

st
 (×

10
3)

commission fee
trading cost
reallocation cost

Figure 5.5: Trading cost during the trading periods.

2016-01-14

2016-04-10

2016-07-04

2016-09-30

2016-12-24

2017-03-24

2017-06-18

2017-09-11

2017-12-08

2018-03-08

2018-06-01

Trading Days

100

120

140

160

180

Cu
m

ul
at

iv
e

W
ea

lth
 (i

n
%

)

HRPM, η = 0
HRPM, η = 0.01
HRPM, η = 0.05
HRPM, η = 0.1
DJIA

Figure 5.6: The effect of the entropy bonus in the U.S. Market.

5.5.4 Ablation Study

In our ablation study, we mainly answer two questions: (1) why the commission fee

is not enough to account for the actual trading cost? (2) Does the entropy bonus

work?

Commission Fee is Not Enough. In Fig. 5.5, we show the trading cost at

each trading period of testing in the China market. The x-axis is the index of each

trading period in testing, and the y-axis is the cost. Note that a negative trading

cost means gaining profit in the trading period. A negative trading cost happens

when the submitted orders are finished at a better price than the target price. We

can see that the commission fee is only a small part of the total trading cost in

most transactions, especially in large transactions.

82 5.5. Experiment

Quantity Price
13:50:30 900 24.31
13:51:00 7600 24.40
13:51:00 15500 24.36
13:51:30 13100 24.35
13:51:30 2900 24.34

13:06:00
13:16:00

13:26:00
13:36:00

13:46:00
13:56:00

Trading Time

24.04
24.14
24.24
24.34
24.44
24.54
24.64

St
oc

k
Pr

ice

Sell

(a) Selling 40,000 shares

Quantity Price
10:51:30 22000 23.90
10:51:30 2000 23.92
11:06:30 16000 24.15

10:29:00
10:39:00

10:49:00
10:59:00

11:09:00
11:19:00

Trading Time

23.66
23.76
23.86
23.96
24.06
24.16
24.26
24.36
24.46
24.56

St
oc

k
Pr

ice

Buy

(b) Buying 40,000 shares

Quantity Price
10:32:00 3100 24.47
10:32:00 2900 24.46
10:38:30 4000 24.48

09:51:00
10:01:00

10:11:00
10:21:00

10:31:00
10:41:00

Trading Time

24.29

24.39

24.49

St
oc

k
Pr

ice

Sell

(c) Selling 10,000 shares

Quantity Price
13:56:00 6000 24.68
14:01:30 1000 24.70
14:18:00 3000 24.82

13:34:30
13:44:30

13:54:30
14:04:30

14:14:30
14:24:30

Trading Time

24.63

24.73

24.83

24.93
St

oc
k

Pr
ice

Buy

(d) Buying 10,000 shares

Figure 5.7: The interpretation of the low-level policy. The line is the mid-price
of the market. The dark blue part is the trading window, and the light blue part
shows the price before and after. The table inside the figure shows the finished
trades.

Entropy Bonus. We show the effect of the entropy bonus in Fig. 5.6. As η in the

entropy bonus term in reward gets higher, the agent would tend to give portfolios

with more diversity. While η is small, the agent might be more likely to hold only

a few stocks. Consequently, we may get a balance between the risk-control and

profit by controlling η. As Table 5.4 shows, HRPM with η = 0.05 reaches the

maximum ARR. Note that HRPM with η = 0.1 has the lowest MDD than others.

By increasing the effect of the entropy, we can gain more profit relative to the risk.

5.5.5 Trading Strategy Interpretation

Here, we try to interpret the underlying investment strategies of the low-level policy.

We show the trades that happened in the trading period in Fig. 5.7. Fig. 5.7(a)(c)

Chapter 5. Commission Fee is not Enough: A Hierarchical Reinforced Framework
for Portfolio Management 83

shows that the low-level policy tries to sell orders at a relatively high position. It

first sells part of the quantity at the beginning of the trading period. Then it sells

the rest at the following local maximum. In this way, the low-level policy can avoid

missing potential growth and decline. We can get the same conclusion for buying

in Fig. 5.7(b)(d).

5.6 Chapter Summary

In this chapter, we focus on the problem of portfolio management with trading cost

via deep reinforcement learning. We propose a hierarchical reinforced stock trading

system (HRPM). Concretely, we build a hierarchy of portfolio management over

trade execution and train the corresponding policies. The high-level policy gives

portfolio weights and invokes the low-level policy to sell or buy the corresponding

shares within a short time window. Extensive experimental results in the U.S. mar-

ket and China market demonstrate that HRPM achieves significant improvement

against many state-of-the-art approaches.

In Part II, we mainly explore the collaboration among agents, especially the col-

laboration between the high-level policy and the low-level policy. In the following

part, we reciprocation amongst agents, especially motivated by the teacher-student

framework, i.e., the curriculum learning in MARL.

Part III

Reciprocation amongst agents

85

Chapter 6

Towards Skilled Population

Curriculum for Multi-agent

Reinforcement Learning1

6.1 Introduction

In Part III of this work, we focus on the concept of reciprocity among agents

in multi-agent reinforcement learning (MARL) and its application in curriculum

learning. Reciprocity refers to the mutual exchange of knowledge or skills between

agents, with each agent playing the role of both a teacher and a student. This

approach has been inspired by the teacher-student framework, which has been

successfully applied to single-agent reinforcement learning to accelerate the learning

process.

In the context of MARL, reciprocity can be seen as a way to leverage the hetero-

geneity among agents to facilitate knowledge transfer and accelerate learning. By

allowing agents to teach and learn from each other, we can exploit their comple-

mentary strengths and compensate for their weaknesses. This can lead to a more

robust and efficient learning process and enable the agents to achieve higher levels

of performance.

1The work in this chapter has been published in [82]

87

88 6.1. Introduction

One of the most promising applications of reciprocity in MARL is curriculum

learning. Curriculum learning is a training strategy in which agents are presented

with a sequence of tasks of increasing difficulty, with each task building on the

knowledge and skills acquired in the previous tasks. This approach has been shown

to improve the learning efficiency and generalization ability of single-agent RL

algorithms. In the context of MARL, curriculum learning can be extended to

exploit the heterogeneity among agents and facilitate the transfer of knowledge

and skills between them.

However, learning effective policies with sparse reward from scratch for large-scale

multi-agent systems remains challenging. One of the challenges is the exponential

growth of the joint observation-action space with an increasing number of agents.

In addition, sparse reward signal requires a large number of training trajectories,

posing difficulties in applying existing MARL algorithms directly to complex envi-

ronments. As a result, these algorithms may produce agents that do not collaborate

with each other, even when it would be of significant benefit [83, 84].

There are several lines of research related to the large-scale MARL problem with

sparse reward, including reward shaping [85], curriculum learning [86], and learn-

ing from demonstrations [87]. Among these approaches, the curriculum learning

paradigm, in which the difficulty of experienced tasks and the population of train-

ing agents progressively grow, shows particular promise. In automatic curriculum

learning (ACL), a teacher (curriculum generator) learns to adjust the complex-

ity and sequencing of tasks faced by a student (curriculum learner). Several works

have even proposed multi-agent ACL algorithms, based on approximate or heuristic

approaches to teaching, such as DyMA-CL [88], EPC [89], and VACL [86]. How-

ever, these approaches rely on a framework of an off-policy student with replay

buffer that ignores the forgetting problem that arises when the agent population

size grows, or make a strong assumption that the value of the learned policy does

not change when agents switch to a different task. Moreover, the teacher in these

approaches still faces a non-stationarity problem due to the ever-changing student

strategies. Another class of larger-scale MARL solutions is hierarchical learning,

which utilizes temporal abstraction to decompose a task into a hierarchy of sub-

tasks. This includes skill discovery [90], option as response [91], role-based MARL

[92], and two levels of abstraction [93]. However, these approaches mostly focus on

Chapter 6. Towards Skilled Population Curriculum for Multi-agent Reinforcement
Learning 89

one specific task with a fixed number of agents and do not consider the transfer-

ability of learned skills. In this paper, we provide our insight into this question:

Whether an elaborate combination of principles from ACL and hierarchical learning

can enable complex cooperation with sparse reward in MARL?

Specifically, we present a novel automatic curriculum learning algorithm, Skilled

Population Curriculum (SPC), that addresses the challenges of learning effective

policies for large-scale multi-agent systems with sparse reward. The core idea

behind SPC is to encourage the student to learn skills from tasks with different

numbers of agents, akin to how team sports players train by gradually increasing

the difficulty of tasks and the number of coordinating players. To achieve this,

SPC is implemented with three key components:

The contextual bandit teacher uses an RNN-based [94] imitation model to

represent student policies and generate the bandit’s context.

Population-invariant communication in the student module is implemented

to handle varying number of agents across tasks. By treating each agent’s message

as a word and using a self-attention communication channel [95], SPC supports an

arbitrary number of agents to share messages.

A hierarchical skill framework is used in the student module to learn transfer-

able skills in the sparse reward setting, where agents communicate on the high-level

about a set of shared low-level policies.

Empirical results show that our method achieves state-of-the-art performance in

several tasks in Multi-agent Particle Environment (MPE) [36] and the challenging

5vs5 competition in Google Research Football (GRF) [96]. 2

6.2 Preliminaries

Multi-armed Bandit. Multi-armed bandits (MABs) are a simple but very pow-

erful framework that repeatedly makes decisions under uncertainty. In this frame-

work, a learner performs a sequence of actions and immediately observes the cor-

responding reward after each action. The goal is to maximize the total reward

2The source code and a video demonstration can be found at https://sites.google.com/
view/marl-spc/.

https://sites.google.com/view/marl-spc/
https://sites.google.com/view/marl-spc/

90 6.3. Skilled Population Curriculum

over a given set of K actions and a specific time horizon T . The measure of suc-

cess in MABs is often determined by the regret, which is the difference between

the cumulative reward of an MAB algorithm and the best-arm benchmark. One

well-known MAB algorithm is the Exp3 algorithm [97], which aims to increase the

probability of selecting good arms and achieves a regret of O(
√
KT log(K)) un-

der a time-varying reward distribution. Another related concept is the contextual

bandit problem [98], where the learner makes decisions based on prior information

as the context.

6.3 Skilled Population Curriculum

In this section, we first provide a formal definition of the curriculum-enhanced Dec-

POMDP framework, which formulates the MARL with curriculum problem under

the Dec-POMDP framework. We then present our multi-agent ACL algorithm,

Skilled Population Curriculum (SPC), as shown in Fig. 6.1. In the following sub-

sections, we establish the curriculum learning framework in Sec. 6.3.1, and then

present a contextual multi-armed bandit algorithm as the teacher to address the

non-stationarity in Sec. 6.3.2. Lastly, we introduce the student with transferable

skills and population-invariant communication to tackle the varying number of

agents and the sparse reward problem in Sec. 6.3.3.

6.3.1 Problem Formulation

We consider environments from multi-agent automatic curriculum learning prob-

lems are equipped with parameterized task spaces and thus can be modeled as

curriculum-enhanced Dec-POMDPs.

Definition 6.1 (Curriculum-enhanced Dec-POMDP). A curriculum-enhanced

Dec-POMDP is defined by a tuple ⟨Φ,M⟩, where Φ andM represent a task space

and a Dec-POMDP, respectively. Given the task ϕ, the Dec-POMDP M(ϕ) is

presented as
{
nϕ,Sϕ,Aϕ, P ϕ, rϕ, Oϕ,Ωϕ, γϕ

}
. The superscript ϕ denotes that the

Dec-POMDP elements are determined by the task ϕ. Note that task ϕ can be a few

parameters of the environment or task IDs in a finite task space. In a curriculum-

enhanced Dec-POMDP, the objective is to improve the student’s performance on

the target tasks through the sequence of training tasks given by the teacher..

Chapter 6. Towards Skilled Population Curriculum for Multi-agent Reinforcement
Learning 91

Let τ denote a trajectory whose unconditional distribution Prπ,ϕµ (τ) (under a

policy π and a task ϕ with initial state distribution µ(s0)) is Prπ,ϕµ (τ) =

µ (s0)
∑∞

t=0 π (at | st)P ϕ (st+1 | st, at). We use p(ϕ) to represent the distribution

of target tasks and q(ϕ) to represent the distribution of training tasks at each

task sampling step. We consider the joint agents’ policies πθ(a|s) and qψ(ϕ) pa-

rameterized by θ and ψ, respectively. The overall objective to maximize in a

curriculum-enhanced Dec-POMDP is:

J(θ, ψ) = Eϕ∼p(ϕ),τ∼Prπµ

[
Rϕ(τ)

]
= Eϕ∼qψ(ϕ)

[
p(ϕ)

qψ(ϕ)
V (ϕ, πθ)

] (6.1)

where Rϕ(τ) =
∑

t γ
trϕ (st, at; s0) and V (ϕ, πθ) represents the value function of πθ

in Dec-POMDPM(ϕ). However, when optimizing qψ(ϕ), we cannot get the partial

derivative ∇ψJ(θ, ψ) = ∇ψ

∑
τ

1
qψ(ϕ)

Rϕ(τ) Prπ,ϕµ (τ)3 since the reward function and

the transition probability function w.r.t number of agents are non-parametric, non-

differentiable, and discontinuous in most MARL scenarios.

Thus, we use the non-differentiable method, i.e., multi-armed bandit algorithms,

to optimize qψ(ϕ), and use an RL algorithm (the student) in alternating periods

to optimize πθ(a|s). However, there are three key challenges in solving this prob-

lem: (1) The teacher is facing a non-stationarity problem due to the ever-changing

student’s strategies. (2) The student will forget the old tasks and need to re-learn

them. Some tasks can be the prerequisites of other tasks, while some can be inter-

independent and parallel. (3) There is a lack of a general student framework to deal

with the varying number of agents across tasks and the sparse reward problem.

6.3.2 Teacher as a Non-Stationary Contextual Bandit

As previously discussed, the teacher faces a non-stationarity problem due to the

ever-changing student’s strategies during the learning process. Specifically, as the

student learns across different tasks in different learning stages, the teacher will

observe varying student performance when providing the same task, resulting in

a time-varying reward distribution for the teacher. In addition, the student may

forget previously learned policies. To mitigate this problem, the teacher should

3p(ϕ) is not in the partial derivative since it is a fixed distribution.

92 6.3. Skilled Population Curriculum

… …

෥𝒎𝒋

skill

𝝓𝟏

… Tasks

Prob.

…
Contexts

Teacher

Env

𝑛𝜙𝑖 , 𝑺𝜙𝑖 , 𝑨𝜙𝑖 , 𝑃𝜙𝑖 , 𝑟𝜙𝑖

𝝓𝒊

𝝓𝟐 𝝓𝒌−𝟏 𝝓𝒌

Student

𝒐, 𝒓 𝒂

𝝅𝒉

RNN

𝝅𝒍

𝒐

𝒂

hidden
state

𝝅𝒉,𝒋𝒐𝒋
𝒂𝒉,𝒋

𝒎𝒋

self-att
channel

𝒎𝟏

𝒎𝟐

𝒎𝒏𝝓𝒊

෥𝒎𝟏

𝝅𝒍𝒐𝒘

𝒂𝒋

෥𝒎𝟐

෥𝒎
𝒏𝒊
𝝓

Population-invariant

view of agent j

𝒓𝒕𝒆𝒂𝒄𝒉𝒆𝒓

Figure 6.1: The overall framework of SPC. It consists of three parts: config-
urable environments, a teacher, and a student. Left. The teacher is modeled as
a contextual multi-armed bandit. At each teacher timestep, the teacher chooses
a training task from the distribution of bandit actions. Mid. The student is
endowed with a hierarchical skill framework and population-invariant communi-
cation. It is trained with MARL algorithms on the training tasks. The student
returns not only the hidden state of its RNN imitation model as contexts to the
teacher, but also the average discounted cumulative rewards on the testing task.
Right. The student learns hierarchical policies, with the population-invariant
communication taking place at the high-level, implemented with a self-attention
communication channel to handle the messages from a varying number of agents.
The agents in the student share the same low-level policy.

balance the exploitation of tasks that have been found to benefit the student’s

performance on the target tasks, with the exploration of tasks that may not directly

facilitate the student’s learning.

Fortunately, we notice that the non-stationarity stems from the student, which

can be mitigated with a contextual bandit which embeds the student policy into

the context. As shown in Fig. 6.1 Left, the teacher utilizes the student’s policy

representation as the context and chooses a task from the distribution of training

tasks. Specifically, we extend the Exp3 algorithm [97] by incorporating contexts

through a two-step online clustering process [99]. The context, represented by x, is

the student’s policy representation. The teacher’s action is a specific task, denoted

by ϕ, and the teacher’s reward is the return of the student in the target tasks. The

teacher’s algorithm is outlined in Alg. 2. During the sampling stage (steps 1-5),

the teacher selects a task for the student’s training. In the training stage (steps

6-7), the teacher adjusts the parameters based on the evaluation reward received

from the student.

Chapter 6. Towards Skilled Population Curriculum for Multi-agent Reinforcement
Learning 93

Algorithm 2: Teacher Sampling and Training

Input: Context x, the number of Clusters Nc, Nc instances of Exp3 with task
distribution w(ϕk, c) for k = 1, . . . , K and for c = 1, . . . , Nc, learning rate α,
a buffer maintaining the historical contexts
Output: M(ϕ) =

{
nϕ,Sϕ,Aϕ, P ϕ, rϕ, Oϕ,Ωϕ, γϕ

}
, the teacher bandit

parameters
Sampling
1. Get the the context x, and save it to the buffer
2. Run the online cluster algorithm and get the index of the cluster center c(x)
3. Let the active Exp3 instance be the instance with index c(x)

4. Set the probability p(ϕk, c(x)) = (1−α)w(ϕk,c(x))∑K
j=1 w(ϕk,c(x))

+ α
K

for each task ϕk

5. Sample a new task according to the distribution of pϕk,c
Training
6. Get the return (discounted cumulative rewards) from student testing r
7. Update the active Exp3 instance by setting w(ϕk, c(x)) = w(ϕk, c(x))eαr/K

6.3.2.1 Context Representation

Upon analysis, it is essential to learn an effective representation for the student’s

policy as the context. One straightforward representation is to use the student pa-

rameters θ directly as the context. However, the number of parameters is too large

to be used as the input of neural network if we change the student’s architecture.

Therefore, we propose an alternative method.

A principle for learning a good representation of a policy is predictive representa-

tion, which means the representation should be accurate to predict policy actions

given states. In accordance with this principle, we utilize an imitation function

through supervised learning. Supervised learning does not require direct access

to reward signals, making it an attractive approach for reward-agnostic represen-

tation learning. Intuitively, the imitation function attempts to mimic low-level

policy based on historical behaviors. In practice, we use an RNN-based imitation

function fim : S × A → [0, 1]. Since recurrent neural networks are theoretically

Turing complete [100], their internal states can be used as the representation of

the student’s policy. We train this imitation function by using the negative cross

entropy objective E[log fim (s, a)].

94 6.3. Skilled Population Curriculum

6.3.2.2 Regret Analysis

In this subsection, we demonstrate that the proposed teacher algorithm has a

regret bound of E[R(T)] = O
(
T 2/3(LK log T)1/3

)
, where T is the number of total

rounds, L is the Lipschitz constant, and K is the number of arms (the number

of the teacher’s actions). The regret analysis is used to justify the usage of the

bandit algorithm in the non-stationary setting. The regret bound represents the

optimality of SPC, as the teacher’s reward is the return of the student in the target

tasks.

First, we introduce the Lipschitz assumption about the generalization ability of

the task space.

Assumption 6.1 (Lipschitz continuity w.r.t the context). Without loss of gener-

ality, the contexts are mapped into the [0, 1] interval, so that the expected rewards

for the teacher are Lipschitz with respect to the context.

|r(ϕ | x)− r (ϕ | x′)| ≤ L · |x− x′|

for any arm ϕ ∈ Φ and any pair of contexts x, x′ ∈ X
(6.2)

where L is the Lipschitz constant, and X is the context space.

This assumption suggests that for any policy trained on a set of tasks, the rate

at which performance improves is not faster than the rate at which the policy

changes. This is a realistic assumption, as we cannot expect the student to achieve

a significant improvement on a task with only a few training steps under a new

context. We use an existing contextual bandit algorithm for a limited number

of contexts [97] (see Appendix B.1) and Lemma 6.1 as a foundation for proving

Theorem 6.3.2.2.

Lemma 6.1. Alg. 4 has a regret bound of E[R(T)] = O(
√
TK|X | logK).

Lemma 6.1 introduces a square root dependence on |X | if separate copies of Exp3

are run for each context [97]. This motivates us to address the large context space

by utilizing discretization techniques.

theoremregretbound Consider the Lipschitz contextual bandit problem with con-

texts in [0, 1]. The Alg. 2 yields regret E[R(T)] = O
(
T 2/3(LK lnT)1/3

)
.

Chapter 6. Towards Skilled Population Curriculum for Multi-agent Reinforcement
Learning 95

Proof. See Appendix B.2.

In practice, the high-dimensional context space cannot be discretized using a uni-

form mesh in [0, 1] as in the proof of Theorem 6.3.2.2. To address this issue, we

utilize the Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH)

online clustering algorithm [99] to discretize the context space. BIRCH is an effi-

cient and easy-to-update algorithm that can effectively cluster large datasets. In

this case, it is used to cluster the high-dimensional RNN-based policy representa-

tion. The resulting clusters can be seen as an approximation of a uniform mesh.

6.3.3 Student with Population-Invariant Skills

We propose a population-invariant skill framework to address the challenges of

varying number of agents and sparse reward problem. This framework allows agents

to communicate via a self-attention channel, enabling them to learn transferable

skills across different tasks. The student module is designed to be algorithm-

agnostic and is orthogonal to any state-of-the-art MARL algorithm. While

there have been some efforts in the literature to address the varying number of

agents [101, 102], these approaches heavily rely on prior knowledge of the environ-

ments.

Population-Invariant Teamwork Communication. In order to enable the

population-invariant property and learn tactics among agents, we introduce com-

munication. Leveraging the transformer architecture’s capability to process inputs

of varying lengths [95], we incorporate self-attention into our communication mech-

anism. As illustrated in Fig. 6.1 Right, each agent j receives an observation oj and

encodes it into a message vector mj = f (oj) which is then sent through a self-

attention channel, where f is an observation encoder function.

The channel aggregates all messages and sends the new message vector, m̃j,

through the self-attention mechanism. Concretely, given the channel input

M = [m1,m2, · · · ,mn] ∈ Rn×dm , and the trainable weight of the channel

WQ,WK ,WV ∈ Rdm×dm , we obtain three distinct representations: Q =

MWQ,K = MWK ,V = MWV . Then the output messages are

M̃ = Attention(Q,K,V) = softmax

(
QKT

√
dm

)
V (6.3)

96 6.4. Further Related Work

Agents Landmark Ball

Simple Spread Push Ball

(a) (b)

Figure 6.2: (a) Multi-agent Particle Environment. (b) Google Research Foot-
ball.

where dm is the dimension of the messages. As the dimensions of the trainable

weight are independent of the number of agents, our student models can leverage

the population-invariant property to effectively learn tactics.

Transferable Hierarchical Skills. As depicted in the dotted box in

Fig. 6.1 Right, after receiving the new messages m̃j from the channel, each agent

employs a high-level action (skill) ah,j = πh,j(oj, m̃j) to execute the low-level policy

aj = πlow(oj, ah,j). In this work, we generalize the high-level action (skill) ah,j to

a continuous embedding space, so that the skill can be either a latent continuous

vector as in DIAYN [47], or a categorical distribution for sampling discrete options

[49].

Implementation. We implement the high- and low-level policies in the student

with Proximal Policy Optimization (PPO) [12]. Following the common practice

proposed in [103], the high-level policy for each agent is learned independently,

whereas the low-level policies share parameters, as the fundamental action pattern

should be consistent among different agents. The low-level agents are rewarded

by the environment, while the high-level policy is trained to take actions at fixed

intervals. Within this interval, the cumulative low-level reward is used as the high-

level reward. When using a categorical distribution to enable discrete skills, we

sample an “option” from the distribution and provide the corresponding one-hot

embedding to the low-level policy.

6.4 Further Related Work

Automatic Curriculum Learning in MARL. Curriculum learning is a train-

ing strategy that mimics the human learning process by organizing tasks based on

Chapter 6. Towards Skilled Population Curriculum for Multi-agent Reinforcement
Learning 97

their difficulty level [104]. The selection of tasks is formulated as a Curriculum

Markov Decision Process (CMDP) [105]. Automatic Curriculum Learning mech-

anisms aim to learn a task selection function based on past interactions, such as

ADR [106, 107], ALP-GMM [108], SPCL [109], GoalGAN [110], PLR [111, 112],

SPDL [113], CURROT [114], and graph-curriculum [115]. Recently, several MARL

curriculum learning frameworks have been proposed, such as open-ended evolution

[116–118], population-based training [5, 119], meta-learning [120, 121] and training

with emergent curriculum [4, 104, 122, 123]. In summary, these frameworks share a

common principle of an automatic curriculum that continually generates improved

agents through selection pressure among a population of self-optimizing agents.

Hierarchical MARL and Communication. Hierarchical reinforcement learn-

ing (HRL) has been extensively studied to address the issue of sparse reward and

facilitate transfer learning. Single-agent HRL focuses on learning the temporal de-

composition of tasks, either by learning subgoals [42, 44, 124–126] or by discovering

reusable skills [127–130]. Recent developments in hierarchical MARL have been

discussed in Sec. 6.1. In multi-agent settings, communication has been effective

in promoting cooperation among agents [15–17, 19, 21, 22, 25]. However, current

approaches that extend HRL to multi-agent systems or utilize communication are

limited to a fixed number of agents and lack the ability to transfer to different

agent counts.

Multi-task RL. Multi-task reinforcement learning (MTRL) is a promising ap-

proach to train effective real-world agents. Some work focus on language-

conditioned RL, where natural language phrases have been used as part of task

descriptions in the context of several single task RL setups like goal-oriented RL

[131], grounded language acquisition [132, 133] , and instruction following [134].

Several works have also focused on learning compositional models for multi-task

learning [135, 136].

6.5 Experiments

To demonstrate the effectiveness of our approach, we conduct experiments on sev-

eral tasks in two environments: Simple-Spread and Push-Ball in the Multi-agent

Particle Environment (MPE) [36], and the challenging 5vs5 task of the Google

98 6.5. Experiments

Research Football (GRF) environment [96]. We aim to investigate the following

research questions:

Q1: Is curriculum learning necessary in complex large-scale MARL problems?

(Sec. 6.5.2)

Q2: Can SPC outperform previous curriculum-based MARL methods? If so, which

components of SPC contribute the most to performance gains? (Sec. 6.5.3)

Q3: Can SPC effectively learn a curriculum for the student? (Sec. 6.5.4)

6.5.1 Environments, Baselines and Metric

Environments. In the GRF 5vs5 scenario, we control four agents, excluding the

goalkeeper, to compete against the built-in AI opponents. Each agent observes a

compact encoding, consisting of a 115-dimensional vector that summarizes various

aspects of the game, such as player coordinates, ball possession and direction, active

players, and game mode. The available action set for an individual agent includes

19 discrete actions, such as idle, move, pass, shoot, dribble, etc. The GRF provides

two types of rewards: scoring and checkpoints, to encourage agents to move the

ball forward and make successful shots. Additionally, we include a shooting reward

in the challenging GRF 5vs5 task. For curriculum, we select several basic scenarios

in GRF, including 3vs3, Pass-Shoot, 3vs1, and Empty-Goal.

In MPE, we investigate Simple-Spread and Push-Ball (see Fig. 6.2a). In Simple-

Spread, there are n agents that need to cover all n landmarks. Agents are penalized

for collisions and only receive a positive reward when all the landmarks are covered.

In Push-Ball, there are n agents, n balls, and n landmarks. The agents must push

the balls to cover each landmark. A success reward is given after all the landmarks

have been covered.

Baselines. We compare our approach to the following methods in Table 6.1 as

baselines4:

Metric. To evaluate the performance of our approach in the GRF 5vs5 scenario, we

use metrics beyond just the mean episode reward, as this alone may not accurately

4We also run CDS [137] and CMARL [138], but we have not included their performance
because the goal difference reported in CMARL [138] is relatively low compared to our method.

Chapter 6. Towards Skilled Population Curriculum for Multi-agent Reinforcement
Learning 99

Table 6.1: Baseline algorithms.

Categories Methods

MARL
QMIX [41]
IPPO [139]

Curriculum-based
IPPO with uniform task sampling
VACL [86]

Ablation Study
SPC with uniform task sampling
SPC without HRL and COM

0 M 20 M 40 M 60 M 80 M 100 M
Training Timesteps

0.0

0.2

0.4

0.6

0.8

W
in

 R
at

e
in

 E
va

l

SPC
SPC w. uniform
SPC w/o. HRL
SPC w/o. COM
IPPO w. uniform
IPPO w/o. teacher
QMix w/o. teacher

(a) Win Rate

0 M 20 M 40 M 60 M 80 M 100 M
Training Timesteps

−3

−2

−1

0

1

2

3

4

Go
al

 D
iff

. i
n

Ev
al

SPC
SPC w. uniform
SPC w/o. HRL
SPC w/o. COM
IPPO w. uniform
IPPO w/o. teacher

(b) Goal Difference

Figure 6.3: The evaluation performance of various methods on 5vs5 football
competition.

reflect the agents’ performance. Specifically, we use the win rate and the average

goal difference, which is calculated as the number of goals scored by the MARL

agents minus the number of goals scored by the opposing team.

We evaluate the performance of MARL algorithms to justify the need for curricu-

lum learning in complex large-scale MARL problems. To ensure a fair comparison,

we modify VACL by removing the centralized critic for MPE tasks. In all exper-

iments, we use individual Proximal Policy Optimization (IPPO) as the backend

MARL algorithm. To ensure the robustness of our results, we conduct experi-

ments on a 30-node cluster, with one node containing a 128-core CPU and four

A100 GPUs. Each trial of the experiment is repeated over five seeds and runs for

1-2 days.

6.5.2 The Necessity of Curriculum Learning

Our experiments first show that in simple environments, such as MPE, students

can directly learn to complete the task without the need for curriculum. For MPE

100 6.5. Experiments

0.0 0.5 1.0 1.5
Training Timesteps 1e6

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Co

ve
r R

at
e

in
 E

va
l

(a) Cover Rate on Simple Spread

IPPO
VACL
SPC

2 4
Training Timesteps 1e5

0.20

0.25

0.30

(b) Cover Rate on Push Ball
IPPO
VACL
SPC

Figure 6.4: The evaluation performance of various methods on MPE.

0.0 0.5 1.0 1.5
Training Timesteps 1e6

2

4

6

8

10

12

14

16

M
ea

n
Nu

m
be

r o
f A

ge
nt

s

(a) Simple Spread

VACL
SPC

0 2 4 6
Training Timesteps 1e5

2

4

6

8

10

12

14

16
(b) Push Ball

VACL
SPC

Figure 6.5: The changes in the number of agents on MPE.

20 M 40 M 60 M 80 M 100 M 120 M 140 M
Training Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 P
ro

b.

5_vs_5
3_vs_3
academy_pass_and_shoot_with_keeper
academy_3_vs_1
academy_empty_goal_close

(a) The task distribution of SPC
during training.

-0.5 0.0 0.5
Dimension 1

-0.5

0.0

0.5

1.0

D
im

en
si

on
 2

0
1
2
3

(b) The visualization of contexts.

Figure 6.6: Visualization of Learned Curriculum.

experiments, we randomly select a starting state and the episode ends after a fixed

number of maximum steps. Specifically, the task space consists of n agents, where

n ∈ {2, 4, 8, 16}, and the maximum allowed steps is set to 25. All evaluations are

Chapter 6. Towards Skilled Population Curriculum for Multi-agent Reinforcement
Learning 101

performed on the target task, with n = 16. IPPO is trained and evaluated directly

on the target task, and results in Fig. 6.4 demonstrate that it performs similarly

to the VACL algorithm. Additionally, we observe that the SPC approach only

achieves a slightly higher coverage rate than the baseline methods. Furthermore, we

investigate the probability variation of different population sizes, shown in Fig. 6.5.

We observe that the curriculum provided by SPC is approaching the target task.

These results suggest that in simple environments where the student can learn to

directly complete the task, curriculum learning may not be necessary.

However, when it comes to more complex scenarios, such as the 5vs5 task in GRF,

our results demonstrate that curriculum learning is a promising solution. As shown

in Fig. 6.3a, without curriculum learning, QMix and IPPO cannot perform well in

the 5vs5 scenario, and IPPO is slightly better than QMix. In Fig. 6.3b, we omit the

curve of QMix as its mean score is low and affects the presentation of the figure.

The reason could be that QMix is an off-policy MARL algorithm, which would

rely heavily on the replay buffer. However, in such sparse reward scenarios, the

replay buffer has much less effective samples for QMix to learn. For example, the

replay buffer would contain tons of zero-score samples, leading to a non-promising

performance. Meanwhile, IPPO, with its on-policy nature, is able to achieve better

sample efficiency and outperform off-policy algorithms like QMix in such scenarios.

Though MARL methods can achieve good performance in basic scenarios in GRF,

they fail to solve complex scenarios such as the 5vs5 task. Therefore, curriculum

learning is a promising solution to the complex large-scale MARL problem.

6.5.3 Performance and Ablation Study

Our study demonstrates that SPC outperforms VACL in MPE tasks. Instead of

training with a continuous relaxation of the population size variable as in VACL,

our bandit teacher achieves a higher success rate at test time, since the population

size is a discrete variable in nature. Furthermore, the curriculum provided by SPC

is effective in exploring the task space and converge to the target task when the

task is relatively simple and curriculum is not necessary, as shown in Fig. 6.5.

In GRF experiments, we do not include VACL in our baselines in the GRF, as its

implementation relies heavily on prior knowledge of specific scenarios, such as the

thresholds to divide the learning process. Fig. 6.6 indicates that SPC has higher

102 6.5. Experiments

win rate and goal difference than IPPO with uniform task sampling in the 5vs5

competition. These experiments demonstrate that when the teacher is rewarded

by the student’s performance, a bandit-based teacher can exploit the student’s

learning stage and provide suitable training tasks.

In our ablation study, we examine the impact of two key components of our SPC al-

gorithm: the contextual multi-armed bandit teacher and the hierarchical structure

of the student framework. By replacing the former with uniform task sampling and

removing the latter, As shown in Fig. 6.3a and Fig. 6.3b, SPC can achieve a higher

win rate and a greater score difference than SPC with uniform and SPC without

HRL. Furthermore, SPC with uniform task sampling outperforms IPPO with uni-

form task sampling. This highlights the importance of HRL in the 5vs5 football

competition, and suggests that both the contextual multi-armed bandit and the hi-

erarchical structure contribute equally to the performance of SPC. When removing

HRL and bandit, the performance degradation w.r.t. SPC are similar. However,

it should be noted that SPC with uniform task sampling has a larger variance in

performance than SPC without HRL, indicating that uniform sampling may in-

troduce more undesired tasks for student training. Overall, these results further

justify the necessity of SPC in complex large-scale MARL problems5.

6.5.4 Visualization of Learned Curriculum

We visualize the distribution of task sampling of SPC during training based on a se-

lected trial as shown in Fig. 6.6a. At the beginning of training, the task probability

appears to be near-uniform, as the teacher explores the task space and keeps track

of the student’s learning status, acting as an anti-forgetting mechanism. As train-

ing progresses, the probabilities change over time. For example, the proportions

of 3vs1 and Empty-Goal tasks gradually drop as the student becomes proficient in

these scenarios. We also visualize the distribution of contexts in Fig. 6.6b using

t-SNE [140], where the contexts are collected and stored in a buffer. We divide

the contexts into four classes according to the index, and different parts represent

different contexts of the final student policy representation.

5We also demonstrate the performance of SPC in the GRF 11vs11 full game (see Ap-
pendix B.3).

Chapter 7

Conclusions and Future

Directions

7.1 Conclusion

This thesis has explored ways to enhance the efficiency of interaction and cooper-

ation between agents in various multi-agent reinforcement learning settings. The

research presented in this thesis has addressed several key challenges in MARL,

including communication, collaboration, and reciprocation, by developing novel

algorithms and techniques that can be applied in a wide range of real-world appli-

cations.

The key lessons that the field should learn from this thesis are as follows:

Effective communication is crucial for the success of multi-agent systems, espe-

cially in limited bandwidth environments. The information bottleneck principle

introduced in Chapter 2 provides a valuable approach for agents to learn infor-

mative communication protocols and scheduling while working within bandwidth

constraints. This principle can be further explored and extended to other commu-

nication scenarios in MARL.

Addressing non-stationarity in hierarchical reinforcement learning is essential for

improving the performance of agents in complex, dynamic environments. The

Interactive Influence-based HRL (HRL) algorithm presented in Chapter 3 demon-

strates the importance of interaction between high-level and low-level policies and

103

104 7.2. Future Directions

provides a framework for adaptively exploring non-stationary states. This approach

can serve as a foundation for future research on end-to-end HRL algorithms.

Incorporating hierarchical structures in portfolio management can lead to signifi-

cant improvements in trading performance. The hierarchical reinforced stock trad-

ing system (HRPM) proposed in Chapter 4 demonstrates the benefits of building

a hierarchy of portfolio management over trade execution and training correspond-

ing policies. This approach can inspire further research on hierarchical methods in

finance and other domains.

Addressing scalability and sparse reward issues in multi-agent systems is crucial

for the development of more sophisticated and effective algorithms. The Skilled

Population Curriculum (SPC) presented in Chapter 5 offers a novel approach for

tackling these challenges by incorporating a population-invariant multi-agent com-

munication framework and using a hierarchical scheme for agents to learn skills.

This work highlights the importance of addressing these issues for the continued

advancement of multi-agent algorithms.

In conclusion, this thesis has made significant contributions to the field of multi-

agent reinforcement learning by addressing key challenges and providing novel algo-

rithms and techniques that can be applied in various settings. The insights gained

from this research can guide future work in MARL, ultimately leading to the de-

velopment of more efficient, robust, and intelligent multi-agent systems capable of

tackling complex real-world challenges.

7.2 Future Directions

In the final section of this thesis, we show some potentially interesting future di-

rections of multi-agent cooperation.

7.2.1 Foundation Model for Decision Making

Recently, transformer-based foundation models have been shown to be a power-

ful tool for RL to capture global dependencies or model long-term squence. The

architecture of is closely related to AlphaStar [5] and OpenAI Five [141], which

Chapter 7. conclusion 105

use transformer-based models to embed unit features for each player. Another

perspective of using transformer-based models is to model an RL problem as a se-

quence prediction problem that models trajectories autoregressively, such as Deci-

sion Transformer (DT) [142], Trajectory Transformer (TT) [143], GATO [144], and

Multi-Game DT (MGDT) [145]. In addition, Multi-Agent transformer (MAT) [146]

considers the MARL problem as a sequence prediction problem that generates the

optimal action of each agent sequentially.

These transformer-based models study the generality with trajectory sequences in

single agent scenarios [144, 145] or focus on a single task with the sequences [5, 141–

143, 146]. In addition, they use causal transformer decoders, which use causal

masking to discard future information. We would like to advocate an interesting

setting by using a transformer model without positional encoding and exploring

generality with entity sequences in multi-agent scenarios.

Another related research direction is to reuse trained RL models, which is an im-

portant subfield of RL. Some approaches directly use the trained models. For

example, to avoid restarting from scratch after changes in code and environment,

OpenAI Five [141] used the ”surgery” approach to convert a trained model to cer-

tain larger architectures with customized weight initialization. MGDT [145] and

Gato [144] follow the manner of few-shot transfer learning by using a single set of

weights to play many games or handle tasks in multiple domains simultaneously.

Furthermore, some approaches implicitly exploit trained models, such as behav-

ior cloning [147, 148], distillation [149, 150], and the use of the teacher-student

framework [151–153]. There is a promising direction by incorporating prompt en-

gineering into the training of foundation models for decision making.

7.2.2 Human-AI Coordination

Human-AI coordination is an important area of research that focuses on how hu-

mans and AI systems can collaborate effectively to achieve common goals. In the

context of MARL, there are several potential future research directions that can

help to advance the field of human-AI coordination:

Human-AI communication: One important direction is to develop better methods

for human-AI communication. Effective communication is essential for successful

coordination between humans and AI systems, but current communication methods

are often limited. For example, AI systems may be able to communicate only in

a limited set of pre-defined messages, which can make it difficult for humans to

understand their intentions. Developing more flexible and natural communication

methods, such as natural language processing, can improve the ability of humans

and AI systems to coordinate effectively.

Explainability: Another important direction is to improve the explainability of AI

systems. Humans need to understand the decision-making processes of AI systems

in order to trust and effectively collaborate with them. However, many AI systems

are complex and difficult to understand, which can hinder effective coordination.

Developing methods for explaining the behavior of AI systems, such as visualizing

the decision-making process, can improve human-AI coordination.

Trust and transparency: Trust is essential for effective human-AI coordination.

Humans need to trust that AI systems will act in their best interests and will not

harm them. Developing methods for ensuring transparency and accountability of

AI systems, such as providing clear explanations of their decision-making processes,

can improve trust and facilitate coordination.

Mixed-initiative coordination: Finally, another important direction is to develop

methods for mixed-initiative coordination between humans and AI systems. Mixed-

initiative coordination allows humans and AI systems to take on different roles in

the decision-making process, depending on their individual strengths and weak-

nesses. Developing methods for adaptive mixed-initiative coordination can improve

the efficiency and effectiveness of human-AI coordination.

In summary, future research directions for human-AI coordination from the per-

spective of MARL include improving human-AI communication, developing meth-

ods for explainability, ensuring trust and transparency, and developing methods

for mixed-initiative coordination. These directions can help to improve the col-

laboration between humans and AI systems and enable the development of more

effective and efficient systems for solving complex problems.

106

List of Author’s Publications 107

List of Author’s Publications1

Conference Proceedings

• Rundong Wang, Xu He, Runsheng Yu, Wei Qiu, Bo An, and Zinovi Ra-

binovich. “Learning efficient multi-agent communication: An information

bottleneck approach.” In International Conference on Machine Learning, pp.

9908-9918. PMLR, 2020.

• Rundong Wang, Hongxin Wei, Bo An, Zhouyan Feng, and Jun Yao. “Com-

mission fee is not enough: A hierarchical reinforced framework for portfolio

management.” In Proceedings of the AAAI Conference on Artificial Intelli-

gence, vol. 35, no. 1, pp. 626-633. 2021.

• Rundong Wang, Runsheng Yu, Bo An, and Zinovi Rabinovich. “I2hrl:

Interactive influence-based hierarchical reinforcement learning.” In Proceed-

ings of the Twenty-Ninth International Conference on International Joint

Conferences on Artificial Intelligence, pp. 3131-3138. 2021.

• Shuo Sun, Wanqi Xue, Rundong Wang*, Xu He, Junlei Zhu, Jian Li, and

Bo An. “DeepScalper: A Risk-Aware Reinforcement Learning Framework to

Capture Fleeting Intraday Trading Opportunities.” In Proceedings of the 31st

ACM International Conference on Information Knowledge Management, pp.

1858-1867. 2022.

• Xu He, Bo An, Yanghua Li, Haikai Chen, Rundong Wang, Xinrun Wang,

Runsheng Yu, Xin Li, and Zhirong Wang. “Learning to collaborate in multi-

module recommendation via multi-agent reinforcement learning without com-

munication.” In Proceedings of the 14th ACM Conference on Recommender

Systems, pp. 210-219. 2020.

• Wei Qiu, Xinrun Wang, Runsheng Yu, Rundong Wang, Xu He, Bo An,

Svetlana Obraztsova, and Zinovi Rabinovich. “RMIX: Learning risk-sensitive

policies for cooperative reinforcement learning agents.” Advances in Neural

Information Processing Systems 34 (2021): 23049-23062.

1The superscript ∗ indicates corresponding authors

108 List of Author’s Publications

• Hang Xu, Rundong Wang, Lev Raizman, and Zinovi Rabinovich. “Trans-

ferable environment poisoning: Training-time attack on reinforcement learn-

ing.” In Proceedings of the 20th international conference on autonomous

agents and multiagent systems, pp. 1398-1406. 2021.

• Zhenyu Shi, Runsheng Yu, Xinrun Wang, Rundong Wang, Youzhi Zhang,

Hanjiang Lai, and Bo An. “Learning expensive coordination: An event-based

deep RL approach.” In International Conference on Learning Representa-

tions. 2020.

Journal Articles

• Bo An, Shuo Sun, and Rundong Wang. “Deep Reinforcement Learning

for Quantitative Trading: Challenges and Opportunities.” IEEE Intelligent

Systems 37, no. 2 (2022): 23-26.

• Zhuoyi Lin, Sheng Zang, Rundong Wang, Zhu Sun, J. Senthilnath, Chi

Xu, and Chee Keong Kwoh. “Attention over self-attention: Intention-aware

re-ranking with dynamic transformer encoders for recommendation.” IEEE

Transactions on Knowledge and Data Engineering (2022).

• Yiming Li, Rundong Wang, Yulin Hu, Junan Yang, and Xiaoxia Cai.

“Defensive compressive time delay estimation using information bottleneck.”

IEEE Signal Processing Letters 28 (2021): 1968-1972.

Appendix A

Appendix for Chapter 3

A.1 Source Coding

Source Code: A source code C is a mapping from the range of a random vari-

able or a set of random variables to finite length strings of symbols from a K-ary

alphabet.

Expected length of a source code denoted by L(C) is given as follows: L(C) =∑
x∈X p(x)l(x), where l(x) is the length of codeword c(x) for a symbol x ∈ X , and

p(x) is the probability of the symbol.

Intuitively, a good code should preserve the information content of an outcome.

Since information content depends on the probability of the outcome (it is higher

if probability is lower, or equivalently if the outcome is very uncertain), a good

codeword will use fewer bits to encode a certain or high probability outcome and

more bits to encode a low probability outcome. Thus, we expect that the smallest

expected code length should be related to the average uncertainty of the random

variable, i.e., the entropy.

Source coding theorem states that entropy is the fundamental limit of data

compression; i.e., ∀C : L(C) ≥ H(X). Instead of encoding individual symbols,

we can also encode blocks of symbols together. A length n block code encodes n

length strings of symbols together and is denoted by C (x1, . . . , xn) =: C (xn).

Proof. Consider the optimization problem:

109

110 A.2. Maximum Data Rate

min
l(x)

∑
x∈X

p(x)l(x) such that
∑
x∈X

2−l(x) ≤ 1

The above finds the shortest possible code length subject to satisfying the Kraft

inequality. If we relax the the codelengths to be non-integer, then we can obtain a

lower bound. To do this, the Lagrangian is:

L =
∑
x∈X

p(x)l(x) + λ

(∑
x∈X

2−l(x) − 1

)

Taking derivatives with respect to l(x) and λ and setting to 0, leading to:

p(x) + ln 2λ2−l(x) = 0∑
x∈X

2−l(x) − 1 = 0

Solving this for l(x) leads to l(x) = log 1
p(x)

, which can be verified by direct

substitution. This proves the lower bound.

Theoretical analysis can be seen in [27].

A.2 Maximum Data Rate

We first introduce the Nyquist ISI criterion:

[Nyquist ISI criterion] If we denote the channel impulse response as h(t), then the

condition for an ISI-free response can be expressed as:

h (nTs) =

{
1; n = 0

0; n ̸= 0

for all integers n, where Ts is the symbol period. The Nyquist ISI criterion says

that this is equivalent to:

Appendix A. Appendix for Chapter 3 111

1

Ts

+∞∑
k=−∞

H

(
f − k

Ts

)
= 1 ∀f

where H(f) is the Fourier transform of h(t).

We may now state the Nyquist ISI criterion for distortionless baseband transmis-

sion in the absence of noise: The frequency function H(f) eliminates intersymbol

interference for samples taken at interval Ts provide that it satisfies Equation A.2.

The simplest way of satisfing Equation A.2 is to specify the frequency function

H(f) to be in the form of a rectangular function, as showing by

H(f) =

{
1
2W , −W < f <W
0, |f | >W

=
1

2W
rect

(
f

2W

)

where rect(f) stands for a rectangular function of unit amplitude and unit support

centered on f = 0, and the overall system bandwidth W is definded by

W =
1

2Ts
=
Rb

2

The special value of the bit rate Rb = 2W is called the Nyquist rate, and W is

itself called the Nyquist bandwidth.

The key here is that we have restricted ourselves to binary transmission and are

limited to 2W bits/s no matter how much we increase the signal-to-noise ratio.

The way to attain a higher Rb value is to replace the binary transmission system

with a multilevel system, often termed an K-ary transmission system, with K > 2.

An K-ary channel can pass 2Wlog2K bits/s with an acceptable error rate.

Thus, we conclude that the bit rate Rb ≤ Rmax = 2Wlog2K.

112 A.3. Informative Multi-agent Communication Algorithm

A.3 Informative Multi-agent Communication

Algorithm

For completeness, we provide the IMAC algorithm below.

Algorithm 3: Informative Multi-agent Communication

Initialize the network parameters θa, θpro, θQ, and ϕsch
Initialize the target network parameters θ′a, and θ′Q
for episode← 1 to num episodes do

Reset the environment for t← 1 to num step do
Get features hi = [oi, ci] for each agent i
Each agent i gets messages from channel mi = πipro(hi)
Get scheduled message ci = fsch(m1, · · · ,mn)
Each agent i selects action based on features and messages
ai = πia(hi, ci)

Execute actions a = (a1, · · · , an), and observe reward r new
observation oi for each agent i

Store (ot, a, r,ot+1,m, c) in replay buffer D
if episode%update threshold == 0 then

Sample a random mini-batch of S samples (o, a, r,o′,m, c) from D
Obtain the features h′i = [o′i, ci] and the messages mi for each agent
i

Set yj = rji + γQπ′
i (o, a1

′, · · · , an′)|ak′=πia′(h′i,ci)
Update Critic by minimizing the loss
L(θ) = 1

S

∑
j(Q(o, a1, · · · , an)− ŷ)2

Update policy, protocol and scheduler using the sampled policy
gradients ∇θi J̃ (πi) for each agent i

Update all target networks’ parameters for each agent i:
θi

′ = τθi + (1− τ)θi
′

end

end

end

A.4 The Information Bottleneck Method

A.4.1 Background

The information bottleneck method provides a principled way to extract informa-

tion that is present in one variable that is relevant for predicting another variable.

Appendix A. Appendix for Chapter 3 113

Consider X and Y respectively as the input source and target, and let Z be an

internal representation, i.e., a stochastic encoding, of any hidden layer of the net-

work, defined by a parametric encoder p(z|x;θ). The goal is to learn an encoding

that is maximally informative about the target Y , which is measured by the mutual

information between Y and Z, where

I(Z, Y ;θ) =

∫
p(z, y|θ) log

p(z, y|θ)

p(z|θ)p(y|θ)
dxdy (A.1)

Notice that taking the identity encoding always ensures a maximally informative

representation if only with the above objective, but it is not a useful representation

obviously. It is evident to constrain on encoding’s complexity if we want the best

representation, i.e., Z. [60] proposed the information bottleneck that expresses

the trade-off between the mutual information measures I(X,Z) and I(Z, Y). This

suggests the objective:

max
θ

I(Z, Y ;θ) s.t. I(X,Z;θ) ≤ Ic (A.2)

where Ic is the information constraint. Equivalently, with the introduction of a

Lagrange multiplier β we can maximize the objective function:

L(θ) = I(Z, Y ;θ)− βI(X,Z;θ) (A.3)

where β controls the trade-off. Intuitively, the first term encourages Z to be pre-

dictive of Y ; the second term encourages Z to “forget” X. Essentially it forces Z

to act like a minimal sufficient statistic of X for predicting Y .

A.4.2 Why IMAC works?

We discuss why information bottleneck works in multi-agent communication.

We first introduce minimal sufficient statistics: a transformation T (X) of

the data X is a minimal sufficient statistic if T (X) ∈ arg minS I(X,S(X)),

where S(X) is s.t. I(θ, S(X)) = maxT ′ I (θ, T ′(X))

114 A.5. Experimental Details and Results

Information bottleneck principle generalizes the notion of minimal sufficient statis-

tics and suggests using a summary of the data T (X) that has least mutual infor-

mation with the data X while preserving some amount of information about an

auxiliary variable Y .

According to [154], from a learning perspective, we discuss the role of I(X;T), the

compression or minimality term in information bottleneck, as a regularizer when

maximizing I(Y ;T).

Reinforcement learning learns a optimal action given a state. If we know the

optimal action in advance, like imitation learning, then we would maximize the

mutual information between the state and its corresponding optimal action, which

is a straightforward application of supervised learning. Here, X represents the

states, T represents the messages, Y represents the actions. Note that without

regularization, I(Y ;T) can be maximized by setting T = X. However, p(x|y)

cannot be estimated efficiently from a sample of a reasonable size; It means that

more samples are needed in reinforcement learning. In another words, methods

with regularization on I(X;T), e.g., IMAC, can accelerate convergence.

A.5 Experimental Details and Results

A.5.1 Cooperative navigation

In this environment, agents must cooperate through physical actions to reach a set

of landmarks. Agents observe the relative positions of other agents and landmarks,

and are collectively rewarded based on the proximity of any agent to each landmark.

In other words, the agents have to ‘cover’ all of the landmarks. Further, the agents

occupy significant physical space and are penalized when colliding with each other.

Our agents learn to infer the landmark they must cover, and move there while

avoiding other agents.

Training details We set the number of agents as 3,5,10 respectively. We use MLP

with hidden layer size of 64 as basic module as before communication model, after

communication model. We use the ADAM as optimizer with learning rate of 0.01.

Since the environment of cooperative navigation does not send ”terminal/done” to

agents, we set each episode with a maximal steps of 25. The reward of each agent

Appendix A. Appendix for Chapter 3 115

is identical, which equals to the sum of distances between agents to their nearest

landmark. It means that agents are required not only to approach its nearest

landmark, but also share information with each other for a common goal. We use

the same hyper-parameter as MADDPG of openAI’s version.

Table A.1 shows that MADDPG without communication tends to use high-entropy

messages, while IMAC can convey low-entropy messages. Combined with the per-

formance in Figure 4, we can see that under limited-bandwidth constraint, IMAC

learns informative communication protocols.

A.5.2 Predator and prey

In this variant of the classic predator-prey game, some slower cooperating agents

must chase some faster adversaries around a randomly generated environment with

some large landmarks impeding the way. Each time the cooperative agents collide

with some adversaries, the agents are rewarded while the adversary is penalized.

Agents observe the relative positions and velocities of the agents, and the positions

of the landmarks.

Training details We set the number of predators as 4, the number of preys as

2, and the number of landmarks as 2. We use the same architecture and hyper-

parameter as configuration in cooperative navigation. We trained our agents by

self-play for 100,000 episodes and then evaluate performance by cross-comparing

between IMAC and the baselines. We average the episode rewards across 1000

rounds (episodes) as scores.

sigma2 None 1 5 10
H(Mi) = 1

2
log(2πeσ2) - 1.419 2.223 2.570

maddpg w/ com 3.480+-0.042 1.530+-0.038 3.147+-0.088 3.891+-0.059
IMAC train w/ bw=1 0.244+-0.028 - - -
IMAC train w/ bw=5 2.227+-0.002 1.383+-0.003 - -
IMAC train w/ bw=10 2.763+-0.215 1.695+-0.044 3.017+-0.026 -

Table A.1: Entropy of messages in different limited bandwidths (number in
cell represents

H(Mi) =
1
2 log(2πeσ

2), which is calculated based on running variance).

116 A.5. Experimental Details and Results

0 5 10 15 20
Episode Reward

0.00

0.05

0.10

0.15

0.20

0.25

0.30

De
ns

ity

(a) 3m

IMAC, train w/ bw=1,
infer w/o bw
IMAC, train w/ bw=5,
infer w/ bw=1
IMAC, train w/ bw=10,
infer w/ bw=1
QMIX w/ com, train w/o bw,
infer w/ bw=1

0 5 10 15 20
Episode Reward

(b) 3m

IMAC, train w/ bw=1,
infer w/o bw
IMAC, train w/ bw=5,
infer w/ bw=1
IMAC, train w/ bw=10,
infer w/ bw=1
QMIX w/ com, train w/o bw,
infer w/ bw=1

Figure A.1: Density plot of episode reward per agent during the execution
stage. (a), (b) Reward distribution of IMAC trained with different prior dis-
tributions against MADDPG with communication under the same bandwidth
constraint in 3m and 8m respectively. “bw=δ” means in the implementation of
the limited bandwidth constraint, the variance Σ of Gaussian distribution is δ.

A.5.3 StarCraft II

We use the StarCraft Multi-Agent Challenge (SMAC) environment [40]. SMAC

uses the StarCraft II Learning Environment to introduce a cooperative MARL

environment, which focus solely on micromanagement. Each unit is controlled by

an independent agent that conditions only on local observations restricted to a

limited field of view centred on that unit.

We choose two scenarios: 3m and 8m as our testbeds, where a group of marines

need to defeat an enemy marines. The feature vector observed by each agent

contains the following attributes for both allied and enemy units within the sight

range: distance, relative x, relative y, health, shield, and unit type. The discrete

set of actions which agents are allowed to take consists of move in four directions,

attack an enemy, stop and no-op. Dead agents can only take no-op action while

live agents cannot. Some positive (negative) rewards after having enemy (allied)

units killed and/or a positive (negative) bonus for winning (losing) the battle.

Training details We use QMIX architecture [41] as our algorithm backbone,

where a DRQN with a recurrent layer composed of a 64-dimensional GRU and

a fully-connected layer before and after. We extend QMIX with communication

module. Each agent can receive other’s messages from previous timestep. We use

the RMSProp optimizer with learning rate = 0.0005 α = 0.99, and ϵ = 0.00001.

The replay buffer contains the most recent 5000 episodes.We sample batches of

120 episodes uniformly from the replay buffer, and train on fully unrolled episodes,

performing a single gradient descent step after every episode. The target networks

are updated after every 200 training episodes.

Appendix A. Appendix for Chapter 3 117

Results Figure A.1 shows the density plot of episode reward per agent during

the execution stage. We first respectively train IMAC with different prior distri-

butions z(Mi) of N(0, 1), N(0, 5), and N(0, 10), to satisfy a limited bandwidth

with the variance of 1. In the execution stage, we constrain these algorithms into

different bandwidths. As depicted in Figure A.1 (a) and (b), QMIX+IMAC with

different prior distributions outperform QMIX with communication in the limited

bandwidth environment. Results here demonstrate that IMAC discards useless

information without impairment on performance.

Appendix B

Appendix for Chapter 5

B.1 Contextual Bandit for Limited Number of

Contexts

Algorithm 4: A contextual bandit algorithm for a small number of contexts

[1] Initialization: For each context x, create an instance Exp3x of algorithm
Exp3 each round Invoke algorithm Exp3x with x = xt Play the action chosen
by Exp3x Return reward rt to Exp3x

B.2 Proof of Theorem 6.3.2.2

*

Proof. Let Sm be the ϵ-uniform mesh on [0, 1], that is, the set of all points in [0, 1]

that are integer multiples of ϵ. We take ϵ = 1/(d − 1) where the integer d is the

number of points in Sm, which will be adjusted later in the analysis.

We apply Alg. 4 to the context space Sm. Let fSm(x) be a mapping from context

x to the closest point in Sm:

fSm(x) = min

(
argmin
x′∈Sm

|x− x′|
)

119

120 B.3. SPC on GRF 11vs11 Full Game

In each round t, we replace the context xt with fSm (xt) and call Exp3S. The regret

bound will have two components: the regret bound for Exp3S and (a suitable notion

of) the discretization error. Formally, let us define the “discretized best response”

π∗
Sm

: X → Φ: π∗
Sm

(x) = π∗ (fSm(x)) for each context x ∈ X .

We define the total reward of an algorithm Alg is Reward (Alg) =
∑T

t=1 rt. Then

the regret of Exp3S and the discretization error are defined as:

RS(T) = Reward (π∗
S)− Reward (Exp3S)

DE(S) = Reward (π∗)− Reward (π∗
S) .

It follows that regret is the sum R(T) = RS(T) + DE(S). We have E [RS(T)] =

O(
√
TK logK) from Lemma 6.1, so it remains to upper bound the discretization

error and adjust the discretization step ϵ.

For each round t and the respective context x = xt, r (π∗
S(x) | fS(x)) ≥

r (π∗(x) | fS(x)) ≥ r (π∗(x) | x) − ϵL. The first inequality is determined by the

optimality of π∗
S and the second is determined by Lipschitzness. Summing this up

over all rounds t, we obtain E [Reward (π∗
S)] ≥ Reward [π∗]− ϵLT .

Thus, the regret is that

E[R(T)] ≤ ϵLT +O

(√
1

ϵ
TK log T

)
= O

(
T 2/3(LK log T)1/3

)
(B.1)

For the last inequality, we choose ϵ = (K log T
TL2)1/3.

B.3 SPC on GRF 11vs11 Full Game

We also conduct experiments on the GRF 11vs11 full game scenario with sparse

reward. As shown in Fig. B.1, SPC achieves about 50% win rate against built-in

AI in the target task after training with 200 million timesteps. This is non-trivial

as this is one of the most challenging benchmarks for MARL community, and

most current MARL methods struggle to achieve progress without hand-crafted

engineering.

Appendix B. Appendix for Chapter 5 121

0 M 25 M 50 M 75 M 100 M 125 M 150 M 175 M 200 M
Training Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

W
in

 R
at

e
in

 E
va

l

SPC

Figure B.1: The performance of SPC on the 11v11 scenario.

B.4 Qualitatively Analysis On Low-Level Skills

We demonstrate game statistics under different high-level actions. For example, the

times of shooting, passing and running actions per game in GRF. These different

low-level policies are induced by the high-level actions. We evaluate these statistics

by fixing one agent’s high-level actions and maintaining other agents with SPC.

The results in Table B.1 are averaged over five runs in the 5vs5 scenario.

Table B.1: Statistics of low-level skills.

shooting per game passing per game running per game
skill 1 7.9 times 0.5 times 2254 time steps
skill 2 2.3 times 26.4 times 2149 time steps
skill 3 1.6 times 3.9 times 2875 time steps

B.5 Comparing Different Teacher Algorithms on

GRF Corner-5

To further illustrate the effectiveness of the SPC teacher module, we conduct ex-

periments on the corner-5 scenario on GRF, where the target task is to control five

of the eleven players to obtain a goal in the GRF Corner scenario. The experiments

are designed to determine whether or not the contextual bandit in SPC outper-

forms alternative curriculum learning methods to schedule the number of agents

in training. We compare SPC teacher against non-curriculum training (None),

uniform task sampling (Uniform), a state-of-the-art curriculum learning method

122 B.6. Implementation Details

(ALP-GMM), and a multi-agent curriculum learning method (VACL). The train-

ing task space consists of n agents, where n ∈ {1, 3, 5}. All teachers have the

same base architecture without transformer architecture and HRL. We also inves-

tigate the ablation of the RNN-based contexts (see Contextual Bandit and Bandit).

Fig. B.2 shows the benefit of SPC contextual bandit over other ACL methods after

training with one million timesteps.

B.6 Implementation Details

We use the default implementation of Proximal Policy Optimization (PPO) in

Ray RLlib, which scales out using multiple workers for experience collection. This

allows us to use a large amount of rollouts from parallel workers during training to

ameliorate high variance and aid exploration. We do multiple rollouts in parallel

with distributed workers and use parameter sharing for each agent. The trainer

broadcasts new weights to the workers after their synchronous sampling.

B.6.1 Google Research Football

We set five tasks for training the GRF 5vs5 scenario, including 5vs5, 3vs3, Pass-

Shoot, 3vs1, and Empty-Goal. In the Empty-Goal, one agent need to move forward

and shoot with an empty goal. In Pass-Shoot and 3vs3, two agents are controlled

to play against a goalkeeper and three players, with different position initialization.

In 3vs1, three agents are controlled to play against a center-back and a goalkeeper.

0.0 M 0.2 M 0.4 M 0.6 M 0.8 M 1 M
Training Timesteps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

W
in

 R
at

e
in

 E
va

l

ALP-GMM
None
Uniform
Contextual Bandit
Bandit
VACL

(a) Win Rate

0.0 M 0.2 M 0.4 M 0.6 M 0.8 M 1 M
Training Timesteps

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

Go
al

 D
iff

. i
n

Ev
al

ALP-GMM
None
Uniform
Contextual Bandit
Bandit
VACL

(b) Goal Difference

Figure B.2: The evaluation performance of various teacher algorithms on the
GRF corner-5 scenario.

Appendix B. Appendix for Chapter 5 123

In 5vs5, four agents are controlled to play against five players. Without loss of

generality, we initialize all player with fixed positions and roles as center midfielders.

We use both MLP and self-attention mechanism for the high-level policy, and use

MLP for the low-level policy. For high-level policy, the input is first projected to an

embedding using two hidden layers with 256 units each and ReLU activation, which

is then fed into multi-head self-attention (8 heads, 64 units each). The output is

then projected to the actions and values using another fully connected layer with

256 units. For low-level policy, we use MLP with two hidden layers with 256 units

each, i.e., the default configuration of policy network in RLlib.

Table B.2: SPC hyper-parameters.

(a) SPC hyper-parameters used in GRF.

Name Value

Discount rate 0.99
GAE parameter 1.0
KL coefficient 0.2
Rollout fragment length 1000
Training batch size 100000
SGD minibatch size 10000
of SGD iterations 60
Learning rate 1e-4
Entropy coefficient 0.0
Clip parameter 0.3
Value function clip parameter 10.0

(b) SPC hyper-parameters used in
MPE.

Name Value

Discount rate 0.99
GAE parameter 1.0
KL coefficient 0.5
of SGD iterations 10
Learning rate 1e-4
Entropy coefficient 0.0
Clip parameter 0.3
Value function clip parameter 10.0

B.6.2 MPE

In MPE tasks, agents must cooperate through physical actions to reach a set of

landmarks. Agents observe the relative positions of other agents and landmarks,

and are collectively rewarded based on the proximity of any agent to each landmark.

In other words, the agents have to cover all of the landmarks. Further, the agents

are penalized when colliding with each other. The agents need to infer the landmark

to cover and move there while avoid colliding with other agents.

The hyper-parameters of SPC in MPE are shown in Table B.2b. In MPE, hyper-

parameters such as rollout fragment length, training batch size and SGD minibatch

124 B.6. Implementation Details

size are adjusted according to horizon of the scenarios so that policy are updated

after episodes are done. We use the same neural network architecture as in GRF,

but with 128 units for all MLP hidden layers. Other omitted hyper-parameters

follow the default configuration in RLlib PPO implementation.

Bibliography

[1] Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural
information processing systems, 12, 1999. xv, 17

[2] Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pe-
dro A Ortega, DJ Strouse, Joel Z Leibo, and Nando de Freitas. Intrinsic
social motivation via causal influence in multi-agent rl. 2018. 2

[3] Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pe-
dro Ortega, DJ Strouse, Joel Z Leibo, and Nando De Freitas. Social influence
as intrinsic motivation for multi-agent deep reinforcement learning. In Inter-
national Conference on Machine Learning, pages 3040–3049, 2019. 27

[4] Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Pow-
ell, Bob McGrew, and Igor Mordatch. Emergent tool use from multi-agent
autocurricula. arXiv preprint arXiv:1909.07528, 2019. 97

[5] Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy
Lever, Antonio Garcia Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S
Morcos, Avraham Ruderman, et al. Human-level performance in 3d mul-
tiplayer games with population-based reinforcement learning. Science, 364
(6443):859–865, 2019. 97, 104, 105

[6] David Abel. A theory of abstraction in reinforcement learning. arXiv preprint
arXiv:2203.00397, 2022. 2

[7] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using con-
nectionist systems, volume 37. University of Cambridge, Department of En-
gineering Cambridge, UK, 1994. 11

[8] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning,
8:279–292, 1992. 11

[9] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013. 12, 47, 65

[10] Ronald J Williams. Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine learning, 8:229–256, 1992. 14

125

126 BIBLIOGRAPHY

[11] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. In International conference on
machine learning, pages 1889–1897, 2015. 15

[12] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017. 16, 96

[13] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015. 18, 47,
65, 73

[14] Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein.
The complexity of decentralized control of Markov Decision Processes. Math-
ematics of Operations Research, 27(4):819–840, 2002. 19

[15] Tonghan Wang, Jianhao Wang, Chongyi Zheng, and Chongjie Zhang. Learn-
ing nearly decomposable value functions via communication minimization. In
International Conference on Learning Representations, 2020. URL https:

//openreview.net/forum?id=HJx-3grYDB. 23, 97

[16] Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon
Whiteson. Learning to communicate with deep multi-agent reinforcement
learning. In Advances in Neural Information Processing Systems, pages 2137–
2145, 2016. 23, 26, 35

[17] Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communica-
tion with backpropagation. In Advances in Neural Information Processing
Systems, pages 2244–2252, 2016. 26, 97

[18] Peng Peng, Quan Yuan, Ying Wen, Yaodong Yang, Zhenkun Tang, Haitao
Long, and Jun Wang. Multiagent bidirectionally-coordinated nets for learn-
ing to play starcraft combat games. arXiv preprint arXiv:1703.10069, 2,
2017. 23, 26

[19] Jiechuan Jiang and Zongqing Lu. Learning attentional communication for
multi-agent cooperation. In Advances in Neural Information Processing Sys-
tems, pages 7265–7275, 2018. 23, 26, 27, 39, 97

[20] Ozsel Kilinc and Giovanni Montana. Multi-agent deep reinforcement learning
with extremely noisy observations. arXiv preprint arXiv:1812.00922, 2018.
26

[21] Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh,
Mike Rabbat, and Joelle Pineau. TarMAC: Targeted multi-agent commu-
nication. In Proceedings of the 36th International Conference on Machine
Learning, pages 1538–1546, 2019. 26, 37, 97

https://openreview.net/forum?id=HJx-3grYDB
https://openreview.net/forum?id=HJx-3grYDB

BIBLIOGRAPHY 127

[22] Amanpreet Singh, Tushar Jain, and Sainbayar Sukhbaatar. Learning when
to communicate at scale in multiagent cooperative and competitive tasks.
arXiv preprint arXiv:1812.09755, 2018. 23, 26, 97

[23] Ryan Lowe, Jakob Foerster, Y-Lan Boureau, Joelle Pineau, and Yann
Dauphin. On the pitfalls of measuring emergent communication. arXiv
preprint arXiv:1903.05168, 2019. 24, 39

[24] Chongjie Zhang and Victor Lesser. Coordinating multi-agent reinforcement
learning with limited communication. In Proceedings of the 2013 Interna-
tional Conference on Autonomous Agents and Multi-agent Systems, pages
1101–1108, 2013. 25, 27

[25] Daewoo Kim, Sangwoo Moon, David Hostallero, Wan Ju Kang, Taeyoung
Lee, Kyunghwan Son, and Yung Yi. Learning to schedule communication in
multi-agent reinforcement learning. arXiv preprint arXiv:1902.01554, 2019.
25, 26, 27, 35, 37, 97

[26] Hangyu Mao, Zhibo Gong, Zhengchao Zhang, Zhen Xiao, and Yan Ni. Learn-
ing multi-agent communication under limited-bandwidth restriction for in-
ternet packet routing. arXiv preprint arXiv:1903.05561, 2019. 25, 26, 27,
37

[27] Claude Elwood Shannon. A mathematical theory of communication. Bell
System Technical Journal, 27(3):379–423, 1948. 25, 31, 110

[28] R.L. Freeman. Telecommunication System Engineering, pages 398–399. Wi-
ley Series in Telecommunications and Signal Processing. Wiley, 2004. ISBN
9780471451334. 25, 29, 31

[29] Naftali Tishby, Fernando C Pereira, and William Bialek. The information
bottleneck method. arXiv preprint physics/0004057, 2000. 25

[30] Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep
variational information bottleneck. arXiv preprint arXiv:1612.00410, 2016.
25, 33, 34, 55

[31] Angeliki Lazaridou, Alexander Peysakhovich, and Marco Baroni. Multi-
agent cooperation and the emergence of (natural) language. arXiv preprint
arXiv:1612.07182, 2016. 26

[32] Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional
language in multi-agent populations. In AAAI Conference on Artificial In-
telligence, 2018. 26

[33] Xue Bin Peng, Angjoo Kanazawa, Sam Toyer, Pieter Abbeel, and Sergey
Levine. Variational discriminator bottleneck: Improving imitation learn-
ing, inverse RL, and gans by constraining information flow. arXiv preprint
arXiv:1810.00821, 2018. 27

128 BIBLIOGRAPHY

[34] Anirudh Goyal, Riashat Islam, Daniel Strouse, Zafarali Ahmed, Matthew
Botvinick, Hugo Larochelle, Sergey Levine, and Yoshua Bengio. Infobot:
Transfer and exploration via the information bottleneck. arXiv preprint
arXiv:1901.10902, 2019. 27

[35] Claudia V Goldman and Shlomo Zilberstein. Optimizing information ex-
change in cooperative multi-agent systems. In Proceedings of the second in-
ternational joint conference on Autonomous agents and multiagent systems,
pages 137–144, 2003. 28

[36] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and
Igor Mordatch. Multi-agent actor-critic for mixed cooperative-competitive
environments. In Advances in Neural Information Processing Systems, pages
6379–6390, 2017. 28, 29, 36, 37, 89, 97

[37] Thomas M Cover and Joy A Thomas. Elements of Information Theory. John
Wiley & Sons, 2012. 32, 55

[38] Edwin T Jaynes. Information theory and statistical mechanics. Physical
Review, 106(4):620, 1957. 32

[39] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015. 36

[40] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory
Farquhar, Nantas Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philiph H. S.
Torr, Jakob Foerster, and Shimon Whiteson. The StarCraft Multi-Agent
Challenge. CoRR, abs/1902.04043, 2019. 37, 42, 116

[41] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory
Farquhar, Jakob Foerster, and Shimon Whiteson. Qmix: monotonic value
function factorisation for deep multi-agent reinforcement learning. arXiv
preprint arXiv:1803.11485, 2018. 37, 99, 116

[42] Rundong Wang, Runsheng Yu, Bo An, and Zinovi Rabinovich. I2hrl: Interac-
tive influence-based hierarchical reinforcement learning. In Proceedings of the
Twenty-Ninth International Conference on International Joint Conferences
on Artificial Intelligence, pages 3131–3138, 2021. 47, 97

[43] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep
neural networks and tree search. Nature, 529(7587):484, 2016. 47, 65

[44] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-
efficient hierarchical reinforcement learning. In Advances in Neural Informa-
tion Processing Systems, pages 3303–3313, 2018. 48, 49, 51, 59, 97

BIBLIOGRAPHY 129

[45] Andrew Levy, Robert Platt, and Kate Saenko. Hierarchical reinforcement
learning with hindsight. In International Conference on Learning Represen-
tations, 2019. https://openreview.net/forum?id=ryzECoAcY7. 48, 49, 59

[46] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David
Saxton, and Remi Munos. Unifying count-based exploration and intrinsic
motivation. In Advances in Neural Information Processing Systems, pages
1471–1479, 2016. 48

[47] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Di-
versity is all you need: Learning skills without a reward function. arXiv
preprint arXiv:1802.06070, 2018. 48, 50, 96

[48] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel.
Benchmarking deep reinforcement learning for continuous control. In Inter-
national Conference on Machine Learning, pages 1329–1338, 2016. 49, 58

[49] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architec-
ture. In AAAI Conference on Artificial Intelligence, pages 1726–1734, 2017.
49, 96

[50] George Konidaris and Andrew Barto. Efficient skill learning using abstraction
selection. In International Joint Conference on Artificial Intelligence, pages
1107–1112, 2009. 49

[51] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess,
Max Jaderberg, David Silver, and Koray Kavukcuoglu. Feudal networks for
hierarchical reinforcement learning. In International Conference on Machine
Learning, pages 3540–3549, 2017. 49

[52] Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks
for hierarchical reinforcement learning. arXiv preprint arXiv:1704.03012,
2017. 50

[53] Nicolas Heess, Greg Wayne, Yuval Tassa, Timothy Lillicrap, Martin Ried-
miller, and David Silver. Learning and transfer of modulated locomotor
controllers. arXiv preprint arXiv:1610.05182, 2016. 50

[54] Ofir Nachum, Haoran Tang, Xingyu Lu, Shixiang Gu, Honglak Lee, and
Sergey Levine. Why does hierarchy (sometimes) work so well in reinforcement
learning? arXiv preprint arXiv:1909.10618, 2019. 50, 56

[55] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenen-
baum. Hierarchical deep reinforcement learning: Integrating temporal ab-
straction and intrinsic motivation. In Advances in Neural Information Pro-
cessing Systems, pages 3675–3683, 2016. 50

[56] Jacob Rafati and David C Noelle. Efficient exploration through intrinsic
motivation learning for unsupervised subgoal discovery in model-free hierar-
chical reinforcement learning. arXiv preprint arXiv:1911.10164, 2019. 50

https://openreview.net/forum?id=ryzECoAcY7

130 BIBLIOGRAPHY

[57] Frans Oliehoek, Stefan Witwicki, and Leslie Kaelbling. Influence-based ab-
straction for multiagent systems. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 26, pages 1422–1428, 2012. 50

[58] Georgios Papoudakis, Filippos Christianos, Arrasy Rahman, and Stefano V
Albrecht. Dealing with non-stationarity in multi-agent deep reinforcement
learning. arXiv preprint arXiv:1906.04737, 2019. 50

[59] Neil C Rabinowitz, Frank Perbet, H Francis Song, Chiyuan Zhang, SM Es-
lami, and Matthew Botvinick. Machine theory of mind. arXiv preprint
arXiv:1802.07740, 2018. 53

[60] Naftali Tishby and Noga Zaslavsky. Deep learning and the information bot-
tleneck principle. In 2015 IEEE Information Theory Workshop (ITW), pages
1–5, 2015. 55, 113

[61] Youngjin Kim, Wontae Nam, Hyunwoo Kim, Ji-Hoon Kim, and Gunhee
Kim. Curiosity-bottleneck: Exploration by distilling task-specific novelty. In
International Conference on Machine Learning, pages 3379–3388, 2019. 57

[62] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function ap-
proximation error in actor-critic methods. arXiv preprint arXiv:1802.09477,
2018. 59

[63] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of Machine Learning Research, 9(Nov):2579–2605, 2008. 61

[64] Rundong Wang, Hongxin Wei, Bo An, Zhouyan Feng, and Jun Yao. Com-
mission fee is not enough: A hierarchical reinforced framework for portfolio
management. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, pages 626–633, 2021. 65

[65] Amir Mosavi, Pedram Ghamisi, Yaser Faghan, and Puhong Duan. Compre-
hensive review of deep reinforcement learning methods and applications in
economics. arXiv preprint arXiv:2004.01509, 2020. 65

[66] Jing Zhang and Dacheng Tao. Empowering things with intelligence: A sur-
vey of the progress, challenges, and opportunities in artificial intelligence of
things. IEEE Internet of Things Journal, 2020. doi: 10.1109/JIOT.2020.
3039359. 65

[67] Saud Almahdi and Steve Y Yang. An adaptive portfolio trading system:
A risk-return portfolio optimization using recurrent reinforcement learning
with expected maximum drawdown. Expert Systems with Applications, 87:
267–279, 2017. 65

[68] Zhengyao Jiang and Jinjun Liang. Cryptocurrency portfolio management
with deep reinforcement learning. In 2017 Intelligent Systems Conference
(IntelliSys), pages 905–913. IEEE, 2017. 65

BIBLIOGRAPHY 131

[69] Lili Tang. An actor-critic-based portfolio investment method inspired by
benefit-risk optimization. Journal of Algorithms & Computational Technol-
ogy, 12(4):351–360, 2018. 66

[70] Pengqian Yu, Joon Sern Lee, Ilya Kulyatin, Zekun Shi, and Sakyasingha
Dasgupta. Model-based deep reinforcement learning for dynamic portfolio
optimization. arXiv preprint arXiv:1901.08740, 2019. 66

[71] Zhipeng Liang, Hao Chen, Junhao Zhu, Kangkang Jiang, and Yanran Li. Ad-
versarial deep reinforcement learning in portfolio management. arXiv preprint
arXiv:1808.09940, 2018. 66, 73

[72] Yunan Ye, Hengzhi Pei, Boxin Wang, Pin-Yu Chen, Yada Zhu, Jun Xiao, and
Bo Li. Reinforcement-learning based portfolio management with augmented
asset movement prediction states. arXiv preprint arXiv:2002.05780, 2020. 66

[73] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Man-
sour. Policy gradient methods for reinforcement learning with function ap-
proximation. In Advances in neural information processing systems, pages
1057–1063, 2000. 74

[74] Arash Tavakoli, Fabio Pardo, and Petar Kormushev. Action branching archi-
tectures for deep reinforcement learning. In Thirty-Second AAAI Conference
on Artificial Intelligence, pages 4131–4138, 2018. 74

[75] Yuriy Nevmyvaka, Yi Feng, and Michael Kearns. Reinforcement learning for
optimized trade execution. In Proceedings of the 23rd International Confer-
ence on Machine Learning, pages 673–680, 2006. 75

[76] Thomas M Cover. Universal portfolios. In The Kelly Capital Growth Invest-
ment Criterion: Theory and Practice, pages 181–209. World Scientific, 2011.
77

[77] Bin Li and Steven CH Hoi. On-line portfolio selection with moving average
reversion. In Proceedings of the 29th International Coference on International
Conference on Machine Learning, pages 563–570, 2012. 77

[78] Li Gao and Weiguo Zhang. Weighted moving average passive aggressive
algorithm for online portfolio selection. In 2013 5th International Conference
on Intelligent Human-Machine Systems and Cybernetics, volume 1, pages
327–330. IEEE, 2013. 77

[79] Alexei A Gaivoronski and Fabio Stella. Stochastic nonstationary optimization
for finding universal portfolios. Annals of Operations Research, 100(1-4):165–
188, 2000. 77

[80] Allan Borodin, Ran El-Yaniv, and Vincent Gogan. Can we learn to beat the
best stock. In Advances in Neural Information Processing Systems, pages
345–352, 2004. 77

132 BIBLIOGRAPHY

[81] Zhengyao Jiang, Dixing Xu, and Jinjun Liang. A deep reinforcement learning
framework for the financial portfolio management problem. arXiv preprint
arXiv:1706.10059, 2017. 77

[82] Rundong Wang, Longtao Zheng, Wei Qiu, Bowei He, Bo An, Zinovi Rabi-
novich, Yujing Hu, Yingfeng Chen, Tangjie Lv, and Changjie Fan. Towards
skilled population curriculum for multi-agent reinforcement learning. arXiv
preprint arXiv:2302.03429, 2023. 87

[83] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement
learning: A selective overview of theories and algorithms. Handbook of Re-
inforcement Learning and Control, pages 321–384, 2021. 88

[84] Yaodong Yang and Jun Wang. An overview of multi-agent reinforcement
learning from game theoretical perspective. arXiv preprint arXiv:2011.00583,
2020. 88

[85] Yujing Hu, Weixun Wang, Hangtian Jia, Yixiang Wang, Yingfeng Chen,
Jianye Hao, Feng Wu, and Changjie Fan. Learning to utilize shaping rewards:
A new approach of reward shaping. arXiv preprint arXiv:2011.02669, 2020.
88

[86] Jiayu Chen, Yuanxin Zhang, Yuanfan Xu, Huimin Ma, Huazhong Yang, Ji-
aming Song, Yu Wang, and Yi Wu. Variational automatic curriculum learn-
ing for sparse-reward cooperative multi-agent problems. Advances in Neural
Information Processing Systems, 34, 2021. 88, 99

[87] Shiyu Huang, Wenze Chen, Longfei Zhang, Ziyang Li, Fengming Zhu, Deheng
Ye, Ting Chen, and Jun Zhu. Tikick: Toward playing multi-agent football full
games from single-agent demonstrations. arXiv preprint arXiv:2110.04507,
2021. 88

[88] Weixun Wang, Tianpei Yang, Yong Liu, Jianye Hao, Xiaotian Hao, Yujing
Hu, Yingfeng Chen, Changjie Fan, and Yang Gao. From few to more: Large-
scale dynamic multiagent curriculum learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 7293–7300, 2020. 88

[89] Qian Long, Zihan Zhou, Abhibav Gupta, Fei Fang, Yi Wu, and Xiaolong
Wang. Evolutionary population curriculum for scaling multi-agent reinforce-
ment learning. arXiv preprint arXiv:2003.10423, 2020. 88

[90] Jiachen Yang, Igor Borovikov, and Hongyuan Zha. Hierarchical coopera-
tive multi-agent reinforcement learning with skill discovery. arXiv preprint
arXiv:1912.03558, 2019. 88

[91] Alexander Sasha Vezhnevets, Yuhuai Wu, Remi Leblond, and Joel Z Leibo.
Options as responses: Grounding behavioural hierarchies in multi-agent rl.
arXiv preprint arXiv:1906.01470, 2019. 88

BIBLIOGRAPHY 133

[92] Tonghan Wang, Tarun Gupta, Anuj Mahajan, Bei Peng, Shimon Whiteson,
and Chongjie Zhang. Rode: Learning roles to decompose multi-agent tasks.
arXiv preprint arXiv:2010.01523, 2020. 88

[93] Zhen-Jia Pang, Ruo-Ze Liu, Zhou-Yu Meng, Yi Zhang, Yang Yu, and Tong
Lu. On reinforcement learning for full-length game of starcraft. In Proceedings
of the AAAI Conference on Artificial Intelligence, 2019. 88

[94] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997. 89

[95] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in Neural Information Processing Systems, 30, 2017. 89, 95

[96] Karol Kurach, Anton Raichuk, Piotr Stańczyk, Micha l Zajac, Olivier
Bachem, Lasse Espeholt, Carlos Riquelme, Damien Vincent, Marcin Michal-
ski, Olivier Bousquet, et al. Google research football: A novel reinforcement
learning environment. arXiv preprint arXiv:1907.11180, 2019. 89, 98

[97] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The
nonstochastic multiarmed bandit problem. SIAM Journal on Computing, 32
(1):48–77, 2002. 90, 92, 94

[98] Elad Hazan and Nimrod Megiddo. Online learning with prior knowledge. In
International Conference on Computational Learning Theory, pages 499–513.
Springer, 2007. 90

[99] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: An efficient
data clustering method for very large databases. ACM Aigmod Record, 25
(2):103–114, 1996. 92, 95

[100] Heikki Hyötyniemi. Turing machines are recurrent neural networks. In STeP
’96/Publications of the Finnish Artificial Intelligence Society, 1996. 93

[101] Shariq Iqbal, Christian A Schroeder De Witt, Bei Peng, Wendelin Böhmer,
Shimon Whiteson, and Fei Sha. Randomized entity-wise factorization for
multi-agent reinforcement learning. In International Conference on Machine
Learning, pages 4596–4606. PMLR, 2021. 95

[102] Siyi Hu, Fengda Zhu, Xiaojun Chang, and Xiaodan Liang. Updet: Universal
multi-agent reinforcement learning via policy decoupling with transformers.
arXiv preprint arXiv:2101.08001, 2021. 95

[103] Wei Fu, Chao Yu, Zelai Xu, Jiaqi Yang, and Yi Wu. Revisiting some common
practices in cooperative multi-agent reinforcement learning. arXiv preprint
arXiv:2206.07505, 2022. 96

[104] Rémy Portelas, Cédric Colas, Lilian Weng, Katja Hofmann, and Pierre-Yves
Oudeyer. Automatic curriculum learning for deep RL: A short survey. arXiv
preprint arXiv:2003.04664, 2020. 97

134 BIBLIOGRAPHY

[105] Sanmit Narvekar and Peter Stone. Learning curriculum policies for reinforce-
ment learning. arXiv preprint arXiv:1812.00285, 2018. 97

[106] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob
McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell,
Raphael Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint
arXiv:1910.07113, 2019. 97

[107] Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J Pal, and Liam
Paull. Active domain randomization. In Conference on Robot Learning, pages
1162–1176. PMLR, 2020. 97

[108] Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer.
Teacher algorithms for curriculum learning of deep RL in continuously pa-
rameterized environments. In Conference on Robot Learning, pages 835–853,
2020. 97

[109] Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander G Haupt-
mann. Self-paced curriculum learning. In Twenty-Ninth AAAI Conference
on Artificial Intelligence, 2015. 97

[110] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic
goal generation for reinforcement learning agents. In International Confer-
ence on Machine Learning, pages 1515–1528. PMLR, 2018. 97

[111] Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level
replay. In International Conference on Machine Learning, pages 4940–4950.
PMLR, 2021. 97

[112] Minqi Jiang, Michael Dennis, Jack Parker-Holder, Jakob Foerster, Edward
Grefenstette, and Tim Rocktäschel. Replay-guided adversarial environment
design. Advances in Neural Information Processing Systems, 34:1884–1897,
2021. 97

[113] Pascal Klink, Carlo D’Eramo, Jan R Peters, and Joni Pajarinen. Self-paced
deep reinforcement learning. Advances in Neural Information Processing Sys-
tems, 33:9216–9227, 2020. 97

[114] Pascal Klink, Haoyi Yang, Carlo D’Eramo, Jan Peters, and Joni Pajarinen.
Curriculum reinforcement learning via constrained optimal transport. In
International Conference on Machine Learning, pages 11341–11358. PMLR,
2022. 97

[115] Maxwell Svetlik, Matteo Leonetti, Jivko Sinapov, Rishi Shah, Nick Walker,
and Peter Stone. Automatic curriculum graph generation for reinforcement
learning agents. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 31, 2017. 97

BIBLIOGRAPHY 135

[116] Wolfgang Banzhaf, Bert Baumgaertner, Guillaume Beslon, René Doursat,
James A Foster, Barry McMullin, Vinicius Veloso De Melo, Thomas Miconi,
Lee Spector, Susan Stepney, et al. Defining and simulating open-ended nov-
elty: Requirements, guidelines, and challenges. Theory in Biosciences, 135
(3):131–161, 2016. 97

[117] Joel Lehman, Kenneth O Stanley, et al. Exploiting open-endedness to solve
problems through the search for novelty. In ALIFE, pages 329–336. Citeseer,
2008.

[118] Russell K Standish. Open-ended artificial evolution. International Journal
of Computational Intelligence and Applications, 3(02):167–175, 2003. 97

[119] Siqi Liu, Guy Lever, Josh Merel, Saran Tunyasuvunakool, Nicolas Heess, and
Thore Graepel. Emergent coordination through competition. arXiv preprint
arXiv:1902.07151, 2019. 97

[120] Abhinav Gupta, Marc Lanctot, and Angeliki Lazaridou. Dynamic
population-based meta-learning for multi-agent communication with natural
language. Advances in Neural Information Processing Systems, 34:16899–
16912, 2021. 97

[121] Rémy Portelas, Clément Romac, Katja Hofmann, and Pierre-Yves Oudeyer.
Meta automatic curriculum learning. arXiv preprint arXiv:2011.08463, 2020.
97

[122] Joel Z Leibo, Edward Hughes, Marc Lanctot, and Thore Graepel. Autocur-
ricula and the emergence of innovation from social interaction: A manifesto
for multi-agent intelligence research. arXiv preprint arXiv:1903.00742, 2019.
97

[123] Shayegan Omidshafiei, Dong-Ki Kim, Miao Liu, Gerald Tesauro, Matthew
Riemer, Christopher Amato, Murray Campbell, and Jonathan P How. Learn-
ing to teach in cooperative multiagent reinforcement learning. In Proceedings
of the AAAI conference on artificial intelligence, volume 33, pages 6128–6136,
2019. 97

[124] Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Near-optimal
representation learning for hierarchical reinforcement learning. arXiv preprint
arXiv:1810.01257, 2018. 97

[125] Sainbayar Sukhbaatar, Emily Denton, Arthur Szlam, and Rob Fergus. Learn-
ing goal embeddings via self-play for hierarchical reinforcement learning.
arXiv preprint arXiv:1811.09083, 2018.

[126] Suraj Nair and Chelsea Finn. Hierarchical foresight: Self-supervised learn-
ing of long-horizon tasks via visual subgoal generation. arXiv preprint
arXiv:1909.05829, 2019. 97

136 BIBLIOGRAPHY

[127] Christian Daniel, Gerhard Neumann, and Jan Peters. Hierarchical relative
entropy policy search. In Artificial Intelligence and Statistics, pages 273–281,
2012. 97

[128] Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational
intrinsic control. arXiv preprint arXiv:1611.07507, 2016.

[129] Tanmay Shankar and Abhinav Gupta. Learning robot skills with temporal
variational inference. In Proceedings of the 37th International Conference on
Machine Learning. JMLR. org, 2020.

[130] Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Haus-
man. Dynamics-aware unsupervised discovery of skills. In International Con-
ference on Learning Representations, 2020. 97

[131] Crystal Chao, Maya Cakmak, and Andrea L Thomaz. Towards grounding
concepts for transfer in goal learning from demonstration. In 2011 IEEE
International Conference on Development and Learning (ICDL), volume 2,
pages 1–6. IEEE, 2011. 97

[132] Karl Moritz Hermann, Felix Hill, Simon Green, Fumin Wang, Ryan Faulkner,
Hubert Soyer, David Szepesvari, Wojciech Marian Czarnecki, Max Jaderberg,
Denis Teplyashin, et al. Grounded language learning in a simulated 3d world.
arXiv preprint arXiv:1706.06551, 2017. 97

[133] Devendra Singh Chaplot, Kanthashree Mysore Sathyendra, Rama Kumar
Pasumarthi, Dheeraj Rajagopal, and Ruslan Salakhutdinov. Gated-attention
architectures for task-oriented language grounding. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32, 2018. 97

[134] Edward C Williams, Nakul Gopalan, Mine Rhee, and Stefanie Tellex. Learn-
ing to parse natural language to grounded reward functions with weak su-
pervision. In 2018 ieee international conference on robotics and automation
(icra), pages 4430–4436. IEEE, 2018. 97

[135] Deblina Bhattacharjee, Tong Zhang, Sabine Süsstrunk, and Mathieu Salz-
mann. Mult: An end-to-end multitask learning transformer. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 12031–12041, 2022. 97

[136] Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, and Sergey
Levine. Learning modular neural network policies for multi-task and multi-
robot transfer. In 2017 IEEE international conference on robotics and au-
tomation (ICRA), pages 2169–2176. IEEE, 2017. 97

[137] Chenghao Li, Chengjie Wu, Tonghan Wang, Jun Yang, Qianchuan Zhao, and
Chongjie Zhang. Celebrating diversity in shared multi-agent reinforcement
learning. arXiv preprint arXiv:2106.02195, 2021. 98

BIBLIOGRAPHY 137

[138] Siyang Wu, Tonghan Wang, Chenghao Li, and Chongjie Zhang. Con-
tainerized distributed value-based multi-agent reinforcement learning. arXiv
preprint arXiv:2110.08169, 2021. 98

[139] Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor
Makoviychuk, Philip HS Torr, Mingfei Sun, and Shimon Whiteson. Is inde-
pendent learning all you need in the StarCraft multi-agent challenge? arXiv
preprint arXiv:2011.09533, 2020. 99

[140] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of machine learning research, 9(11), 2008. 102

[141] OpenAI. OpenAI Five. https://openai.com/blog/openai-five/, 2019.
Accessed March 4, 2019. 104, 105

[142] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha
Laskin, Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision trans-
former: Reinforcement learning via sequence modeling. Advances in Neural
Information Processing Systems, 34:15084–15097, 2021. 105

[143] Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning
as one big sequence modeling problem. Advances in Neural Information
Processing Systems, 34:1273–1286, 2021. 105

[144] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo,
Alexander Novikov, Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie
Kay, Jost Tobias Springenberg, et al. A generalist agent. arXiv preprint
arXiv:2205.06175, 2022. 105

[145] Kuang-Huei Lee, Ofir Nachum, Mengjiao Yang, Lisa Lee, Daniel Freeman,
Winnie Xu, Sergio Guadarrama, Ian Fischer, Eric Jang, Henryk Michalewski,
et al. Multi-game decision transformers. arXiv preprint arXiv:2205.15241,
2022. 105

[146] Muning Wen, Jakub Grudzien Kuba, Runji Lin, Weinan Zhang, Ying Wen,
Jun Wang, and Yaodong Yang. Multi-agent reinforcement learning is a se-
quence modeling problem. arXiv preprint arXiv:2205.14953, 2022. 105

[147] Yang Gao, Huazhe Xu, Ji Lin, Fisher Yu, Sergey Levine, and Trevor Dar-
rell. Reinforcement learning from imperfect demonstrations. arXiv preprint
arXiv:1802.05313, 2018. 105

[148] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul,
Bilal Piot, Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband, et al.
Deep q-learning from demonstrations. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018. 105

[149] Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume
Desjardins, James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Ko-
ray Kavukcuoglu, and Raia Hadsell. Policy distillation. arXiv preprint
arXiv:1511.06295, 2015. 105

https://openai.com/blog/openai-five/

138 BIBLIOGRAPHY

[150] Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-
mimic: Deep multitask and transfer reinforcement learning. arXiv preprint
arXiv:1511.06342, 2015. 105

[151] Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal, Hal Daumé III, and
John Langford. Learning to search better than your teacher. In International
Conference on Machine Learning, pages 2058–2066. PMLR, 2015. 105

[152] Simon Schmitt, Jonathan J Hudson, Augustin Zidek, Simon Osindero, Carl
Doersch, Wojciech M Czarnecki, Joel Z Leibo, Heinrich Kuttler, Andrew
Zisserman, Karen Simonyan, et al. Kickstarting deep reinforcement learning.
arXiv preprint arXiv:1803.03835, 2018.

[153] Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan,
Joséphine Simon, Matthew Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao,
et al. Jump-start reinforcement learning. arXiv preprint arXiv:2204.02372,
2022. 105

[154] Ohad Shamir, Sivan Sabato, and Naftali Tishby. Learning and generalization
with the information bottleneck. Theoretical Computer Science, 411(29-30):
2696–2711, 2010. 114

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Deep Reinforcement Learning
	1.2 Organization of the thesis

	2 Preliminary
	2.1 Markov Decision Process
	2.2 Reinforcement Learning
	2.2.1 Value-based methods
	2.2.2 Policy-based Methods
	2.2.3 Actor-Critic konda1999actor

	2.3 Multi-agent Reinforcement Learning

	I Communication amongst agents
	3 Learning Efficient Multi-agent Communication: An Information Bottleneck Approach
	3.1 Introduction
	3.2 Related Work
	3.3 Communicative Multi-agent Reinforcement Learning
	3.4 Connection between Limited Bandwidth and Multi-agent Communication
	3.4.1 Communication Process
	3.4.2 Limited Bandwidth Restricts Message's Entropy
	3.4.3 Measurement of a Message's Entropy

	3.5 Informative Multi-agent Communication
	3.5.1 Variational Information Bottleneck for Learning Protocols
	3.5.2 Unification of Learning Protocols and Scheduling
	3.5.3 Implementation of the limited bandwidth Constraint

	3.6 Experiment
	3.6.1 Cooperative Navigation
	3.6.2 Predator Prey
	3.6.3 StarCraftII

	3.7 Chapter Summary

	II Collaboration amongst agents
	4 I2HRL: Interactive Influence-based Hierarchical Reinforcement Learning
	4.1 Introduction
	4.2 Related Work
	4.3 Preliminaries about Hierarchical Reinforcement Learning
	4.4 Interactive Influence-based HRL
	4.4.1 Low-level Policy Modeling
	4.4.2 High-level Policy: Influence-based Framework
	4.4.3 Influence-based Adaptive Exploration

	4.5 Experiments
	4.5.1 Environmental Settings
	Ant Gather.
	Ant Maze.
	Ant Push.

	4.5.2 Results
	Comparison with Baselines.
	Ablations.

	4.5.3 Visualization
	Visualization of the low-level policy representation.
	Visualization of non-stationary states.

	4.6 Chapter Summary

	5 Commission Fee is not Enough: A Hierarchical Reinforced Framework for Portfolio Management
	5.1 Introduction
	5.2 Key Definitions in Portfolio Management
	5.3 Hierarchical MDP Framework for Portfolio Management
	5.3.1 The High-level MDP for Portfolio Management
	5.3.2 The Low-level MDP for Trade Execution

	5.4 Optimizing via Deep Hierarchical Reinforcement Learning
	5.4.1 Hierarchy of Two Policies
	5.4.2 High-level RL with Entropy Bonus
	5.4.3 Low-level RL with Action Branching
	5.4.4 Training Scheme

	5.5 Experiment
	5.5.1 Dataset Setting and Preprocessing
	5.5.2 Baseline and Metrics
	5.5.3 Comparison with Baselines
	5.5.4 Ablation Study
	5.5.5 Trading Strategy Interpretation

	5.6 Chapter Summary

	III Reciprocation amongst agents
	6 Towards Skilled Population Curriculum for Multi-agent Reinforcement Learning
	6.1 Introduction
	6.2 Preliminaries
	6.3 Skilled Population Curriculum
	6.3.1 Problem Formulation
	6.3.2 Teacher as a Non-Stationary Contextual Bandit
	6.3.2.1 Context Representation
	6.3.2.2 Regret Analysis

	6.3.3 Student with Population-Invariant Skills

	6.4 Further Related Work
	6.5 Experiments
	6.5.1 Environments, Baselines and Metric
	6.5.2 The Necessity of Curriculum Learning
	6.5.3 Performance and Ablation Study
	6.5.4 Visualization of Learned Curriculum

	7 Conclusions and Future Directions
	7.1 Conclusion
	7.2 Future Directions
	7.2.1 Foundation Model for Decision Making
	7.2.2 Human-AI Coordination

	List of Author's Publications
	A Appendix for Chapter 3
	A.1 Source Coding
	A.2 Maximum Data Rate
	A.3 Informative Multi-agent Communication Algorithm
	A.4 The Information Bottleneck Method
	A.4.1 Background
	A.4.2 Why IMAC works?

	A.5 Experimental Details and Results
	A.5.1 Cooperative navigation
	A.5.2 Predator and prey
	A.5.3 StarCraft II

	B Appendix for Chapter 5
	B.1 Contextual Bandit for Limited Number of Contexts
	B.2 Proof of Theorem 6.3.2.2
	B.3 SPC on GRF 11vs11 Full Game
	B.4 Qualitatively Analysis On Low-Level Skills
	B.5 Comparing Different Teacher Algorithms on GRF Corner-5
	B.6 Implementation Details
	B.6.1 Google Research Football
	B.6.2 MPE

